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Abstract We revisit the rotation dynamics of a rigid satellite with either a liquid core or
a global subsurface ocean. In both problems, the flow of the fluid component is assumed
inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré–Hough
model which provides exact equations of motion. We introduce an approximation when the
ellipticity of the cavity is low. This simplification allows to model both types of satellite
in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian
formalism closely related to Poincaré’s “forme nouvelle des équations de la mécanique”. In
the case of a satellite with a global ocean, we obtain a seven-degree-of-freedom system. Six
of them account for the motion of the two rigid components, and the last one is associated
with the fluid layer. We apply our model to Titan for which the origin of the obliquity is
still a debated question. We show that the observed value is compatible with Titan slightly
departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.

Keywords Multi-layered body · Spin-orbit coupling · Cassini state · Synchronous rotation ·
Analytical method · Io · Titan

1 Introduction

The spin pole of Titan, Saturn’s largest moon, is lying close to the plane defined by its orbit
pole and the Laplace pole (Stiles et al. 2008, 2010). This observation, made by the RADAR
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instrument of the Cassini mission, suggests that Titan is in (or very close to) a Cassini
state (Colombo 1966; Peale 1969). For a rigid body, the equilibrium obliquity is a function
of its moments of inertia. Those of Titan have been deduced from its Stokes coefficients
J2 = (33.599±0.332)×10−6 andC22 = (10.121±0.029)×10−6 and from the hydrostatic
equilibrium hypothesis implying a mean moment of inertia I/(mR2) = 0.3431 (Iess et al.
2012, SOL1a), where m and R are the mass and radius of Titan, respectively. The assumed
hydrostatic equilibrium is suggested by the ratio J2/C22 ≈ 10/3 which is precisely the
expected value for a hydrostatic body (e.g. Rappaport et al. 1997). Assuming these values,
if Titan were rigid and in a Cassini equilibrium state, its obliquity would be 0.113 deg (Bills
and Nimmo 2011), i.e. about one-third of the radiometric value 0.32 deg (Stiles et al. 2008,
2010; Meriggiola et al. 2016). To match the observations, the frequency of the free libration
in latitude must be reduced by a factor 0.526 (Bills and Nimmo 2011). In particular, this
would be the case if I/(mR2) were increased to 0.45 (ibid.), a value exceeding 2/5 obtained
for a homogeneous body, as if the mass of the satellite was concentrated towards the surface.
This result leads to think that the observed obliquity is that of a thin shell partially decoupled
from the interior by, e.g. a global ocean (ibid.).

The idea that the ice-covered satellites of the outer planets hold a global underneath ocean
has already been proposed based on models of their internal structures (e.g. Lewis 1971).
Even the dwarf planet Pluto is suspected to harbour a subsurface ocean (Nimmo et al. 2016).
In the case of Titan, the presence of the ocean is also revealed by laboratory experiments on
the behaviour of water–ammonia compounds at high pressure and low temperature (Grasset
and Sotin 1996), by the detection of electromagnetic waves in its atmosphere (Béghin et al.
2012) and by the high value of its Love number k2 (Iess et al. 2012).

A dynamical problem closely related to the present one is that of a hollow satellite with
a liquid core as described by the Poincaré–Hough model (Poincaré 1910; Hough 1895). For
this specific problem, Poincaré (1901) developed a new Lagrangian formalism, based on the
properties of the Lie group acting on the configuration space, which allows to derive the
equations of motion in a very simple and elegant manner. Such a system is characterised by
four degrees of freedom, three of them being associated with the rotation of the rigid mantle
and the last one being due to the motion of the liquid core (e.g. Henrard 2008). Applying this
model to Jupiter’s satellite Io, Henrard (2008) observed that the frequency of the additional
degree of freedom is close to the orbital frequency and should thus multiply the possibility of
resonances. For Titan, we shall expect the same conclusion due to the presence of the ocean,
but unfortunately, Poincaré’s model relies on the concept of a fluid simple motion which
cannot be rigorously transposed to the case of a satellite with a global subsurface ocean.

In the case of Titan, the effect of an ocean on the rotation dynamics has been studied
numerically using Euler’s rotation equations taking into account the gravitational interaction
of Saturn on each layer, the pressure torques at the two fluid–solid boundaries, and the
gravitational coupling between the interior and the shell (Baland et al. 2011, 2014; Noyelles
and Nimmo 2014). The elastic deformation of the solid layers and the atmospheric pressure
have also been included in a modelling of the libration in longitude (Richard et al. 2014) and
in a modelling of the Chandler polar motion (Coyette et al. 2016). Despite several arguments
in favour of an ocean, this model does not easily explain the tilt of Titan’s spin axis. Indeed,
under the hydrostatic equilibrium hypothesis, Baland et al. (2011) and Noyelles and Nimmo
(2014) found that the obliquity of theCassini state remains bounded below 0.15 deg, i.e. about
one half of the observed value. There thus seemed to be a need for a significant resonant
amplification to bring the system out of the Cassini equilibrium (Baland et al. 2011; Noyelles
and Nimmo 2014). However, these studies do not invoke the same mode as the origin of the
resonant amplification. In addition, this solution does not agree with extended observations
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of the spin-axis orientation (Meriggiola and Iess 2012). The model has then been amended to
allow the Cassini state obliquity to reach the observed 0.32 deg, but this has only been made
possible after releasing the hydrostatic shape assumption leaving the ratio J2/C22 ≈ 10/3
unexplained (Baland et al. 2014).

It should be stressed that models developed thus far discard the rotation of the ocean
relative to the inertial frame. This is a valid assumption to reproduce librations in longitude
(e.g. Richard 2014), but not anymore for precession motion. By consequence, the associated
dynamical system only has 6 degrees of freedom equally shared by the rigid interior and the
shell (Noyelles and Nimmo 2014). Yet, a comparison of this problem with that of a satellite
with a liquid core strongly suggests that a three-layered bodymust have 7 degrees of freedom,
one of which being brought by the ocean. Here, we aim at building a new dynamical model
accounting for the rotation of the liquid layer as done by Mathews et al. (1991) for the Earth.
More recently, the latter model has been adapted to the study of the Moon (Dumberry and
Wieczorek 2016)1 and of Mercury (Peale et al. 2016). Here we reconsider the problem with
a Hamiltonian approach. In that scope, we first extend the Lagrangian formalism described
in Poincaré (1901) to a non-canonical Hamiltonian formalism allowing to study relative
equilibria in a very efficient manner as in Maddocks (1991) and Beck and Hall (1998). The
method has proven its efficiency in the context of a rigid satellite in circular orbit (Beck and
Hall 1998), in the analysis of the two rigid body problem (Maciejewski 1995), and in several
studies of the attitude of a satellite with a gyrostat (e.g. Hall and Beck 2007; Wang and Xu
2012 and references therein). The approach is described in Sect. 2 and illustrated in the case
of a rigid satellite in Sect. 3. We revisit the problem of a moon with a fluid core with this
approach, and we propose a simplification straightforwardly transposable to a three-layered
body in Sect. 4. The rotation dynamics of a satellite with a subsurface ocean is presented in
Sect. 5. In the subsequent Sect. 6, we test our model and our simplification on Io, a satellite
with a liquid core, verifying that the derived eigenfrequencies are in very good agreement
with those obtained in previous studies of the same problemmade by Noyelles (2013, 2014).
In this section, we also analyse the case of Titan showing that the additional degree of freedom
makes the system highly sensitive to the internal structure and that the observed obliquity can
be easily reproduced. Finally, we discuss our model and conclude in Sect. 7. The notation
used in this paper is explained in Table 1 and the three satellite structures studied in this work
are schematized in Fig. 1.

2 Non-canonical Hamiltonian formalism

2.1 Equations of motion

2.1.1 General case

Let a dynamical system with n degrees of freedom described by a Lagrangian L . We denote
by Q the configuration space, and each point q ∈ Q is represented by a set of m ≥ n
coordinates (q1, . . . , qm). The number of coordinates is purposely allowed to be greater than
the actual dimension of the manifold Q. As in Poincaré (1901), we assume that there exists a
transitive Lie group G acting on Q. The transitivity of G means that for all q,q′ ∈ Q, there
exists an element g of the group G such that q′ = gq. In particular, given an initial condition

1 Dumberry and Wieczorek (2016) could only highlight 5 degrees of freedom because their model of the
Moon is axisymmetric and not triaxial.
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Table 1 Notations

Symbol Definition

c, o,m , s Indices standing for core, ocean, mantle, and shell, respectively

rs, fc, go Indices standing for rigid satellite, fluid core, and global ocean

Fin = (i0, j0, k0) Inertial frame

Flab = (i, j, k) Laboratory frame

Fi = (Ii , Ji ,Ki ) Frame associated with the layer i

� Rotation vector of Flab with respect to Fin expressed in Flab

ωi Rotation vector of Fi with respect to Flab expressed in Flab

ω′
c Rotation vector of Fc with respect to Fm expressed in Fm

�i Lie momentum associated with ωi

�′
c Lie momentum associated with ω′

c

Ii , Ji ,Ki Basis vectors of Fi expressed in Flab

Ri = [Ii , Ji ,Ki ] Rotation matrix of the layer i relative to Flab

yi = (�i , Ii , Ji ,Ki ) State vector of the layer i

y State vector of the whole system

T (y) Kinetic energy

U (y, t) Potential energy

L(y, t) Lagrangian

H(y, t) Hamiltonian

Ci (y) Casimir functions

μi Lagrange multipliers

F(y) Lagrangian associated with the minimisation of H0 with constraints

B(y) Poisson matrix

A(y) Matrix of the linearised system

U0(y) Constant part of U (y, t)

U1(y, t) Perturbation U (y, t) −U0(y)

Uself (y) Self-gravitational energy of the satellite

(ui j )i, j∈{x,y,z} Constant parameters of Uself

H0(y) Autonomous part of H(y, t)

H1(y, t) Perturbation H(y, t) − H0(y)

r, r(t) Radius vector connecting the satellite barycenter to the planet

S(t) GMprrT/r5

S0 Constant part of S(t)

S1(t) S(t) − S0

(σ 0
uv)u,v∈{x,y,z} Elements of the matrix S0

(σ 1
uv(t))u,v∈{x,y,z} Elements of the matrix S1(t)

G Gravitational constant

Mp Mass of the central planet

αi , βi , γi (Ci − Bi )/Ai , (Ci − Ai )/Bi , (Bi − Ai )/Ci , respectively

ρi Density of the layer i

ai , bi , ci Radii of the outer boundary of the layer i

ζ Equatorial flattening (a − b)/a

Ii Inertia tensor of the layer i expressed in Flab
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Table 1 continued

Symbol Definition

I′ Ancillary inertia tensor

Ai , Bi ,Ci Principal moments of inertia of the layer i

A′, B′,C ′ Ancillary moments of inertia

ωu Frequency of libration in longitude

ωv Frequency of libration in latitude

ωw Wobble frequency

q0, there exists gt ∈ G such that the configuration q(t) at time t reads q(t) = gtq0. In this
work, G will be the rotation group SO(3), the translation group T (3), or some combinations
of both.

