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Abstract We study the phase space of eccentric coplanar co-orbitals in the non-restricted
case. Departing from the quasi-circular case, we describe the evolution of the phase space
as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5
for equal mass co-orbitals, important topological changes occur in the phase space. These
changes lead to the emergence of new co-orbital configurations and open a continuous path
between the previously distinct trojan domains near the L4 and L5 eccentric Lagrangian
equilibria. These topological changes are shown to be linked with the reconnection of families
of quasi-periodic orbits of non-maximal dimension.

Keywords Trojans · Co-orbitals · Lagrange · Planetary problem · Three-body problem ·
High eccentricity · Mean-motion resonance

1 Introduction

Co-orbitals are two bodiesm1 andm2 orbiting around a more massive bodym0 with the same
mean mean-motion. This configuration is also called a 1:1 mean motion resonance. In the
coplanar circular case, the dynamics of this resonance is well known. Out of the 5 equilibrium
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points found by Euler and Lagrange, the first 3 were shown to be unstable by Liouville (1842),
while L4 and L5 are linearly stable when μ = m1+m2

m0+m1+m2
� 1/27 (Gascheau 1843). When

the masses satisfy this relation, the bodies can librate around the L4 and L5 equilibrium
on stable orbits called Trojan, or tadpole. This libration transcribes by an oscillation of the
resonant angle ζ = λ1 − λ2, where λ j is the mean longitude of the mass m j . As the quantity
μ decreases, stable orbits with larger amplitude of libration become available. However, the
amplitude of libration of ζ cannot increase indefinitely in the trojan domain: at some point a
separatrix emanating from the unstable equilibrium L3 is crossed, beyond which the bodies
are in a configuration called horseshoe (Garfinkel 1977; Érdi 1977). In this configuration,
ζ librates around 180◦ with a larger amplitude, the orbits encompassing the L3, L4 and L5
equilibrium points. Horseshoe orbits are stable for μ � 2 × 10−4 (Roberts 2002).

1-D models were developed for the averaged coplanar quasi-circular case (Érdi 1977;
Robutel and Pousse 2013), describing the co-orbital dynamics as long asm1 andm2 are not too
close to each other (outside of the Hill’s sphere). However, if we consider the inclined and/or
eccentric cases, the phase space is significantly more complex. New co-orbital configurations
appear, such as quasi-satellites (Namouni 1999; Mikkola et al. 2006; Sidorenko et al. 2014;
Pousse et al. 2017) in the eccentric case and retrograde co-orbitals (Morais and Namouni
2013) in the inclined one. For no-null eccentricities and/or inclination, secular dynamics
kicks in, increasing the number of dimension to consider in order to correctly describe the
dynamics.

Giuppone et al. (2010) studied the coplanar eccentric dynamics in the planetary case for
m1 and m2 of the order of 10−3m0. They noticed that as the eccentricity of the co-orbitals
increases, the stable domain of quasi-satellites configuration increases, and the trojan domains
shrink. They also found that, in addition to the eccentric Lagrangian equilibrium L4 and L5,
the trojan domains have another periodic solution of the averaged problem: the anti-Lagrange
equilibria. The position of these equilibria evolves in the phase space as the eccentricity
increases.

In this work, we aim to push further the understanding of the coplanar eccentric co-
orbital dynamics. Besides the intrinsic interest of studying the 1:1 mean motion resonance,
an understanding of its different configurations is essential to the development of methods
of detection adapted to the co-orbital resonance, as well as the estimation of false positives
that can be induced to the detection of other orbital configurations (see for example Ford
and Gaudi 2006; Giuppone et al. 2012; Leleu et al. 2015, 2017, and references therein).
Although coplanarity seems a strong assumption for any real-life application, the study of
this peculiar case is interesting because it is still representative of systems with a small mutual
inclination.1

We know that, at least in the quasi-circular case, some co-orbital configurations are stable
only if μ is smaller than a given value. Less massive co-orbitals may then have a phase space
more complex than the one described in Giuppone et al. (2010). On the other hand, thorough
numerical study of trajectories is increasingly difficult as μ decreases since the time scales
involved in the dynamics are longer. As a compromise, we will consider co-orbitals in the
range of rocky planets with respect to the star (10−5m0–10−6m0), and see how the co-orbital
phase space behaves at high eccentricities.

After a brief review of the quasi-circular coplanar case in Sect. 2, we will describe the
evolution of the phase space in the case m1 = m2 (which simpler due to an additional
symmetry), going from the quasi-circular case up to eccentricities of 0.7. Although the phase

1 The planar dynamics is decoupled from the dynamics of the inclinations at first order in the inclination, see
Robutel and Pousse (2013).
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space evolves in a very predictable way for eccentricities lower than ≈ 0.5, we show that the
topology dramatically changes for higher values. In a final section, we check that the changes
that were observed in the case m1 = m2 occur for different planetary masses as well.

2 Quasi-circular coplanar dynamics

The dynamics of the quasi-circular coplanar co-orbitals is well known (Garfinkel 1977; Érdi
1977; Robutel and Pousse 2013). In this section, we give an overview of its main features in
the planetary case (m1 ≤ m2 � m0).

2.1 Hamiltonian of the averaged planetary problem

We start with the 3-body problem Hamiltonian H in canonical Cartesian heliocentric coor-
dinates (Laskar and Robutel 1995; Robutel et al. 2016):

H = HK (r j ) + εHP (r j , r̃ j ), (1)

where

HK =
2∑

j=1

( ||r̃ j ||2
2β j

− μ jβ j

||r j ||
)

(2)

is the Keplerian part of the Hamiltonian, ε = max(m1
m0

, m2
m0

) is a small parameter such that
m j = εm′

j . r j is the position of m j with respect to m0, and r̃ j is the barycentric linear

momentum. β j is the reduced mass ratio β j = m0m′
j

m0+εm′
j
, and μ j = G(m0 + εm′

j ) where G is

the gravitational constant. The perturbed part of the Hamiltonian reads:

HP = r̃1 · r̃2

m0
− G m′

1m
′
2

||r1 − r2|| . (3)

In order to get closer to the orbital elements, we rewrite the Hamiltonian in the Poincaré set
of variables:

Λ j = β j
√

μ j a j , λ j = λ j ,

x j = √
Λ j

√
1 −

√
1 − e2

j ei� j , x̃ j = −i x̄ j ,
(4)

that is:
H = HK (Λ1,Λ2) + εHP (λ1, λ2,Λ1,Λ2, x1, x2, x̃1, x̃2) . (5)

We study here the 1 : 1 mean motion resonance. We are hence in the neighbourhood of the
exact Keplerian resonance defined by:

∂HK

∂Λ1
(Λ1,Λ2) = ∂HK

∂Λ2
(Λ1,Λ2), (6)

where:

HK = −
2∑

j=1

(
μ2

jβ
3
j

2Λ2
j

)
. (7)

We denote by Λ0
1 and Λ0

2 the solution of Eqs. (6) and (7).
Since the mean motions n j of the two bodies are close at any given time, the quantity

ζ = λ1 − λ2 evolves slowly with respect to the longitudes. We denote by ν ∝ √
εn1
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the fundamental frequency associated with the resonant angle ζ . We process the following
canonical change of variables:

(
ζ

ζ2

)
=

(
1 −1
0 1

)(
λ1

λ2

)
,

(
Z
Z2

)
=

(
1 0
1 1

)(
Λ1 − Λ0

1
Λ2 − Λ0

2

)
, (8)

to obtain the following Hamiltonian:

H = HK (Z , Z2) + εHP (ζ, ζ2, Z , Z2, x1, x2, x̃1, x̃2) + O(ε2), (9)

with

HK (Z , Z2) = − β3
1μ2

1

2
(
Λ0

1 + Z
)2 − β3

2μ2
2

2
(
Λ0

2 − Z + Z2
)2 . (10)

In the Hamiltonian (9), a third time scale appears. This time scale, called secular, is slow
with respect to the orbital period and the resonant motion. It is associated with the orbital
precession and then to the variables x j and x̃ j as ẋ j = ε∂HP/∂ x̃ j = O(ε). The separation
between the fast time scale (associated with the mean motions) and the other time scales
allows for the averaging over the fast angle ζ2. We process this averaging by applying the
time-one map of the Hamiltonian flow generated by the auxiliary function W:

W(ζ, Z , Z2, x j , x̃ j ) = ε
1

2π

∫ ζ2

0

[
HP − HP

]
dζ2, (11)

where

HP (ζ, Z , Z2, x j , x̃ j ) = 1

2π

∫ 2π

0
HPdζ2, (12)

We hence obtain the averaged Hamiltonian:

H = LWH, (13)

where LW is the Lie transform:

LW = I d + {W, ·} + {W, {W, ·}} + · · · (14)

with {·, ·} the Lie bracket. We denote by χM the canonical change of variable close to the
identity:

χM = L−W . (15)

The previous variables can be written as a function of the new ones:

(ζ, ζ2, Z , Z2, x j , x̃ j ) = χM(ζ ′, ζ ′
2, Z

′, Z ′
2, x

′
j , x̃

′
j ). (16)

