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Abstract A new approach in satellite constellation design is presented in this paper, taking
as a base the 3D Lattice Flower Constellation Theory and introducing the necklace problem
in its formulation. This creates a further generalization of the Flower Constellation Theory,
increasing the possibilities of constellation distribution while maintaining the characteristic
symmetries of the original theory in the design.
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1 Introduction

The space industry has experienced great advances in the last decades due to the number of
possibilities and benefits that the space environment brings. Satellites orbiting the Earth have
a very advantageous position, since they are able to observe vast regions of the Earth in a
small amount of time. This advantage can be improved even further with the use of satellite
constellations, allowing the study of several regions of the Earth surface at the same time.
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Satellite constellations are groups of satellites that work cooperatively to achieve a com-
mon mission. They allow to optimize the performance of the system as a whole, reducing
the costs of the mission. However, the study of several satellites at the same time, and more
importantly, the relations that appear in the internal structure of the constellation, increases
the complexity of the problem to solve, but also expands the possibilities in the design.

In the last decades, several satellite constellation design methodologies have appeared,
such as the Walker Constellations (Walker 1984) for circular orbits, the design of Draim
(1987) for elliptic orbits, or the Ground-track Constellations (Arnas et al. 2016a, 2017c) for
any kind of configuration. In 2004, the Flower Constellation Theory (Mortari et al. 2004;
Mortari and Wilkins 2008; Wilkins and Mortari 2008; Casanova et al. 2014b; Arnas et al.
2016b) was presented, including in its formulation circular and elliptic orbits. The theory
was later improved by the 2D Lattice (Avendaño et al. 2013) and 3D Lattice (Davis et al.
2013) theories, which simplified the formulation and made the configuration independent of
any reference frame.

In the 2D and 3D Lattice Flower Constellation theories, the configuration of the con-
stellation presents symmetries and is highly uniform in the space, allowing to generate
constellations where all satellites observe the same relative configuration. These properties
have many advantages in missions such as global coverage or global positioning. Afterward,
realizing that the amount of different configurations of a constellation for a certain number
of satellites could be increased in the formulation, the concept of necklaces (Casanova et al.
2011, 2014a) was introduced for the 2D Lattice Flower Constellation theory. The theory of
necklaces is based on the idea of generating a fictitious constellation with more satellites than
required and then, selecting a subset of satellites from the fictitious constellation taking into
account that the property of symmetry has to be maintained (Arnas et al. 2017b).

The solution of the necklace problem (as well as the Flower Constellation Theory) is
related to Number Theory which implies working with integer numbers in the distribution
of the orbital parameters of the constellation. This leads to interesting properties that are not
presented with the use of real numbers.

The aim of this paper is to apply the necklace theory into the 3D Lattice Flower Constel-
lations design methodology. This is done by the introduction of a new formulation, which
constitutes a generalization of the 2D and 3D Lattice Flower Constellations, and that con-
tains as a subset, all the former Lattice Flower Constellations. In this new formulation, it is
possible to include necklaces in any of the variables of distribution: the right ascension of
the ascending node, the argument of perigee and the mean anomaly. This allows to expand
the possibilities of design, not limiting the generation of necklaces to the mean anomaly as
done in previous works (Casanova et al. 2011, 2014a).

This manuscript is organized as follows: First, a short introduction on the 3D Lattice
Flower Constellations and the Necklace Theory is performed. Second, a new formulation
is introduced that includes necklaces directly into the formulation of the distribution. This
provides a clearer formulation and moreover allows a faster computation of the real constel-
lation, since only the real positions of the satellites are computed. Third, the expansion of
the searching space is introduced, which allows to generate as many different possibilities
in design as required. These two properties are especially interesting in optimization prob-
lems, where the time spent and the design possibilities are controlled using the size of the
fictitious constellation. Fourth, the conditions to generate distributions thatmaintain the prop-
erties of symmetry and uniformity of the configuration (characteristic of the Lattice Flower
Constellations) are presented. This allows to create structures in the constellation that are
maintained during its movement. Finally, an example of application of this new formulation
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3-Dimensional Necklace Flower Constellations 435

is presented, where the possibilities that this new methodology can provide in the design of
satellite constellations are shown.

2 Preliminaries

In this section, a short introduction of the 3D Lattice Theory and the necklace problem is
shown, in order to present the base of the problem treated in this paper and as a way to
summarize the previous Flower Constellation Theory.

2.1 The 3D Lattice Flower Constellation Theory

The 3D Lattice Flower Constellation Theory is a satellite constellation design methodology
in which the satellites are distributed in several inertial orbits, where each satellite has a
different value of its mean anomaly and argument of perigee. Furthermore, the satellites of
the constellation have the same semimajor axis, eccentricity and inclination. This design
allows to generate constellations whose satellites present circular or elliptic orbits. The most
important property of this constellation design is that the satellites are distributed generating
a symmetric configuration in the lattice that is maintained over time.