Let g be the Lie algebra of G. By definition, there exists X ∈ g such that the generalised
velocity reads q̇ = X(q). Since the action of G on Q is transitive, the dimension of g is
equal to the number n of degrees of freedom. Let B = (X1, . . . ,Xn) be a basis of g and
(Xi j )1≤i≤n,1≤ j≤m be the n × m functions of q defined as

Xi =
m∑

j=1

Xi j
∂

∂q j
. (1)

We denote by η = (η1, . . . , ηn) ∈ R
n the coordinates of X in B such that

q̇ =
n∑

i=1

ηiXi (q). (2)

Because the term “generalised velocity” is already attributed to q̇, hereafter we call η the Lie
velocity of the system. Given two configurations q and q′ infinitely closed to each other, we
also define the n-tuple δξ = (δξ1, . . . , δξn) such that

δq := q′ − q =
n∑

i=1

Xi (q)δξi . (3)

Poincaré considers the Lagrangian as a function of (η,q) andwrites its infinitesimal variation
as

δL =
n∑

i=1

∂L

∂ηi
δηi + Xi (L)δξi . (4)

The resulting equations of motion are (Poincaré 1901)

d

dt

∂L

∂ηi
=
∑

j,k

cki jη j
∂L

∂ηk
+ Xi (L), (5)

where cki j , defined as

[Xi ,X j ] := XiX j − X jXi =
n∑

k=1

cki jXk, (6)

are the structure constants of g with respect to the chosen basis B.
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To get the Hamiltonian equations equivalent to Eq. (5), we introduce a momentum π

associated with the Lie velocity η and defined as

π := ∂L

∂η
. (7)

Following the same nomenclature as for η, we call this momentum π the Lie momentum of
the system. The Hamiltonian H is constructed by means of a Legendre transformation as

H(π ,q) := π · η − L(η,q). (8)

Using Eqs. (4) and (7), the infinitesimal variation of H (Eq. 8) reads

δH =
n∑

i=1

ηiδπi − Xi (L)δξi . (9)

But since H is a function of π and q, we also have, as in Eq. (4),

δH =
n∑

i=1

∂H

∂πi
δπi + Xi (H)δξi . (10)

The identification of Eqs. (9) and (10) gives

ηi = ∂H

∂πi
and Xi (H) = −Xi (L). (11)

Using these identifications, the expression of q̇ (Eq. 2), and Poincaré’s equation (5) where
∂L/∂ηi is replaced by πi (Eq. 7), we get the non-canonical equations of motion associated
with H , viz.,

q̇i =
n∑

j=1

∂H

∂π j
X j (qi ) and π̇i =

∑

j,k

cki j
∂H

∂π j
πk − Xi (H). (12)

Let us denote the state vector by y = (π ,q) ∈ R
n+m . The equations of motion (12) written

in matrix form read
ẏ = −B(y)∇yH. (13)

The so-called Poisson matrix B(y) is

B(y) =
[

C X
−XT 0

]
, (14)

where (·)T means the transpose of a vector or of a matrix. X is an n × m matrix and C an
n × n matrix whose elements are

[X]i j = Xi j and [C]i j = −
∑

k

cki jπk . (15)

2.1.2 Translation group

The simplest illustration of the above formalism is the case where G is the translation group.
In that case, η is the usual velocity vector v andπ is the standard linearmomentum, commonly
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denoted asp. The vector fields of the tangent configuration space areXi = ∂
∂qi

. The associated

structure constants cki j are all nil. The Poisson matrix is then

B(y) =
[
0 1

−1 0

]
(16)

and we retrieve the canonical equations of motion

ṗi = −∂H

∂qi
, q̇i = ∂H

∂pi
. (17)

2.1.3 Group SO(3) in the body-fixed frame

The group SO(3) naturally appears in studies of the rotation motion of solid bodies. For this
problem, two choices can be made: vectors are expressed either in the body-fixed frame or
in the “laboratory” frame. Here, we consider the first option where vectors are written in the
body-fixed frame. The Lie velocity is the rotation vector designated by ω, and the orientation
of the body is parametrised by the coordinates in the body-fixed frame of the laboratory base
vectors, i.e. q = (i, j,k). For any function f (i, j,k), we have

d

dt
f (i, j,k) = −(ω × i) · ∂ f

∂i
− (ω × j) · ∂ f

∂j
− (ω × k) · ∂ f

∂k

= −ω ·
(
i × ∂ f

∂i
+ j × ∂ f

∂j
+ k × ∂ f

∂k

)
. (18)

Thus, the vector field X = (X1,X2,X3) is

X = −i × ∂

∂i
− j × ∂

∂j
− k × ∂

∂k
, (19)

with structure constants cki j = −εi jk where εi jk = 1 when (i, j, k) is a cyclic permutation
of (1, 2, 3), −1 when (i, j, k) is a cyclic permutation of (3, 2, 1), 0 otherwise. Hence, the
Poisson matrix reads

B = −

⎡

⎢⎢⎣

π̂ î ĵ k̂
î 0 0 0
ĵ 0 0 0
k̂ 0 0 0

⎤

⎥⎥⎦ (20)

where, for any vector v, we have defined

v̂ =
⎡

⎣
0 −vz vy
vz 0 −vx

−vy vx 0

⎤

⎦ . (21)

The corresponding equations of motion are

dπ

dt
= π × ∂H

∂π
+ i × ∂H

∂i
+ j × ∂H

∂j
+ k × ∂H

∂k
, (22)

di
dt

= i × ∂H

∂π
, (23)

dj
dt

= j × ∂H

∂π
, (24)

dk
dt

= k × ∂H

∂π
(25)
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with ∂H/∂π = ω.

2.1.4 Group SO(3) in the laboratory frame

Here we again consider the rotation motion of a solid body, but now vector coordinates are
written in the laboratory frame. The latter is the frame with respect to which the motion of
the spinning body is described. Note that it does not have to be inertial. The generalised
coordinates are the base vectors of the rotated frame q = (I, J,K), and the Lie momentum
associated with the rotation vector is denoted as �. Applying the same method as above, we
get

X = I × ∂

∂I
+ J × ∂

∂J
+ K × ∂

∂K
. (26)

For this basis, the structure constants are cki j = εi jk , and thus, the Poisson matrix is

B =

⎡

⎢⎢⎣

�̂ Î Ĵ K̂
Î 0 0 0
Ĵ 0 0 0
K̂ 0 0 0

⎤

⎥⎥⎦ . (27)

The associated equations of motion are

d�

dt
= ∂H

∂�
× � + ∂H

∂I
× I + ∂H

∂J
× J + ∂H

∂K
× K, (28)

dI
dt

= ∂H

∂�
× I, (29)

dJ
dt

= ∂H

∂�
× J, (30)

dK
dt

= ∂H

∂�
× K, (31)

where ∂H/∂� still is the rotation vector, although expressed in the laboratory frame.

2.2 Linearisation and driven solution

For the sake of completeness, we here recall the general method leading to the linearisation
of the equations of motion in the non-canonical Hamiltonian formalism (Maddocks 1991;
Beck and Hall 1998). We also present the criterion of nonlinear stability as described in ibid.

Let a non-autonomous Hamiltonian H(y, t) associated with an n-degrees-of-freedom
system expressed as a function of non-canonical variables y ∈ R

p with p ≥ 2n. We assume
that H(y, t) can be split as follows

H(y, t) = H0(y) + H1(y, t), (32)

where H0(y) is the autonomous part of H(y, t) and H1(y, t) a small perturbation. Let us skip
the perturbation H1 for a moment. The equations of motion associated with H0(y) are of the
form

ẏ = −B(y)∇yH0(y). (33)

The system has n degrees of freedom; its phase space Σ is thus a manifold of dimension
2n. Since y ∈ R

p , there exist s = p − 2n Casimir functions Ci (y) and s constants ci ,
1 ≤ i ≤ s, such that
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I

K ω

Rigid satellite

I

K ωω′
c

liquid
core

mantle

Satellite with a liquid core

Is

Ks

Ic

Kc

ωo

ωc

ωs

interior

ocean
shell

Satellite with a subsurface ocean

Fig. 1 Rigid satellites are characterised by their basis vectors (I, J,K) and their rotation vectorωwith respect
to the laboratory frame. The same vectors are used for satellites with a liquid core, but the angular speed ω′

c
of the core with respect to the mantle is also specified. In the case of a satellite with a global ocean, all vectors
are expressed in the laboratory frame. These are the basis vectors of the shell (Is , Js ,Ks ) and of the interior
(Ic, Jc,Kc), and the rotation vectors ωc , ωo, ωs associated with the central region, the ocean and the shell,
respectively

Σ = {y ∈ R
p : C1(y) = c1, . . . ,Cs(y) = cs}. (34)

We recall that Casimir functions are constants of the motion for any Hamiltonian because
their gradients constitute a basis of the kernel of the Poisson matrix:

kerB(y) = span
{∇yC1(y), . . . ,∇yCs(y)

}
, (35)

and thus
Ċi (y) = (∇yH0)

TB(y)∇yCi = 0 (36)

for all Hamiltonian H0.
Let ye be an equilibrium, i.e. a fixed point of H0. According to Eq. (33), ẏe = 0 implies

∇yH0(ye) ∈ kerB(ye). Thus, there exist s coefficients (μi )1≤i≤s such that

∇yH0(ye) =
s∑

i=1

μi∇yCi (ye). (37)

Let

F(y) = H0(y) −
s∑

i=1

μiCi (y). (38)

By construction, F satisfies ∇yF(ye) = 0. Coefficients μi can be seen as Lagrange multi-
pliers and functions Ci (y) as constraints since we search for an extremum of H0(y) under
the conditions Ci (y) = ci . The p + s equations ∇yF(ye) = 0 and Ci (ye) = ci allow to
determine ye and the coefficients μi .

Once ye and coefficientsμi are known, the linearisation of the equations ofmotion (Eq. 33)
is given by

δẏ = A(ye)δy (39)

with δy = y − ye and (Maddocks 1991)

A(ye) = −B(ye)∇2
yF(ye). (40)
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In the last step, the perturbation H1(y, t) is taken into account and the equations of motion
become

δẏ − A(ye)δy = z(t), (41)

with
z(t) = −B(ye)∇yH1(ye, t). (42)

Equation (41) is then solved using standard techniques.
The relative equilibria y = ye are said to be nonlinearly stable if the quadratic form (or

Lyapunov function) N (y) = yTNy, defined on the phase space Σ by its Hessian (below), is
a strictly convex function (Beck and Hall 1998). The Hessian of N (y) is given by (see ibid.)

N := ∇2N = Q(ye)∇2F(ye)Q(ye), (43)

where Q(y) is the orthogonal projection matrix onto the range of A(y),

Q(y) = 1 − K(y)
(
KT(y)K(y)

)−1
KT(y), (44)

and where K(y) is a p × s matrix given by

K(y) = [∇C1(y) · · · ∇Cs(y)
]
. (45)

3 Rigid satellite

Let a rigid satellite whose rotation is close to the synchronous state, i.e. whose mean rotation
rate is equal to the orbital mean motion. The goal of this section is to compute the frequencies
associatedwith the freemodes of rotation, to evaluate the forced obliquity driven by the orbital
precession, and eventually to check the nonlinear stability of the system in the vicinity of
the equilibrium. The analysis is performed using the non-canonical Hamiltonian formalism
described in Sect. 2. It turns out to be convenient to describe the problem in a laboratory
frame rotating at constant angular speed � with respect to the inertial frame. Ω will then be
chosen equal to the mean orbital motion. We denote by ω the rotation vector of the satellite
with respect to the laboratory frame Flab and by (I, J,K) its principal axes of inertia such
that the matrix of inertia reads

I = R diag(A, B,C)RT, (46)

whereR = [I, J,K] is the rotation matrix of the satellite with respect to the laboratory frame
and where (.)T denotes the transpose operator. Note that the matrix of inertia can also be
written in an equivalent form facilitating the computation of the gradient of the forthcoming
Hamiltonian

I = AIIT + BJJT + CKKT. (47)

The Lie velocity of the system is thus ω, while (I, J,K) are the generalised coordinates.
We also denote by (i, j,k) the basis vectors associated with the laboratory frame. The radius
vector connecting the planet and the satellite barycenter is assumed to be a known function of
time and is denoted either by r(t) or simply by r. G and Mp are the gravitational constant and
the mass of the planet, respectively. With these notations, the (non-autonomous) Lagrangian
L rs(ω, I, J,K, t) governing the rotation of the rigid satellite is

L rs(ω, I, J,K, t) = (ω + �)TI(ω + �)

2
− 3GMp

2

rTIr
r5

. (48)
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The Lie momentum � associated with ω reads

� = ∂L rs

∂ω
= I(ω + �). (49)

We recognise the spin angular momentum of the satellite with respect to the inertial frame
and expressed in the laboratory frame. The Hamiltonian Hrs(�, I, J,K, t) resulting from the
Legendre transformation applied to L rs(ω, I, J,K, t) reads

Hrs(�, I, J,K, t) = �TI−1�

2
− �T� + 3GMp

2

rTIr
r5

(50)

with

I−1 = IIT

A
+ JJT

B
+ KKT

C
. (51)

The Poisson matrix Brs(y) associated with y = (�, I, J,K) is the one given in Eq. (27). The
gradient of the Hamiltonian reads

∂Hrs

∂�
= I−1� − � = ω, (52)

∂Hrs

∂I
= (I · �)

A
� + 3

GMp

r5
A(r · I)r, (53)

∂Hrs

∂J
= (J · �)

B
� + 3

GMp

r5
B(r · J)r, (54)

∂Hrs

∂K
= (K · �)

C
� + 3

GMp

r5
C(r · K)r, (55)

and thus the equations of motion are

�̇ = � × � − 3
GMp

r5
(Ir) × r, (56)

İ = ω × I, (57)

J̇ = ω × J, (58)

K̇ = ω × K. (59)

Equations of motion (Eqs. 56–59) are those of the full Hamiltonian. Because r(t) is a
function of time, the set of Eqs. (56–59) has no fixed point. To proceed, we set� = Ωk with
Ω equal to the mean orbital motion such that, in the laboratory frame (i, j,k),

S(t) := GMp
rrT

r5
= S0 + S1(t) (60)

where S0 is a constant matrix and S1(t) a small perturbation. Furthermore, the initial angle
of the rotation is chosen such that S0 is diagonal with components (σ 0

xx , σ
0
yy, σ

0
zz). Similarly,

we denote by σ 1
uv , where u, v ∈ {x, y, z}, the elements of S1(t). The gravitational potential

energy U (y, t) is then split into U0(y) +U1(y, t) with

U0(y) = 3

2

(
AITS0I + BJTS0J + CKTS0K

)
, (61)

U1(y, t) = 3

2

(
AITS1(t)I + BJTS1(t)J + CKTS1(t)K

)
. (62)
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As a result, the Hamiltonian Hrs(y, t) also gets split into H0
rs(y) + H1

rs(y, t) with

H0
rs(y) = �TI−1�

2
− �T� +U0(y), (63)

H1
rs(y, t) = U1(y, t). (64)

In the case of a Keplerian orbit with eccentricity e and inclination i with respect to the
reference frame,

σ 0
xx = GMp

a3

(
X−3,0
0 (e) + X−3,2

2 (e)

2
cos4

(
i

2

)
+ X−3,0

0 (e)

2
sin4

(
i

2

))
, (65)

σ 0
yy = GMp

a3

(
X−3,0
0 (e) − X−3,2

2 (e)

2
cos4

(
i

2

)
+ X−3,0

0 (e)

2
sin4

(
i

2

))
, (66)

σ 0
zz = GMp

a3
X−3,0
0 (e)

2
sin2 i, (67)

where Xn,m
k (e) are Hansen coefficients (Hansen 1855) defined as Fourier coefficients of the

series
( r
a

)n
eimv =

∞∑

k=−∞
Xn,m
k (e)eikM (68)

with a, v, M being the semimajor axis, the true anomaly, and the mean anomaly, respectively.
Besides, in this study a single element of the matrix S1(t) plays a role in the tilting of the
Cassini state, and this is the term in σ 1

xz(t) = σ 1
zx (t) corresponding to the first harmonic of

the orbital precession in inclination whose expression is

σ 1
xz(t) = GMp

a3

(
X−3,0
0 (e)

2
cos i + X−3,2

2 (e)

2
cos2

i

2

)
sin i sin(Ωt − Φ), (69)

where Φ is the longitude of the ascending node. The expression of the Hansen coefficients
involved in S0 and S1(t) is

X−3,0
0 (e) = (1 − e2)−3/2, (70)

X−3,2
2 (e) = 1 − 5

2
e2 + 13

16
e4 − 35

288
e6 + O(e8). (71)

Following the steps recalled in the previous Sect. 2.2, we now skip the perturbation S1(t)
for a while and only retain the autonomous part of the Hamiltonian H0

rs(y). The gradient of
the Hamiltonian H0

rs(y) reads

∂H0
rs

∂�
= I−1� − � = ω, (72)

∂H0
rs

∂I
= (I · �)

A
� + 3AS0I, (73)

∂H0
rs

∂J
= (J · �)

B
� + 3BS0J, (74)

∂H0
rs

∂K
= (K · �)

C
� + 3CS0K. (75)
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Only �̇ (Eq. 56) is affected by the averaging process. Its new equation of motion reads

�̇ = � × � + 3A(S0I) × I + 3B(S0J) × J + 3C(S0K) × K. (76)

3.1 Linearisation

To perform the linearisation of Eqs. (57–59, 76), we note that the phase space Σrs of the
system is a manifold of dimension 6 (associated with the 3 degrees of freedom of the group
SO(3)) defined as

Σrs = {y ∈ R
12 : C1

rs(y) = C2
rs(y) = C3

rs(y) = 1/2,

C4
rs(y) = C5

rs(y) = C6
rs(y) = 0}, (77)

where the Casimir functions are

C1
rs(y) = 1

2
I · I, C2

rs(y) = 1

2
J · J, C3

rs(y) = 1

2
K · K,

C4
rs(y) = J · K, C5

rs(y) = K · I, C6
rs(y) = I · J. (78)

Indeed, it can be checked that

kerBrs(y) = span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

0
I
0
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
J
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
0
K

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
0
K
J

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
K
0
I

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
J
I
0

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (79)

Let Frs(y) = H0
rs(y) −∑i μiCi

rs(y). The condition ∇yFrs(ye) = 0 leads to

I−1�e − � = ωe = 0, (80)
(Ie · �e)

A
�e + 3AS0Ie − μ1Ie − μ5Ke − μ6Je = 0, (81)

(Je · �e)

B
�e + 3BS0Je − μ2Je − μ4Ke − μ6Ie = 0, (82)

(Ke · �e)

C
�e + 3CS0Ke − μ3Ke − μ4Je − μ5Ie = 0, (83)

whose solution is

ωe = 0, �e = CΩk, Ie = i, Je = j, Ke = k,

μ1 = 3Aσ 0
xx , μ2 = 3Bσ 0

yy, μ3 = 3Cσ 0
zz + CΩ2, μ4 = μ5 = μ6 = 0. (84)

The other solutions are equivalent to this one but with a permutation of themoments of inertia
A, B, C . The matrix Ars(ye) of the linearised system is given by Eq. (40). To simplify the
result, we perform the change of variables δy = Pδy∗ with

δy∗ =
(

δΠz, δ Iy, δΠx , δΠy, δ Iz, δ Jz, δ Ix , δ Jy, δKz,

δ Iy + δ Jx , δ Iz + δKx , δ Jz + δKy

)T
.

(85)

The first two components of δy∗ are associated with the libration in longitude, the next
four components describe the wobble and the libration in latitude, and finally, the last six
coordinates being in the kernel of Brs(ye) remain identically equal to zero. Let A∗

rs(ye) be
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the matrix of the linear system in the new variables δy∗, i.e. A∗
rs = P−1ArsP, and let A1

rs and
A2
rs be the respective 2 × 2 and 4 × 4 matrices such that

A∗
rs(ye) =

⎡

⎣
A1
rs 0 ·
0 A2

rs ·
0 0 0

⎤

⎦ , (86)

where the dots · represent arbitrary matrices not influencing the motion. We have

A1
rs =

[
0 −3(B − A)(σ 0

xx − σ 0
yy)

1/C 0

]
, (87)

and

A2
rs =

⎡

⎢⎢⎢⎢⎢⎣

0 Ω 0 3(C − B)(σ 0
zz − σ 0

yy)

−Ω 0 3(C − A)(σ 0
xx − σ 0

zz) 0

0 − 1

B
0 −C − B

B
Ω

1

A
0

C − A

A
Ω 0

⎤

⎥⎥⎥⎥⎥⎦
. (88)

Hence, the frequency of libration in longitude ωrs,u , which is the eigenvalue of A1
rs, reads

ωrs,u = √3γ (κ1 − κ2), (89)

and the frequencies associated with the wobble ωrs,w and the libration in latitude ωrs,v , the
eigenvalues of A2

rs, are given by

ωrs,w =
(
p −√p2 − 4q

2

)1/2

, ωrs,v =
(
p +√p2 − 4q

2

)1/2

(90)

with

p = (1 + αβ) Ω2 + 3 (βκ1 + ακ2) , (91)

q = αβ
(
Ω4 + 3 (κ1 + κ2) Ω2 + 9κ1κ2

)
, (92)

κ1 = σ 0
xx − σ 0

zz, (93)

κ2 = σ 0
yy − σ 0

zz, (94)

and

α = C − B

A
, β = C − A

B
, γ = B − A

C
. (95)

Here we retrieve the well-known eigenfrequencies of a rigid satellite close to the synchronous
equilibrium state (e.g. Rambaux et al. 2012). Let us nevertheless stress that Eqs. (89) and
(90) are associated with the motion of the three vectors (I, J,K) in the rotating frame. By
consequence, if we denote by ω̄rs,v ≈ 3βΩ/2 the frequency of libration in latitude associated
with the motion of the sole vector K with respect to the inertial frame (as it is commonly
defined for an axisymmetric body), we have ωrs,v = ω̄rs,v + Ω .
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3.2 Stability

For this problem, the Lyapunov function Nrs(y), as defined in Eq. (43), is

Nrs(y) = 1

2A

(
Πx + 1

2
(C − A)Ω(Iz − Kx )

)2

+ 1

2B

(
Πy + 1

2
(C − B)Ω(Jz − Ky)

)2

+ 1

2C
Π2

z + 1

2
n1(Iy − Jx )

2 + 1

2
n2(Iz − Kx )

2 + 1

2
n3(Jz − Ky)

2 (96)

with

n1 = 3

4
(B−A)(κ1−κ2), n2 = 1

8
(C−A)(Ω2+3κ1), n3 = 1

8
(C−B)(Ω2+3κ2). (97)

We recall that the system is nonlinearly stable if Nrs(y) is a strictly convex function. Coeffi-
cients A, B, andC are positive, as required. The nonlinear stability is then achieved when n1,
n2, and n3 are all positive. Given that κ1 > κ2 > 0 at low inclination i , the criterion implies
C > B > A, which is the well-known stability condition for this classical equilibrium where
the longest axis points towards the parent planet (e.g. Beck and Hall 1998).

