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Abstract Exploring weakly perturbed Keplerian motion within the restricted three-body
problem, Lidov (Planet Space Sci 9:719–759, 1962) and, independently, Kozai (Astron J
67:591–598, 1962) discovered coupled oscillations of eccentricity and inclination (the KL
cycles). Their classical studies were based on an integrable model of the secular evolution,
obtained by double averaging of the disturbing function approximated with its first non-trivial
term. This was the quadrupole term in the series expansion with respect to the ratio of the
semimajor axis of the disturbed body to that of the disturbing body. If the next (octupole) term
is kept in the expression for the disturbing function, long-term modulation of the KL cycles can
be established (Ford et al. in Astrophys J 535:385–401, 2000; Naoz et al. in Nature 473:187–
189, 2011; Katz et al. in Phys Rev Lett 107:181101, 2011). Specifically, flips between the
prograde and retrograde orbits become possible. Since such flips are observed only when the
perturber has a nonzero eccentricity, the term “eccentric Kozai–Lidov effect” (or EKL effect)
was proposed by Lithwick and Naoz (Astrophys J 742:94, 2011) to specify such behavior.
We demonstrate that the EKL effect can be interpreted as a resonance phenomenon. To this
end, we write down the equations of motion in terms of “action-angle” variables emerging
in the integrable Kozai–Lidov model. It turns out that for some initial values the resonance is
degenerate and the usual “pendulum” approximation is insufficient to describe the evolution
of the resonance phase. Analysis of the related bifurcations allows us to estimate the typical
time between the successive flips for different parts of the phase space.
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1 Introduction

Consider the restricted three-body problem “star + test particle + planet,” with both the
planet and the particle orbiting the star. Under the assumption that the semimajor axis of the
particle’s osculating orbit, a, is much smaller than the semimajor axis of the planet’s orbit, ap,
the disturbing function characterizing the gravitational influence of the planet on the particle’s
motion can be expanded over powers of the ratio a/ap—and can then be approximated by a
partial sum of that series.

Retaining only the first non-trivial term (i.e., the quadrupole term) in this expansion and
averaging this term twice (over the orbital motion of the planet and of the test particle), we
obtain an integrable model describing the secular evolution of the test particle’s osculating
orbit. This model was pioneered by Lidov (1962) and Kozai (1962). Exploring this model,
these authors discovered independently that the eccentricity, e, and the inclination, i , of
the particle’s orbit exhibit long-period interrelated oscillations (the Kozai–Lidov cycles or,
abbreviated: the KL cycles). These cycles are classified into rotating and librating types,
dependent on the behavior of the argument of the pericentre, ω. The librating KL cycles
sometimes appear in the literature under the name of the “Kozai–Lidov resonance.”

The importance of the Kozai–Lidov effect follows from its universality. Various celestial
bodies provide examples of this effect in their orbital motion: asteroids (Froeschlé et al.
1991; Vashkovyak 1986), satellites of the giant planets (Nesvorny et al. 2003; Vashkovyak
1999, 2003), triple stars (Eggleton and Kiseleva-Eggleton 2001; Harrington 1968), and even
black holes (Blaes et al. 2002; Wen 2003). A special role is given to the Kozai–Lidov effect
in various scenarios describing the formation of the dynamical architecture of exoplanetary
systems (Innanen et al. 1997; Libert and Henrard 2007). More examples of the Kozai–Lidov
effect can be found in the recent book by Shevchenko (2016).

It should be noted that the Kozai–Lidov effect can be observed even in systems that fail
to meet the assumptions imposed by Lidov (1962) and Kozai (1962). In Bailey et al. (1992),
Gronchi and Milani (1999), Kozai (1979), Lidov and Ziglin (1974), Thomas and Morbidelli
(1996) and Vashkovyak (1981), this effect was discovered in the dynamics of small bodies
with semimajor axes comparable to the semimajor axis of the planets disturbing these bodies.
It turned out that in the case of mean motion resonance the same phenomenon occurs (Kozai
1985). The Kozai–Lidov effect is observed also when the orbital motion of a celestial body
is disturbed by a disk or some other extended astrophysical object (Ivanov et al. 2005; Subr
and Karas 2005).

Ford et al. (2000), Naoz et al. (2011), and Katz et al. (2011) took a further step by keeping
also the next, octupole, term from the expansion of the disturbing function over the powers
of a/ap. In the case of the perturber’s motion in orbit with the eccentricity ep > 0, such a
modification yields a modulation of the KL cycles; i.e., long-term variations in the maximal
and minimal values of the eccentricities and inclinations over these cycles. Most notably, the
inclusion of the octupole term renders the possibility of flips between the prograde (i < 90◦)
and retrograde (i < 90◦) motion, as was discovered by Naoz et al. (2011) and Katz et al.
(2011). Since such flips are observed only for ep > 0, Lithwick and Naoz (2011) proposed to
call this phenomenon the “eccentric Kozai–Lidov effect” (the EKL effect). Various aspects
of the EKL effect are discussed in Naoz (2016). In particular, it is expected that this effect

123



The eccentric Kozai–Lidov effect as a resonance phenomenon Page 3 of 23 4

can (under some additional hypotheses) explain the existence of the strange objects in the
exoplanetary systems, which move opposite to their host star’s spin (Triaud et al. 2010).

The aim of our paper is to demonstrate that the EKL effect can be interpreted in a mean-
ingful way as a resonance phenomenon (Arnold et al. 2006). To this end, we rewrite in terms
of “action-angle” variables the integrable model of weakly perturbed Keplerian motion pro-
posed by Lidov and Kozai (Sect. 2). These variables enable us to further simplify the problem
through one more averaging (that over the KL cycles). This is carried out in Sect. 3. Interpreta-
tion of the obtained results is given in Sects. 4 and 5. In Appendix A we present some auxiliary
formulae characterizing the Laplace vector behavior in rotating KL cycles. In Appendix B
the conditions of the motion without flips are discussed.

Remark 1 In Li et al. (2014b), the “low-inclination” EKL effect was studied. It is an extreme
case of the EKL effect when the particle moves most of the time (except the instants of flips) in
an orbit with a small inclination or in an orbit with the inclination close to 180◦. Technically,
the “resonance” interpretation of the “low-inclination” EKL effect can be achieved in a
simpler manner: one can use as a departure point the integrable dynamical model based on
the double-averaged equations of motion of a planar restricted elliptic three-body problem
(Aksenov 1979). We consider it as a possible direction for the future activity.

Remark 2 For an “outer” variant of the restricted elliptic three-body problem (i.e., in the
case of a/ap � 1), the possibility of periodic changes in the direction of the test particle’s
orbital motion has long been known (Farago and Laskar 2010; Ziglin 1975). It is noteworthy
that in the “outer” problem the eccentricity of the particle’s osculating orbit does not vary
substantially, while in the “inner” problem the EKL effect furnishes singular orbits (at a
certain instant of time, the osculating orbit turns into a segment of a straight line, with
e ≈ 1).

2 “Action-angle” variables for the Kozai–Lidov Hamiltonian

2.1 The Kozai–Lidov Hamiltonian

Let K denote the Hamiltonian of the integrable 2DOF Hamiltonian system, introduced by
Lidov (1962) and Kozai (1962) as a model of the Keplerian motion perturbed by a distant
celestial body. To reveal more delicate dynamical phenomena (in particular, the EKL effect),
one needs to employ a more refined model with the Hamiltonian K having the form

K = K + εK ∗, (1)

where

ε = a

ap

ep

1 − e2
p

� 1.

The second term on the right-hand side of (1) characterizes the “averaged” influence on the
test particle’s motion, produced by the octupole term in the series expansion of the disturbing
function. Discussion of various aspects of the averaging procedure leading to model (1) is
presented in Luo et al. (2016) and Naoz et al. (2013)

Under a proper choice of units, K and K ∗ can be written as

K (G, H, g,−) = −3

8

{
H2 + 2(1 − G2)

[
1 − 5

2

(
1 − H2

G2

)
sin2 g

]}
, (2)
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K ∗(G, H, g, h) = 75

64

⎧⎨
⎩

2H

G

√
1 − H2

G2 sin h −
√

1 − G2

(
cos h cos g − sin g sin h · H

G

)

·
(

1

5
− (1 − G2)

[
8

5
− 7 sin2 g

(
1 − H2

G2

)]
− H2

) ⎫⎬
⎭ .

Here G = √
1 − e2 is a generalized momentum conjugated to the coordinate g = ω, while

H = cos i
√

1 − e2 is a generalized momentum conjugated to the cyclic coordinate h = Ω .
As ever, e, i , ω, and Ω are the osculating Keplerian elements of the test particle.

From the symmetry inherent in the system under consideration, it follows that

K(G,−H, g, 2π − h) = K(G,−H, 2π − g, h) = K(G, H, g, h). (3)

Keeping in mind further application of the standard perturbation technique developed to
study resonance phenomena in near-integrable Hamiltonian systems (Arnold et al. 2006), we
specify some properties of the unperturbed system (ε = 0), which will be important later.

To illustrate the secular effects, which can be described by the Kozai–Lidov model, we
present in Fig. 1 phase portraits of the 1DOF Hamiltonian system

dg

dt
= ∂K

∂G
,

dG

dt
= −∂K

∂g
, (4)

depending on H as a parameter. In the case of H �= 0, a typical trajectory on the phase portrait
corresponds to either a librating or a rotating KL cycle. At H = 0, the solutions of the system
(4) are of a singular nature: at a certain instant of time, the osculating orbit of the particle
turns into a segment of a straight line (with G → 0 and, respectively, e → 1). Nevertheless,
we can associate these regimes with the librating and rotating families of solutions as their
formal limits for H → 0.

Since the Hamiltonian � is autonomous, its value κ remains constant along the trajectories
serving as solutions to the equations of motion. To classify the qualitative properties of the
secular evolution for different values of H and κ , we introduce the auxiliary functions

κ−(H) = 3

8
(H2 − 2), κ0(H) = −3

8
H2,

κ+(H) = 3

8

⎡
⎣3

(
1 −

√
5

3
H2

)2

− H2

⎤
⎦ .

If |H | <

√
3
5 , then the KL cycles are librating in the case of κ ∈ (κ0(H), κ+(H)) and rotating

in the case of κ ∈ [κ−(H), κ0(H)). In the case of
√

3
5 < |H | < 1, all the KL cycles are

rotating with κ ∈ [κ−(H), κ0(H)].
The diagram in Fig. 2 demonstrates the domains of the possible values of the integrals of

motion in librating and rotating KL cycles in the halfplane κ, |H |. This diagram is actually
a well-known diagram from Lidov (1962) redrawn in terms of other quantities. We prefer to
depict it in the shown form, because it is in our plans to use a value of the Hamiltonian (2)
as one of parameters defining the type of a KL cycle.

Explicit formulae describing the evolution of osculating elements in terms of elliptic
functions can be found in Gordeeva (1968), Kinoshita and Nakai (2007), and Vashkovyak
(1999) for both types of the KL cycles. Studying the EKL effect, we shall deal only with the
relations characterizing the rotating cycles.
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Fig. 1 Phase portraits of a
system with the Hamiltonian (2),
with H treated as parameter: a
|H | = 0.8, b |H | = 0.2, c
H = 0. The trajectories depicted
in green and blue correspond to
librating and rotating KL cycles,
respectively (or to their formal
limits at H = 0). The separatrices
(corresponding to aperiodic
solutions) are shown in red

Fig. 2 Connection of the modes
of motion with the value of the
quantities κ, H . The domains of
librating and rotating motions are
shown in green and blue,
respectively. The red line
corresponds to aperiodic
solutions
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In rotating KL cycles, the variable g = ω varies at a mean rate

ng(κ, H) = 3π
√

3(z+ − z−)

4
√

2K(kL)
, (5)

where K(·) is the complete elliptic integral of the first kind,

k2
L = z0 − z−

z+ − z−
, z± = 1

2

(
χ ±

√
χ2 − 20

3
H2

)
,

χ = 1 − 8

9
κ + 4

3
H2, z0 = 1 + 4

3
κ + 1

2
H2.

Oscillations of the eccentricity and inclination in rotating KL cycles have the frequency
ng(κ, H)/2. The mean rate of the ascending node precession is

nh(κ, H) = −3H

4

[
1 + 2(z0 − z+)

H2 − z+

(

(l2h , kL)

K(kL)
− 1

)]
, (6)

where 
(·, ·) is the complete elliptic integral of the third kind,

l2h = z0 − z−
H2 − z−

.

The formulae (5) and (6) can be obtained from the related expressions for periods Tg =
2π/ng and Th = 2π/ |nh |, presented in Vashkovyak (1999). The reader, who wants to check
it, must take into account that our choice of the unit of time differs from Vashkovyak (1999)
by a factor 3/16.

2.2 Transition to “action-angle” variables

We start with the change of variables

(G, H, g, h) �→ (G̃, H̃ , g̃, h̃), (7)

where

G̃ = G − |H |, H̃ = H, g̃ = g, h̃ = h + sign(H) · g.
It is easy to check that this change of variables is a canonical transformation with the gener-
ating function

S1(G̃, H̃ , g, h) = g(G̃ + |H̃ |) + hH̃ .

After the change of variables (7), the KL Hamiltonian

K̃ (G̃, H̃ , g̃,−) = K (G̃ + |H̃ |, H̃ , g̃,−)

can still be considered as a Hamiltonian of the system with one degree of freedom depending
on H̃ as a parameter. Let S∗(I2, g̃; H̃)be the generating function of a canonical transformation
to the action-angle variables:

(G, g) �→ (I2, ϕ2),

where

I2 = 1

2π

∫
KL−cycle

G̃(κ, g̃; H̃) dg̃. (8)
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The function G̃(κ, g̃; H̃) in (8) is the root of the equation1

4κ

3
+ H̃2

2
+ [

1 − (G̃ + |H̃ |)2] {
1 − 5 sin2 g̃

2

[
1 − H̃2

(G̃ + |H̃ |)2

]}
= 0, (9)

satisfying the condition 0 ≤ G̃ ≤ 1 − |H̃ |.
The relation (8) defines implicitly the function κ(H̃ , I2). Then the expression for the

generating function S∗(I2, g̃; H̃) may be written as

S∗(I2, g̃; H̃) =
∫ g̃

0
G̃(κ(H̃ , I2), g̃

′; H̃) dg̃′.

The transition to “action-angle” variables in the KL Hamiltonian

(G̃, H̃ , g̃, h̃) �→ (I1, I2, ϕ1, ϕ2)

can now be carried out as a canonical transformation with the generating function

S2(I1, I2, h̃, g̃) = I1h̃ + S∗(I2, g̃; I1).
The relations between the variables G̃, H̃ , g̃, h̃ and I1, I2, ϕ1, ϕ2 are

H̃ = I1, G̃ = ∂S∗
∂ g̃

, ϕ1 = h̃ + ∂S∗
∂ I1

, ϕ2 = ∂S∗
∂ I2

. (10)

After the transition to the variables I1, I2, ϕ1, ϕ2, the KL Hamiltonian takes the form

K (I1, I2) = κ(I1, I2).

In the plane I1, I2, the domain of definition of the function K (I1, I2) consists of the points
satisfying the condition

|I1| ≤ B(I2),

where the function I1 = B(I2) is defined implicitly by the relation κ0(I1) = κ(I1, I2).
A 3D graph of the function K (I1, I2) is shown in Fig. 3. It was constructed by numerical

inversion of the relation (8) with H̃ replaced by I1.
Within the classical Kozai–Lidov model (ε = 0), the angle variables ϕ1, ϕ2 vary, in general

case, as linear functions of time:

ϕ1 = nL(κ, I1)t + ϕ10, ϕ2 = ng(κ, I1)t + ϕ20.

Here ϕ10, ϕ20 are arbitrary constants,

nL(κ, I1) = nh(κ, I1) + signI1 · ng(κ, I1)

= − I1
2

[
5c∗

1 − z− − 2
3c∗


(l2L , kL)

K(kL)
+ 3

2

]
,

l2L = k2
L

l2h
= z0 − z−

1 − z− − 2
3c∗

, c∗ = 4

3
κ + H2

2
. (11)

1 It should be noted that Eq. (9) is reduced to a biquadratic equation for G = G̃ + |H̃ |.
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Fig. 3 The KL Hamiltonian as a
function of the variables I1, I2

To obtain the expression (11) for nL(κ, I1), the relation


(l2L , kL) = −
(l2h , kL ) + K(kL ) + π

2

√
l2h

(1 − l2h)(l
2
h − k2

L)

was applied. This relation is based on formula (117.02) from Byrd and Friedman (1954).
The index “L” for the rate of variation of the variable ϕ1 is used to emphasize the geo-

metric meaning of this variable: it characterizes the secular component in the variation of the
longitude ΩL of the Laplace vector directed to the pericentre of the test particle’s osculating
orbit. More precisely, one can show that

ΩL = ϕ1 + Ω∗
L(ϕ2, I1, I2), (12)

where the second term in (12) describes the periodic component which depends on the
parameters of the KL cycle:

Ω∗
L(ϕ2 + πk, I1, I2) = Ω∗

L(ϕ2, I1, I2), k ∈ Z1,

Ω∗
L(−ϕ2, I1, I2) = −Ω∗

L(ϕ2, I1, I2), Ω∗
L(ϕ2, I1, I2) = O(I1).

The formula (12) is derived in Appendix A.
The case of I1 = 0 corresponds to the motion of the test particle in the orbit with the

inclination i = 90◦. Since nL(κ, 0) = 0, we can interpret this case as a resonance. This
will enable us to apply the standard methods for investigation of resonances in Hamiltonian
systems (see, e.g., Arnold et al. 2006), in order to study the dynamics of the perturbed system
(1) for |I1|<∼ε1/2. This rough estimate is related to a non-degenerate situation; otherwise a

special consideration is required to determine the size of the resonance zone.

2.3 Expansion of the KL Hamiltonian over the powers of I1

Since the value of the “action” I1 will hereafter be assumed small, it is natural to expand the
KL Hamiltonian K (I1, I2) to a power series in this variable:

K (I1, I2) = K0(I2) + K2(I2) · I 2
1 + K4(I2) · I 4

1 + · · · (13)
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Fig. 4 The graph of the function
g0(κ)

To find the first coefficients of the series (13), we need several auxiliary relations. To start
with, we write down the expression for the integral (8) in the form of a series:

I2(κ, I1) = g0(κ) + g2(κ) · I 2
1 + · · · (14)

Here, as before, κ denotes the value of the KL Hamiltonian for a corresponding KL cycle.
The first term in (14) is equal to the integral (8) over the degenerate cycles in which the
inclination of the particle has a fixed value 90◦:

g0(κ) = 1

π

√
10

1 − α

[



(
α

1 − α
, k

)
− (1 − α)K(k)

]
, (15)

with α given by

α = 2

5

(
1 + 4

3
κ

)
, k2 = 3α

2(1 − α)
= 3(3 + 4κ)

9 − 8κ
.

Note that degenerate rotating KL cycles exist for κ ∈ [− 3/4, 0]. It is easy to see that

g0

(
−3

4

)
= 0, g0(0) = 2

π
arcsin

√
2

5
≈ 0.435906.

The graph of the function (15) is shown in Fig. 4.
Inverting the function g0(κ), we obtain the first coefficient K0(I2) of the series (13):

K0(g0(κ)) = κ, g0(K0(I2)) = I2.

To find the next coefficients of the series (13), we expand nL(κ, I1) into a series in I1:

nL(κ, I1) = f1(κ) · I1 + f3(κ) · I 3
1 + · · · (16)
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Fig. 5 Graphs of the functions
K0(I2), K2(I2), K4(I2)

where

f1(κ) = 3

2

(
E(k)

K(k)
− 1

2

)
,

f3(κ) = 45

8(9 − 8κ)3

{
−81 + 336κ + 64κ2

k2

+
[

81 + 432κ + 192κ2

k2 − 81 + 240κ − 64κ2

k′2 + 81 + 336κ + 64κ2

k2k′2

]
E(k)

K(k)

−3(27 + 144κ + 64κ2)

k2k′2

(
E(k)

K(k)

)2
}

.

Now let us take into account the evident relation

∂K

∂ I1
= nL(K (I1, I2), I1). (17)

Substitution of the series (13) and (16) into the formula (17) entails the following result:

K2(I2) = 1

2
f1(K0(I2)),

K4(I2) = 1

4

(
f3(K0(I2)) + f1(K0(I2))

2
· ∂ f1

∂κ

∣∣∣∣
κ=K0(I2)

)
,

where

∂ f1
∂κ

= − 9

4κ(3 + 4κ)

[
k′2 − 2k′2

(
E(k)

K(k)

)
+

(
E(k)

K(k)

)2
]

.

The graphs of the functions K0(I2), K2(I2) and K4(I2) are shown in Fig. 5. The domain
of definition of these functions is the interval [0, Imax

2 ], where Imax
2 = g0(0).

In Fig. 6 we present the graph of the function Δ(I1, I2) characterizing the difference
between K (I1, I2) and its approximation by the sum of the first three terms of (13). This
function weakly depends on I2. For |I1| < 0.5 the value of Δ(I1, I2) is smaller than 0.01.