W is of size ε, the variables of the averaged problem are hence ε-close from the variables
of the full 3-body problem. From now on we write the new variables: (ζ, ζ2, Z , Z2, x j , x̃ j ).
We obtain:

H = HK (Z , Z2) + εHP (ζ, Z , Z2, x j , x̃ j ) + O(ε2). (17)

We note that Z2 is a constant of the averaged problem. Without loss of generality, we can
take Z2 = 0. In this case, Eqs. (6) and (8) give:

μ2
1β

3
1(

Λ0
1

)3 = μ2
2β

3
2(

Λ0
2

)3 =
(

Λ1 + Λ2

μ
2/3
1 β1 + μ

2/3
2 β2

)3

. (18)
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From this, we define the mean mean-motion η common to both co-orbitals:

η = μ2
1β

3
1(

Λ0
1

)3 = μ2
2β

3
2(

Λ0
2

)3 , (19)

and the averaged Hamiltonian becomes:

H = HK (Z) + εHP (ζ, Z , x j , x̃ j ) + O(ε2). (20)

2.2 Invariance of the circular manifold

We can expand HP in (20) in Taylor series in the neighbourhood of (x1, x2) = (0, 0) (see
Robutel and Pousse 2013):

HP (ζ, Z , x j , x̃ j ) =
∑

(p, p̃)∈N4

Cp, p̃,q,q̃(ζ, Z)x p1
1 x p2

2 x̃ p̃1
1 x̃ p̃2

2 , (21)

where Cp, p̃ are nonzero if and only if the coefficients (p, p̃) ∈ N
4 follow the D’Alembert

rule:
p1 + p2 = p̃1 + p̃2. (22)

The previous relation is equivalent to the fact that the total angular momentum is an integral
of the problem, that is:

Λ1 + Λ2 − i x1 x̃1 − i x2 x̃2 = cst. (23)

Therefore, the expansion (21) contains only monomials of even total degree in ( x j , x̃ j ).
As a consequence, the set C0, defined as:

C0 = {(ζ, Z , x j , x̃ j )/x j = x̃ j = 0}, (24)

that we call “circular invariant manifold”, is invariant by the flow of the averaged Hamiltonian
(20).

2.3 The circular dynamics

Restricting the Hamiltonian (20) to the circular coplanar manifold C0, Robutel et al. (2016)
obtained an integrable approximation of H at the order (Z2, ε). The equation canonically
associated with that Hamiltonian can be rewritten as a second-order differential equation,
generalising the model obtained by Érdi (1977):

ζ̈ = −3εη2 m
′
1 + m′

2

m0

(
1 − (2 − 2 cos ζ )−3/2) sin ζ. (25)

2.3.1 The circular motion

The phase portrait of the 1-D model (Eq. 25) is given in Fig. 1 in the (ζ, ζ̇ /
√

μ) plane, where

μ = m1 + m2

m0 + m1 + m2
(26)

is of size ε. The phase portrait was plotted for a given value of the masses, but the topology
of the phase space does not depend on their value.
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Fig. 1 Phase portrait of Eq. (25). The separatrix (black curve) splits the phase space in two different domains:
inside the separatrix the region associated with the tadpole orbits (in red) and the horseshoe domain (blue
orbits) outside. The phase portrait is symmetric with respect to ζ = 180◦. The horizontal purple segment
indicates the range of variation of ζ0, while the vertical one shows the section used as initial condition to draw
Fig. 2. See the text for more details

Tadpole orbits (in red) librate around L4 or L5, while horseshoe orbits librate with large
amplitude, encompassing the L4, L3 and L5 equilibria. This libration of the resonant angle
ζ is associated with the fundamental frequency ν, which is small with respect to the mean
mean-motion: ν ∝ η

√
ε. In the vicinity of the L4 and L5 equilibrium, we have (Charlier

1906):

ν0 = η

√
27

4
μ. (27)

Note that any trajectory in this phase space can be identified by its initial conditions (t0, ζ0)

such that ζ(t0) = ζ0 and ζ̇ (t0) = 0, where ζ0 is the minimal value of ζ on its trajectory, and
t0 is the first positive instant when ζ0 is reached. ζ0 sets the shape of the orbit, and t0 gives
the position of the bodies at a given time. Finally, the parameter η

√
μ gives the time scale of

the resonant motion and the scale in the Z direction (Z being proportional to ζ̇ , see Robutel
and Pousse 2013).

2.4 Stability of quasi-circular co-orbitals

To study the stability of quasi-circular coplanar co-orbitals, we integrate the 3-body problem
for a grid of initial conditions. As we saw in Sect. 2.3.1, taking initial conditions in the ζ0

direction while taking t0 = 0 allows to study all the possible co-orbital configurations in the
coplanar circular case. We hence take ζ0 ∈ [0, 60◦] and μ = m1+m2

m0+m1+m2
∈ [10−6, 10−1] for

our grid of initial conditions for the graphs (a), (c) and (d) in Fig. 2. In the graph (b), we check
the width of the stability domain in the direction Z . We set m0 = 1 M
, a1 = a2 = 1 au,
e1 = e2 = 0.05, �2 = λ2, and λ1 = �1 = 0◦. The mass of each planet is given by the
y coordinate (the value of μ) and the relation between m1 and m2: for graphs (a) and (b)
m2 = m1, for (c) m2 = 10m1, and for (d) m2 = 100m1.

For each set of initial conditions, the system is integrated over 5×106 orbital periods using
the symplectic integrator SABA4 (Laskar and Robutel 2001) with a time step of 0.01001
orbital periods. Trajectories with a relative variation of the total energy above 10−6 are
considered unstable. Note that the integrator is not especially well suited to handle close
encounters. As a result, some stable trajectories might be labelled as unstable, and in that
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(a) (b)

(c) (d)

Fig. 2 Stability of coplanar quasi-circular co-orbitals as a function of log10(μ) and ζ0 for the graphs (a), (c)
and (d), and Δa/a for the graph (b). For a and b m2 = m1, for c m2 = 10m1 and for d m2 = 100m1. The
black line in a and b shows the position of the separatrix between the tadpole and horseshoe domains. The
colour code gives the value of the libration frequency. See the text for more details

sense, the results presented here are conservative. Unstable trajectories, along with those
ejected from the resonance before the end of the integration, are identified with white pix-
els. These short-term instabilities are generally due to the overlap of secondary resonances
(Robutel and Gabern 2006; Páez and Efthymiopoulos 2015). The black pixels identify the
initial condition for which the diffusion of the libration frequency ν between the first and
second halves of the integration is higher than 10−6 (the stability check, along with the other
numerical studies in this work, was performed using TRIP, Gastineau and Laskar 2011).
Most of the black pixels are close to the stability boundary or the separatrix. The remaining
trajectories are expected to be stable for a duration longer than 107 orbital periods (Laskar
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1990; Robutel and Gabern 2006). For these trajectories, the colour code gives the value of
log10(ν/η).

For μ close to the Gascheau’s criterion value (μ ≈ 0.037), orbits are stable only in the
vicinity of the Lagrangian equilibrium, confined by the chaos induced by the resonances ν =
η/2, ν = η/3, and ν = η/4. As μ decreases, orbits with larger amplitude of libration become
stable, until stable horseshoe configurations appear for μ ≈ 3×10−4 or lower (Roberts 2002).
For these small μ values, the instability induced by the resonances is significant only near the
stability border (see Páez and Efthymiopoulos 2015; Robutel and Gabern 2006; Érdi et al.
2007, in the restricted case). The stability domain of the horseshoe configuration in the ζ0

direction is bound by the Hill sphere around the collision, of width μ1/3 (see Robutel and
Pousse 2013).

The graph (b) represents another section of the same phase space as graph (a): the initial
conditions are taken along the purple vertical line in Fig. 1. The black curves delimit the
trojan and horseshoe domains (Robutel and Pousse 2013). Combining the information of the
graphs (a) and (b), we find that the co-orbital domain is at its largest for 10−3 < μ < 10−2,
and that the horseshoe domain (∝ μ1/3) becomes larger than the tadpole one (∝ μ1/2) as μ

tends to 0 (Dermott and Murray 1981).
The graphs (a), (c) and (d) show that the mass repartition between co-orbitals does not

impact much the stability, excepted in the vicinity of the separatrix.

2.5 Periodic orbits’ families in the neighbourhood of the circular Lagrangian and
Eulerian equilibria

The average problem, as defined in Sect. 2.1, possesses three fixed points2: two correspond
to the Lagrange (circular) equilateral configurations, L4 and L5 for ζ = ±π/3, Z = x1 =
x2 = 0, and the third one to the Euler configuration L3 where the two planets are in the both
sides of the more massive body for ζ = π , Z = x1 = x2 = 0. From these two equilibria
(for symmetry reasons, L4 and L5 are dynamically equivalent) emanate several remarkable
families of periodic orbits. These families being extensively described in Robutel and Pousse
(2013), only their main features will be discussed in this section.

The circular Lagrangian configuration (L4) corresponding to an elliptic (stable) equilib-
rium,3 gives rise to three periodic orbit families, according to the Lyapunov central theorem
(see Meyer and Hall 1992). The first one is included entirely in the circular invariant man-
ifold C0. These orbits are those presented in Sect. 2.3.1 in the neighbourhood of L4. Their
frequency tends to η

√
27μ/2 as they approach the fixed point.