As it can be seen in Avendaño et al. (2013), a 3D Lattice Flower Constellation can be
described by the use of the Hermite Normal Form. TheHermite Normal Form is composed by
six integers, three in the diagonal of the matrix and the other three in the lower triangular part
of thematrix. The integers in the diagonal are the number of orbital planes of the constellation
(LΩ ), the number of different argument of perigees in each orbital plane (Lω) and the number
of satellites in each orbit (LM ). The other three parameters are the configuration numbers
(LMΩ, LMω, LωΩ ) defined as follows: LMΩ ∈ [0, LΩ − 1], LMω ∈ [0, Lw − 1] and
LωΩ ∈ [0, LΩ − 1].

The expression that summarizes the distribution of the satellites in a 3D Lattice Flower
Constellation is:

⎡
⎣
LΩ 0 0
LωΩ Lω 0
LMΩ LMω LM

⎤
⎦

⎛
⎝

ΔΩi jk

Δωi jk

ΔMi jk

⎞
⎠ = 2π

⎛
⎝
i − 1
k − 1
j − 1

⎞
⎠ , (1)

where ΔΩi jk is the distribution in the right ascension of the ascending node of the constella-
tion,Δωi jk is the distribution of the argument of perigee, andΔMi jk is the initial distribution
of the mean anomaly with respect to a reference satellite of the constellation with orbital ele-
ments {Ω000, ω000, M000}. Moreover, the list (i, j, k) represents the position of a satellite in
the orbital plane i ∈ [1, LΩ ], with the argument of perigee k ∈ [1, Lω] and themean anomaly
j ∈ [1, LM ]. Note also that the values of Ωi jk , ωi jk and Mi jk represent three angles, and
thus, they are defined in the range [0, 2π ].

The distribution shown in Eq. (1) can be represented as a set of points that are situated
over the surface of a three-dimensional torus in a four-dimensional space (a representation
that is non-practical from a graphical point of view). However, the same distribution can also
be represented by three different two-dimensional tori in a three-dimensional space.

As an example of that, a constellation with parameters: LΩ = 7, Lω = 5, LM = 10,
LMΩ = 5, LMω = 4 and LωΩ = 6 is generated. Using Eq. (1), the distribution of the
satellites is obtained, where the constellation is made by LΩ LωLM = 350 satellites. The tori
representation of this constellation is shown in Fig. 1, where each point is represented by two
coordinates, a polar longitude (toroidal direction), and the angle between the perpendicular
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Fig. 1 Tori representation of the constellation distribution

Fig. 2 (Ω, ω, M)-space representation of the constellation

to the torus surface in the point and the horizontal plane (poloidal direction). It is important
to note that the figure represents all the satellites of the constellation, and as such, the points
only show the different values of each variable in the constellation. That leads to LΩ Lω = 35
different combinations in the first torus, LΩ LωLM = 350 in the second and in the third one,
since all the configuration numbers (LMΩ, LMω, LωΩ ) are different from zero, and LΩ and
Lω are co-primes. On the other hand, the figure clearly shows that the points are situated
generating closed lines in the tori, the lattice of the constellation.

Other useful representation is the (Ω,ω, M)-space, which can be observed for this exam-
ple in Fig. 2. As it can be seen, the satellites are distributed in two sets of parallel planes, one
vertical (the orbital planes) and the second inclined in the other axes. This is caused by the
configuration numbers (LMΩ , LMω and LωΩ ), which produce this effect in the distribution.
As it will be seen later, this property has deep implications in the development of the necklace
theory. Note also that the first and the last orbits are the same due to the modular nature of
the problem.

On the other hand, it is important to remark the relation between both graphical represen-
tations. If a projection is performed over the different axes of Fig. 2, we can observe clearly
the number of points that appear in the different tori of Fig. 1, as some points of the distribu-
tion will collapse in the same position of the tori during these projections. This provides an
additional tool to study how the constellation is distributed in the configuration space.
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3-Dimensional Necklace Flower Constellations 437

2.2 Necklace theory

The necklace problem is a combinatorial problemwhich answers howmany different arrange-
ments of n pearls in a circular loop can be produced, assuming that each pearl comes in one
of k different colors (Arnas et al. 2017a, d). In the case of study, there are just two colors
k = 2, representing an empty position or a satellite in the constellation (Casanova et al.
2014a). Thus, we can define a necklace as the subset of points selected from a set of available
positions, that is, a necklace G is a subset of a ring of integers Zn :

G ