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Abstract We revisit the rotation dynamics of a rigid satellite with either a liquid core or
a global subsurface ocean. In both problems, the flow of the fluid component is assumed
inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré—Hough
model which provides exact equations of motion. We introduce an approximation when the
ellipticity of the cavity is low. This simplification allows to model both types of satellite
in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian
formalism closely related to Poincaré’s “forme nouvelle des équations de la mécanique”. In
the case of a satellite with a global ocean, we obtain a seven-degree-of-freedom system. Six
of them account for the motion of the two rigid components, and the last one is associated
with the fluid layer. We apply our model to Titan for which the origin of the obliquity is
still a debated question. We show that the observed value is compatible with Titan slightly
departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.

Keywords Multi-layered body - Spin-orbit coupling - Cassini state - Synchronous rotation -
Analytical method - To - Titan
1 Introduction

The spin pole of Titan, Saturn’s largest moon, is lying close to the plane defined by its orbit
pole and the Laplace pole (Stiles et al. 2008, 2010). This observation, made by the RADAR
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instrument of the Cassini mission, suggests that Titan is in (or very close to) a Cassini
state (Colombo 1966; Peale 1969). For a rigid body, the equilibrium obliquity is a function
of its moments of inertia. Those of Titan have been deduced from its Stokes coefficients
Jr = (33.59940.332) x 10~% and C2» = (10.121£0.029) x 1070 and from the hydrostatic
equilibrium hypothesis implying a mean moment of inertia I /(mR?) = 0.3431 (Iess et al.
2012, SOL1a), where m and R are the mass and radius of Titan, respectively. The assumed
hydrostatic equilibrium is suggested by the ratio Jo/Cz» ~ 10/3 which is precisely the
expected value for a hydrostatic body (e.g. Rappaport et al. 1997). Assuming these values,
if Titan were rigid and in a Cassini equilibrium state, its obliquity would be 0.113 deg (Bills
and Nimmo 2011), i.e. about one-third of the radiometric value 0.32 deg (Stiles et al. 2008,
2010; Meriggiola et al. 2016). To match the observations, the frequency of the free libration
in latitude must be reduced by a factor 0.526 (Bills and Nimmo 2011). In particular, this
would be the case if 1/(mR?) were increased to 0.45 (ibid.), a value exceeding 2/5 obtained
for a homogeneous body, as if the mass of the satellite was concentrated towards the surface.
This result leads to think that the observed obliquity is that of a thin shell partially decoupled
from the interior by, e.g. a global ocean (ibid.).

The idea that the ice-covered satellites of the outer planets hold a global underneath ocean
has already been proposed based on models of their internal structures (e.g. Lewis 1971).
Even the dwarf planet Pluto is suspected to harbour a subsurface ocean (Nimmo et al. 2016).
In the case of Titan, the presence of the ocean is also revealed by laboratory experiments on
the behaviour of water-ammonia compounds at high pressure and low temperature (Grasset
and Sotin 1996), by the detection of electromagnetic waves in its atmosphere (Béghin et al.
2012) and by the high value of its Love number k> (Iess et al. 2012).

A dynamical problem closely related to the present one is that of a hollow satellite with
a liquid core as described by the Poincaré—Hough model (Poincaré 1910; Hough 1895). For
this specific problem, Poincaré (1901) developed a new Lagrangian formalism, based on the
properties of the Lie group acting on the configuration space, which allows to derive the
equations of motion in a very simple and elegant manner. Such a system is characterised by
four degrees of freedom, three of them being associated with the rotation of the rigid mantle
and the last one being due to the motion of the liquid core (e.g. Henrard 2008). Applying this
model to Jupiter’s satellite Io, Henrard (2008) observed that the frequency of the additional
degree of freedom is close to the orbital frequency and should thus multiply the possibility of
resonances. For Titan, we shall expect the same conclusion due to the presence of the ocean,
but unfortunately, Poincaré’s model relies on the concept of a fluid simple motion which
cannot be rigorously transposed to the case of a satellite with a global subsurface ocean.

In the case of Titan, the effect of an ocean on the rotation dynamics has been studied
numerically using Euler’s rotation equations taking into account the gravitational interaction
of Saturn on each layer, the pressure torques at the two fluid—solid boundaries, and the
gravitational coupling between the interior and the shell (Baland et al. 2011, 2014; Noyelles
and Nimmo 2014). The elastic deformation of the solid layers and the atmospheric pressure
have also been included in a modelling of the libration in longitude (Richard et al. 2014) and
in a modelling of the Chandler polar motion (Coyette et al. 2016). Despite several arguments
in favour of an ocean, this model does not easily explain the tilt of Titan’s spin axis. Indeed,
under the hydrostatic equilibrium hypothesis, Baland et al. (2011) and Noyelles and Nimmo
(2014) found that the obliquity of the Cassini state remains bounded below 0.15 deg, i.e. about
one half of the observed value. There thus seemed to be a need for a significant resonant
amplification to bring the system out of the Cassini equilibrium (Baland et al. 2011; Noyelles
and Nimmo 2014). However, these studies do not invoke the same mode as the origin of the
resonant amplification. In addition, this solution does not agree with extended observations
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of the spin-axis orientation (Meriggiola and Iess 2012). The model has then been amended to
allow the Cassini state obliquity to reach the observed 0.32 deg, but this has only been made
possible after releasing the hydrostatic shape assumption leaving the ratio J>/Ca ~ 10/3
unexplained (Baland et al. 2014).

It should be stressed that models developed thus far discard the rotation of the ocean
relative to the inertial frame. This is a valid assumption to reproduce librations in longitude
(e.g. Richard 2014), but not anymore for precession motion. By consequence, the associated
dynamical system only has 6 degrees of freedom equally shared by the rigid interior and the
shell (Noyelles and Nimmo 2014). Yet, a comparison of this problem with that of a satellite
with a liquid core strongly suggests that a three-layered body must have 7 degrees of freedom,
one of which being brought by the ocean. Here, we aim at building a new dynamical model
accounting for the rotation of the liquid layer as done by Mathews et al. (1991) for the Earth.
More recently, the latter model has been adapted to the study of the Moon (Dumberry and
Wieczorek 2016)! and of Mercury (Peale et al. 2016). Here we reconsider the problem with
a Hamiltonian approach. In that scope, we first extend the Lagrangian formalism described
in Poincaré (1901) to a non-canonical Hamiltonian formalism allowing to study relative
equilibria in a very efficient manner as in Maddocks (1991) and Beck and Hall (1998). The
method has proven its efficiency in the context of a rigid satellite in circular orbit (Beck and
Hall 1998), in the analysis of the two rigid body problem (Maciejewski 1995), and in several
studies of the attitude of a satellite with a gyrostat (e.g. Hall and Beck 2007; Wang and Xu
2012 and references therein). The approach is described in Sect. 2 and illustrated in the case
of a rigid satellite in Sect. 3. We revisit the problem of a moon with a fluid core with this
approach, and we propose a simplification straightforwardly transposable to a three-layered
body in Sect. 4. The rotation dynamics of a satellite with a subsurface ocean is presented in
Sect. 5. In the subsequent Sect. 6, we test our model and our simplification on Io, a satellite
with a liquid core, verifying that the derived eigenfrequencies are in very good agreement
with those obtained in previous studies of the same problem made by Noyelles (2013, 2014).
In this section, we also analyse the case of Titan showing that the additional degree of freedom
makes the system highly sensitive to the internal structure and that the observed obliquity can
be easily reproduced. Finally, we discuss our model and conclude in Sect. 7. The notation
used in this paper is explained in Table 1 and the three satellite structures studied in this work
are schematized in Fig. 1.