The second Lyapunov family, denoted by F1
4 , corresponds to a one-parameter family

which is tangent, at its origin, to the orbits satisfying the relations

a1 = a2, m1e1 = m2e2, ζ = π/3 and �1 − �2 = ζ + π. (28)

This particular configuration is conserved over time while precessing at the secular frequency
g close to 27ημ/8. F1

4 is nothing but the beginning of the anti-Lagrange family described
by Giuppone et al. (2010) in the case of the reduced problem (see Sect. 3.1). Let us mention
that although the relations (28) provide a good approximation of the F1

4 ’s orbits for small
eccentricities, they are no longer valid for high eccentricities (see Giuppone et al. 2010;
Hadjidemetriou and Voyatzis 2011).

2 It is proven in Robutel et al. (2016) that the averaging process is not convergent in a neighbourhood of the
collision between the two planets including the Hill sphere associated with this collision. The two Eulerian
configurations that correspond to L1 and L2 are consequently excluded from the present study.
3 As long as the Gascheau criterion is fulfilled.
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The last family, which is not strictly speaking a Lyapunov family, since it is only made of
fixed points, is the one containing the eccentric Lagrange configurations that will be denoted
by F2

4 . Indeed, these orbits, that fulfil the relations

a1 = a2, e2 = e1 and ζ = �1 − �2 = π/3 (29)

for all eccentricities, do not precess. In other words, the frequency associated with this last
family is equal to zero, which corresponds to the fact that two eigenvalues of the linearised
averaged system at the circular Lagrangian configurations vanish.

For the Eulerian point L3, the situation is quite different. Its corresponding averaged
linearised system has a pair of real eigenvalues, a pair of purely imaginary eigenvalues and
two others equal to zero (see Robutel and Pousse 2013). Only two Lyapunov-like families
emanate from this point: the anti-Lagrange family F1

3 highlighted by Hadjidemetriou et al.
(2009) and the eccentric Euler family F2

3 . The family F1
3 is tangent, at its origin, to the orbits

that satisfy the relations

a1 = a2, m1e1 = m2e2, ζ = π and �1 − �2 = 0. (30)

This condition is broken as the family moves away from L3 (Hadjidemetriou et al. 2009).
As for the configurations belonging to F1

4 , the two ellipses, which are aligned in this case,
precess at a frequency close to 27ημ/8.

The last family,F2
3 , is obviously the one that corresponds to the elliptic Eulerian equilibria.

For a given eccentricity, the associated ellipses pair satisfies the relations

a1 = a2, e1 = e2, ζ = 0 and �1 − �2 = π. (31)

3 Reduction of the problem in the eccentric case

3.1 Conservation of the total angular momentum

When the eccentricities are different from zero, it is possible to eliminate one more degree of
freedom by using the conservation of the total angular momentum. Starting from the averaged
Hamiltonian (5) and following Giuppone et al. (2010), we introduce the canonical coordinate
system (ζ,Δ�, q, Q,Z,Π, J1, J2) given by:

ζ = λ1 − λ2; Z = (Λ1 − Λ2)/2

Δ� = �1 − �2; Π = i(x2 x̃2 − x1 x̃1)/2

q = �1 + �2; J1 = (Λ1 + Λ2 − i(x1 x̃1 + x2 x̃2))/2

Q = λ1 + λ2 − q; J2 = (Λ1 + Λ2)/2.

(32)

Since the action J1 is an integral of the motion (half the total angular momentum, Eq.
23), the angle q = �1 + �2 can be ignored and the system associated with the reduced
Hamiltonian HR possesses only three degrees of freedom and depends on the parameter J1.
This Hamiltonian can additionally be averaged over the fast angle Q to become the averaged
reduced Hamiltonian, denoted HRM. This new function has only two degrees of freedom
and depends on the two parameters J1 and J2. This last integral can be considered as a scaling
factor associated with the mean semi-major axis (hence the mean mean-motion) and will be
omitted in the subsequent sections. As a consequence, for a given value of J1, the coordinates
(ζ,Δ�,Z,Π) are adapted to the averaged reduced system in study.
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Before going further, let us interpret the remarkable periodic orbits described in Sect. 2.5.
Since the coordinate system (32) has a singularity when e1 = e2 = 0, the circular manifold
C0 does not belong to any averaged reduced phase space. Regarding the other Lyapunov
families F j

k , the intersection of one of them with the surface J1 = cst is reduced to a single
point. As for a given periodic orbit of these families, the angle Δ� does not depend on the
time, these intersection points are equilibrium points of the averaged reduced problem. We
call Lk = F2

k ∩ {J1 = cst} and ALk = F1
k ∩ {J1 = cst} these fixed points. From now on,

the equilibrium point Lk refers to the given eccentric equilibrium point except if ‘circular’
is mentioned.

More generally, a generic quasi-periodic solution of the averaged reduced problem
depends on two fundamental frequencies: the frequency ν, which is of order

√
μ and mainly

associated with the semi-fast component (ζ,Z), and the secular frequency g = O(μ) related
to the slow variations of (Δ�,Π).

Some of these quasi-periodic orbits have only one frequency and are consequently peri-
odic. Let us denote by F sf the semi-fast periodic orbit family, defined by:

∂

∂Π
HRM = ∂

∂Δ�
HRM = 0, (33)

and F sc the secular one, defined by4:

∂

∂ζ
HRM = ∂

∂ZHRM = 0. (34)

In the neighbourhood of the fixed points Lk and ALk , the set F sc coincides with the secular
Lyapunov family of periodic orbits originated at these points, while F sf merges with the
semi-fast Lyapunov family connected to L4 an AL4 (L3 and AL3 being hyperbolic fixed
points, they possesses only one Lyapunov family).

Examples of these trajectories are displayed in Fig. 3. The top graph shows the variation
of ζ (purple) and Δ� (black) for a generic quasi-periodic orbit: both the semi-fast evolu-
tion (here 2π/ν ≈ 100 orbital periods) and the secular one (≈10,000 orbital periods) are
visible on ζ , while Δ� evolves mainly on the secular time scale. In the no-averaged and
no-reduced problem, this trajectory possesses an additional precession frequency (which
would leave the chosen angles ζ and Δ� invariants) and small short time variations, which
leads to a quasi-periodic trajectory possessing 4 fundamental frequencies in the full 3-body
problem.

The middle graph represents a trajectory with its initial conditions close to the F sf family:
the secular time scale associated with the frequency g does not impact the orbit, and it is
hence a periodic orbit of semi-fast frequency ν in the averaged reduced problem and a quasi-
periodic orbit with two 2 frequencies in the averaged problem and three in the full problem.
Finally, the bottom graph represents a trajectory with its initial conditions close to the F sc

family: the semi-fast time scale associated with the frequency ν does not impact the orbit,
which is quasi-periodic with two frequencies in the averaged problem.

3.2 Reference manifold V in the case m1 = m2

In the circular coplanar case, we saw in Sect. 2.3 that the initial conditions of the system
were equivalent to a couple (ζ0, t0) where ζ0 defines the orbit and t0 defines a trajectory on

4 The F sc and F sf correspond, respectively, to the σ − f amily and the Δ� − f amily studied in Giuppone
et al. (2010).
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Fig. 3 Temporal variations of
the angles ζ = λ1 − λ2 (purple)
and Δ� = �1 − �2 (black) for
three different initial conditions
in the full three-body problem
(i.e. non-averaged, the λ j and � j
are osculating astrocentric
elements), for m1 = m2 = 10−4

and e1 = e2 = 0.4. Top: generic
trajectory; middle: trajectory near
the F sf family; bottom:
trajectory near the F sc family,
see the text for the definition of
these families

this orbit. We could hence explore the characteristics of all the trajectories of the phase space
by studying only the trajectories having for initial condition (ζ0, t0 = 0). This reduces the
relevant space of initial conditions to a 1-dimensional space.

In the eccentric case, the 4 dimensions of the reduced restricted phase space require 4 initial
conditions (ζ,Δ�,Z,Π) to define a given trajectory. Following the circular case, we want
to define a 2-dimensional manifold V of initial conditions which would be representative of
the 4-dimensional phase space of the averaged reduced problem (Michtchenko et al. 2006).
We consider that V is a representative manifold of the averaged reduced phase space if
the trajectories emanating from this surface explore a significant part of the entire phase
space.

In the case m1 = m2, the manifold

V = {
(ζ,Δ�) ∈ [0, 2π ]2 with Z = Π = 0

}
, (35)

that is, a1 = a2 and e1 = e2, is a good candidate for a given value of the masses and the total
angular momentum, as it contains the Lk, ALk equilibria and the F sf and F sc families, at
least for low eccentricities (see Sect. 2.5). We want that the trajectories emanating from V
explore the entire phase space. Since the Hamiltonian flow is continuous, it is equivalent to
show that any trajectory of the phase space goes as close as we want to V in a finite time. We
demonstrate this result at first order in eccentricity in Sect. B.1 and numerically for higher
eccentricities (e1 = e2 = 0.4) in Sect. B.2.