3.3 Driven solution

Here we look for the forced solution when the time-dependent perturbation H1
rs(t) is taken

into account. In the variables δy∗ (Eq. 85), and with the notation of Eq. (41), the perturbation
δz∗

rs(t) is given by
δz∗

rs(t) = −P−1Brs(ye)∇yH
1
rs(ye, t). (98)

Tomatch the notation of thematrixA∗
rs, let δy

1 and δy2 be the first 2 and the next 4 components
of δy∗, idem for δz∗

rs(t), such that the linear problem with perturbation reads

δẏk − Ak
rsδy

k = δzkrs(t), k = 1, 2. (99)

By definition,
δy1 = (δΠz, δ Iy)

T, δy2 = (δΠx , δΠy, δ Iz, δ Jz)
T, (100)

and Eq. (98) implies

δz1rs(t) =
(
3(B − A)σ 1

xy(t)

0

)
, δz2rs(t) =

⎛

⎜⎜⎝

3(C − B)σ 1
yz(t)

−3(C − A)σ 1
xz(t)

0
0

⎞

⎟⎟⎠ . (101)

Note that the term σ 1
yz(t) is present in the perturbation δz2rs(t), but its effect on the orientation

of the spin axis is very weak. For instance, according to the ephemeris of Titan in TASS1.6
(Vienne and Duriez 1995), the amplitude associated with the angle (Ωt − Φ) in σ 1

yz(t) is
about 500 times lower than that in σ 1

xz(t). In the numerical applications (Sect. 6), σ 1
yz(t) is

simply discarded.

4 Satellite with a liquid core

In this section we consider a satellite with a rigid mantle/crust layer surrounding a liquid
core. In a first step, we analyse the problem using the Poincaré–Hough model which is valid
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for all eccentricities of the ellipsoidal cavity containing the fluid core (Poincaré 1910; Hough
1895). In a second one, we truncate the problem at the first order with respect to the equatorial
and polar flattening of the cavity. The same simplification will be used again in Sect. 5 where
the case of a satellite with a subsurface ocean is treated. Here, the two models of the same
problem are used to estimate the error made by the approximation.

4.1 Poincaré–Hough model

As in the previous model, A, B, C designate the principal moments of inertia of the whole
satellite. Those of the liquid core are denoted by Ac, Bc, Cc. We assume that the axes of
the core/mantle ellipsoidal boundary are aligned to those of the satellite surface. Hence,
the principal axes (Ic, Jc,Kc) of the core are aligned to those of the mantle denoted as
(Im, Jm,Km) which are also aligned to those of the whole satellite (I, J,K). The vector ω

still represents the rotation vector of (I, J,K) with respect to the laboratory frame expressed
in the laboratory frame. We add the rotation vector ω′

c associated with the simple motion of
the liquid core with respect to the mantle and expressed in the mantle-fixed frame (Poincaré
1910). As in the rigid case, the laboratory frame rotates with respect to the inertial frame at
the speed �. Let I, I′

c, and I
′ be the inertia matrices defined as

I = R diag(A, B,C)RT, (102)

I′
c = diag(Ac, Bc,Cc), (103)

I′ = diag(A′, B ′,C ′)RT, (104)

where R = [I, J,K] is the rotation matrix of the mantle relative to the laboratory frame.
Furthermore, we have defined

A′ = Ac

√
1 − α2

c , B ′ = Bc

√
1 − β2

c , C ′ = Cc

√
1 − γ 2

c , (105)

with

αc = Cc − Bc

Ac
, βc = Cc − Ac

Bc
, γc = Bc − Ac

Cc
. (106)

For this problem, the Lie velocity is η = (ω,ω′
c) and the generalised coordinates are limited

to q = (I, J,K). Coordinates associated with the simple motion of the liquid core do not
appear in the equations of motion because the fluid is assumed to be incompressible and its
volume is set by the mantle; thus, the kinetic and the potential energies only depend on η and
q. The kinetic energy Tfc(η,q) of rotation of the satellite is (Poincaré 1910; Hough 1895)

Tfc(η,q) = (ω + �)TI(ω + �)

2
+ ω′T

c I
′
cω

′
c

2
+ ω′T

c I
′(ω + �). (107)

The potential energy is the same as in the rigid satellite case (see Sect. 3). Thus, theLagrangian
L fc(η,q) reads

L fc(η,q) = (ω + �)TI(ω + �)

2
+ ω′T

c I
′
cω

′
c

2
+ ω′T

c I
′(ω + �) − 3GMp

2

rTIr
r5

. (108)

The Lie momenta associated with ω and ω′
c are, respectively

� = ∂L fc

∂ω
= I(ω + �) + I′Tω′

c, (109)

�′
c = ∂L fc

∂ω′
c

= I′
cω

′
c + I′(ω + �), (110)
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with the inverse transformation,

ω = Q� − Q′T�′
c − �, (111)

ω′
c = Q′

c�
′
c − Q′�, (112)

where

Q = R diag

(
Ac

AAc − A′2 ,
Bc

BBc − B ′2 ,
Cc

CCc − C ′2

)
RT, (113)

Q′
c = diag

(
A

AAc − A′2 ,
B

BBc − B ′2 ,
C

CCc − C ′2

)
, (114)

Q′ = diag

(
A′

AAc − A′2 ,
B ′

BBc − B ′2 ,
C ′

CCc − C ′2

)
RT. (115)

The Hamiltonian of the problem is then

Hfc(y, t) = �TQ�

2
+ �′T

cQ
′
c�

′
c

2
− �′T

cQ
′� − �T� + 3GMp

2

rTIr
r5

, (116)

with the state vector y = (�′
c,�, I, J,K). In these variables, the Poisson matrix reads

Bfc(y) =

⎡

⎢⎢⎢⎢⎢⎣

�̂
′
c 0 0 0 0
0 �̂ Î Ĵ K̂
0 Î 0 0 0
0 Ĵ 0 0 0
0 K̂ 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
(117)

and the equations of motion are

�̇′
c = ω′

c × �′
c, (118)

�̇ = � × � − 3
GMp

r5
(Ir) × r, (119)

İ = ω × I, (120)

J̇ = ω × J, (121)

K̇ = ω × K. (122)

As in the rigid case (Sect. 3), we now split the Hamiltonian Hfc(y, t) into its autonomous part
H0
fc(y) and a perturbation H1

fc(y, t) using the decomposition of the gravitational potential
energy U0(y) and U1(y, t), Eqs. (61–62). There are seven Casimir functions given by

C0
fc(y) = 1

2
�′

c · �′
c,

C1
fc(y) = 1

2
I · I, C2

fc(y) = 1

2
J · J, C3

fc(y) = 1

2
K · K,

C4
fc(y) = J · K, C5

fc(y) = K · I, C6
fc(y) = I · J. (123)
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The equilibrium ye of H
0
fc(y) is solution of

ω′
c,e − μ0�

′
c,e = 0, (124)

ωe = 0, (125)
Ac(Ie · �e) − A′(Ie · �′

c,e)

AAc − A′2 �e + 3AS0Ie − μ1Ie − μ5Ke − μ6Je = 0, (126)

Bc(Je · �e) − B ′(Je · �′
c,e)

BBc − B ′2 �e + 3BS0Je − μ2Je − μ4Ke − μ6Ie = 0, (127)

Cc(Ke · �e) − C ′(Ke · �′
c,e)

CCc − C ′2 �e + 3CS0Ke − μ3Ke − μ4Je − μ5Ie = 0. (128)

We stress that � is written in the laboratory frame, while�′
c is expressed in the mantle-fixed

frame. Thus, in Eq. (126), (I ·�) = IxΠx + IyΠy+ IzΠz , whereas (I ·�′
c) = Π ′

c,x . The same
reasoning holds in Eqs. (127, 128). The norm of the angular velocity ω′

c,e can be arbitrarily
chosen. This is due to the conservation of the Casimir C0

fc(y). Here, we assume that the fluid
core has no mean angular velocity with respect to the mantle and thus ω′

c,e = 0. Under this
hypothesis, we get

ωe = 0, �′
c,e = C ′Ωk, �e = CΩk, Ie = i, Je = j, Ke = k,

μ0 = 0, μ1 = 3Aσ 0
xx , μ2 = 3Bσ 0

yy, μ3 = 3Cσ 0
zz + CΩ2, μ4 = μ5 = μ6 = 0.

(129)

The linear system is expressed in the coordinates

δy∗ =
(
δΠz, δ Iy, δΠ

′
c,x , δΠ

′
c,y, δΠx , δΠy, δ Iz, δ Jz, δΠ

′
c,z, δ Ix , δ Jy, δKz,

δ Iy + δ Jx , δ Iz + δKx , δ Jz + δKy

)T
.