As it will be established in Sect. 4, a specific situation arises in the analysis of the EKL
effect when I2 ≈ I d2 . In that case, I d2 = 0.35627 . . . is the root of the equation K2(I2) = 0.
It is easy to find that

∂K2

∂ I2

∣∣∣∣
I2=I d2

= ng(κ, 0)

2
· ∂ f1

∂κ

∣∣∣∣
κ=K0(I d2 )

≈ − 1.61832,

K4(I
d
2 ) ≈ − 0.16324.
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Fig. 6 The error of the
approximation of K (I1, I2) by
the sum of the first three terms of
(13)

The minimal and maximal values of the eccentricity and inclination for rotating KL cycles
with 0 < I1 � 1 can be calculated using the formulae

e2
min ≈ −4

3
K0(I2) + O(I 2

1 ),

e2
max ≈ 1 − 15I 2

1

9 − 8K0(I2)
+ O(I 4

1 ). (18)

The minimal and maximal values of the inclination for these cycles are

imin = arccos
I1√

1 − e2
max

, imax = arccos
I1√

1 − e2
min

in the case I1 > 0 and

imin = π − arccos
I1√

1 − e2
min

, imax = π − arccos
I1√

1 − e2
max

in the case I1 < 0.

3 Analysis of the secular effects due to the octupole component of the
disturbing function: the first-order perturbation theory

3.1 Averaging over KL cycles

After the transition to the “action-angle” variables, the Hamiltonian (1) takes the form

K(I1, I2, ϕ1, ϕ2) = K (I1, I2) + εK ∗(I1, I2, ϕ1, ϕ2).

As a consequence of the symmetry properties (3) we have

K(− I1, I2, 2π − ϕ1, ϕ2) = K(− I1, I2, ϕ1, 2π − ϕ2) = K(I1, I2, ϕ1, ϕ2). (19)
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Like in the other cases, we expand the perturbing term K ∗(I1, I2, ϕ1, ϕ2) to a power series
in I1:

K ∗(I1, I2, ϕ1, ϕ2) = K ∗
0 (I2, ϕ1, ϕ2) + I1 · K ∗

1 (I2, ϕ1, ϕ2) + · · ·
The relations (19) imply

K ∗
2 j−1(I2, ϕ1, ϕ2) = −K ∗

2 j−1(I2, ϕ1, 2π − ϕ2),

K ∗
2( j−1)(I2, ϕ1, ϕ2) = K ∗

2( j−1)(I2, ϕ1, 2π − ϕ2), j = 1, 2 . . . (20)

When “action-angle” variables are introduced, the averaging over a KL cycle reduces to
averaging over the variable ϕ2. Let us introduce the notation

〈·〉ϕ2 = 1

2π

∫ 2π

0
(·) dϕ2.

Taking into account the relations (20), we obtain:

〈
K ∗

2 j−1

〉
ϕ2

= 0, j = 1, 2, . . .

Thus the result of averaging of K ∗(I1, I2, ϕ1, ϕ2) can be written as

〈
K ∗〉

ϕ2
= 〈

K ∗
0

〉
ϕ2

+ O(I 2
1 ). (21)

The calculation of the principal term on the right-hand side of the relation (21) implies
averaging along the motions with the inclination i = 90◦. Carried out by Katz et al. (2011),
this step renders:

〈
K ∗

0

〉
ϕ2

= − cos ϕ1 · Q(I2),

where

Q(I2) = 5π(3 + 11κ)
√

9 − 8κ

32
√

15K(k)

∣∣∣∣∣
κ=K0(I2)

.

The graph of the function Q(I2) is presented in Fig. 7. This function equals zero for
I2 = I ∗

2 ≈ 0.2321 and I2 = Imax
2 . When I2 tends to Imax

2

Q(I2) ≈ 3π
√

15

16 ln 36
5|K0(I2)|

.

Also note that

Q(0) = − 105

64
,

dQ

dI2
= π

32K(k)

√
15

9 − 8κ

[
29 − 44κ

+ 30(3 + 11κ)

k2k′2(9 − 8κ)

(
1 − E(k)

K(k)

)]
κ=K0(I2)

· ng(K0(I2), 0).
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Fig. 7 The graph of the function
Q(I2)

3.2 Evolution of the motion in the non-degenerate case

In the first approximation of the perturbation theory, after averaging over a KL cycle the
evolution of the variables I1, ϕ1 is described by the 1DOF Hamiltonian system

L(I1, ϕ1) = K2(I2) · I 2
1 + K4(I2) · I 4

1 − ε cos ϕ1 · Q(I2) + O(I 6
1 , ε I 2

1 ), (22)

where I2 plays the role of a fixed parameter.
Investigation of the secular effects will begin with the case K2(I2) �= 0, Q(I2) �= 0.

Following the standard approach to the analysis of resonances in Hamiltonian systems, we
rescale the variable I1 and the independent variable t :

I1 �→ J1 = ε−1/2 I1, t �→ t∗ = ε1/2t.

Omitting the terms of a higher order of smallness, we find that the evolution of the variables
J1, ϕ1 is described by a Hamiltonian system of the pendulum type:

L∗(J1, ϕ1) = K2(I2) · J 2
1 − cos ϕ1 · Q(I2). (23)

A system with the Hamiltonian (23) has two families of equilibrium solutions:

J1 = 0, ϕ1 = 0 (mod 2π) (24)

and

J1 = 0, ϕ1 = π (mod 2π). (25)

If I2 ∈ (I ∗
2 , I d2 ), then the equilibria (24) are stable, whereas the equilibria (25) are unstable.