2 Non-canonical Hamiltonian formalism
2.1 Equations of motion
2.1.1 General case

Let a dynamical system with n degrees of freedom described by a Lagrangian L. We denote
by Q the configuration space, and each point q € Q is represented by a set of m > n
coordinates (¢1, - - . , ¢m ). The number of coordinates is purposely allowed to be greater than
the actual dimension of the manifold Q. As in Poincaré (1901), we assume that there exists a
transitive Lie group G acting on Q. The transitivity of G means that for all q, q" € Q, there
exists an element g of the group G such that ¢’ = gq. In particular, given an initial condition

1 Dumberry and Wieczorek (2016) could only highlight 5 degrees of freedom because their model of the
Moon is axisymmetric and not triaxial.
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Table 1 Notations

Symbol Definition
Cr0sms S Indices standing for core, ocean, mantle, and shell, respectively
18 fc» go Indices standing for rigid satellite, fluid core, and global ocean

Fin = (i0, jo. ko)
Flab = (i, J, k)
Fi=1.J;,K))

L. Ji, Ki

R; =1L, Ji, K]
yi = ;. 1, Ji Ky)
y

T(y)

Uy, 1)

L(y, 1)

H(y, 1)

Ci(y)

Wi

F(y)

B(y)

A(y)

Up(y)

Uiy, 0

Uself (y)

Wij)i jelx.y.z)
Hy(y)

Hy(y, 1)

r, r(t)

S@)

So

Si1(0)
(Uts)v)u,ve{x,y,z}
(UL}U(f))u,ve{x,y,z}
g

My

o, i, vi

Pi

ai, b, c;

e

IL;

Inertial frame

Laboratory frame

Frame associated with the layer i

Rotation vector of Fjap, with respect to Fj, expressed in Fiap
Rotation vector of F; with respect to Fi,p expressed in Fiyp
Rotation vector of F, with respect to F,, expressed in Fy,
Lie momentum associated with @;

Lie momentum associated with @),

Basis vectors of F; expressed in Fiyp

Rotation matrix of the layer i relative to Fi,p

State vector of the layer i

State vector of the whole system

Kinetic energy

Potential energy

Lagrangian

Hamiltonian

Casimir functions

Lagrange multipliers

Lagrangian associated with the minimisation of H( with constraints
Poisson matrix

Matrix of the linearised system

Constant part of U(y, t)

Perturbation U (y, t) — Up(y)

Self-gravitational energy of the satellite

Constant parameters of Ugelf

Autonomous part of H (y, t)

Perturbation H (y, t) — Hy(y)

Radius vector connecting the satellite barycenter to the planet
agm P rrl / P

Constant part of S(t)

S(t) —So

Elements of the matrix Sg

Elements of the matrix S (7)

Gravitational constant

Mass of the central planet

(Ci — Bi)/Aj, (Ci — Aj)/Bi, (Bi — Aj)/Ci, respectively
Density of the layer i

Radii of the outer boundary of the layer i

Equatorial flattening (a — b)/a

Inertia tensor of the layer i expressed in Fi,p
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Table 1 continued

Symbol Definition

T Ancillary inertia tensor

A;, B;, C; Principal moments of inertia of the layer i
A, B, C’ Ancillary moments of inertia

wy Frequency of libration in longitude

wy Frequency of libration in latitude

[om) Wobble frequency

g, there exists g; € G such that the configuration q(#) at time ¢ reads q(¢) = g;q,. In this
work, G will be the rotation group SO (3), the translation group 7' (3), or some combinations
of both.

Let g be the Lie algebra of G. By definition, there exists X € g such that the generalised
velocity reads ¢ = X(q). Since the action of G on Q is transitive, the dimension of g is

equal to the number n of degrees of freedom. Let B = (X, ..., X,) be a basis of g and
(Xij)1<i<n,1<j<m be the n x m functions of q defined as
- 9
X; = Xii—. 1
=X 7 1)

Jj=1

We denote by n = (11, ..., n,) € R" the coordinates of X in 3 such that

q=> nXi(q. @)

i=1

Because the term “generalised velocity” is already attributed to {, hereafter we call 5 the Lie
velocity of the system. Given two configurations q and q’ infinitely closed to each other, we

also define the n-tuple §& = (8¢, ..., 8&,) such that
n
8q:=q —q=)_X;(@9&. ©)
i=1
Poincaré considers the Lagrangian as a function of (», q) and writes its infinitesimal variation
as v oar
SL=D  50m + Xi(L)8k;. )
1

i=1

The resulting equations of motion are (Poincaré 1901)

¢ oL Eni 2L 4 X 5)
— = con; — . s
dr an; - ij"i Nk !
Jj.k
where c{.‘,., defined as
n
X, Xj] = Xin — Xle' = ZCIIFJ-X](, (6)

k=1

are the structure constants of g with respect to the chosen basis B.
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To get the Hamiltonian equations equivalent to Eq. (5), we introduce a momentum
associated with the Lie velocity n and defined as

L

T = —.
an

)

Following the same nomenclature as for 5, we call this momentum & the Lie momentum of
the system. The Hamiltonian H is constructed by means of a Legendre transformation as

H(m,q) :=m-n— L7, q. ®)
Using Egs. (4) and (7), the infinitesimal variation of H (Eq. 8) reads
n
SH =) mismi — X; (L)S&:. ©)
i=1

But since H is a function of & and q, we also have, as in Eq. (4),

"\ 9H
SH = X; i Smi + Xi (H)SE;. (10)
1=
The identification of Egs. (9) and (10) gives
oH
ni = and  X;(H) = —X;(L). (1)
37'[,'

Using these identifications, the expression of q (Eq. 2), and Poincaré’s equation (5) where
dL/dn; is replaced by 7r; (Eq. 7), we get the non-canonical equations of motion associated
with H, viz.,

n

. OH . oH
gi = Z ij(qi) and ;= Zcfiainjﬂk — X;(H). (12)

j=l1 J.k

Let us denote the state vector by y = (1, q) € R"™". The equations of motion (12) written
in matrix form read
¥y = -B(y)VyH. (13)

The so-called Poisson matrix B(y) is

C X} (14)

where (-)T means the transpose of a vector or of a matrix. X is an n x m matrix and C an
n x n matrix whose elements are

[X]ij = X;; and [Clj=—) cim. (15)
k

2.1.2 Translation group

The simplest illustration of the above formalism is the case where G is the translation group.
In that case, y is the usual velocity vector v and 7 is the standard linear momentum, commonly
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denoted as p. The vector fields of the tangent configuration space are X; = %. The associated
structure constants cl’fj are all nil. The Poisson matrix is then

B(y) = [_01 ;] (16)
and we retrieve the canonical equations of motion
. oH . oH
Pi = g qi = o (17)

2.1.3 Group SO(3) in the body-fixed frame

The group SO(3) naturally appears in studies of the rotation motion of solid bodies. For this
problem, two choices can be made: vectors are expressed either in the body-fixed frame or
in the “laboratory” frame. Here, we consider the first option where vectors are written in the
body-fixed frame. The Lie velocity is the rotation vector designated by @, and the orientation
of the body is parametrised by the coordinates in the body-fixed frame of the laboratory base
vectors, i.e. q = (i, j, k). For any function f (i, j, k), we have

G310 = @D @ x — wxi0
:—w-(ix%—l—jx%—l—kx%). (18)
Thus, the vector field X = (X, X, X3) is
K= —ix 2 jx 2 kx (19)
di dj ok
with structure constants cf.‘j = —¢;jkr where € = 1 when (i, j, k) is a cyclic permutation

of (1,2,3), —1 when (i, J, k) is a cyclic permutation of (3, 2, 1), O otherwise. Hence, the
Poisson matrix reads

A 0ij kK

j 0 0 0

kK 0 0 0

where, for any vector v, we have defined
0 —-v, v
v=| v, 0  —ue|. (21)
—Vy Uy 0
The corresponding equations of motion are

dr 8H+, 8H+, 8H+k oH 22)
— = X — +ix — X —— X —,
dr Py a5 ok
di oH
— =ix —, 23
@ o (23)
dj . O0H (24)
= —jx —,
a7 om
dk oH
Kk x — 25
@ o (25)

@ Springer



456 G. Boué et al.

with 0H/0x = w.

2.1.4 Group SO(3) in the laboratory frame

Here we again consider the rotation motion of a solid body, but now vector coordinates are
written in the laboratory frame. The latter is the frame with respect to which the motion of
the spinning body is described. Note that it does not have to be inertial. The generalised
coordinates are the base vectors of the rotated frame q = (I, J, K), and the Lie momentum
associated with the rotation vector is denoted as I1. Applying the same method as above, we

get
XeIx2igx L irxl 26)
= X — X — X —.
ol aJ K

For this basis, the structure constants are cf.‘j = €;jk, and thus, the Poisson matrix is

nilJKk
p=|l 0 00 @7)
J 0 0 0
K 00 0
The associated equations of motion are

dil  0H oH oH oH
— = —xO+ — xI+— — x K, 28
a —am < I gy IR 28
dl. 9H
— = — xI, (29)
dr oIl
dJ 0H
T , 30
dt BHXJ G0
dK 9H
— — — xK, 31
dr oIl

where d H /911 still is the rotation vector, although expressed in the laboratory frame.

2.2 Linearisation and driven solution

For the sake of completeness, we here recall the general method leading to the linearisation
of the equations of motion in the non-canonical Hamiltonian formalism (Maddocks 1991;
Beck and Hall 1998). We also present the criterion of nonlinear stability as described in ibid.

Let a non-autonomous Hamiltonian H (y, t) associated with an n-degrees-of-freedom
system expressed as a function of non-canonical variables y € R? with p > 2n. We assume
that H (y, t) can be split as follows

H(y,t) = Ho(y) + Hi(y. 1), (32)

where Hy(y) is the autonomous part of H (y, t) and Hj (y, t) a small perturbation. Let us skip
the perturbation H; for a moment. The equations of motion associated with Hy(y) are of the
form

y=-By)VyHo(y). (33)

The system has n degrees of freedom; its phase space X' is thus a manifold of dimension
2n. Since y € RP?, there exist s = p — 2n Casimir functions C;(y) and s constants c;,
1 <i <, such that
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K

Rigid satellite Satellite with a liquid core Satellite with a subsurface ocean

Fig.1 Rigid satellites are characterised by their basis vectors (I, J, K) and their rotation vector @ with respect
to the laboratory frame. The same vectors are used for satellites with a liquid core, but the angular speed /.
of the core with respect to the mantle is also specified. In the case of a satellite with a global ocean, all vectors
are expressed in the laboratory frame. These are the basis vectors of the shell (I, Js, Ky) and of the interior
(Ie, Je, K¢), and the rotation vectors @¢, @,, @g associated with the central region, the ocean and the shell,
respectively

E={yeR\:Ci(y) =c1,...,Cs(y) = cs}. (34)

We recall that Casimir functions are constants of the motion for any Hamiltonian because
their gradients constitute a basis of the kernel of the Poisson matrix:

ker B(y) = span {VyCi(y), ..., VyCs(y)} (35)

and thus )
Ci(y) = (VyHo)"B(y)VyC; =0 (36)

for all Hamiltonian H.
Let y, be an equilibrium, i.e. a fixed point of Hp. According to Eq. (33), y, = 0 implies
VyHy(y,) € ker B(y,). Thus, there exist s coefficients (1;)1<;<y such that

VyHo(y,) = ) i VyCi(y,). (37)
i=1

Let R
F(y) = Ho(y) = ) _ miCi(y). (38)
i=1

By construction, F' satisfies VyF(y,) = 0. Coefficients ; can be seen as Lagrange multi-
pliers and functions C;(y) as constraints since we search for an extremum of Hy(y) under
the conditions C;(y) = c¢;. The p + s equations VyF(y,) = 0 and C;(y,) = c¢; allow to
determine y, and the coefficients ;.
Oncey, and coefficients u; are known, the linearisation of the equations of motion (Eq. 33)
is given by
3y = A(y,)dy (39)

with 8y =y —y, and (Maddocks 1991)

A(y,) = By )V F(y,). (40)
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In the last step, the perturbation Hj(y, ) is taken into account and the equations of motion
become

8y — A(y,)dy = z(1), (41)
with
z(t) = —B(y, ) VyHi(y,. 1). (42)
Equation (41) is then solved using standard techniques.
The relative equilibria y =y, are said to be nonlinearly stable if the quadratic form (or

Lyapunov function) N (y) = y' Ny, defined on the phase space X by its Hessian (below), is
a strictly convex function (Beck and Hall 1998). The Hessian of N (y) is given by (see ibid.)

N:= VN = Q(y,)V?F(y,)Q(y.), 43)

where Q(y) is the orthogonal projection matrix onto the range of A(y),

QW) =1-K (K" @Ky) " Ky, (44)
and where K(y) is a p x s matrix given by
K(y) = [VCi(y) --- VCi(y)]. (45)

3 Rigid satellite

Let arigid satellite whose rotation is close to the synchronous state, i.e. whose mean rotation
rate is equal to the orbital mean motion. The goal of this section is to compute the frequencies
associated with the free modes of rotation, to evaluate the forced obliquity driven by the orbital
precession, and eventually to check the nonlinear stability of the system in the vicinity of
the equilibrium. The analysis is performed using the non-canonical Hamiltonian formalism
described in Sect. 2. It turns out to be convenient to describe the problem in a laboratory
frame rotating at constant angular speed 2 with respect to the inertial frame. £2 will then be
chosen equal to the mean orbital motion. We denote by @ the rotation vector of the satellite
with respect to the laboratory frame Fiy, and by (I, J, K) its principal axes of inertia such
that the matrix of inertia reads

I = Rdiag(A, B, C)RT, (46)

where R = [I, J, K] is the rotation matrix of the satellite with respect to the laboratory frame
and where (.)T denotes the transpose operator. Note that the matrix of inertia can also be
written in an equivalent form facilitating the computation of the gradient of the forthcoming
Hamiltonian

I=Al" + BJJT + CKK". A7)

The Lie velocity of the system is thus @, while (I, J, K) are the generalised coordinates.
We also denote by (i, j, k) the basis vectors associated with the laboratory frame. The radius
vector connecting the planet and the satellite barycenter is assumed to be a known function of
time and is denoted either by r(f) or simply by r. G and M, are the gravitational constant and
the mass of the planet, respectively. With these notations, the (non-autonomous) Lagrangian
Li(w,1,J, K, t) governing the rotation of the rigid satellite is

@+2'T0+2)  3GM, r'Tr

Lrs(w, IvJ5 K» t) = 2 2 rs .

(48)
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The Lie momentum IT associated with w reads

0Ly
=I(w + Q). (49)
®

I=

We recognise the spin angular momentum of the satellite with respect to the inertial frame
and expressed in the laboratory frame. The Hamiltonian H;s(I1, I, J, K, ¢) resulting from the
Legendre transformation applied to Ls(w, I, J, K, #) reads

n'r-'n N 3GM, r'Ir

e'n
2 rs

Hi(IL L J, K, 1) =

(50)

with

W R

! = =
AT BT e

(G

The Poisson matrix By(y) associated with y = (I1, I, J, K) is the one given in Eq. (27). The
gradient of the Hamiltonian reads

s i g (52
3;“ _4a 'AH) I+ 3gf;1”A(r Dr, (53)
B; - };H) n 39M"B(r D, %)
oy Ky ¥ g (59)

and thus the equations of motion are

=1 x sz—3g () xr, (56)
I=wxl, (57
J=wx], (58)
K=w0xK. (59)

Equations of motion (Egs. 56-59) are those of the full Hamiltonian. Because r(z) is a
function of time, the set of Eqs. (56-59) has no fixed point. To proceed, we set & = 2k with
§2 equal to the mean orbital motion such that, in the laboratory frame (i, j, k),

T
S(t) = gzuprri5 = So +S1(1) (60)

where Sy is a constant matrix and S () a small perturbation. Furthermore the initial angle
of the rotation is chosen such that Sy is diagonal with components (crxx, y‘, ) Similarly,
we denote by a,w, where u, v € {x, y, z}, the elements of S;(¢). The grav1tat10nal potential
energy U (y, t) is then split into Uy(y) + U (y, t) with

Uo(y) = = (AI"SoI + BJ"SoJ + CKSK) (61)

| W
—_

Uiy, 1) = - (AI'S; ()T + BI'S; (I + CK'S; (1K) . (62)

NSHIROA]
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As a result, the Hamiltonian H(y, #) also gets split into Hr(;(y) + HrlS (y, t) with

0 n'r'nm g
Hi(y) = ——— = @ T+ Uo(y), (63)
H(y, 1) = Ui(y. ). (64)

In the case of a Keplerian orbit with eccentricity e and inclination i with respect to the
reference frame,

oM, (X730 + X532 (e) i X% ., /i
a)?xz a3p< 0 > 2 cos* (§>+%sm4<§> , (65)

o M, (X@ =X (i X (i
oyy = o 2 cos 3 + 5 sin 2 s (66)

—-3,0
M, X3
0 M, 2o © Gn2i. (67)
a

where XZ’m (e) are Hansen coefficients (Hansen 1855) defined as Fourier coefficients of the
series

r\n . o M

imv n,m i
—) e = X" (e)e 68
(5) > X" (68)
k=—00

with a, v, M being the semimajor axis, the true anomaly, and the mean anomaly, respectively.
Besides, in this study a single element of the matrix S;(¢) plays a role in the tilting of the
Cassini state, and this is the term in axlz (1) = O’le (t) corresponding to the first harmonic of
the orbital precession in inclination whose expression is

M X—3,O X—3,2 .
axlz(t) = % <02(@ cosi + %@ cos? 15 sini sin(2t — @), (69)

where @ is the longitude of the ascending node. The expression of the Hansen coefficients
involved in S and Sy (¢) is

Xg ey = (1 =), (70)
5 13 35
-3,2 2 4 6 8
X, =1-= —e — — O(e”). 71
7 (e) 7€ T 16¢ ~ gzt T OE) (71
Following the steps recalled in the previous Sect. 2.2, we now skip the perturbation Sy (¢)
for a while and only retain the autonomous part of the Hamiltonian H2 (y). The gradient of

the Hamiltonian Hr(; (y) reads

dHO

51 -Q=ow, (72)
ol
aH? I-I
8;5 _ ¢ )n + 3ASol, (73)
OHY (J-1)

= M + 3BSolJ, 74

33 3 + oJ (74)
dH?  (K-)