In the case m1 �= m2, the definition of a reference manifold is significantly more compli-
cated. An algorithm to obtain such manifold is proposed in Leleu (2016, Sect. 2.6.2).
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4 Phase space of eccentric co-orbitals in the case m1 = m2

In this section, we study the impact of the total angular momentum J1 (which is equivalent to
the value of the eccentricities) on the dynamics and the stability of the co-orbital configuration.

4.1 Position of the F sc on the reference manifold V

The separation between the semi-fast and the secular time scales (Appendix A) allows us to
determine the position of the intersection between V and the F sc families by studying the
critical points of the averaged Hamiltonian (Appendix C). Note that the determination of the
position of the F sc with this method is independent from ε. As long as m1 = m2, it is hence
independent of the value of the planetary masses.

In Fig. 4, we show the F sc and the collision manifold on V (that is, the points of V that
verify the condition (44), see Appendix C.2 for more details). Each graph corresponds to
a different value of the total angular momentum (hence a different value of e1 = e2). The
curve V ∩ F sc is represented in purple, the blue circles represent the Lk and ALk that have
a fixed position on the (ζ,Δ� ) plane (AL4 and AL5 are hence excluded), and the supposed
intersection between V and the collision manifold5 is represented in red.

For small eccentricities (≤ 0.1), we are in the neighbourhood of the circular case and the
direction of Δ� does not impact much the position of the F sc. Note that the same branch of
the F sc family contains the L3 and AL3 equilibria. We will call this branch F sc

3 . Similarly,
we call F sc

4 (resp. F sc
5 ) the branch going through L4 and AL4 (resp. L5 and AL5). For

e1 = e2 = 0.1, a new curve appears for ζ ≈ 0◦ (the curve is mingled with the axis ζ = 0 in
figure (a)). This branch of F sc intersects the domain of the quasi-satellite configuration.

When we increase the eccentricity, there is a growing dependence on the direction of Δ�

for the position of the F sc family. Until e1 = e2 ≈ 0.6, the sole effect of the increasing
eccentricity is to twist the existing branches of the F sc.

Between e j = 0.6 and e j = 0.605, an important topological change occurs: in the
averaged problem, the F sc

k reconnect in order to create a single continuous family of periodic
orbits that goes through all the Lk and ALk for k ∈ {1, 2, 3}. As we will see in the coming
sections, this reconnection leads to a modification of the whole phase space of the eccentric
co-orbital resonance.

Note that we identify here the families of periodic orbits of the averaged reduced problem.
To verify Eq. (42) is only a necessary condition for the associated orbit of the full planar
3-body problem to be a quasi-periodic orbit with 3 fundamental frequencies, but we still need
to check if the orbit is indeed quasi-periodic (not unstable/chaotic).

4.2 Trajectories emanating from the reference manifold V

In order to represent most of the planar co-orbital dynamics for a given value of m1 = m2

and J1(e1, e2), we take initial conditions on the reference manifold V that was defined in
Sect. 3.2: a1 = a2 (= 1 au, the value of the semi-major axis is a scale factor), and e1 = e2.
We also chose m0 equal to one Solar mass, and λ1 = �1 = 0◦. The other initial conditions
are given by the coordinate of the point on the grid of initial conditions.

5 The red curves satisfy the relation (44), contain the collision point (0, 0), and are located at a relevant
position for the collision manifold (see the purple curves in the unstable areas in Figs. 5, 6, 7, 8, 9, 10, 11,
12, 13, and 14). The collision manifold satisfies Eq. (44) if ∂

∂ζ
HRM tends to −∞ when we get close to the

collision from one side and +∞ from the other side.
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(e) (f)

(c) (d)

(a) (b)

Fig. 4 F sc (in purple), and the collision manifold (in red), on V = {a1 = a2, e1 = e2}. a e j = 0.1; b
e j = 0.4; c e j = 0.6; d e j = 0.605; e e j = 0.65 et f e j = 0.7. The blue dots show the position of the Lk and
AL3 (the position of AL4 and AL5 evolve with e j , see Giuppone et al. 2010). See the text for more details
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We perform here numerical integrations of the full 3-body problem. However, as stated
in Sect. A.2, the result of these integrations (in the case of quasi-periodic orbits) can be
interpreted as the trajectories of the averaged reduced problem. As for the quasi-circular case
(see Fig. 2), we expect that ε does not change the shape of the orbits, but it only impacts the
size of the stability domains and the time scale.

For each set of initial conditions, the system is integrated over 10/ε orbital periods using
the symplectic integrator SABA4 (Laskar and Robutel 2001) with a time step of 0.01001
orbital period (eccentricities larger that 0.6 may require to take a smaller time step in order to
avoid to eject stable orbits for numerical reasons). The initial conditions that lead to highly
chaotic orbits or that quit the resonance before the end of the integration are identified by
a white pixel in the figure. Moreover, in order to identify the orbits that are not stable on
a time scale that is long with respect to 10/ε, we compute the variation of the average
value of the semi-major axis of the planet m1 between the first and second halves of the
integration. The grey pixels identify the initial conditions for which this diffusion is higher
than a given small parameter εa . Since the phase space is symmetric with respect to the
point (ζ = 0,Δ� = 0), we compute and describe only half of the phase space (ζ ∈
[0, 180]). The other half is also displayed for a better understanding of the whole phase
space.

In Figs. 5 and 10, we show the integration of the grid of initial conditions of V for
e j = 0.01, 0.4, 0.65 and 0.7. In each case, m1 = m2 = 10−5m0. The left graphs represent
the mean value of ζ over the whole integration, and the right ones represent the mean value
of Δ� . When markers such as × or + are displayed on the left graphs, they indicate the
point of the manifold in the neighbourhood of which a given orbit (examples plotted in Figs.
6, 7 and 13) crosses the plane quasi-periodically. Note that a generic trajectory crosses in
the neighbourhood of 4 distinct points of the reference manifold (see Michtchenko et al.
2006; Leleu 2016, for more details). On the right plot, the numerical criteria (46) and (47)
(developed in Appendix C) are used to identify the position of the intersection between V
and F sc in brown and F sf in black. For comparison, we also plot in these graphs the result
of the research of critical points of the Hamiltonian (Fig. 4), to identify the position of the
F sc families (in purple in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14).

4.2.1 Quasi-circular case

In the quasi-circular case (Fig. 5, top), the dynamics of the degree of freedom (Z , ζ ) (left
graph) is very close to the circular case [Eq. (25) is relevant at the order one in the eccen-
tricities]: we still have a tadpole and a horseshoe domain, with the separatrix located in
ζ ≈ 24◦ and ≈ 336◦, and the initial value of Δ� does not impact much the average
value of ζ on the orbit (left graph). The positions of the families F sc and F sf are repre-
sented on the right graph. Note that the families emanating from the L3 circular equilibrium
cannot be identified by the criterion that we developed in Appendix C because they are
in an unstable area (near the separatrix emanating from L3). In addition to the families
that we defined in the neighbourhood of a circular equilibrium, there are branches of the
reunion F sf in the horseshoe domain. We name F s f

HS the family located at Δ� = 0◦,
around which librate the orbits of the green area (right graph). Note that another fam-
ily is located at Δ� = 180◦ around which librate the horseshoe orbits of the blue area.
Both the trojan and horseshoe domains are hence split in two parts: for the trojan orbit,
Δ� oscillates either around the branch of F sf emanating from Lk , or the one emanating
from ALk . In the horseshoe domain, it oscillates either near Δ� = 0◦ or Δ� = 180◦.
Note that this “split” results from our choice of variables: there are no separatrix between
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Fig. 5 Grid of initial conditions for m1/m0 = m2/m0 = 10−5, a1 = a2 = 1 au, and e1 = e2 = 0.01
(top), e1 = e2 = 0.4 (bottom). The colour code on the left hand graphs gives the mean value of ζ on the orbit
emanating from each initial condition. The markers show the points of the manifold near which the orbits of
Figs. 6 and 7 cross. On the right hand graphs, the colour code indicates the mean value of Δ� . In the top
right graph, the eccentricities are low and might vanish; Δ� is thus difficult to determine. The orbits in the
neighbourhood of F sc , hence those verifying (46) with εν = 10−3.5, are represented by brown pixels. The
purple curves show the result of the semi-analytical method (Eq. 44). The orbits close to F sf , hence those
verifying (47) with εg = 3◦, are represented by black pixels. The initial conditions that lead to a diffusion of
the mean semi-major axis over εa = 10−5.5 are displayed in grey

these domains. As we move from L4, the minimum eccentricity that is reached on a given
orbit decreases. Eventually, this minimal eccentricity reaches 0 before it increases again for
orbits librating around AL4, hence the discontinuity in the value of Δ� between L4 and
AL4.