In the case of I2 ∈ [0, I ∗
2 )∪(I d2 , Imax

2 ), the situation is opposite: the equilibria (25) are stable,
whereas the equilibria (24) are not.

The change in the sign of J1 in oscillating periodic solutions of the system (23) corresponds
to a change in the direction of the orbital motion of the test particle. So the consideration of
(23) allows us to make some qualitative and quantitative conclusions regarding the properties
of the EKL effect.

To begin with, we estimate the characteristic time between flips TEKL. The simplest way
to do it is to compute the value of a semi-period of small oscillations around the stable
equilibria. In the original variables, we obtain

TEKL = π

ε1/2
√

2|K2(I2)Q(I2)| .

A similar asymptotics was obtained by Antognini (2015); however, the fact, that under certain
conditions TEKL dependence on ε differs, was absent in his argumentation (see Sects. 4, 5).
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Fig. 8 Dependence of the characteristic time of the EKL effect and of the maximum absolute values of the
variable I1 in motions with flips on the value of the variable I2

The upper limit of the possible absolute values of the variable I1 in motion with flips is
given by the formula

I sup
1 = ε1/2

√
2

∣∣∣∣ Q(I2)

K2(I2)

∣∣∣∣. (26)

In Fig. 8, we presented graphs illustrating the dependence of TEKL and I sup
1 on the value of

the variable I2 in the corresponding motion. Singularities at I2 = I ∗
2 , I2 = I d2 and I2 = Imax

2
indicate the order of asymptotics in these situations. The cases of I2 ≈ I ∗

2 and I2 ≈ I d2 will
be considered in Sects. 4 and 5, respectively; the case of I2 ≈ Imax

2 takes place in a relatively
small region of the phase space and will not be addressed in detail.

The developed theory is valid in case

I sup
1 � B(I2), (27)

where the function B(I2) was introduced in Sect. 2.2 (in other words, the resonance region
must be within the interval of possible values of I1 for given value of the “action” variable
I2). For moderate values of ε (typically 0.1 ÷ 0.01), when the condition (27) is not satisfied,
the system demonstrates chaotic behavior. In Li et al. (2014a) the contribution of overlapping
secondary resonances in the formation of chaotic dynamics was considered.

4 Secular evolution in the case of I2 ≈ I d2

4.1 An approximate Hamiltonian comprising the leading terms

We begin with a rescaling transformation

I1 �→ Ĵ1 = ε−1/4 I1, I2 �→ Ĵ2 = ε−1/2(I2 − I d2 ), t �→ t̂ = ε3/4t. (28)

Evolution of the variables Ĵ1, ϕ1 is described by the approximate equations

d Ĵ1

dt̂
= − ∂L̂

∂ϕ1
,

dϕ1

dt̂
= ∂L̂

∂ Ĵ1
, (29)

123



The eccentric Kozai–Lidov effect as a resonance phenomenon Page 15 of 23 4

where

L̂( Ĵ1, ϕ1) = σ Ĵ 2
1 + K̂4 Ĵ

2
1 − Q̂ cos ϕ1,

K̂4 = K4(I
d
2 ), Q̂ = Q(I d2 ), σ = Ĵ2

dK2

dI2

∣∣∣∣
I2=I d2

.

Qualitative behavior of the solutions to the system (29) depends on the value of the
parameter σ . In the case of σ < 0, the phase portrait of the system (29) is topologically
equivalent to the phase portrait of a mathematical pendulum (Fig. 9a). Let S denote a family
of oscillatory solutions to (29). With this family, we associate the quantity Ĵ sup

1 , which limits
the absolute value of the variable Ĵ1 in oscillating solutions:

Ĵ sup
1 = sup

( Ĵ1(t̂),ϕ1(t̂))∈S,t̂∈R1

∣∣∣ Ĵ1(t̂)
∣∣∣ .

In the considered case, it is easy to find that

Ĵ sup
1 =

√√√√√
√

σ 2 − 8Q̂ K̂4 + σ

2
∣∣∣K̂4

∣∣∣ . (30)

When σ = 0, bifurcation takes place. It leads to the emergence of an equilibrium solution
residing outside the axis Ĵ1 = 0 for positive σ . Stable and unstable solutions of this type are
given by the relations

Ĵ1 ≡ ± Ĵ d1 , ϕ1 ≡ 0 (mod2π)

and

Ĵ1 ≡ ± Ĵ d1 , ϕ1 ≡ π(mod2π)

respectively, where

Ĵ d1 =
√√√√ σ

2
∣∣∣K̂4

∣∣∣ .

If 0 < σ < σd =
√

8Q̂
∣∣∣K̂4

∣∣∣ ≈ 0.67837, then there exist oscillating solutions with the

phase trajectories enclosing two stable equilibria (Fig. 9b). For such solutions,

Ĵ sup
1 =

√√√√√√
σ +

√
8Q̂

∣∣∣K̂4

∣∣∣
2

∣∣∣K̂4

∣∣∣ . (31)

These solutions disappear as a result of another bifurcation at σ = σd . Figure 9c presents
an example of the phase portrait of the system (29) for σ > σd . In this case,

Ĵ sup
1 =

√√√√√σ −
√

σ 2 + 8Q̂ K̂4

2
∣∣∣K̂4

∣∣∣ . (32)

The graph of the function Ĵ sup
1 (σ ) defined by formulae (30), (31) and (32) is shown in

Fig. 10.
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Fig. 9 Phase portraits of the
system (29) for different values
of the parameter σ : a σ = − 0.5,
b σ = 0.6, c σ = 1.0
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Fig. 10 The graph of the
function Ĵ

sup
1

The discussed bifurcations are well known in the general theory of Hamiltonian systems
(e.g., Howard and Humpherys 1995; Morozov 2002).