S — I + 3CSoK. 75
IK c ot (75)
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Only IT (Eq. 56) is affected by the averaging process. Its new equation of motion reads
=1 x 2+ 3A(SoD) x I+3B(SoJ) x J+3C(SoK) x K. (76)

3.1 Linearisation

To perform the linearisation of Egs. (57-59, 76), we note that the phase space X of the
system is a manifold of dimension 6 (associated with the 3 degrees of freedom of the group
SO(3)) defined as

T =y e R CL(y) = CL(y) = Cl(y) = 1/2,
Ca(y) = CL(y) = CS(y) = 0}, 77)

where the Casimir functions are
1 1 2 1 3 1
Ci(y) = 51 I, Ci(y) = EJ -J, Ci(y) = EK K,
Chn=J-K, Ciy=K-1 CSy=1-J. (78)

Indeed, it can be checked that

0 0 0 0 0 0
I 0 0 0 K J
ker Bs(y) = span ol 'lsl'lol' Ikl lol| |1 (79)
0 0 K J | 0
Let Fis(y) = Hr(; ) — X i C;'S (y). The condition Vy Fi5(y,) = 0 leads to
"', -2 =w, =0, (80)
(Ie : He)
Tne +3ASoL, — wile — usKe — peJe =0, (81)
Je - M)
= e +3BSoJe — pale — paKe = pele =0, (82)
(Ke ) He) n
? e +3CSoK, — 3K, — paJe — psle =0, (83)

whose solution is

w, =0, M,=CR2k, I,=i, J.=j, K.=k,

0
Y’

u1 =340, pur=3Bol,. pu3=3Col+C2% ps=ps=pc=0. (84

The other solutions are equivalent to this one but with a permutation of the moments of inertia
A, B, C. The matrix A(y,) of the linearised system is given by Eq. (40). To simplify the
result, we perform the change of variables §y = PSy* with

5)’* _ ((SHZ, (Sly, 81, 517);, 81;, §J;, 81, 5.]):, 8K,
T (85)
81y +8Jy, 8I. + 8Ky, 8J; +5Ky) :

The first two components of §y* are associated with the libration in longitude, the next

four components describe the wobble and the libration in latitude, and finally, the last six
coordinates being in the kernel of By(y,) remain identically equal to zero. Let Aj(y,) be

@ Springer



462 G. Boué et al.

the matrix of the linear system in the new variables §y*, i.e. A% = P~'AP, and let A| and
A%S be the respective 2 x 2 and 4 x 4 matrices such that

AL 0 -
Afyo=| 0 AL |, (86)
0 0 0

where the dots - represent arbitrary matrices not influencing the motion. We have

0  —3(B— Ao -0
1 _ xx )
Ars [] /C O ’ (87)
and
0 2 0 3(C—B)(02 — )
-2 0 3(C—-A)l —0od) 0
Ai=1 o —% 0 _C;BQ . (88)
1 C—-A
— 0 2 0
A A
Hence, the frequency of libration in longitude ey ,,, which is the eigenvalue of Arls, reads

Wrs,y = +/ 3y (k1 — k2), (89)

and the frequencies associated with the wobble wys ,, and the libration in latitude wys ,, the

eigenvalues of Afs, are given by

1/2 172
_(pr—VP*—4 (Pt VPP -4
Orsw =\ "~ s Wy =\ —~+ (90)
2 2
with
p=+aB) 2% +3 B +axy) o1
g =ap (2% +3 (k1 +Kx2) 2% + 1K) , (92)
ki =0l —ol, (93)
Ky = o;)y — O'ZOZ, (94)
and C—-B C—A B—A
=, =—-, =" 95
o " B 3 4 C 95)

Here we retrieve the well-known eigenfrequencies of a rigid satellite close to the synchronous
equilibrium state (e.g. Rambaux et al. 2012). Let us nevertheless stress that Eqs. (89) and
(90) are associated with the motion of the three vectors (I, J, K) in the rotating frame. By
consequence, if we denote by @, , & 352 /2 the frequency of libration in latitude associated
with the motion of the sole vector K with respect to the inertial frame (as it is commonly
defined for an axisymmetric body), we have wysy, = s,y + §2.
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3.2 Stability

For this problem, the Lyapunov function N(y), as defined in Eq. (43), is

1 1 S 1 2
Nrs(Y) = 3 <Hx + *(C - A)Q(Iz - Kx)) + (Hy + E(C - B)-Q(Jz - Ky))

24 2 2B
1 2 1 2 1 2 1 2
52+ 5mUy = 10+ oma(le = K + () = Ky) (96)

with
3 1 ) 1 )
ny = Z(B_A)(Kl —kKk2), Ny = g(C—A)(Q +3k1), n3 = g(C—B)CQ +312). (97)

We recall that the system is nonlinearly stable if N(y) is a strictly convex function. Coeffi-
cients A, B, and C are positive, as required. The nonlinear stability is then achieved when n,
ny, and n3 are all positive. Given that k1 > k2 > 0 at low inclination 7, the criterion implies
C > B > A, which is the well-known stability condition for this classical equilibrium where
the longest axis points towards the parent planet (e.g. Beck and Hall 1998).

3.3 Driven solution

Here we look for the forced solution when the time-dependent perturbation H_L(#) is taken
into account. In the variables 8y* (Eq. 85), and with the notation of Eq. (41), the perturbation
8z (1) is given by

825 (1) = =P ' By (y,) Vy HL(y,. 1) (98)

o let 8y! and 8y2 be the first 2 and the next 4 components
of 8y*, idem for 8z (¢), such that the linear problem with perturbation reads

To match the notation of the matrix A%

syF — Ak syt =825 (1),  k=1,2. (99)
By definition,
syl = (811, 81,)",  8y* = (811, 811, 81,,8J,)", (100)
and Eq. (98) implies
3(C - B)a, ()

_ 1
(Szl!s([) _ (3(B Ig)axy(t)> 7 (SZrzs(t) _ =3(C _OA)GXIZ(t) ) (101)

0

Note that the term aylz () is present in the perturbation (Szfs(t), but its effect on the orientation
of the spin axis is very weak. For instance, according to the ephemeris of Titan in TASS1.6
(Vienne and Duriez 1995), the amplitude associated with the angle (2t — @) in oylz (1) is

about 500 times lower than that in oxlz (#). In the numerical applications (Sect. 6), oylz (1) is
simply discarded.

4 Satellite with a liquid core

In this section we consider a satellite with a rigid mantle/crust layer surrounding a liquid
core. In a first step, we analyse the problem using the Poincaré—Hough model which is valid
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for all eccentricities of the ellipsoidal cavity containing the fluid core (Poincaré 1910; Hough
1895). In a second one, we truncate the problem at the first order with respect to the equatorial
and polar flattening of the cavity. The same simplification will be used again in Sect. 5 where
the case of a satellite with a subsurface ocean is treated. Here, the two models of the same
problem are used to estimate the error made by the approximation.

4.1 Poincaré—Hough model

As in the previous model, A, B, C designate the principal moments of inertia of the whole
satellite. Those of the liquid core are denoted by A., B., C.. We assume that the axes of
the core/mantle ellipsoidal boundary are aligned to those of the satellite surface. Hence,
the principal axes (I, J., K.) of the core are aligned to those of the mantle denoted as
@y, Jm» Kyy) which are also aligned to those of the whole satellite (I, J, K). The vector @
still represents the rotation vector of (I, J, K) with respect to the laboratory frame expressed
in the laboratory frame. We add the rotation vector w/. associated with the simple motion of
the liquid core with respect to the mantle and expressed in the mantle-fixed frame (Poincaré
1910). As in the rigid case, the laboratory frame rotates with respect to the inertial frame at
the speed Q. Let I, I, and I’ be the inertia matrices defined as

s oo

I = Rdiag(A, B, C)RT, (102)
I, = diag(A, Be, Co), (103)
I' = diag(A’, B', C")RT, (104)

where R = [I, J, K] is the rotation matrix of the mantle relative to the laboratory frame.
Furthermore, we have defined

A'=AnJ1—02, B =B.J1-p2, C =Ci/1—y2 (105)

C. — B, C.— A, B.— A,
— s = —, = — 106
o A, Be Ye C. ( )

with

For this problem, the Lie velocity is § = (@, @..) and the generalised coordinates are limited
to q = (I, J, K). Coordinates associated with the simple motion of the liquid core do not
appear in the equations of motion because the fluid is assumed to be incompressible and its
volume is set by the mantle; thus, the kinetic and the potential energies only depend on 5 and
q. The kinetic energy Tt.(n, q) of rotation of the satellite is (Poincaré 1910; Hough 1895)

o+ ) (w+ 2 o'
T, q) = )2( ) | S +0 T (0+9Q). (107)

The potential energy is the same as in the rigid satellite case (see Sect. 3). Thus, the Lagrangian
Ltc(n, q) reads