The markers on the left graph indicate the points of V near which pass the 4 orbits whose
projection on the (Z , ζ ) and (e1 − e2,Δ� ) plane is represented in Fig. 6. We show orbits in
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Fig. 6 Projections of generic trajectories emanating from the reference manifold for e1 = e2 = 0.01,
ε = m1/m0 = m2/m0 = 10−5. The plotted orbital elements are the osculating ones (non-averaged, see A.2).
The trajectories were integrated over 5/ε years. These trajectories pass near 4 distinct points of V which are
represented by symbols in the left top graph (identical to the left top graph of Fig. 5)

the neighbourhood of L4, AL4, and the two types of horseshoe orbits. Each of these generic
orbits passes near 4 different points of V , and these points can be divided in 2 pairs which
have the same value of Δ� . Note that the 4 points representing a given orbit are always
positioned in a different quadrant (quadrants that are delimited by the F sc and F sf families).
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Fig. 7 Projections of generic trajectories emanating from the reference manifold for e1 = e2 = 0.4, ε =
m1/m0 = m2/m0 = 10−5. The plotted orbital elements are the osculating ones (non-averaged, see A.2).
The trajectories were integrated over 5/ε years. These trajectories pass near 4 distinct points of V which are
represented by symbols in the left top graph (identical to the left bottom graph of Fig. 5)

4.2.2 Moderate eccentricities

We now increase the total angular momentum of the system, assuming e1 = e2 = 0.4.
The results are displayed in the bottom graphs of Fig. 5. As we move away from the cir-
cular case, the phase space evolves. The quasi-satellite domains appear (Namouni 1999;
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Fig. 8 Top: evolution of the
normalised frequencies g/(nε) in
red and ν/(n

√
ε) in black for

Δ� = 1◦ and e1 = e2 = 0.55.
Bottom: evolution of the
normalised frequency g/(nε)

along the F sc
4 family for

e1 = e2 = 0.7 (Fig. 10). These
curves are obtained by numerical
integration of the 3-body problem
and a frequency analysis of the
angle ζ (resp. Δ� ) to obtain ν

(resp. g)

Giuppone et al. 2010; Pousse et al. 2017), centred on a fixed point of the averaged reduced
problem located at ζ = 0◦, Δ� = 180◦, which is also the intersection of the families
F sf and F sc. We can observe on the bottom right hand graph of Fig. 5 that the quasi-
satellite domain is also split in two kinds of quasi-satellites: those for which Δ� librates
around 180◦ and those for which it librates around 0◦. As it is the case between the orbit
librating around L4 and AL4 (see previous section), the discontinuity between the two
domains is due to a non-definition of Δ� when one eccentricity reaches 0. The orbits
located at the border between these two kind of quasi-satellites are discussed in Nauenberg
(2002).

The dynamics in the Trojan and horseshoe domains remains similar to the quasi-
circular case, but the domain where the horseshoe orbits librate around Δ� = 180◦
shrinks on this plane.6 This is due to the increase in the unstable area near the F sc

3 fam-
ily and the position of the collision manifold. Indeed, the collision manifold, as well as
all the F branches, is twisted as the total angular momentum increases (see Fig. 4). On
this plane of initial conditions, this leads to the reduction of the stability domain for
trojan and horseshoe configurations and the increase in the stability domain for quasi-
satellites.

4.2.3 Emergence of the asymmetric horseshoe orbits

We recall that the horseshoe domain is located between the manifold defined by ν = 0
(separatrix emanating from the unstable familyF sc

3 ) and the unstable area around the collision

6 Whenm1 = m2, we suppose that the reference manifold represents all the co-orbital configurations reaching
a1 = a2 on their orbit, for a given value of the total angular momentum. However, the relative size of the
section of two stability domains by the reference manifold is not necessarily representative of the relative
volume of these two configurations in the phase space. For example, Fig. 2 shows that depending on the
chosen section, the horseshoe domain may appear larger or smaller than the tadpole one (for μ ≈ 10−6).
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Fig. 9 Zoom on the horseshoe area of the reference manifold for ε = 10−6 and e1 = e2 = 0.6, m1 = m2.
Each point of the grid is an initial condition. The colour code gives an indication of the mean value of Δ�

for the trajectory emanating from each initial condition: green when the mean value is 0◦, red when positive,
and blue when negative. Note that the position of the separatrix between the horseshoe and trojan domains
can be identified by the transition from blue to red on the right hand side of the horseshoe domains, then by
the unstable (white) orbits in its neighbourhood (its position for higher values of Δ� is not visible due to the
choice of the colour code). The trajectories close to a branch of F sf , i.e. those verifying Eq. (47) with εg = 3◦,

are shown with black pixels. The elliptic branch of theF s f
HS prior to the bifurcation (ζ � 40◦, Δ� = 0◦) and

the elliptic branches after the bifurcation (in the red and blue areas) are labelled by F s f
HS,elli.. The hyperbolic

branch (ζ � 40◦, Δ� = 0◦) is labelled by F s f
HS,hyp.

manifold. For e1 = e2 � 0.5, it is made only of ‘symmetric’ orbits: as shown by the examples
in Figs. 6 and 7, these orbits are symmetric with respect to ζ = 180◦.

However, for e1 = e2 � 0.5, the first notable modification of the phase space appears:
the previously elliptic (or normally stable) family of periodic orbits F s f

HS bifurcates into
two elliptic families of periodic orbits (one with Δ� > 0◦ and another with Δ� < 0◦),
and one hyperbolic (or normally unstable) family of periodic orbits located at Δ� = 0◦.
This bifurcation is due to the encounter of the F s f

HS family with the g = 0 manifold: for
e1 = e2 � 0.5, |g| was monotonously decreasing along Δ� = 0◦ as ζ increases, but never
reaching 0. However, as e1 = e2 increases, the border of the horseshoe domain ({ν = 0}∩V)
shifts towards larger values of ζ . For e1 = e2 � 0.5, the frequency g reaches zero before the
separatrix ν = 0 is reached7 (see Fig. 8).

The effect of this bifurcation is represented in Fig. 9, which is a section of the reference
manifold with e1 = e2 = 0.6. The green area centred on Δ� = 0◦ is the symmetric
horseshoe domain we had for lower eccentricities, and the horizontal black line in the middle
of this domain is the family F s f

HS . On the right hand side of the bifurcation (occurring at
Δ� = 0, ζ ≈ 40◦), the stable branches of the F sf family are identified by black pixels8.
The orbits librating around Δ� > 0◦ are represented in red, and those librating around
Δ� < 0◦ are represented in blue (the tadpole orbits beyond the separatrix ν = 0 are also

7 Interestingly, while the position of {ν = 0} ∩ V for Δ� = 0 depends strongly of the value of e1 = e2, the
position of {g = 0} ∩ V for Δ� = 0 seems to occur around ζ = 40◦ for any value of e1 = e2 � 0.5, see
Figs. 8, 9, 10 and 14.
8 Orbits in the close neighbourhood of the unstable family can also verify the condition (47) when integrated
over a duration of the order of 1/ε because g tends to 0 for this family.
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Fig. 10 Grid of initial conditions for m1/m0 = m2/m0 = 10−5, a1 = a2 = 1 au, and e1 = e2 = 0.65 (top)
and e1 = e2 = 0.7 (bottom). The colour code on the left hand graphs gives the mean value of ζ on the orbit
emanating from each initial condition. The orbits in the neighbourhood of F sc , hence those verifying (46)
with εν = 10−3.5, are represented by brown pixels. The purple curves show the result of the semi-analytical
method (Eq. 44). The branch of the F sc family along which the g frequency was computed, Fig. 8, is labelled
by F sc

4 . The orbits close to F sf , hence those verifying (47) with εg = 3◦, are represented by black pixels.
The ALk equilibrium is fixed points of the averaged reduced problem and are hence located at the intersection
of the F sf and F sc families. The initial conditions that lead to a diffusion of the mean semi-major axis over
εa = 10−5.5 are displayed in grey

represented in red). In these two domains, the projection of a given orbit in the (Z , ζ ) plane is
not symmetric with respect to ζ = 180◦, see Fig. 13. We thus call these domains asymmetric
horseshoe. The red/green interface and the blue/green interface mark the separatrix g = 0,
while the position of the hyperbolic family can be identified by the transition from red to
blue.
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Fig. 11 Schema of the position of the F sf and F sc families in the reference plane for e1 = e2 = 0.4
(left) and e1 = e2 = 0.7 (right). The position of the F sc , shown in purple, was computed using the method
described in Sect. 4.1 (position independent of ε = m1/m0 = m2/m0). The position of the F sf , shown in
black, was computed using the numerical criterion (47) applied on orbits integrated in the full (non-averaged)
3-body problem and are hence shown only in the areas where the trajectories are stable at least for a duration
comparable to 1/ε. The position of the F sf families were computed with ε = 10−5 for e1 = e2 = 0.4 (see
also the bottom panels of Fig. 5), and with ε = 10−6 for e1 = e2 = 0.7 (see also Fig. 14). The blue dots show
the position of the Lk and ALk . Since they are fixed points of the reduced averaged problem, they are located
at the intersection of the F sf and F sc families. We recall that the reference plane is a 2-dimensional torus, and
we have ζ ≡ ζ + 360◦ and Δ� ≡ Δ� + 360◦. On the right hand panel, we hence have a continuous branch
of F sc (purple) going through L4-AL4-L3-AL5-L5-AL3-L4, while a continuous branch of F sf (black) links
directly L4 to L5

4.2.4 Reconnection of the F sc and F sf families

For e1 = e2 ≤ 0.6, the F sc
k correspond to three separated branches of the F sc family, each

containing one Lk and one ALk equilibria. In Sect. 4.1, we showed that these 3 branches
reconnected in a continuous F sc family for e1 = e2 > 0.6. This reconnection leads to a
complete restructuring of the whole phase space.