4.2 Interpretation in terms of Keplerian elements

The results of Sect. 4.1 allow us to establish the upper limit of the possible values of |I1| in
motions with flips, when the value of I2 is close to that of I d2 :

I sup
1 ≈ ε1/4

√√√√ 8Q̂∣∣∣K̂4

∣∣∣ . (33)

More precisely, the amplitude of the variation of the variable I1 reaches its maximal value
(33) at

I2 ≈ I d2 + ε1/2σd

dK2/dI2(I d2 )
.

A typical time between flips in such motions is TEKL ∼ ε−3/4. It is significantly longer than
in the case |I2 − I d2 | ∼ 1 studied in Sect. 3.

Lithwick and Naoz (2011) numerically constructed curves on the plane of initial values
(e0, cos i0), separating for different values of ε the motions with flips and the motions without
flips. The graph of the function Ĵ sup

1 (σ ), complemented by a segment at the point of discon-
tinuity, can be interpreted as a similar graph in the plane of rescaled variables. Its “image” in
the plane (e0, cos i0) provides an approximate analytical expression of the separating curves:

e0(σ ) = ed − ε1/2√
3

∣∣∣K̂0

∣∣∣

[
3

8

(
Ĵ sup

1 (σ )
)2 + σ

dK0/dI2(I d2 )

dK2/dI2(I d2 )

]
, (34)

cos i0(σ ) = ε1/4 Ĵ sup
1 (σ )√

1 − e2
d

,

where

ed = 2

√√√√
∣∣∣K̂0

∣∣∣
3

.
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Fig. 11 The red curve is defined
by our Eq. (34). In black is shown
the separating curve constructed
numerically by Lithwick and
Naoz (2011) for ε = 0.003

Good agreement between the asymptotic formulae (34) and the results of numerical sim-
ulations is achieved only for very small values of the parameter ε (Fig. 11). However, the
qualitative properties of the motion described in this section (in particular, the specific bifurca-
tions defining the possible scenarios of the long-term evolution) hold even when the formulae
(34) are inapplicable (ε ∼ 0.1 ÷ 0.01)

To obtain similar expression for the separating curve in the case of |I2 − I d2 | ∼ 1, one
can substitute I sup

1 (I2) for I1 [(where I sup
1 (I2) is given by the formula (26)] in the estimates

(18). This yields an approximate parametric representation (with I2 as a parameter) of the
curve separating on the plane (e0, cos i0) the initial values for motion with and without flips.
Of special interest is the situation with I2 � 1 (κ ≈ −4/3), since it corresponds to the
“low-inclination” EKL effect discussed by Li et al. (2014b)

5 The degenerate case of Q(I2) ≈ 0

The degenerate case of Q(I2) ≈ 0 takes place at I2 ≈ I ∗
2 or I2 ≈ Imax

2 . This is a situation
where a second-order perturbation theory is required to reveal the character of the long-term
evolution of the motion. For the model to be correct, it will be necessary to take into account
the next, hexadecapole, term in the expansion of the disturbing function. Without carrying
out these (rather cumbersome) calculations, we would only note that, for the degeneracy
under consideration, a typical time between flips obeys TEKL ∼ ε−1 � ε−1/2, while the
upper limit of the absolute values of the variable I1 in the motions with flips is proportional
to ε.

6 Conclusions

We have demonstrated a possibility to interpret the EKL effect as a resonance phenomenon.
This has allowed us to obtain the previously known properties of this effect in a more straight-
forward way and to establish new properties thereof.

To reduce the Hamiltonian to a form conventionally used in the modern theory of res-
onances in Hamiltonian systems, we introduced the action-angle variables in the classical
Kozai–Lidov model of weakly perturbed Keplerian motion of the test particle. Analysis of
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the general case, and of various special cases with the Hamiltonian being degenerate in cer-
tain sense, has enabled us to provide a more accurate estimate for the time interval TEKL

between flips (or, stated differently, between changes in the direction of the test particle’s
orbital motion). The interval TEKL turns out to be of the order of ε taken to some power.
Dependent on the initial conditions, we may obtain either TEKL ∼ ε−1/2, or TEKL ∼ ε−3/4,
or TEKL ∼ ε−1. Here ε is a small parameter characterizing the importance of the octupole
term in the expansion of the disturbing function, while the units of time are chosen so that
the period of a KL cycle TKL ∼ 1.

We also have discovered the bifurcations governing the possible scenarios of the secular
evolution and have derived an asymptotic formula for the boundary curve separating the
initial conditions giving rise to motions with and without flips.
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Appendix A: Evolution of the Laplace vector in rotating KL cycles

The evolution of the Laplace vector

eL = e (cos ϑL cos ΩL , cos ϑL sin ΩL , sinϑL )T

is described by the relations characterizing the change in eccentricity e of the orbit, the
latitude ϑL , and the longitude ΩL of this vector.