0+ e+ oL 3GM, r"Ir
Lfc(n,q)=( ) I )+ e L I (0+ Q) — L —. (108
2 2 2 r
The Lie momenta associated with w and w/, are, respectively
aL
=" clw+2) +1"w., (109)
®
d Ly,
M= F =T, +1+ 9. (110)
c
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with the inverse transformation,

w=QN-qQ I —«, (111)
w, = Q.IT, — Q'I, (112)
where
Q= Rdiag (AACAi a7’ BBCB—C B’ Cccci C’2> R, 1
Q. = diag (AACA— A7 BBL.Ii B’ CCCC— c’2> ’ (1
Q' = diag (AAL.A—/ A2 BBCB—/ B2 CCCC—/ C’2> R, (115)

The Hamiltonian of the problem is then

n'Qn N n'Q.m,
2 2

3GM, r'Ir
2 r3

(116)

Hee(y, 1) = —n’Qm-e'n+

with the state vectory = ( l'I/C, I1, I, J, K). In these variables, the Poisson matrix reads

i, 0 0 0 0
0o m i Jj K
Bey)=| 0 1 0 0 0 (117)
0 J 00 o0
0 K 0 0 0
and the equations of motion are
0, =w. x I, (118)
) GM,
N=IOx2-3 3 (Ir) xr, (119)
r
I=oxI, (120)
J=wx], (121)
K=oxK. (122)

As in the rigid case (Sect. 3), we now split the Hamiltonian Hy.(y, t) into its autonomous part
Hf% (y) and a perturbation HflC (y, t) using the decomposition of the gravitational potential
energy Up(y) and U (y, 1), Eqs. (61-62). There are seven Casimir functions given by

1
Cie(y) = 5T - I,

1 1 2 1 3 1
Cfc(y) = EI : I’ Cf(,(y) = EJ : J, CfC(y) = EK . K,
Cty=J-K, Ciy=K-I, CLiy)=1-J. (123)
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The equilibrium y, of HJ(y) is solution of

@0 = moll, =0, (124)
@e =0, (125)
A, ) — AL - T, )
A An M, + 34SoL, — i1, — usK, — e, = 0, (126)
B.(J.-M,) - B'J,-T,,)
c(Je BeB sze "M, 4+ 3BSoJe — p2Je — sk, — ugl, =0, (127)
=

C.(K, -I,)— C'(K, -1 )
— CEC c? L, 4+ 3CSoK, — p3K, — pale — pusle = 0. (128)
_

We stress that IT is written in the laboratory frame, while IT, is expressed in the mantle-fixed
frame. Thus, in Eq. (126), (I- 1) = I, [T, 41,11, + I IT, whereas (I-TI},) = I1/ . The same
reasoning holds in Eqgs. (127, 128). The norm of the angular velocity w’c, . can be arbitrarily
chosen. This is due to the conservation of the Casimir Cg: (y). Here, we assume that the fluid
core has no mean angular velocity with respect to the mantle and thus @;. , = 0. Under this
hypothesis, we get

we =0, M,,=C02k M =C2k L=i J=j K=Kk

o =0, @i =3A00, pa=3Bo), u3=3Col +CR* pg=ps=ps=0.
(129)
The linear system is expressed in the coordinates
sy* = (anz, 81y, 811, . 811, 81y, 811y, 81,,8J., 811 ., 81, 8 Jy. 8K,
T (130)

81y + 875, 81, + 8K, 87, + 3K, )

Let Af.(y,) be the matrix of the linear system evaluated at the equilibrium point and expressed
in the coordinates 8y*. As in the rigid case, we define the matrices A, and AZ, such that

Al 0
ALo=|0 AL |, (131)
0O 0 0

where the dots - still denote arbitrary matrices. We get

0 —3(B — A)(o), — o))
A}c = Ce

e 0 , (132)
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and
r C/ C/ / |
0 —2 0 --2 0 ——C2?
B
c’ - c’ - ’ -
—K.Q 0 ?9 0 ?CQZ 0
0 0o 0 Q 0 ~3(C - By
Al = 133
fe 0 0 - 0 3(C — Ak 0 (133)
1 1 C
0 = 0 - 0 <1 - —) Q
B BC EC
1 1 C
- 0 — 0 —(1-=)% 0
L A A, A, i
with
1 A 1 A, 1 A
A AA.— A2 A, AA— A2 A AA - AT
1 B 1 B, 1 B’
B BB.—B? B, BB.—B? B BB .—B?
1 C 1 C, 1 c’
C CC.—c? C. _CC.—c* C _cC.—c* (134)
A= c L c c
The eigenfrequencies are
cC. 1/2
Wfc,u = <T—LC’2> Wrs, u» (135)
Wfe,y = Wrsp + O(e), (136)
Wfe,w = Wrs,w + O (€), (137)
C/
Wie., = ———82 + O (¢ 138
o = A (€) (138)

with € being the mass of the core divided by the total mass of the satellite. ws j,, @ys,y, and
wrs,w are the frequencies obtained in the rigid case (Eqgs. 89, 90). wr, ; is the frequency of the
additional degree of freedom induced by the presence of the liquid core. In the case where the
fluid core represents a significant fraction of the total mass of the satellite, Eqs. (136-138)
are no longer valid and eigenfrequencies should be directly computed from the matrix A%C
(Eq. 133).

The Lyapunov function (Eq. 43) associated with this problem is

1 A 2
Nic(y) = A I, — A*HC,X + 5 (C - AC) I, — Ky)
=c c

LY PR +1(C B,) (J K)2+ L
250 y Bc c,y 2 =c 4 y 2Qc z

1 1 LA | 1 2
+2Ac (”é,x — EA’_Q(]Z — KX)> + 2B, (Hg’y - EB/.Q(JZ — Ky))

1 2 1 2 1 2
+§n1(1y —Jo)+ E”D(Iz - K"+ EHB(-]Z - Ky) , (139)

where n1, n2, and n3 are the same as in the rigid case (see Eq. 97). Giventhat A, B,.,C., A,
and B, are all positive, the nonlinear stability criterion is identical to that of a rigid satellite,
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namely C > B > A. In particular, there is no restriction on the moments of inertia of the
core (A¢, Be, Co).

The driven equations of motion of the satellite with a liquid core in the vicinity of the
relative equilibrium y, are of the form

syF — Ak syt =s2k.(1), k=1,2, (140)
with
oy' = BI..81,),  8y* = (8M) .81, 81,811y, 81..8J.)" (141)
and
3(C - B)a, (1)
1 —-3(C — Aol (1)
(SZ}C(Z) _ (3(B - Ig)axy(t)> , SZ%C(t) — 0 . (142)
0
0
0

4.2 Quasi-spherical approximation

In this section, we reconsider the case of a satellite with a liquid core, but we assimilate A’,
B’, and C’ to the moments of inertia of the core, i.e. we assume

A~ A, B' ~ B, C'~ C.. (143)

According to Eq. (105), this is equivalent to a first-order approximation in «,, B, and y,.
With this simplification, the kinetic energy (Eq. 107) can be rewritten as follows

@) T0+9 (@ +RN0+2) T, +R (+2)

Tre (0, q) = 5 + 5 ., (144)
where
I, =1 —RI.RT
= Rdiag(A, By, Ci)RT (145)

is the inertia tensor of the mantle written in the laboratory frame (A, = A—A., B, = B—B,,
and C,,, = C — C.). According to expression (144), the problem behaves as if the liquid core
were rotating rigidly relative to the mantle at the angular velocity w/. with a matrix of inertia
]I’C constant in the mantle-fixed frame. Indeed, w’c +RT (w + ) is the rotation speed of the
core with respect to the inertial frame written in the mantle-fixed frame. We here retrieve the
approximation made by Mathews et al. (1991) who neglected the small departure of the fluid
velocity field from a pure solid rotation. Following the same procedure as in Sect. 4.1, the
two submatrices of the linearised system written in the set of variables §y* (Eq. 130) become

0 —3(B—A)o) —op)
A= 1 0 , (146)
Ci
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and
s BC C. ccC .
0 5 ]_; Q 0 —59 0 —B—CQZ
m C m m
AC, C cc
- Q 0 - 0 €2 0
AmAc Am Afﬂ
5 0 0 0 Q 0 —3(C — B)iz
Aje = 0 0 - 0 3(C — A 0
1 1 C
0 — 0 - 0 1-— )
1 Bm 1 m C Bm
- 0 — 0 —(1-—)e 0
L A Ap Ap

(147)
Although we retrieve the eigenfrequencies obtained in Sect. 4.1 within the approximation
(Eq. 143) only, the second member §z¢. () of the driven system is exactly the same as §z¢(¢)
(Eq. 142).

5 Satellite with a subsurface ocean

Here, we consider a satellite with a rigid central part ¢ (also called interior) and a rigid shell s
separated by a global ocean o. By assumption, the shell is ellipsoidal with inner radii a,, by, ¢,
and outer radii ay, by, cg. The interior, an ellipsoid of radii a., b., c., might be differentiated,
i.e. it can be made of a succession of N concentric ellipsoidal layers with different densities
(pi)1<i<n and outer radii a;, b;, ¢;. We have thusay = a.,by = b.,and cy = c.. The ocean
and the shell are assumed to be homogeneous with respective density p, and p,. Nevertheless,
the results can easily be extended to the case of a stratified rigid shell. Because the simple
motion introduced by Poincaré (1910) for a satellite with a liquid core cannot be applied in
this case, we use the approximation described in Sect. 4.2. We could describe the evolution
of the central region and of the ocean in the shell-fixed frame to remain close to the study
made on the satellite with a liquid core, but equations are more symmetrical if all coordinates
are given with respect to the same given frame which we chose to be the laboratory frame. In
this frame, the configuration of the system is given by the coordinates of the principal axes
of the interior and the shell, i.e. the generalised coordinates are q = (I, J., K¢, I, Js, Ky).
The Lie velocities are the rotation vectors of the three layers with respect to the laboratory
frame n = (@,, ®., ®5). Within the approximation of Sect. 4.2, the kinetic energy of the
satellite with a global ocean reads

(@ + )" (0: + 2) L@t )" (w5 + Q)

Tyo (1,
N UN)) 5 >
T Q
+(wo+ ) I (w, + )’ (148)
2
with the inertia tensors
I. = R, diag(A, B;, C)RY, (149)
I, = R, diag(A,, By, C;)R}, (150)
I, = R, diag(A[, By, C)R{ — R diag(A[, B, COR;, (151)
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where R. = [I, Jo, K1, Ry = [, J5, K], and

471
Ae =D opi (aibicib] +cf) — aimibiicia (B + ),

i=

—_

A7
A= T5p ps (asbses (b7 + ¢2) — apboco (b2 + c2))
4T
A/L- = Epoacbccc(bz + Cg),
4
Al = E,ooaoboco(bg +c2).

(152)

(153)
(154)

(155)

In Eq. (152), we apply the convention ay = by = c9 = 0. The other quantities B, C are
deduced from Egs. (152—-155) by circular permutation of a, b, c. Let us stress that the matrix

of inertia of the whole satellite is simply

I=1.+1I+ L.

(156)

In addition to the gravitational potential energy U (y, t) between the planet point mass and
the extended satellite, to get the Lagrangian we also need to include the self-gravitational
potential energy Usjs(q) of the satellite as it is a function of the relative orientation of the

interior and the shell. This potential energy reads (Laplace 1798)

Uyz

Uself(q>=”ﬁ(1 I,)> +—<I 30+ SR K)

”(Jc L)%+ 20 502 + 220, - K,)?
2 2
”zx BRI S I I O TR
= Ko L)? 4 22 (Ke - 307 + (Ko Ky,
with

=576 (o5 fs + (Po — ) fo) 11 (pi — pis1)a}bici,
Uyy = %’Q (0s8s + (0o — Ps)&o) va=1(pi — pi+1a’bici,
Uxz; = %g (pshs + (po — ps)ho) Z,N:1(Pi - pi+1)a?bicis

ty = 3G (b5 f5 + (o — 05) fo) L1 (pi — pisrDaiblci,
tyy = S2G (0585 + (Po — P5)80) Sorey1 (pi — pisr)aibici,
ty: = 82G (pshs + (po — p)ho) Y11 (pi — pis1)aibicr,
Uz = 320 (05 fs + (po — ps) fo) Yotey (0i — pisD)aibicy,

Uzy = %’9 (0s8s + (0o — Ps)&o) Z,Nzl(pi — pi+Daibic;,
= 382G (pshs + (po — PIRo) 311 (pi — pisDaibici,

where py+1 1= p, and for * € {s, 0},
b 1 2 2 —-3/2 b2 2 —-1/2
fo=2m a*z* f (1 + Mﬂ) (1 + *76*;2> 2dr,
0

a
gx =27
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(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)

(167)
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b 1 22 -1/2 P22 -
h*=2na*2*/ (1+a* c*ﬂ) (1+ * 2(;*[2) 2dr. (169)
¢z Jo . 1

*

The Lagrangian Lgo (1, q) of the problem is then

(@c + DT (0 + R) L @+ Q) (05 + Q)

L ,q) =
g0(, Q) 3 3
(wo + ) I (w, +R) 3GM, r'Ir
+ ° 20 2 - 3 L 5 - Uself(q)- (170)
The Lie momenta associated with § = (®,, @, ®;) are
0Ly
I, = o =T, (w, + ), (171)
[
0Lgo
I, = o = (0w, + R), (172)
c
dLgo
I, = o I (w5 + ), (173)
S

from which we deduce the Hamiltonian

nra,)-'m, n0la,)-'m, W)
2 + 2 + 2

3GM, r'Ir
5 5+ User(@, (174)

which is a function of y = (II,, y., y,) withy; = (II;, I;, J;, K;). The Poisson matrix
By, (y) associated with this set of variables is

Hgo (Y) =

-, + 10, + Iy) +

ﬁ 0 0 ﬁi il ji I,\(i
0 L 0 o0 o
Bio(y) =] 0 by, 0 [, by)= i 0 o0 ol i=c,s
0 0 b(y,) K‘ 0 0 0
(175)

Although y has 27 components, the system evolves in a phase space Xg, of dimension
14 = 2 x 7 whose degrees of freedom are the three rotations of the central region, the three
rotation of the shell, and an additional degree of freedom associated with the ocean:

Teo={y e R7: Ci(y) =¢;, 0 <i < 12}, (176)
where the thirteen Casimir functions are

1 1 1 1
Coo¥) = ST, M, Cgo(y) = JLLe, Co) = ZJedes o) = SKCKe,

1
CooW =TKe,  CQ =KL, Co =Ie,  CL() =51, 177
1 1
Coo) = 303ds, Coo¥) = JKTKs, Cd») = JTK;, Cyo(y) = KT,
Coa(y) =T{Js.
£go s

In order to proceed, we have to compute the inverse of the inertia matrix of the ocean (I,) ~! for
which we are missing the principal basis. The other terms of the Hamiltonian Hy, (Eq. 174)
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are fully explicit and do not cause any problem. To make the computation analytical, we
anticipate the equilibrium point solution

Ho,e = Co-Qk Hs,e = CSQk! Is,e = i, Js,e =j’ Ks,e =Kk,
Hc,e = CCka Ic,e = i, Jc,e =j’ Kc,e = k, (178)

where C, = C| — C... We further define A, = A, — A.. and B, = B, — B,.. We then expand
(I,)~ ! in Taylor series up to the second order in y —y,. This is sufficient to get the equations
of motion of the linearised system. We verify that y, (Eq. 178) actually is a solution of
VyHg(y,) = > pLiVyCéo(yg) where the Lagrange multipliers are

o =0, w1 =3A% +ure, po=3BloY +uyy,

u3 =3C00 + (Co+ C2% 1z, pa=ps=pe =0, u7=3A%00 + i,
g =3Bl +uyy. g =3Cl0l + (Cy — CHR* +u,

nio = p11 = p12 =0, (179)

with
A=A+ AL, A2=A.— AL (180)

c

The same rules apply for BY, C?, B¢ and C¢. Let us write the matrix of the linearised problem
in the variables

5)’* = (SHS,Za SHC,Za 815,)17 8Ic,y’ 8Hs,x7 813,17 (SH(,',.X! 515,1: 8IYo,m Sns,y’
(Sjs,z, (Snc,y, Sjc,zs 6170,)/7 6170,27 51s,x» (Sjs,y» 8KS,Z! 51s,y + S-Is,)m 6Ic,)c» 8‘16,)77

T
8Ke o, 0l y+8Jcx, 8154 8K «,8J5 .+ 6Ky, 81, + 8K o, 8+ SKW> , (181)
such that, with the driving perturbation, the system reads

0 —Ag 0 0
AR 0 0 0

85 — AL (¥)8Y" = 250().  AL)i=| 0 0 0 —A¥. | (182
0 0 AP 0
0 0 0 0 0
with
3(B? — A% (k1 — Kk2) + Uy —Uyy
Al2 = s s y Y 183
=z [ Uy 3(BY — AD () — k) + Uyy |* 18
1
— 0
A= |G (184)
g0 = I
0 N
C

o
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and
- 19 Mfc+ Uyé+ FEo 0 —Uy, — F? FP
— ALY ) 0 0 0
34 Bs Bs B B B B
Ap=1]0 ~Uy. — Fj -2 ME+U,. +FE, —Ff. |, (185)
1 . B,
0 0 — L52 0
B Be 1133C B
0 —F£.Co02 0 FP.Co02 —Ff — 2|
'—1.(2 M;‘C+ UX2+ Ffo 0 Uy, — F{! F3
- o' 0 0 0
43 As As A A A A
Ap=|0 ~Uy, — F -2 M+ U+ F, —F. . (186
1 C.—A
0 0 — -~ e 0
; PR ;
0 —FC,02 0 F{.Co02 —F{ -2