The top part of Fig. 10 represents the case with e1 = e2 = 0.65. On the right hand
graph, we clearly see that the stable areas are centred on the F families, generating a phase
space completely different from the one prior to the reconnection (see Fig. 5). An unsta-
ble area appears in the Trojan domain between the orbits librating around AL4 and those
librating around L4, clearly differentiating the anti-Lagrange domains (made of orbits librat-
ing around AL4 or AL5) from the Trojan domain made of orbits librating around L4 or
L5.

Although the stability domain of the Trojan and Horseshoe configurations is overall
shrinking, new stable areas appear: in addition to the reconnection of the F sc families,
the F sf reconnect as well (see Fig. 11): the branches of the F sf family that contain the
equilibria L4 and L5 reconnect to the branches that emanate from the bifurcation of F s f

HS
in the horseshoe domain. This second reconnection links the Trojan domains of L4 and L5
together by the means of what we previously called the asymmetric horseshoe domains.
The consequence of this reconnection is illustrated Fig. 12: it represents 6 trajectories for
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Fig. 12 Continuous path of quasi-periodic orbits from the L4 eccentric equilibrium to the L5 eccentric
equilibrium for e1 = e2 = 0.65 and m1 = m2 = 10−5m0. The plotted orbital elements are the osculating
ones (non-averaged, see A.2). The trajectories were integrated over 5/ε years. On the top left graph (identical
to the top right graph of Fig. 10), we selected six trajectories of the continuous path from L4 to L5 whose
projection is represented in the other graphs. As these trajectories are near the F sf family, each of them passes
near two distinct points of V (in contrast to four distinct points of V for generic orbits) that are represented by
the blue and red circled numbers on the top left graph

e1 = e2 = 0.65 and m1 = m2 = 10−5 with initial conditions all taken close to the
F sf family (the projection of these trajectories on the (a1 − a2,ζ ) plane is almost peri-
odic of frequency ν). These six trajectories illustrate that, for high eccentricities, we can
pass continuously (without crossing separatrix/unstable areas) from a Trojan orbit in the
neighbourhood of L4, to an horseshoe orbit, or to a Trojan orbit in the neighbourhood of
L5.
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Fig. 13 Projections of generic trajectories emanating from the reference manifold for e1 = e2 = 0.7,
ε = m1/m0 = m2/m0 = 10−5. The plotted orbital elements are the osculating ones (non-averaged, see A.2).
The trajectories were integrated over 5/ε years. These trajectories pass near 4 distinct points of V which are
represented by symbols in the top left graph (identical to the bottom left graph in Fig. 10)
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4.2.5 High eccentricities

The bottom graphs of Fig. 10 show the results of the integrations ofV for larger eccentricities9

e1 = e2 = 0.7. The trends observed for e1 = e2 = 0.65 are still present: the stability domain
for the tadpole and horseshoe configurations continue to shrink, although the neighbourhood
of the hyperbolic equilibrium AL3 harbours stable orbits.

Moreover, a new domain of stable orbits appears: following the F sc
4 family emanating

from L4 as Δ� increases, we encounter a new separatrix g = 0 (see Fig. 8, bottom) before
the unstable domain is reached. Above this separatrix lies a new stable domain that we call
the G configuration. An example of the G trajectories is identified by the 4 markers + in
Fig. 10 (bottom) and is plotted in Fig. 13. Each of the G trajectories passes near both the
trojan configuration librating around L4 and L5. These trajectories hence librate around the
families F s f

k with k ∈ {3, 4, 5}, where F s f
4 and F s f

5 are stable (elliptic), and F s f
3 is unstable

(hyperbolic), outside the separatrix g = 0 in a similar way to the blue trajectories in Fig. 1.
The domain of G splits as well in orbits that librate around Δ� = 0◦ and orbits librating
around Δ� = 180◦. Note that the eccentricities of the orbits in this domain have a huge
amplitude of variation; therefore, these orbits may not exist when the mass of one co-orbital
is significantly smaller than the mass of the other.

Until now, most of the integrations were performed with ε = 10−5. We recall that the
method we used to determine the position of the F sc in the averaged problem (Sect. 4.1) is
independent of the value of ε. To illustrate the effect of ε on the position of the F sf and on
the whole phase space, we integrate trajectories emanating from V with ε = 10−6 (see Fig.
14). The trajectories in this figure are also integrated over 106 orbital periods10. The colour
code for the non-ejected orbits displays an indicator of the value of the total energy of the
system at a given position on V . Trajectories that were found in the neighbourhood of the
F families are also displayed. Comparing this figure with the bottom graphs in Fig. 10, we
can see that the intersection of the F families (and the manifolds g = 0 and ν = 0) with
the reference manifold V appears to not depend on the value of ε (= m1/m0 = m2/m0).
Consequently, the reconnection of the F families and the topology of the phase space seem
to be independent from the value of ε, as long as we have m1 = m2. The size of the stability
domains, however, is impacted by ε.

In order to identify the origin of the different unstable areas of the phase space in Fig. 14,
we took three initial conditions (+, × and ∗) in the top left quadrant with respect to L4 (the
quadrants are delimited by the families F sc and F sf ). These initial conditions are taken very
close to the collision manifold. By integrating these trajectories over a few periods of g, we
can identify for each of these orbits the three other points of V near which they pass. For a
given trajectory, each point is represented by the same symbol. The three trajectories pass
near the instability border in each quadrant and these borders thus seem to have the same
origin: they emanate from the collision manifold.

4.2.6 Stability

In this work, the trajectories emanating from a given reference manifold were generally
integrated over 10/ε orbital periods. Although this is enough to take into account the secular

9 The large amount of grey pixels in the quasi-satellite domain is due to numerical instabilities: between the
blue and green domains on the right hand graph, each eccentricity vanishes periodically, while the other gets
close to 0.99, so our integration step of 0.01 orbital periods is not adapted to such high eccentricities.
10 Note that in this case the integration time is too short to properly account for the effect of the secular
dynamics (which is also of the order of 106 orbital periods).
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Fig. 14 Variations of the value of the averaged Hamiltonian on V for ε = 10−6 and e1 = e2 = 0.7. Initial
conditions that led to the ejection of the trajectory from the co-orbital resonance before 1/ε = 106 orbital
periods are displayed in white. Red and blue represent the extrema of the value of Hamiltonian (the scale is
not represented because of its nonlinearity). The orbits in the neighbourhood of F sc , i.e. those verifying (46)
with εν = 10−4, are represented by brown pixels (the large amount of brown pixels when we get close to
the separatrix is due to a slow variation of Z in these areas with respect to the duration of the integration).
The purple curves show the result of the semi-analytical method (Eq. 44). The orbits close to F sf , i.e. those
verifying (47) with εg = 3◦, are represented by black pixels

dynamics (time scale of the order of 1/ε), it is not enough to infer the long-term stability of
a given orbit.

The long-term stability of the new orbital configurations that are discussed in this work
was studied for various values of the masses and eccentricities (Leleu 2016, Sect. 2.5.2):
asymmetric horseshoe for e1 = e2 > 0.5 and m1 = m2 = 10−5m0, continuous path between
L4, L5 and the horseshoe configuration for e1 = e2 = 0.7 and m1 = m2 = 10−6m0, stable
orbits near AL3 for e1 = e2 = 0.7 and m1 = m2 = 10−5m0, and G configuration for
e1 = e2 = 0.7 and m1 = m2 = 10−5m0. In these cases, these configurations were stable for
duration long with respect to their secular period (over 100/ε orbital period).

The stability was checked by studying the diffusion of the mean mean-motion of the
planet m1 during long-term integrations (Robutel and Laskar 2001). When required by the
high values of the eccentricity, we used the variable-step integrator DOPRI (Runge–Kutta
(7)8). The agreement between integrators (SABA4 and DOPRI) was also checked.

5 Phase space of eccentric co-orbitals in the case m1 �= m2

In this section, we check if the modifications in the phase space observed for the casem1 = m2

still occur for different mass ratios. We take m2 = 3m1 = 1.5 × 10−5m0. It is important to
remember that in this case, the manifolds of initial conditions that we consider are no longer
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Fig. 15 Grid of initial condition with a1 = a2 = 1 au, m2 = 3m1 = 1.5 10−5 and e1 = e2 = 0.4 (top), and
e1 = 0.7 and e2 ≈ 0.18 (bottom, same value of the angular momentum than the case e1 = e2 = 0.4). The
colour code gives the mean value of ζ (left) and the mean value of Δ� (right). If the angle Δ� circulates,
the salmon colour is displayed instead of the colour code. The orbits in the neighbourhood of F sc , hence
those verifying (46) with εν = 10−3.5, are represented by brown pixels. The orbits close to F sf hence those
verifying (47) with εg = 3◦ are represented by black pixels. The initial conditions that lead to a diffusion of
the mean semi-major axis over εa = 10−5.5 are displayed in grey

reference manifolds as in Sect. 3.2; they are just sections of the phase space that can miss
part of, or entire, co-orbital configurations.