(130)

LetA∗
fc(ye) be thematrix of the linear system evaluated at the equilibrium point and expressed

in the coordinates δy∗. As in the rigid case, we define the matrices A1
fc and A

2
fc such that

A∗
fc(ye) =

⎡

⎢⎣
A1
fc 0 ·
0 A2

fc ·
0 0 0

⎤

⎥⎦ , (131)

where the dots · still denote arbitrary matrices. We get

A1
fc =

⎡

⎣
0 −3(B − A)(σ 0

xx − σ 0
yy)

Cc

CCc − C ′2 0

⎤

⎦ , (132)
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and

A2
fc =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
C ′

B
Ω 0 −C ′

B′ Ω 0 −C ′

B′ CΩ2

−C ′

A
Ω 0

C ′

A′ Ω 0
C ′

A′ CΩ2 0

0 0 0 Ω 0 −3(C − B)κ2

0 0 −Ω 0 3(C − A)κ1 0

0
1

B′ 0 − 1

Bc
0

(
1 − C

Bc

)
Ω

− 1

A′ 0
1

Ac
0 −

(
1 − C

Ac

)
Ω 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(133)

with

1

A
= A

AAc − A′2 ,
1

Ac
= Ac

AAc − A′2 ,
1

A’
= A′

AAc − A′2 ,

1

B
= B

BBc − B ′2 ,
1

Bc
= Bc

BBc − B ′2 ,
1

B’
= B ′

BBc − B ′2 ,

1

C
= C

CCc − C ′2 ,
1

Cc
= Cc

CCc − C ′2 ,
1

C’
= C ′

CCc − C ′2 . (134)

The eigenfrequencies are

ωfc,u =
(

CCc

CCc − C ′2

)1/2

ωrs,u, (135)

ωfc,v = ωrs,v + O(ε), (136)

ωfc,w = ωrs,w + O(ε), (137)

ωfc,z = C ′
√
AcBc

Ω + O(ε) (138)

with ε being the mass of the core divided by the total mass of the satellite. ωrs,u , ωrs,v , and
ωrs,w are the frequencies obtained in the rigid case (Eqs. 89, 90). ωfc,z is the frequency of the
additional degree of freedom induced by the presence of the liquid core. In the case where the
fluid core represents a significant fraction of the total mass of the satellite, Eqs. (136–138)
are no longer valid and eigenfrequencies should be directly computed from the matrix A2

fc
(Eq. 133).

The Lyapunov function (Eq. 43) associated with this problem is

Nfc(y) = 1

2Ac

(
Πx − A′

Ac
Π ′

c,x + 1

2

(
C − Ac

)
(Iz − Kx )

)2

+ 1

2Bc

(
Πy − B ′

Bc
Π ′

c,y + 1

2

(
C − Bc

)
(Jz − Ky)

)2

+ 1

2Cc
Π2

z

+ 1

2Ac

(
Π ′

c,x − 1

2
A′Ω(Iz − Kx )

)2

+ 1

2Bc

(
Π ′

c,y − 1

2
B ′Ω(Jz − Ky)

)2

+1

2
n1(Iy − Jx )

2 + 1

2
n2(Iz − Kx )

2 + 1

2
n3(Jz − Ky)

2, (139)

where n1, n2, and n3 are the same as in the rigid case (see Eq. 97). Given that Ac, Bc, Cc, Ac,
and Bc are all positive, the nonlinear stability criterion is identical to that of a rigid satellite,
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namely C > B > A. In particular, there is no restriction on the moments of inertia of the
core (Ac, Bc,Cc).

The driven equations of motion of the satellite with a liquid core in the vicinity of the
relative equilibrium ye are of the form

δẏk − Ak
fcδy

k = δzkfc(t), k = 1, 2, (140)

with
δy1 = (δΠz, δ Iy)

T, δy2 = (δΠ ′
c,x , δΠ

′
c,y, δΠx , δΠy, δ Iz, δ Jz)

T
, (141)

and

δz1fc(t) =
(
3(B − A)σ 1

xy(t)
0

)
, δz2fc(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

3(C − B)σ 1
yz(t)

−3(C − A)σ 1
xz(t)

0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (142)

4.2 Quasi-spherical approximation

In this section, we reconsider the case of a satellite with a liquid core, but we assimilate A′,
B ′, and C ′ to the moments of inertia of the core, i.e. we assume

A′ ≈ Ac, B ′ ≈ Bc, C ′ ≈ Cc. (143)

According to Eq. (105), this is equivalent to a first-order approximation in αc, βc, and γc.
With this simplification, the kinetic energy (Eq. 107) can be rewritten as follows

Tfc′(η,q) = (ω + )TIm(ω + �)

2
+ (ω′

c + RT(ω + �))
T
I′
c(ω

′
c + RT(ω + �))

2
, (144)

where

Im = I − RI′
cR

T

= R diag(Am, Bm,Cm)RT (145)

is the inertia tensor of themantlewritten in the laboratory frame (Am = A−Ac, Bm = B−Bc,
and Cm = C −Cc). According to expression (144), the problem behaves as if the liquid core
were rotating rigidly relative to the mantle at the angular velocity ω′

c with a matrix of inertia
I′
c constant in the mantle-fixed frame. Indeed, ω′

c + RT(ω + �) is the rotation speed of the
core with respect to the inertial frame written in the mantle-fixed frame. We here retrieve the
approximation made by Mathews et al. (1991) who neglected the small departure of the fluid
velocity field from a pure solid rotation. Following the same procedure as in Sect. 4.1, the
two submatrices of the linearised system written in the set of variables δy∗ (Eq. 130) become

A1
fc′ =

⎡

⎣
0 −3(B − A)(σ 0

xx − σ 0
yy)

1

Cm
0

⎤

⎦ , (146)
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and

A2
fc′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
BCc

Bm Bc
Ω 0 − Cc

Bm
Ω 0 −CCc

Bm
Ω2

− ACc

Am Ac
Ω 0 − Cc

Am
Ω 0

CCc

Am
Ω2 0

0 0 0 Ω 0 −3(C − B)κ2
0 0 −Ω 0 3(C − A)κ1 0

0
1

Bm
0 − 1

Bm
0

(
1 − C

Bm

)
Ω

− 1

Am
0

1

Am
0 −

(
1 − C

Am

)
Ω 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(147)
Although we retrieve the eigenfrequencies obtained in Sect. 4.1 within the approximation
(Eq. 143) only, the second member δzfc′(t) of the driven system is exactly the same as δzfc(t)
(Eq. 142).

5 Satellite with a subsurface ocean

Here, we consider a satellite with a rigid central part c (also called interior) and a rigid shell s
separated by a global ocean o. By assumption, the shell is ellipsoidalwith inner radii ao, bo, co
and outer radii as, bs, cs . The interior, an ellipsoid of radii ac, bc, cc, might be differentiated,
i.e. it can be made of a succession of N concentric ellipsoidal layers with different densities
(ρi )1≤i≤N and outer radii ai , bi , ci .We have thus aN = ac, bN = bc, and cN = cc. The ocean
and the shell are assumed to be homogeneouswith respective density ρo and ρs . Nevertheless,
the results can easily be extended to the case of a stratified rigid shell. Because the simple
motion introduced by Poincaré (1910) for a satellite with a liquid core cannot be applied in
this case, we use the approximation described in Sect. 4.2. We could describe the evolution
of the central region and of the ocean in the shell-fixed frame to remain close to the study
made on the satellite with a liquid core, but equations are more symmetrical if all coordinates
are given with respect to the same given frame which we chose to be the laboratory frame. In
this frame, the configuration of the system is given by the coordinates of the principal axes
of the interior and the shell, i.e. the generalised coordinates are q = (Ic, Jc,Kc, Is, Js,Ks).
The Lie velocities are the rotation vectors of the three layers with respect to the laboratory
frame η = (ωo,ωc,ωs). Within the approximation of Sect. 4.2, the kinetic energy of the
satellite with a global ocean reads

Tgo(η,q) = (ωc + �)TIc(ωc + �)

2
+ (ωs + �)TIs(ωs + �)

2

+ (ωo + �)TIo(ωo + �)

2
, (148)

with the inertia tensors

Ic = Rc diag(Ac, Bc,Cc)RT
c , (149)

Is = Rs diag(As, Bs,Cs)RT
s , (150)

Io = Rs diag(A
′
s, B

′
s,C

′
s)R

T
s − Rc diag(A

′
c, B

′
c,C

′
c)R

T
c , (151)
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where Rc = [Ic, Jc,Kc], Rs = [Is, Js,Ks], and

Ac =
N∑

i=1

4π

15
ρi
(
aibi ci (b

2
i + c2i ) − ai−1bi−1ci−1(b

2
i−1 + c2i−1)

)
, (152)

As = 4π

15
ρs
(
asbscs(b

2
s + c2s ) − aoboco(b

2
o + c2o)

)
, (153)

A′
c = 4π

15
ρoacbccc(b

2
c + c2c ), (154)

A′
s = 4π

15
ρoaoboco(b

2
o + c2o). (155)

In Eq. (152), we apply the convention a0 = b0 = c0 = 0. The other quantities B, C are
deduced from Eqs. (152–155) by circular permutation of a, b, c. Let us stress that the matrix
of inertia of the whole satellite is simply

I = Ic + Is + Io. (156)

In addition to the gravitational potential energyU (y, t) between the planet point mass and
the extended satellite, to get the Lagrangian we also need to include the self-gravitational
potential energy Uself (q) of the satellite as it is a function of the relative orientation of the
interior and the shell. This potential energy reads (Laplace 1798)

Uself (q) = uxx
2

(Ic · Is)2 + uxy
2

(Ic · Js)2 + uxz
2

(Ic · Ks)
2

+uyx

2
(Jc · Is)2 + uyy

2
(Jc · Js)2 + uyz

2
(Jc · Ks)

2

+uzx
2

(Kc · Is)2 + uzy
2

(Kc · Js)2 + uzz
2

(Kc · Ks)
2, (157)

with

uxx = 8π
15 G (ρs fs + (ρo − ρs) fo)

∑N
i=1(ρi − ρi+1)a3i bi ci , (158)

uxy = 8π
15 G (ρs gs + (ρo − ρs)go)

∑N
i=1(ρi − ρi+1)a3i bi ci , (159)

uxz = 8π
15 G (ρshs + (ρo − ρs)ho)

∑N
i=1(ρi − ρi+1)a3i bi ci , (160)

uyx = 8π
15 G (ρs fs + (ρo − ρs) fo)

∑N
i=1(ρi − ρi+1)aib3i ci , (161)

uyy = 8π
15 G (ρs gs + (ρo − ρs)go)

∑N
i=1(ρi − ρi+1)aib3i ci , (162)

uyz = 8π
15 G (ρshs + (ρo − ρs)ho)

∑N
i=1(ρi − ρi+1)aib3i ci , (163)

uzx = 8π
15 G (ρs fs + (ρo − ρs) fo)

∑N
i=1(ρi − ρi+1)aibi c3i , (164)

uzy = 8π
15 G (ρs gs + (ρo − ρs)go)

∑N
i=1(ρi − ρi+1)aibi c3i , (165)

uzz = 8π
15 G (ρshs + (ρo − ρs)ho)

∑N
i=1(ρi − ρi+1)aibi c3i , (166)

where ρN+1 := ρo and for ∗ ∈ {s, o},

f∗ = 2π
a∗b∗
c2∗

∫ 1

0

(
1 + a2∗ − c2∗

c2∗
t2
)−3/2 (

1 + b2∗ − c2∗
c2∗

t2
)−1/2

t2 dt, (167)

g∗ = 2π
a∗b∗
c2∗

∫ 1

0

(
1 + a2∗ − c2∗

c2∗
t2
)−1/2 (

1 + b2∗ − c2∗
c2∗

t2
)−3/2

t2 dt, (168)
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h∗ = 2π
a∗b∗
c2∗