In matrices A;j and Agg (Eqgs. 185, 186), the interaction with the central planet is represented

by the terms
M} =3(C? — A%k,  MP =3(C) — By, i=s,c; (187)

the core/shell gravitational coupling through the ocean interface is given by

Ury :=txy + Uyy — Uxx — Uyy, (188)
Uy, i= Uy + Uz — Uyy — Ugg, (189)
Uy; =y, +uzy —ttyy — Uy, (190)

From the expressions of (44p)a,be(x,y,z) given in Egs. (158-166), we get

ny = 29(33 - AZ)(ps(gs = fs) + (0o — ps)(&o — fo))s (191)
Uy, = 2Q(C2’ - Ag)(ps (hs — f5) + (o — ps)(ho — f5)), (192)
Uy, =2G(CZ — BZ)(ps(hs — g5) + (0o — ps)(ho — 80))- (193)

Finally, the remaining terms

C/ —K))(C. - K/
Flliv _ ( s CI)(( K S)Qz, K :A,B (194)
o
C. —K)(C —K!
F{fcz( 3 S[)(( e =Ko K=AB (195)
o
pk =G Kig | = K=A,B 196
2 = X s I =395,C, = 5 ( )
o
C/ —K)(C. - K/
F3K:( s — KD “)92, K=A,B (197)
K,
C,— K
Ff="2_"20, K=AB (198)

K,

are only present in the linearised system because of the rotation of the ocean. If the Casimir
Co(y) = 11, - 11, /2 were set equal to zero, i.e. if the ocean were not rotating with respect to
the inertial frame, all FIKi, F2Kl., F3K, and F4K, with K = A, Bandi = s, ¢, would be nil. The
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same conclusion would hold if the kinetic energy of the ocean II. (I,) "' I, /2 were skipped
from the Hamiltonian Hg,. We thus interpret these terms as due to the centrifugal force felt
by the ocean and responsible for an additional pressure on the interfaces with the interior
and the shell. In that case—i.e. if the kinetic energy of the ocean were dropped—the ocean
angular momentum IT, would be decoupled from the rest of the system. A quick inspection
of the last row and column of the matrices Agﬁ and A4g indeed shows that a perturbation of
I1, would rotate at the eigenfrequency §2 with respect to the laboratory frame and would
thus be fixed in the inertial frame.

We note that given the structure of the matrix Ago, the linearised system is characterised
by two libration frequencies in longitude and five frequencies associated with libration in
latitude and wobble.

For this problem, the Lyapunov function reads

1 1 2
Ngo(y) = 24, (Hox - E(Cé —ADRUe; — Kex) + E(C‘; — AN ; — Ks,x))
1 1 ’ ’ 1 ’ ’ :
+ E no,y - E(CC - BL-)Q(JC.Z - Kc,y) + E(CS - BS)Q(JX.Z - Ks,y)
14
1 1 2
+ E Hc,x + E(Cc - Ac)g([c,z - Kc,x)
2
1 1 1,
2 3 Hc y + 2(C C)Q(Jc,z - Kc,y) + fnc z
1 2
H + 7(Cs - As)-Q(Is,z - Ks,x)
2 s 2
2
1 L
ZBS I, + 2(C —B)2(Js; — K y) | + f iz
LU U )
;” ((IL y — e, x) - (Is 2y T s x)) :{Z ((Ic,z - Kc',x) - (Is,z - Ks,x))
U 2
%((ch - K. y)_ (Js,7z — x,y))
n’ n} ns
+ El(Jv x Is,y)2 + zz(lvz - Ks,x)2 + ES(J.Y,Z - ks,y)2
nS ns ng
+ El(Jc,x - Ic,y)2 + 72(10,1 - I<c,x)2 + ;(Jc,z - kc,y)2» (199)
with

3 1
1= Z(B: —ADK1 —Kk2), n3 = Z(C;’ — A9)(£2° + 3k1),

1
= J(Cl - B) (2% + 3i2), (200)

and where * = s, c. We deduce that the system is nonlinearly stable if the following conditions
are met

Uy >0, Uy, >0, Uy, > 0, C! > B > A with x=s,c. (201)

*
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Using the expressions of Uyy, Uy;, and Uy, (Egs. 191-193) expanded at first order in the
equatorial and polar flatness, conditions (201) are equivalent to

{ps% + (po — Pv)a” o > Ps 9s=2s @ bs + (po — ps )a(, b >0, (202)

C? > B) > AY, *—sc

Finally, as in the previous section to get the forced solution, we decompose the driving

excitation 8zg,(¢) as (5zg0, go, 0), with
3(C2 — BY)o,
0
3(C? — BYo!
3(BY — Aol o
3(B? — A%0! ’ 0
Sz (1) = ¢ ey 8z5. (1) = (203)
& 0 20T =3 - adal,
0 0
~3(C? — Ao,
0
0

6 Application
6.1 Io’s libration modes

To, one of the Galilean satellite of Jupiter, is assumed to have a liquid core (Anderson et al.
1996). Its rotation motion has already been studied within the Poincaré-Hough paradigm
using a Hamiltonian formalism (Henrard 2008). This analysis has then been extended using
the same method in Noyelles (2013, 2014). Although the approach in ibid. is Hamiltonian,
it differs from that described in Sect. 4 which is expressed in non-canonical variables. Here,
we revisit the problem with the aim of validating our method and, more specifically, the
quasi-spherical approximation (Sect. 4.2).

The orbital and physical parameters of lo, which are summarised in Table 2, are taken from
Noyelles (2013, 201 4)2The eigenfrequencies wy,, wy, Wy, and @, are directly computed from
the matrix A¥, (Eqgs. 132, 133) for the Poincaré—Hough model (Sect. 4.1) and from the matrix
A7, (Egs. 146, 147) for the quasi-spherical approximation (Sect. 4.2). Hereafter, the two
models are referred to as “model fc” and “model fc'”, respectively. The eigenfrequencies are
then converted into periods for a direct comparison with (Noyelles 2014). The correspondence
between the eigenperiods of ibid. and the eigenfrequencies of this work is

2 2 2 2

In=—, T,= o Ty=—, Tr=—. (204)
wy Wy — 2 Wy w7

The results are gathered in Table 3. We observe a good match between model fc and that
of Noyelles (2014) for 7,,, T, and T with a maximal error of about 0.2%. There is a larger
discrepancy between the two approaches in the case of T, with a deviation of almost 6%, but
this eigenmode is more sensitive due to the small denominator w, — §2 (Eq. 204). It is also
very sensitive to the polar flattening of the core (Noyelles 2012). Nevertheless, the agreement

2 Here and throughout the paper, we follow the IAU recommendations which state that the symbol for a Julian
year is “a”. Hence, radian per year is written “rad/a”.
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Table 2 Orbital and physical

parameters of Io taken from Parameter Value Units
Noyelles (2014) GM,, (Jupiter) 126712765 km3/s?
a 422029.958 km
e 0.00415
i 2.16 arcmin
2 1297.2044725279755 rad/a
A/(mR%) 0375127
B/(mR?) 0.377342
C/(mR%) 0.378080
Ac/(mR?)? 0.0060075578
@Moments of inertia of the core Be/(mR?)? 0.0062839600
computed from the internal Ce/(m R2)2 0.0062534432

model 1 of Noyelles (2014)

Table 3 Eigenperiods of Io’s rotational motion (Eq. 204)

Source Ty (day) Ty (day) Ty (day) T; (day)
Noyelles (2014) 13.2322 166.3520 225.0927 1.7382
This work: model fc (Sect. 4.1) 13.2504 157.2780 224.5395 1.7385
This work: model fc’ (Sect. 4.2) 13.2502 156.5653 224.5402 1.7368

is satisfactory given that the methods to compute the eigenperiods in both studies are very
different. The eigenfrequencies given by models fc and fc’ are also very close to each other.
Once again, the largest discrepancy occurs for 7y, but here it does not exceed 0.5%. We thus
conclude that the quasi-spherical approximation is justified.

Figure 2 represents the trajectories of the principal axes I, J, and K in the laboratory
frame (i, j, k), while the system stands in each of the eigenmodes. The corresponding eigen-
frequencies are recalled below each subfigure. We recognise the libration motions of a rigid
satellite which the name of the eigenmodes has been taken from. In Henrard (2008) and in
Noyelles (2013, 2014), the eigenmode associated with w, is referred to as the free libration
of the core. Nevertheless, given the strong similarity between the motions associated with
wy and w;, we chose to attribute the same name “libration in latitude” for both of them.
Furthermore, from the observation of the surface only it is hardly possible to distinguish one
from the other. Actually, the distinction between the two modes lies in the relative position
of I1. and I, as shown in Fig. 3. When the satellite is in the eigenmode associated with w,,
the two vectors are on the same side from the origin, while in the eigenmode of frequency
o, they are on opposite side.

6.2 Titan’s equilibrium obliquity

In this section, we analyse the rotation of Titan orbiting Saturn. Several hints suggest that this
satellite holds a global ocean under its surface (Coyette et al. 2016 and references therein).
Among these clues, an important one for our purpose is Titan’s “high” obliquity of 0.32°
which could not be explained if the satellite were solid (Bills and Nimmo 2011). Nevertheless,
a discrepancy still persists between the observations and the expected obliquity associated
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wobble (wy,)

libration in latitude (w,) libration in latitude (w,)

Fig.2 Eigenmodes of Io’s rotation motion computed with the parameters of Table 2. Positions at constant time
intervals of the principal axes (I, J, K) are depicted by black dots. Open circles indicate the initial condition.
Intersections of the dotted great circles of the unit sphere represent the laboratory frame (i, j, k). Jupiter is in
the direction of the vector i. The associated eigenfrequencies are recalled below each figure

with the Cassini state, the latter remaining below 0.15° for a large class of interior models
(e.g. Baland et al. 2011). Therefore, it has been proposed that Titan’s current obliquity is
amplified by a resonance with one of the remaining orbital forcing frequencies (Baland et al.
2011; Noyelles and Nimmo 2014).

In his abstract, Henrard (2008) wrote about lo that “the addition of a degree of freedom (the
spin of the core) with a frequency close to the orbital frequency multiplies the possibility of
resonances”. In the case of Titan, we also have an additional degree of freedom in comparison
with the previous studies quoted above. We thus expect our model to be able to tilt Titan’s
axis more easily.

The orbital elements of Titan are taken from the ephemeris TASS1.6 (Vienne and Duriez
1995). From the full solution, we only retain the Keplerian motion and the nodal precession
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y-axis y-axis

r-axis T-axis

libration in latitude (w,) libration in latitude (w,)

Fig. 3 Trajectories of the projections of II and Il on the plane (i, j), while Io is in libration in latitude. Dots
represent successive positions of the vectors. Open circles denote the initial conditions. In the eigenmode with
frequency wy, the two vectors are on the same side from the origin, whereas in the eigenstate of frequency
wz, they are on opposite side. The radial coordinate of each vector is plotted in a log scale with arbitrary units.
These figures have been computed using Io’s parameters (cf Table 2)

of the orbit with respect to the Laplace plane.? These parameters are summarised in Table 4.
Regarding Titan internal structure, we select two models proposed by Fortes (2012), hereafter
referred to as model F1 and F2. They assume a global ocean with extreme densities equal
to 1023 and 1281kg/m>, respectively. In model F1, the ocean is a mixture of water and
methanol, while in model F2, the ocean is made of water and ammonia. Parameters of these
interior models are summarised in Table 5. In both models, the average density is 1881kg/m>
and the mean moment of inertia //(m R?) remains within the errorbars provided by Iess et al.
(2012). The equatorial flattening ¢ is obtained by integration of Clairaut’s equation (Clairaut
1743) assuming an hydrostatic equilibrium (same as Richard 2014). The boundary semi-axes
at volumetric mean radius R between two layers are given by (e.g. Rambaux and Castillo-
Rogez 2013)

=R 1-{—z b—R(l % =R|1 § (205)
a= 94“ , = —9C , = —9C .

The values of the derived parameters involved in the Hamiltonian Hy, (y) (Eq. 174) are listed
in Table 6.

The eigenfrequencies computed for the two interior models F1 and F2 are shown in Table 7.
For each model, we assume either a rotating or a static ocean with respect to the inertial
frame (see Sect. 5). For reference, we also provide the eigenfrequencies assuming a fully
rigid satellite. To interpret these eigenfrequencies, the associated trajectories of the vectors
e, Je, Ke) and (I, Js, Ky) are displayed in Fig. 4. We recognise librations in longitude
at wy and w,p, librations in latitude at w,1, wy2, and wy3, and wobbles at w,,; and wy».
From Table 7, we observe that each eigenmode has a specific range of frequencies. Libration
frequencies in latitude are close to the mean motion §2 &~ 143.9240rad/a. Frequencies of

3 Here, we define Titan’s Laplace plane as the plane whose orientation is given by the constant part of the
inclination solution of TASS1.6. (Vienne and Duriez 1995).

@ Springer



Rotation of a rigid satellite with a fluid component... 479

Table 4 Orbital parameters of Titan used in this study

Parameter Value Units References

GM), (Saturn) 37931272 km3/s2 Campbell and Anderson (1989)
a 1221729 km Computed?

e 0.028 Vienne and Duriez (1995)

ib 0.320 deg Vienne and Duriez (1995)

2 143.92404785 rad/a Vienne and Duriez (1995)
do/dt —0.00893124 rad/a Vienne and Duriez (1995)

4The semimajor axis has been computed from the masses of Saturn and Titan given by Campbell and Anderson
(1989) and the orbital parameters Ng and pgg provided by Vienne and Duriez (1995)

PInclination with respect to the Laplace plane given by the amplitude of the second harmonic of {yg in the
notation of Vienne and Duriez (1995)

Table 5 Physical parameters of

the two interior models of Titan Layer Fl 2

considered in this study taken P R ¢ P R ¢

from Fortes (2012) (kg/m3)  (km) (1077)  (kg/m?) (km) (1079)
Ice 930.9 2575  12.068 930.9 2575 12.080

. . Ocean 1023.5 2475 11.878  1281.3 2475 11.887
For each layer, p is the density
and R and ¢, respectively denote Ice V 1272.7 2225 11.552  1350.9 2225  11.488
the mean radius and the Ice VI 1338.9 2163 11521 - - -

equatorial flattening of the upper  gjjicate 25423 2116 11514 26504 1984 11310
boundary

libration in longitude are between 2 and 8rad/a, and the wobble is the slowest motion with
frequencies ranging between 0.01 and 0.2 rad/a.

The condition for Titan to have a significant (shell) obliquity is that one of the libra-
tion frequencies in latitude gets close to the excitation frequency of the perturbation (IXIZ (1)
(Eq. 69), namely, w}cz = 2 — & ~ 143.9330rad/a. In the case of a rigid satellite there is no
lever arm. The libration frequency only depends on the total moments of inertia which are
constrained by observations. This frequency, equal to 143.9582rad/a, leads to an obliquity
of 0.113° which is about one-third of the actual value gops = 0.32°.

When the ocean is taken into account, the system has three distinct frequencies of libration
in latitude which can potentially be in resonance with the orbital precession rate. It should
nevertheless be stressed that when the rotation of the ocean is set to zero, the frequency
wy3 in Table 7 is just the mean motion §2 which is not involved in the tilting of the shell
axis. Titan’s obliquities & computed with the different models are gathered in Table 8. Note
that we allow the obliquity to be negative as explained in Fig. 5. As expected, within the
“static ocean” hypothesis the ocean is not affected by the perturbation axlz. Its obliquity is
&, = —i, meaning that I, remains aligned with the Laplace pole k which is the third axis of
our laboratory reference frame. The last two eigenfrequencies w,| and w, are further away
from w! . than wy3. They only produce a shell obliquity of &; ~ 0.06° which is much lower
than the observed one. Furthermore, this result does not significantly vary from model F1 to
model F2.

If the rotation of the ocean is set equal to the mean rotation of the satellite, w,,3 is the
eigenfrequency responsible for the tilt of Titan’s shell spin pole. With the two models F1 and
F2 considered here, the results are still very low: e, = 0.004° with model F1 and ¢, = 0.108°
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?32:1?861115;:;%(1 parameters for Parameter Model F1 Model F2 Units
Ac/(mR?) 0.2321339588 0.2133546838
Bc/(mR?) 0.2321607420 0.2133790654
Cc/(mR%) 0.2321696677 0.2133871908
A /(mR?) 0.0355650464 0.0355568942
By /(mR?%) 0.0355696492 0.0355615041
Cm/(mR?) 0.0355711830 0.0355630404
Al/(mR?) 0.1048351592 0.1312111289
B./(mR?%) 0.1048472721 0.1312262055
ClL/(mR?) 0.1048513089 0.1312312299
AL /(mR?) 0.1785384650 0.2234576674
B!, /(mR?) 0.1785596760 0.2234842365
Cl,/(mR?) 0.1785667448 0.2234930909
tyx /(mR2) 135.96964203 109.83790034 1/day?
Uxy/(mR?) 135.98930793 109.8537557