5.1 Moderate eccentricities

In Fig. 15, we show the same information as in Sect. 4.2. In addition, on the right graphs the
salmon colour represents the initial conditions of the trajectories for which the angle Δ�

circulates.
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Fig. 16 Grid of initial conditions with a1 = a2 = 1 au, m2 = 3m1 = 1.5 10−5, e1 = e2 = 0.7. The colour
code gives the mean value of ζ (left) and the mean value of Δ� (right). The orbits in the neighbourhood of
F sc , i.e. those verifying (46) with εν = 10−3.5, are represented by brown pixels. The orbits close to F sf , i.e.
those verifying (47) with εg = 3◦, are represented by black pixels. The equilibria AL4 and AL5 are not in
this plane of initial conditions (for the chosen value of angular momentum, they are located in the manifold
e1 ≈ 0.8, e2 ≈ 0.6, see Hadjidemetriou and Voyatzis 2011). The initial conditions that lead to a diffusion of
the mean semi-major axis over εa = 10−5.5 are displayed in grey. These integrations were performed with a
time step of 0.001 orbital period. The initial conditions for ζ ∈ [0◦ : 20◦] were not integrated to save computer
time

On the top graphs, the initial conditions are taken across the plane e1 = e2 = 0.4, a1 = a2

(with m2 = 3m1 = 1.5 × 10−5m0). On the left hand side (evolution of the mean value of
ζ ), the dynamics of the pair (Z , ζ ) seems to not change much from the case m1 = m2 for
the same value of the total angular momentum (compare with Fig. 5—bottom). On the right
hand graph, we can see that the dynamics of the pair (Π,Δ� ) is different from the case
m1 = m2: Δ� circulates for a large amount of the integrated trajectories (salmon colour).
Since some trajectories satisfy the criterion (46), the manifold F sc seems to be close to this
plane of initial conditions. However, the F sf families depart from it as soon as we quit the
neighbourhood of the L4 equilibrium. This is consistent with the analytic estimation of the
position of F sf (see Leleu 2016, Sect. 2.7.2).

The bottom graphs represent another section of the same phase space, with e1 = 0.7 and
e2 ≈ 0.18. This plane intersects the phase space closer to the trojan domain librating around
the AL4 equilibrium (e1 ≈ 0.67, e2 ≈ 0.22 in the linear approximation Eq. 28). Some of
the trajectories that take initial conditions on this plane librate around AL4 (domain centred
on ζ = 130◦, Δ� = −100◦), but none librate around L4. Note that for m1 �= m2 it may
be impossible to pass directly from orbits librating around L4 to orbits librating around AL4

as it seems that these areas are separated by a region where Δ� circulates (checked for
e1 ∈ {0, 0.15, 0.30.55, 0.7} and e2 such that J1 = J1(e1 = e2 = 0.4)).

Interestingly, although the case m2 = 3m1 is far from the restricted case, the phase space
of both cases possess similar features. One can compare, for example, Figures 7 and 8 in
Nesvorný et al. (2002) with Fig. 15 in this paper, which represents different sections of a
similar phase space.
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5.2 High eccentricities

In Fig. 16, we show the mean value of the angles ζ and Δ� when the initial conditions are
taken across the plane e1 = e2 = 0.65, a1 = a2 (with m2 = 3m1 = 1.5 × 10−5m0). In this
case, since the integration time step of 0.01 orbital periods ejects too many stable trajectories,
we adopt 0.001 orbital periods as time step and slightly reduced the span of initial conditions
to save computer time.

The topological change that we described in the case m1 = m2 occurs in this case as well
(compare Fig. 16 with the top graphs in Fig. 10): the stable trojan area around L4 and L5
is well separated from those around AL4 and AL5, while asymmetric horseshoe domains
emerge, linking the L4 and L5 equilibriums. Note that this plane of initial conditions does
not intersect the stability domain of the G configuration. In addition, unstable area splits the
quasi-satellite domain between the orbit which librates around 0◦ and those librating around
180◦. However, part of this instability may be due to numerical issues, since the eccentricity
of the smaller body tends to one at the boundary between the two domains. Finally, no orbit
for which Δ� circulates crosses this plane.

6 Conclusion

We studied the dynamics and stability of eccentric coplanar co-orbitals in the planetary case.
We observed the topological changes occurring in the phase space as the eccentricity of the
co-orbitals increases, and we linked these changes to the evolution of the position of families
of quasi-periodic orbits of non-maximal dimension. These changes were mainly quantified
in the case m1 = m2 since those families are easier to find, but we checked that the evolution
of the phase space is qualitatively the same when m1 �= m2.

In the case m1 = m2, we showed that the orbits emanating from the manifold of initial
conditions V = {e1 = e2, a1 = a2} represents a significant part of the orbits of the reduced
averaged phase space for a fixed value of the total angular momentum. Hence we only need
to integrate orbits emanating from this manifold to explore most of the orbital behaviour
of this phase space. From e1 = e2 = 0 to e1 = e2 � 0.5, no major modifications were
observed in the phase space with respect to the quasi-circular case: trojan and horseshoe
orbits are separated by a separatrix along which ν = 0, and the collision manifold separates
the horseshoe orbit from the quasi-satellite ones. As e1 = e2 increases, the position of these
separatrix evolves in the phase space, the stable quasi-satellite area gets larger, while the size
of the trojan and horseshoe stable domains decreases.

Around e1 = e2 ≈ 0.55, a first significant modification occurs: the secular frequency g
vanishes within the horseshoe domain, splitting it in three domains: The symmetric horse-
shoes, which are the same that existed in the circular case, and two domains of asymmetric
horseshoe, located between the separatrices g = 0 and ν = 0. These asymmetric horseshoes
blur the difference between horseshoe and tadpole.

Between 0.605 ≤ e1 = e2 ≤ 0.61, a second major change occurs: the family of
quasi-periodic of non-maximal dimension F sc reconnects, forming a single family going
through the eccentric Lagrangian equilibrium Lk and anti-Lagrangian equilibrium ALk for
k ∈ {3, 4, 5}. This reconnection leads to an unstable area appearing between the tadpole that
were orbiting around L4 (resp. L5), and those that are orbiting around AL4 (resp. AL5),
creating two distinct stable areas. The reconnection of the F sc opens the way to the recon-
nection of another family: the F sf . This family has members in each stable domain, and for
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masses small enough, there is a path of stable quasi-periodic orbits of non-maximal dimen-
sion that links continuously the trojan domain librating around the L4 and L5 equilibrium,
to the asymmetric and symmetric horseshoe domains. Finally, we note the presence of a
new separatrix g = 0 in the trojan domain, beyond which a new stable configuration, that
we called G, appears. In this configuration, the difference of the mean longitudes librates
around 180◦ with a significant amplitude (∼ 100◦), while Δ� librates around 0◦ or 180◦ on
a secular time scale with large variations of the quantity e1 − e2.
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Appendix A: Time scales

The planar 3-body co-orbital problem has 3 time scales: the fast time scale, associated with the
mean mean-motionη = O(1), the semi-fast time scale of fundamental frequencyν = O(

√
ε),

associated with the evolution of the resonant angle ζ , and the secular time scale of fundamental
frequency g1 and g2, of order O(ε), associated with the evolution of the eccentricities and
the arguments of perihelia. The separation of these time scales is a classical approach for the
study of mean motion resonances (Henrard and Caranicolas 1989; Morbidelli 2002; Batygin
and Morbidelli 2013; Delisle et al. 2012, 2014).

In theory, this separation allows for two averaging of the Hamiltonian: a first averaging over
the fast angle λ2 that we already considered in Sect. 2.3, and a second one over the semi-fast
angle ζ , in order to obtain the secular Hamiltonian. In the double averaged reduced case, we
would obtain a 1 degree of freedom Hamiltonian which would describe the secular dynamics
of the resonance. It would add an additional parameter J0 (the action variable associated
with the degree of freedom Z ,ζ ). The canonical transformation for the variables Π and Δ�

associated with this second averaging differs from the identity only with coefficients of the
order of O(

√
ε) (Morbidelli 2002).

A.1 Adiabatic invariants

In practice, this second averaging is rather difficult because the variables Z and ζ are not close
to action-angle variables (Morais 1999, 2001; Beaugé and Roig 2001; Páez and Efthymiopou-
los 2015). However, the possibility to do it gives us important information on the dynamics
of the system: in the averaged reduced problem (2 degrees of freedom), the evolution of the
variables Π and Δ� is of size

√
ε over durations of the order of 1/ν, these variables can be

considered as constant on a time scale short with respect to 1/g. For sufficiently low-mass
co-orbitals, we can hence consider that the variables Π and Δ� are adiabatic invariants.

A.2 Interpretation of numerical simulations

The change of coordinate (Eq. 15) from the variables of the planar 3-body problem to the
variables of the averaged problem is ε close from identity for all variables except ζ2. Similarly,
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the perturbations of the semi-fast time scale on the secular variables are of size
√

ε (Morbidelli
2002). Thus, if we integrate numerically the full 3-body problem for co-orbital with low
enough masses, for quasi-periodic orbits we can consider, on the one hand, the evolution of
the variables (Z , ζ ) as their evolution in the averaged problem (they are ε close), and on the
other hand the evolution of the variables e j and � j as their evolution in the secular problem
(they are

√
ε close).