∫ 1

0

(
1 + a2∗ − c2∗

c2∗
t2
)−1/2 (

1 + b2∗ − c2∗
c2∗

t2
)−1/2

t2 dt . (169)

The Lagrangian Lgo(η,q) of the problem is then

Lgo(η,q) = (ωc + �)TIc(ωc + �)

2
+ (ωs + �)TIs(ωs + �)

2

+ (ωo + �)TIo(ωo + �)

2
− 3GMp

2

rTIr
r5

−Uself (q). (170)

The Lie momenta associated with η = (ωo,ωc,ωs) are

�o = ∂Lgo

∂ωo
= Io(ωo + �), (171)

�c = ∂Lgo

∂ωc
= Ic(ωc + �), (172)

�s = ∂Lgo

∂ωs
= Is(ωs + �), (173)

from which we deduce the Hamiltonian

Hgo(y) = �T
c (Ic)

−1�c

2
+ �T

o (Io)
−1�o

2
+ �T

s (Is)
−1�s

2

−�T(�c + �o + �s) + 3GMp

2

rTIr
r5

+Uself (q), (174)

which is a function of y = (�o, yc, ys) with yi = (�i , Ii , Ji ,Ki ). The Poisson matrix
Bgo(y) associated with this set of variables is

Bgo(y) =
⎡

⎣
�̂o 0 0
0 b(yc) 0
0 0 b(ys)

⎤

⎦ , b(yi ) =

⎡

⎢⎢⎣

�̂i Îi Ĵi K̂i

Îi 0 0 0
Ĵi 0 0 0
K̂i 0 0 0

⎤

⎥⎥⎦ , i = c, s.

(175)
Although y has 27 components, the system evolves in a phase space Σgo of dimension
14 = 2 × 7 whose degrees of freedom are the three rotations of the central region, the three
rotation of the shell, and an additional degree of freedom associated with the ocean:

Σgo = {y ∈ R
27 : Ci

go(y) = ci , 0 ≤ i ≤ 12}, (176)

where the thirteen Casimir functions are

C0
go(y) = 1

2
�T

o�o, C1
go(y) = 1

2
ITc Ic, C2

go(y) = 1

2
JTc Jc, C

3
go(y) = 1

2
KT

cKc,

C4
go(y) = JTcKc, C5

go(y) = KT
c Ic, C6

go(y) = ITc Jc, C7
go(y) = 1

2
ITs Is,

C8
go(y) = 1

2
JTs Js, C9

go(y) = 1

2
KT

s Ks, C10
go (y) = JTs Ks, C11

go(y) = KT
s Is,

C12
go (y) = ITs Js .

(177)

In order to proceed,wehave to compute the inverse of the inertiamatrix of the ocean (Io)
−1 for

which we are missing the principal basis. The other terms of the Hamiltonian Hgo (Eq. 174)
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are fully explicit and do not cause any problem. To make the computation analytical, we
anticipate the equilibrium point solution

�o,e = CoΩk �s,e = CsΩk, Is,e = i, Js,e = j, Ks,e = k,

�c,e = CcΩk, Ic,e = i, Jc,e = j, Kc,e = k, (178)

where Co = C ′
s −C ′

c. We further define Ao = A′
s − A′

c and Bo = B ′
s − B ′

c. We then expand
(Io)

−1 in Taylor series up to the second order in y−ye. This is sufficient to get the equations
of motion of the linearised system. We verify that ye (Eq. 178) actually is a solution of
∇yHgo(ye) =∑i μi∇yCi

go(ye) where the Lagrange multipliers are

μ0 = 0, μ1 = 3Ao
cσ

0
xx + uxx , μ2 = 3Bo

c σ
0
yy + uyy,

μ3 = 3Co
c σ

0
zz + (Cc + C ′

c)Ω
2 + uzz, μ4 = μ5 = μ6 = 0, μ7 = 3Ao

sσ
0
xx + uxx ,

μ8 = 3Bo
s σ

0
yy + uyy, μ9 = 3Co

s σ
0
zz + (Cs − C ′

s)Ω
2 + uzz,

μ10 = μ11 = μ12 = 0, (179)

with
Ao
s = As + A′

s, Ao
c = Ac − A′

c. (180)

The same rules apply for Bo
s ,C

o
s , B

o
c andC

o
c . Let us write the matrix of the linearised problem

in the variables

δy∗ =
(
δΠs,z, δΠc,z, δ Is,y, δ Ic,y, δΠs,x , δ Is,z, δΠc,x , δ Ic,z, δΠo,x , δΠs,y,

δ Js,z, δΠc,y, δ Jc,z, δΠo,y, δΠo,z, δ Is,x , δ Js,y, δKs,z, δ Is,y + δ Js,x , δ Ic,x , δ Jc,y,

δKc,z, δ Ic,y+ δ Jc,x , δ Is,z+ δKs,x , δ Js,z+ δKs,y, δ Ic,z + δKc,x , δ Jc,z+ δKc,y

)T
, (181)

such that, with the driving perturbation, the system reads

δẏ∗ − A∗
go(ye)δy

∗ = δzgo(t), A∗
go(ye) :=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −A12
go 0 0 ·

A21
go 0 0 0 ·
0 0 0 −A34

go ·
0 0 A43

go 0 ·
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (182)

with

A12
go =

[
3(Bo

s − Ao
s )(κ1 − κ2) +Uxy −Uxy

−Uxy 3(Bo
c − Ao

c)(κ1 − κ2) +Uxy

]
, (183)

A21
go =

⎡

⎢⎣

1

Cs
0

0
1

Cc

⎤

⎥⎦ , (184)

123



Rotation of a rigid satellite with a fluid component… 473

and

A34
go =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ω MB
s +Uyz + FB

1,s 0 −Uyz − FB
3 FB

2,s
1

Bs

Cs − Bs

Bs
Ω 0 0 0

0 −Uyz − FB
3 −Ω MB

c +Uyz + FB
1,c −FB

2,c

0 0
1

Bc

Cc − Bc

Bc
Ω 0

0 −FB
2,sCoΩ 0 FB

2,cCoΩ −FB
4 − Ω

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (185)

A43
go =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ω MA
s +Uxz + F A

1,s 0 −Uxz − F A
3 F A

2,s
1

As

Cs − As

As
Ω 0 0 0

0 −Uxz − F A
3 −Ω MA

c +Uxz + F A
1,c −F A

2,c

0 0
1

Ac

Cc − Ac

Ac
Ω 0

0 −F A
2,sCoΩ 0 F A

2,cCoΩ −F A
4 − Ω

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (186)

In matricesA34
go andA

43
go (Eqs. 185, 186), the interaction with the central planet is represented

by the terms

MA
i = 3(Co

i − Ao
i )κ1, MB

i = 3(Co
i − Bo

i )κ2, i = s, c; (187)

the core/shell gravitational coupling through the ocean interface is given by

Uxy := uxy + uyx − uxx − uyy, (188)

Uxz := uxz + uzx − uxx − uzz, (189)

Uyz := uyz + uzy − uyy − uzz . (190)

From the expressions of (uab)a,b∈{x,y,z} given in Eqs. (158–166), we get

Uxy = 2G(Bo
c − Ao

c)(ρs(gs − fs) + (ρo − ρs)(go − fo)), (191)

Uxz = 2G(Co
c − Ao

c)(ρs(hs − fs) + (ρo − ρs)(ho − fo)), (192)

Uyz = 2G(Co
c − Bo

c )(ρs(hs − gs) + (ρo − ρs)(ho − go)). (193)

Finally, the remaining terms

FK
1,s = (C ′

s − K ′
c)(C

′
s − K ′

s)

Ko
Ω2, K = A, B (194)

FK
1,c = (C ′

c − K ′
s)(C

′
c − K ′

c)

Ko
Ω2, K = A, B (195)

FK
2,i = C ′

i − K ′
i

Ko
Ω, i = s, c, K = A, B (196)

FK
3 = (C ′

s − K ′
s)(C

′
c − K ′

c)

Ko
Ω2, K = A, B (197)

FK
4 = Co − Ko

Ko
Ω, K = A, B (198)

are only present in the linearised system because of the rotation of the ocean. If the Casimir
C0(y) = �o · �o/2 were set equal to zero, i.e. if the ocean were not rotating with respect to
the inertial frame, all FK

1,i , F
K
2,i , F

K
3 , and FK

4 , with K = A, B and i = s, c, would be nil. The
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same conclusion would hold if the kinetic energy of the ocean �T
o (Io)

−1�o/2 were skipped
from the Hamiltonian Hgo. We thus interpret these terms as due to the centrifugal force felt
by the ocean and responsible for an additional pressure on the interfaces with the interior
and the shell. In that case—i.e. if the kinetic energy of the ocean were dropped—the ocean
angular momentum �o would be decoupled from the rest of the system. A quick inspection
of the last row and column of the matrices A34

go and A43
go indeed shows that a perturbation of

�o would rotate at the eigenfrequency Ω with respect to the laboratory frame and would
thus be fixed in the inertial frame.

We note that given the structure of the matrix A∗
go, the linearised system is characterised

by two libration frequencies in longitude and five frequencies associated with libration in
latitude and wobble.

For this problem, the Lyapunov function reads

Ngo(y) = 1

2Ao

(
Πo,x − 1

2
(C ′

c − A′
c)Ω(Ic,z − Kc,x ) + 1

2
(C ′

s − A′
s)Ω(Is,z − Ks,x )

)2

+ 1

2Bo

(
Πo,y − 1

2
(C ′

c − B ′
c)Ω(Jc,z − Kc,y) + 1

2
(C ′

s − B ′
s)Ω(Js,z − Ks,y)

)2

+ 1

2Ac

(
Πc,x + 1

2
(Cc − Ac)Ω(Ic,z − Kc,x )

)2

+ 1

2Bc

(
Πc,y + 1

2
(Cc − Bc)Ω(Jc,z − Kc,y)

)2

+ 1

2Cc
Π2

c,z

+ 1

2As

(
Πs,x + 1

2
(Cs − As)Ω(Is,z − Ks,x )

)2

+ 1

2Bs

(
Πs,y + 1

2
(Cs − Bs)Ω(Js,z − Ks,y)

)2

+ 1

2Cs
Π2

s,z

+ Uxy

4

(
(Ic,y − Jc,x ) − (Is,y − Js,x )

)2 + Uxz

4

(
(Ic,z − Kc,x ) − (Is,z − Ks,x )

)2

+ Uyz

4

(
(Jc,z − Kc,y) − (Js,z − Ks,y)

)2

+ ns1
2

(Js,x − Is,y)
2 + ns2

2
(Is,z − Ks,x )

2 + ns3
2

(Js,z − ks,y)
2

+ nc1
2

(Jc,x − Ic,y)
2 + nc2

2
(Ic,z − Kc,x )

2 + nc3
2

(Jc,z − kc,y)
2, (199)

with

n∗
1 = 3

4
(Bo∗ − Ao∗)(κ1 − κ2), n∗

2 = 1

4
(Co∗ − Ao∗)(Ω2 + 3κ1),

n∗
3 = 1

4
(Co∗ − Bo∗ )(Ω2 + 3κ2), (200)

andwhere∗ = s, c.Wededuce that the system is nonlinearly stable if the following conditions
are met

Uxy > 0, Uxz > 0, Uyz > 0, Co∗ > Bo∗ > Ao∗ with ∗ = s, c. (201)
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Using the expressions of Uxy , Uxz , and Uyz (Eqs. 191–193) expanded at first order in the
equatorial and polar flatness, conditions (201) are equivalent to

{
ρs

as−cs
as

+ (ρo − ρs)
ao−co
ao

> ρs
as−bs
as

+ (ρo − ρs)
ao−bo
ao

> 0,
Co∗ > Bo∗ > Ao∗, ∗ = s, c.