Formulae determining the change in eccentricity in KL cycles are given in Gordeeva
(1968) and Vashkovyak (1999). In our notation the formula for the rotating cycles takes the
form:

e(t) =
√

1 − z− − (z+ − z−)sn2(u(t), kL ), (35)

u(t) = 3

2

√
3(z+ − z−)

2
t + u0.

To find the latitude ϑL of the Laplace vector, we use the relation

sin ϑL = sin i sin ω.

Writing the Kozai–Lidov Hamiltonian in the form

K = −3

8

[
H2 + 2e2

(
1 − 5

2
sin2 i sin2 ω

)]
,

it is easy to establish that

sin2 ϑL = 2

5

(
1 + c∗

e2

)
. (36)

The change in the longitude of the Laplace vector is described by the differential equation

Ω̇L = 3H

(
1 − 3

4 cos2 ϑL

)
. (37)
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Using (35) and (36), we can transform (37) to the form

Ω̇L = −H

2

[
3

2
+ 5c∗(

1 − z− − 2
3c∗

) · 1(
1 − l2Lsn2(u(t), kL )

)
]

. (38)

Integrating (38), we get

ΩL(t) = ΩL0 − H

2

[
3

2
t + 5

√
2c∗

3
√

3(z+ − z−)
(
1 − z− − 2

3c∗
)

∫ u(t)

u0

du′(
1 − l2Lsn2(u′, kL)

)
]

.

(39)

For the next step we need the relation
∫ u

0

du′(
1 − l2Lsn2(u′, kL)

) = 
(l2L , kL)

K(kL)
u + ΦL(u), (40)

where

ΦL(u) = 
(am(u), l2L , kL) − 
(l2L , kL)

K(kL)
u.

It is worth noting that ΦL(u) is an odd periodic function of u with the period 2K (kL).
From (39) and (40) it follows that ΩL(t) can be represented as the sum of a linear function

of time ΩL(t), characterizing the secular evolution of the longitude of the Laplace vector
and (Tg/2)-periodic function of time Ω̃L(t):

ΩL(t) = ΩL(t) + Ω̃L(t), (41)

Ω̃L(t) = − 5H
√

2c∗
3
√

3(z+ − z−)
(
1 − z− − 2

3c∗
)ΦL (u(t)),

ΩL(t) = nL t + ΩL0 − ω̃L(0).

Having the relation (41), it is not too difficult to reconstruct the expression for ΩL as a
function of “action-angle” variables. In that case when ω = ϕ2 = 0 (mod2π), the eccentricity
e in rotating KL cycles has a minimal value. From the formula (35), it follows that at these
moments of time

u = K (kL)(mod2K (kL)).

Thus, the values of u and ϕ2 are related by the equality

u = 2K (kL)

(
ϕ2

π
+ 1

2

)
(mod2K (kL)). (42)

Let t j ( j ∈ Z1) denote the moment of time when

ω = ϕ2 = 0(mod2π). (43)

Substituting u = K (kL)(mod2K (kL)) into the formula for Ω̃L(t), we obtain:

Ω̃L(t j ) = 0. (44)

On the other hand, as a consequence of the third relation in (10), in the case (43) we have

ΩL = Ω = ϕ1(mod2π).
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If we take into account (41) and (44), then we get at time moments t j

ΩL = ϕ1(mod2π). (45)

Since the rates of change of ΩL and ϕ1 are equal, the relation (45) is valid at any other
moment of time.

From the relations (41), (42) and (44) it follows that

ΩL = ϕ1 + Ω∗
L(ϕ2, I1, I2),

where

Ω∗
L(ϕ2, I1, I2) = 5I1c∗

3
(
1 − z− − 2

3c∗
)
√

2

3(z+ − z−)
ΦL

(
2K(kL)ϕ2

π

)
.

Appendix B: Some KAM theory-based conclusions on the properties of
motions with small absolute values of the variable I1

We recall that after the transition to the “action-angle” variables, the Hamiltonian of the
problem acquires the form

K(I1, I2, ϕ1, ϕ2) = K (I1, I2) + εK ∗(I1, I2, ϕ1, ϕ2). (46)

For Hamiltonians of the form (46), it is established in the KAM theory that under the
condition of isoenergetic nondegeneracy,

D(I1, I2) =

∣∣∣∣∣∣∣∣

∂2K
∂ I 2

1

∂2K
∂ I1∂ I2

∂K
∂ I1

∂2K
∂ I1∂ I2

∂2K
∂ I 2

2

∂K
∂ I2

∂K
∂ I1

∂K
∂ I2

0

∣∣∣∣∣∣∣∣
�= 0 , (47)

the variables I1, I2 stay permanently confined to close vicinities of their initial values, pro-
vided the parameter ε is sufficiently small (Arnold et al. 2006).

Using the relations given in Sect. 2, we obtain

D(I1, I2) = −2K2(I2) · n2
g(K0(I2), 0) + O(I 2

1 )

under the condition I2 �= I d2 . In the case I2 = I d2

D(I1, I
d
2 ) = −12I 2

1 K4(I
d
2 ) · n2

g(K0(I
d
2 ), 0) + O(I 4

1 ).

Thus, for sufficiently small absolute values of the variable I1, the KL Hamiltonian satisfies
the condition (47). Thence, in the solutions to the studied system, the variable I1 preserves
its sign (and, consequently, no flips occur) if ε < ε∗, where ε∗ is a positive constant whose
value depends on the values of I1(0) and I2(0).
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