Appendix B: Reference manifold

In this section, we aim to verify that all the trajectories of the phase space pass as close as
we want from the reference manifold V defined by Eq. (35).

B.1 At first order in e j

Equation (25) holds at first order in e j . Hence, for m1 = m2, all trajectories go through
the plane a1 = a2 twice per period 2π/ν. On the other hand, near a solution of the circular
coplanar case ζ(t), the equation of variation in the direction (x j , x̃ j ), where the x j are the
canonical Poincaré variables defined in Eq. (4), is given by the matrix (Robutel and Pousse
2013):

X =
(
x1

x2

)
et M(t) = iεη

m′
1m

′
2

m0

⎛

⎝
A(ζ(t))
m′

1

B̄(ζ(t))√
m′

1m
′
2

B(ζ(t))√
m′

1m
′
2

A(ζ(t))
m′

2

⎞

⎠ , (36)

where A and B depend on the considered trajectory and on the time. For a given trajectory,
since ν � g, we can obtain an approximation of the secular dynamics in the direction (x j , x̃ j )
by averaging the expression of this matrix over a period 2π/ν with respect to the time t . For
equal mass co-orbitals, the symmetries of this matrix give relations of the form:

x1 = α
√
m2 ei(

π
3 +gt) +β

√
m1 ei

π
3 ,

x2 = −α
√
m1 eigt +β

√
m2,

(37)

with α and β complexes. Replacing these expression in the one of Π (Eq. 32), and noting
αβ̄ = C eic, we obtain:

Π = (αᾱ − ββ̄)(m1 − m2) − 2C
√
m1m2 cos(gt + c). (38)

On the other hand, we have:

Δ� = arg(x1 x̄2), where

x1 x̄2 =
[√

m1m2(ββ̄ − αᾱ) + Cm2 ei(gt+c) −Cm1 e−i(gt+c)
]

eiπ/3 .
(39)

When m1 = m2, Π librates around 0 with a frequency g. Using once more the expression
(32), we obtain that the quantity e2

1 −e2
2 behaves like an harmonic oscillator, librating around

0 with the frequency g = 2|c| = O(ε). All the trajectories of the phase space hence go
through the plane e1 = e2 twice per period 2π/g.

As long as ν and g are non-resonant, all trajectories get as close as we want to the manifold
V in a finite time.
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(a) (b) (c) (d)

Fig. 17 Minimal value of the quantity log
(
(a1/ā − a2/ā)2 + (e1 − e2)2

)
over 10 × 105 orbital periods

with a step of 0.01 orbital period and a fixed value of the angular momentum J1(e1 = e2 = 0.4), with the
following initial conditions: a1 = a2 = 1, m1 = m2 = 10−5m0 for the top row and m2 = 3m1 = 1.5 10−5

for the bottom one. a e1 = 0.00 and e2 ≈ 0.55; b e1 = 0.10 and e2 ≈ 0.54; c e1 = 0.20 and e2 ≈ 0.52;
d e1 = 0.30 and e2 ≈ 0.47. The trajectories ejected before the end of the integration are identified by white
pixels. See Sect. 4 for more details about the integrations

B.2 Large eccentricities

We check numerically if the definitionV = {a1 = a2, e1 = e2} holds for higher eccentricities.
Note that we consider only trajectories that reach a1 = a2 on their orbit. To perform this
check, we take grids of initial conditions for ζ ∈ [0◦ : 360◦] and Δ� ∈ [−180◦ : 180◦]
and several values of Π for a fixed value of J1 such that J1 = J1(e1 = e2 = 0.4). The
corresponding values of the eccentricities are given by:

e2 =
√

1 − 2J1

Λ0
1

−
√

1 − e2
1. (40)

Figure 17 shows the value of (a1/ā − a2/ā)2 + (e1 − e2)
2 for several values of Π for

m1 = m2 (top line) and m1 �= m2 (bottom line). The integrations are conducted over 10/ε

orbital periods, hence only a few times 2π/g at best. For all initial conditions whenm1 = m2,
the criterion

(a1 − a2)
2

ā2 + (e1 − e2)
2 < εΣ (41)

is met for εΣ ≈ 10−8. Although this verification is not exhaustive, it suggests that the chosen
reference manifold represents a significant part of the phase space of the averaged reduced
problem. However it is possible that, especially at high eccentricities, stable domains appear
for which the orbits never reach e1 = e2 even in the case m1 = m2, but none was discovered
during this study. A study performed in the case e1 = e2 = 0.7 yielded similar results.
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In order to compare with the case m1 �= m2, the bottom line of Fig. 17 shows that there
are areas of the phase space where the criterion (41) is not verified for ε′

Σ = 10−4. There
are hence orbits in the phase space that are not represented by the trajectories taking their
initial conditions on the manifold V = {a1 = a2, e1 = e2}. This is not surprising: we know,
for example, that, at least for moderate eccentricities, the position of the AL4 equilibrium is
approximated by m1e1 = m2e2. In the case m1 �= m2, any trajectory librating sufficiently
close to this equilibrium would never cross the e1 = e2 manifold.

Appendix C: Identification of the F families

We show here how the separation of the time scales allows us to identify the position of the
F anywhere in the phase space.

C.1 Identification of the F sc families

TheF sc families are families of periodic orbit of the reduced averaged problem, whose period
is associated with the secular time scale. The position of the F sc families can be identified
by studying the critical points of the averaged Hamiltonian. Let us use the hypothesis of
adiabatic invariant for the variables Π and Δ� (see Appendix A): on a short time scale with
respect to 1/g, F sc is made of orbits that behave as fixed points of the reduced averaged
problem. The orbits belonging to F sc are thus orbits which satisfy:

∂

∂Z
HRM = ∂

∂ζ
HRM = 0. (42)

where Z and ζ are conjugated canonical variables. This is equivalent to:

ζ̇ = Ż = 0. (43)

Starting from the reduced Hamiltonian (Sect. 3.1), we can estimate the value of the averaged
Hamiltonian at any point of the phase space by doing a numerical averaging over the fast
angle Q. We can identify the orbits belonging to F sc by finding the orbits for which Ż = 0
on the manifold ζ̇ = 0. For a given value of the constants Π and Δ� , we take a grid of values
for ζ and estimate the averaged Hamiltonian at each point. We can then have the approximate
position of the points where Ż = 0 by finding the positions on the grid where the equation

∂

∂ζ
HRM|ζ=ζk × ∂

∂ζ
HRM|ζ=ζk+1 < 0 (44)

is satisfied, with

∂

∂ζ
HRM|ζ=ζk = HRM(Z , ζk+1,Δ�,Π) − HRM(Z , ζk−1,Δ�,Π)

|ζk+1 − ζk−1| . (45)

Note that it is not guaranteed that the associated trajectory in the full 3-body problem is
quasi-periodic.

Alternatively, numerical integrations allow us to determine an empiric criterion for a
numerical determination of the position of F sc. In the various integrations that we computed
through this study, we noted that the amplitude of variation of Z (hence a1 − a2) seems not
to be impacted much by the frequency g. We hence make the hypothesis that if an orbit in a
regular area of the phase space verifies the condition

(max (Z) − min (Z)) < εν, (46)
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with εν ∝ √
ε, this orbit is in the neighbourhood of the manifold F sc. One can check in Figs.

5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, where the quasi-periodic orbits that verify Eq. (46) are
identified by brown pixels, and the point of the phase space satisfying Eq. (42) is identified
by purple dots that both methods yield very similar results in the regular area of the phase
space.

C.2 Application in the case m1 = m2

We can apply the research of the critical points of the Hamiltonian to identify the position
of F sc in the case m1 = m2. We assume that, as it is the case for circular co-orbitals, the
manifold ζ̇ = 0 is located at Z = 0. We know that the equilibriums Lk and ALk are all located
in the plane Π = 0 (e1 = e2). We can hence explore the manifold V = {Z , ζ,Π,Δ�/Z =
Π = 0}. We chose a grid of initial condition for ζ and Δ� with a step of 0.5◦, and we
compute numerically the averaged Hamiltonian at each point of the grid. In Fig. 4, we show
all the points of V that verify the condition (44). Each graph corresponds to a different value
of the total angular momentum (different value of e1 = e2).

C.3 Identification of the F sf families

The F sf families are families of periodic orbits of the reduced averaged problem, whose
period is associated with the semi-fast (resonant) time scale. The method developed in Sect.
C.1 cannot be used directly to determine the position of theF sf manifold because it requires to
numerically average the Hamiltonian over the semi-fast angle ζ , which is somehow laborious,
see Sect. A.

However, the evolution of the variables Δ� and Π during the numerical integrations of
the 3-body problem is O(

√
ε) close to their evolution in the secular problem (see Sect. A).

Since the orbits belonging to F sf are fixed points of the 1-degree of freedom secular problem,
we make the following hypothesis: all orbits in a regular area of the phase space (far from
the separatrix, the chaotic and the unstable areas) that verify

(max (Δ�) − min (Δ�)) < εg, (47)

with εg ∝ √
ε are in the neighbourhood of F sf . One can check that such orbits (represented

by black pixel in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14) are indeed in the neighbourhood
of the analytical approximation of the positions of the F sf families, see Leleu (2016, Sect.
2.7.2).
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