(202)

Finally, as in the previous section, to get the forced solution, we decompose the driving
excitation δzgo(t) as (δz1go, δz

2
go, 0), with

δz1go(t) =

⎛

⎜⎜⎜⎝

3(Bo
s − Ao

s )σ
1
xy

3(Bo
c − Ao

c)σ
1
xy

0
0

⎞

⎟⎟⎟⎠ , δz2go(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(Co
s − Bo

s )σ
1
yz

0
3(Co

c − Bo
c )σ

1
yz

0
0

−3(Co
s − Ao

s )σ
1
xz

0
−3(Co

c − Ao
c)σ

1
xz

0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (203)

6 Application

6.1 Io’s libration modes

Io, one of the Galilean satellite of Jupiter, is assumed to have a liquid core (Anderson et al.
1996). Its rotation motion has already been studied within the Poincaré–Hough paradigm
using a Hamiltonian formalism (Henrard 2008). This analysis has then been extended using
the same method in Noyelles (2013, 2014). Although the approach in ibid. is Hamiltonian,
it differs from that described in Sect. 4 which is expressed in non-canonical variables. Here,
we revisit the problem with the aim of validating our method and, more specifically, the
quasi-spherical approximation (Sect. 4.2).

The orbital and physical parameters of Io, which are summarised in Table 2, are taken from
Noyelles (2013, 2014).2 The eigenfrequenciesωu ,ωv ,ωw, andωz are directly computed from
the matrixA∗

fc (Eqs. 132, 133) for the Poincaré–Hough model (Sect. 4.1) and from the matrix
A∗
fc′ (Eqs. 146, 147) for the quasi-spherical approximation (Sect. 4.2). Hereafter, the two

models are referred to as “model fc” and “model fc′”, respectively. The eigenfrequencies are
then converted into periods for a direct comparisonwith (Noyelles 2014). The correspondence
between the eigenperiods of ibid. and the eigenfrequencies of this work is

Tu = 2π

ωu
, Tv = 2π

ωv − Ω
, Tw = 2π

ωw

, Tz = 2π

ωz
. (204)

The results are gathered in Table 3. We observe a good match between model fc and that
of Noyelles (2014) for Tu , Tw, and Tz with a maximal error of about 0.2%. There is a larger
discrepancy between the two approaches in the case of Tv with a deviation of almost 6%, but
this eigenmode is more sensitive due to the small denominator ωv − Ω (Eq. 204). It is also
very sensitive to the polar flattening of the core (Noyelles 2012). Nevertheless, the agreement

2 Here and throughout the paper, we follow the IAU recommendations which state that the symbol for a Julian
year is “a”. Hence, radian per year is written “rad/a”.

123



476 G. Boué et al.

Table 2 Orbital and physical
parameters of Io taken from
Noyelles (2014)

Parameter Value Units

GMp (Jupiter) 126712765 km3/s2

a 422029.958 km

e 0.00415

i 2.16 arcmin

Ω 1297.2044725279755 rad/a

A/(mR2) 0.375127

B/(mR2) 0.377342

C/(mR2) 0.378080

Ac/(mR2)a 0.0060075578

Bc/(mR2)a 0.0062839600

Cc/(mR2)a 0.0062534432

aMoments of inertia of the core
computed from the internal
model 1 of Noyelles (2014)

Table 3 Eigenperiods of Io’s rotational motion (Eq. 204)

Source Tu (day) Tv (day) Tw (day) Tz (day)

Noyelles (2014) 13.2322 166.3520 225.0927 1.7382

This work: model fc (Sect. 4.1) 13.2504 157.2780 224.5395 1.7385

This work: model fc′ (Sect. 4.2) 13.2502 156.5653 224.5402 1.7368

is satisfactory given that the methods to compute the eigenperiods in both studies are very
different. The eigenfrequencies given by models fc and fc′ are also very close to each other.
Once again, the largest discrepancy occurs for Tv , but here it does not exceed 0.5%. We thus
conclude that the quasi-spherical approximation is justified.

Figure 2 represents the trajectories of the principal axes I, J, and K in the laboratory
frame (i, j,k), while the system stands in each of the eigenmodes. The corresponding eigen-
frequencies are recalled below each subfigure. We recognise the libration motions of a rigid
satellite which the name of the eigenmodes has been taken from. In Henrard (2008) and in
Noyelles (2013, 2014), the eigenmode associated with ωz is referred to as the free libration
of the core. Nevertheless, given the strong similarity between the motions associated with
ωv and ωz , we chose to attribute the same name “libration in latitude” for both of them.
Furthermore, from the observation of the surface only it is hardly possible to distinguish one
from the other. Actually, the distinction between the two modes lies in the relative position
of �c and �, as shown in Fig. 3. When the satellite is in the eigenmode associated with ωv ,
the two vectors are on the same side from the origin, while in the eigenmode of frequency
ωz they are on opposite side.

6.2 Titan’s equilibrium obliquity

In this section, we analyse the rotation of Titan orbiting Saturn. Several hints suggest that this
satellite holds a global ocean under its surface (Coyette et al. 2016 and references therein).
Among these clues, an important one for our purpose is Titan’s “high” obliquity of 0.32◦
which could not be explained if the satellitewere solid (Bills andNimmo2011). Nevertheless,
a discrepancy still persists between the observations and the expected obliquity associated
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Fig. 2 Eigenmodes of Io’s rotationmotion computedwith the parameters of Table 2. Positions at constant time
intervals of the principal axes (I, J,K) are depicted by black dots. Open circles indicate the initial condition.
Intersections of the dotted great circles of the unit sphere represent the laboratory frame (i, j, k). Jupiter is in
the direction of the vector i. The associated eigenfrequencies are recalled below each figure

with the Cassini state, the latter remaining below 0.15◦ for a large class of interior models
(e.g. Baland et al. 2011). Therefore, it has been proposed that Titan’s current obliquity is
amplified by a resonance with one of the remaining orbital forcing frequencies (Baland et al.
2011; Noyelles and Nimmo 2014).

In his abstract, Henrard (2008)wrote about Io that “the addition of a degree of freedom (the
spin of the core) with a frequency close to the orbital frequency multiplies the possibility of
resonances”. In the case of Titan, we also have an additional degree of freedom in comparison
with the previous studies quoted above. We thus expect our model to be able to tilt Titan’s
axis more easily.

The orbital elements of Titan are taken from the ephemeris TASS1.6 (Vienne and Duriez
1995). From the full solution, we only retain the Keplerian motion and the nodal precession
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libration in latitude (ωv)

Πc

Π

y-axis

x-axis

libration in latitude (ωz)

Πc

Π

y-axis

x-axis

Fig. 3 Trajectories of the projections of � and �c on the plane (i, j), while Io is in libration in latitude. Dots
represent successive positions of the vectors. Open circles denote the initial conditions. In the eigenmode with
frequency ωv , the two vectors are on the same side from the origin, whereas in the eigenstate of frequency
ωz , they are on opposite side. The radial coordinate of each vector is plotted in a log scale with arbitrary units.
These figures have been computed using Io’s parameters (cf Table 2)

of the orbit with respect to the Laplace plane.3 These parameters are summarised in Table 4.
Regarding Titan internal structure, we select twomodels proposed by Fortes (2012), hereafter
referred to as model F1 and F2. They assume a global ocean with extreme densities equal
to 1023 and 1281kg/m3, respectively. In model F1, the ocean is a mixture of water and
methanol, while in model F2, the ocean is made of water and ammonia. Parameters of these
interior models are summarised in Table 5. In both models, the average density is 1881kg/m3

and the mean moment of inertia I/(mR2) remains within the errorbars provided by Iess et al.
(2012). The equatorial flattening ζ is obtained by integration of Clairaut’s equation (Clairaut
1743) assuming an hydrostatic equilibrium (same as Richard 2014). The boundary semi-axes
at volumetric mean radius R between two layers are given by (e.g. Rambaux and Castillo-
Rogez 2013)

a = R

(
1 + 7

9
ζ

)
, b = R

(
1 − 2

9
ζ

)
, c = R

(
1 − 5

9
ζ

)
. (205)

The values of the derived parameters involved in the Hamiltonian Hgo(y) (Eq. 174) are listed
in Table 6.

The eigenfrequencies computed for the two interiormodels F1 andF2 are shown inTable 7.
For each model, we assume either a rotating or a static ocean with respect to the inertial
frame (see Sect. 5). For reference, we also provide the eigenfrequencies assuming a fully
rigid satellite. To interpret these eigenfrequencies, the associated trajectories of the vectors
(Ic, Jc,Kc) and (Is, Js,Ks) are displayed in Fig. 4. We recognise librations in longitude
at ωu1 and ωu2, librations in latitude at ωv1, ωv2, and ωv3, and wobbles at ωw1 and ωw2.
From Table 7, we observe that each eigenmode has a specific range of frequencies. Libration
frequencies in latitude are close to the mean motion Ω ≈ 143.9240 rad/a. Frequencies of

3 Here, we define Titan’s Laplace plane as the plane whose orientation is given by the constant part of the
inclination solution of TASS1.6. (Vienne and Duriez 1995).
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Table 4 Orbital parameters of Titan used in this study

Parameter Value Units References

GMp (Saturn) 37931272 km3/s2 Campbell and Anderson (1989)

a 1221729 km Computeda

e 0.028 Vienne and Duriez (1995)

ib 0.320 deg Vienne and Duriez (1995)

Ω 143.92404785 rad/a Vienne and Duriez (1995)

dΦ/dt −0.00893124 rad/a Vienne and Duriez (1995)

aThe semimajor axis has been computed from themasses of Saturn and Titan given by Campbell andAnderson
(1989) and the orbital parameters N6 and p06 provided by Vienne and Duriez (1995)
bInclination with respect to the Laplace plane given by the amplitude of the second harmonic of ζ06 in the
notation of Vienne and Duriez (1995)

Table 5 Physical parameters of
the two interior models of Titan
considered in this study taken
from Fortes (2012)

Layer F1 F2

ρ R ζ ρ R ζ

(kg/m3) (km) (10−5) (kg/m3) (km) (10−5)

Ice 930.9 2575 12.068 930.9 2575 12.080

Ocean 1023.5 2475 11.878 1281.3 2475 11.887

Ice V 1272.7 2225 11.552 1350.9 2225 11.488

Ice VI 1338.9 2163 11.521 – – –

Silicate 2542.3 2116 11.514 2650.4 1984 11.310

For each layer, ρ is the density
and R and ζ , respectively denote
the mean radius and the
equatorial flattening of the upper
boundary

libration in longitude are between 2 and 8 rad/a, and the wobble is the slowest motion with
frequencies ranging between 0.01 and 0.2 rad/a.

The condition for Titan to have a significant (shell) obliquity is that one of the libra-
tion frequencies in latitude gets close to the excitation frequency of the perturbation σ 1

xz(t)
(Eq. 69), namely, ω1

xz = Ω − Φ̇ ≈ 143.9330 rad/a. In the case of a rigid satellite there is no
lever arm. The libration frequency only depends on the total moments of inertia which are
constrained by observations. This frequency, equal to 143.9582 rad/a, leads to an obliquity
of 0.113◦ which is about one-third of the actual value εobs = 0.32◦.

When the ocean is taken into account, the system has three distinct frequencies of libration
in latitude which can potentially be in resonance with the orbital precession rate. It should
nevertheless be stressed that when the rotation of the ocean is set to zero, the frequency
ωw3 in Table 7 is just the mean motion Ω which is not involved in the tilting of the shell
axis. Titan’s obliquities ε computed with the different models are gathered in Table 8. Note
that we allow the obliquity to be negative as explained in Fig. 5. As expected, within the
“static ocean” hypothesis the ocean is not affected by the perturbation σ 1

xz . Its obliquity is
εo = −i , meaning that �o remains aligned with the Laplace pole k which is the third axis of
our laboratory reference frame. The last two eigenfrequencies ωv1 and ωv2 are further away
from ω1

xz than ωv3. They only produce a shell obliquity of εs ≈ 0.06◦ which is much lower
than the observed one. Furthermore, this result does not significantly vary from model F1 to
model F2.

If the rotation of the ocean is set equal to the mean rotation of the satellite, ωw3 is the
eigenfrequency responsible for the tilt of Titan’s shell spin pole. With the two models F1 and
F2 considered here, the results are still very low: εs = 0.004◦ withmodel F1 and εs = 0.108◦
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Table 6 Derived parameters for
Titan’s model

Parameter Model F1 Model F2 Units

Ac/(mR2) 0.2321339588 0.2133546838

Bc/(mR2) 0.2321607420 0.2133790654

Cc/(mR2) 0.2321696677 0.2133871908

Am/(mR2) 0.0355650464 0.0355568942

Bm/(mR2) 0.0355696492 0.0355615041

Cm/(mR2) 0.0355711830 0.0355630404

A′
c/(mR2) 0.1048351592 0.1312111289

B′
c/(mR2) 0.1048472721 0.1312262055

C ′
c/(mR2) 0.1048513089 0.1312312299

A′
m/(mR2) 0.1785384650 0.2234576674

B′
m/(mR2) 0.1785596760 0.2234842365

C ′
m/(mR2) 0.1785667448 0.2234930909

uxx/(mR2) 135.96964203 109.83790034 1/day2

uxy/(mR2) 135.98930793 109.85375574 1/day2

uxz/(mR2) 135.99586322 109.85904086 1/day2

uyx/(mR2) 135.93831145 109.81302276 1/day2

uyy/(mR2) 135.95797282 109.82887457 1/day2

uyz/(mR2) 135.96452660 109.83415849 1/day2

uzx/(mR2) 135.92787023 109.80473203 1/day2

uzy/(mR2) 135.94753009 109.82058264 1/day2

uzz/(mR2) 135.95408336 109.82586617 1/day2

Note that the number of digits
provided in this table is required
to recover the values presented in
Tables 7 and 8

Table 7 Eigenfrequencies of Titan’s rotation in rad/a

Rotating ocean Static ocean Rigid Type of motion

F1 F2 F1 F2 F1/F2

ωu1 7.9237 8.2656 7.9237 8.2656 2.7117 Libration in longitude

ωu2 2.3950 2.1147 2.3950 2.1147 Libration in longitude

ωv1 144.3272 144.3641 144.2507 144.2683 143.9582 Libration in latitude

ωv2 143.9494 143.9445 143.9528 143.9472 Libration in latitude

ωv3 143.9307 143.9266 143.924a 143.924a Libration in latitude

ωw1 0.1943 0.2105 0.1177 0.1104 0.0228 Wobble

ωw2 0.0178 0.0138 0.0214 0.0199 Wobble

aIn the case where the ocean is assumed static, ωv3 = 143.9240 rad/a is the mean motion Ω

withmodel F2. However, the two values vary by a factor 27. Amodification of Titan’s interior
is thus more likely to produce the observed obliquity if the rotation of the ocean is taken into
account.

To illustrate this statement, we generate a series of interior models of Titan based on
the model F1. To simulate inhomogeneities in the shell, we slightly modify the equatorial
flattening ζs of the surface from 11.890×10−5 to the hydrostatic value 12.068×10−5 given
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Fig. 4 Eigenmodes of Titan’s rotation motion computed with the interior model F1. Positions at constant
time intervals of the shell principal axes (Is , Js ,Ks ) are depicted by black dots on the unit sphere. Those of
the interior (Ic, Jc,Kc) are plotted at half the radius of the unit sphere. The white dots indicate the initial
condition. Intersections of the dotted great circles of the unit sphere represent the laboratory frame (i, j, k).
Saturn is in the direction of the vector i. The associated eigenfrequencies are recalled below each figure
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Table 8 Obliquity of Titan’s
layers in degree

Rotating ocean Static ocean Rigid

F1 F2 F1 F2 F1/F2

Core 0.294 0.272 0.149 0.207 0.113

Ocean −0.479 0.208 −0.320 −0.320 0.113

Shell 0.004 0.108 0.062 0.064 0.113The meaning of the sign of the
obliquity is explained in Fig. 5

Fig. 5 Definition of Titan’s
inclination i and obliquity ε. In a
Cassini state of the averaged
problem, the Laplace pole, the
orbit pole, and the spin pole are
in a same plane. We define the
orientation of this plane by the
inclination measured from the
Laplace pole to the orbit pole
which by convention is positive.
This allows to define the obliquity
as a signed angle measured from
the orbit pole to the spin axis. In
this figure, ε is positive
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xz .
In the upper plots, εs represents the obliquity of the shell at the Cassini state and εobs the observed value
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in Table 5. These numbers should be compared to the equatorial flattenings computed with
the two models provided by Iess et al. (2012), i.e. 11.911×10−5 (SOL2) and 12.005×10−5

(SOL1a). To keep the global moments of inertia constant, the equatorial flattening of all the
other layers is refitted using Clairaut’s equation. It has been checked that all these models are
nonlinearly stable according to condition Eq. (202). Figure 6 displays the evolution of the
libration frequencies in latitude ωv2 and ωv3 as a function of the surface equatorial flattening
ζs . When the rotation of the ocean is considered (left plots), ωv3 varies sufficiently to cross
the resonant frequency ω1

xz at ζs ≈ 11.97 × 10−5 where, in the linear approximation, the
shell obliquity diverges. More interestingly, for ζs ≈ 11.94×10−5, the driven shell obliquity
εs is equal to the observed value εobs = 0.32◦. In comparison, when the ocean is assumed to
be static (right plots of Fig. 6), ωv3 remains strictly equal to Ω and ωv2 barely evolves. As a
consequence, the equilibrium shell obliquity remains practically constant close to 0.062◦.

7 Conclusion

This paper provides a general method for analysing the rotation dynamics of a rigid body
with a fluid internal layer. The study is performed in a non-canonical Hamiltonian formalism
well adapted to systems near relative equilibria such as synchronous satellites in a Cassini
state. The Poisson structure of the non-canonical Hamiltonian is here obtained by a Legendre
transformation of the corresponding Lagrangian written using Poincaré’s formalism which
makes use of the properties of the Lie group acting on the configuration space.

With this approach, we have been able to treat the case of a satellite with a liquid core
or with a global underneath ocean in the exact same manner as that of a rigid satellite. All
the difficulty is in the calculation of the Lagrangian function—and more specifically, of the
kinetic energy of the fluid layer—in terms of generalised coordinates and Lie velocities. For
a satellite with a liquid core, Poincaré introduced the concept of a fluid simple motion which
cannot be rigorously transposed to a satellite with an ocean. Nevertheless, at first order this
fluid layer behaves like a rigid body for which the kinetic energy is known. Tests on a satellite
with a liquid core, assuming Io’s physical and orbital parameters, have shown that the errors
induced by this approximation do not exceed 0.5% on the eigenfrequencies.

The analysis of a hollow satellite with a fluid core leads to a four-degree-of-freedom
dynamical model. The linearised problem in the vicinity of the synchronous equilibrium state
is thus characterised by four eigenmodes. These are a libration in longitude, a wobble, and
two librations in latitude. To this solved problem, we have provided an analytical expression
of the linearised equations written in terms of intuitive variables, namely the components of
the angular momenta and of the base frame vectors. We also have clearly identified the fourth
eigenmode as a libration in latitude.

The rotation dynamics of a satellite with a global subsurface ocean is governed by seven
eigenmodes associated with the seven degrees of freedom of the problem, six of which being
equally shared by the interior and the outer shell and the last one being brought by the ocean.
Near the synchronous equilibrium state, these eigenmodes are identified as two librations
in longitude and two wobbles and three librations in latitude. The amplitude of the third
libration in latitude would only vanish if the ocean were static with respect to the inertial
frame.

Our study has been motivated by Titan’s obliquity measured by the Cassini–Huygens
mission. Thus far, dynamical models struggle to explain its high value under the hydrostatic
shape hypothesis suggested by the ratio of its Stokes coefficients J2/C22 ≈ 10/3. Here,
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we show that the rotation of the ocean makes the dynamical model much more sensitive
to small perturbations of the interior model than when the ocean is assumed static. As an
example, starting from a body in perfect hydrostatic equilibrium, we slightly modified the
equatorial flattening of the shell by about 1% of the nominal value. This was enough to bring
the obliquity of the Cassini state even beyond the radiometric value with the seven-degree-of-
freedommodel, while the same quantity computed with the static ocean hypothesis remained
practically constant scarcely reaching a 0.1% increase.

This work is intended to demonstrate the capability of the seven-degree-of-freedom
dynamical model to explain the observed high obliquity of Titan. The problem has therefore
been intentionally simplified. Tidal deformations, atmospheric torques, and all orbital per-
turbations but the main precession relative to the Laplace plane have been discarded. These
additions would be required for an exhaustive search of the interior models compatible with
the measurements made by the Cassini–Huygens mission: the rotation state, the gravity field
coefficients, the shape, the tidal Love number, and the electric field. But this is beyond the
scope of the present paper and shall be discussed elsewhere.
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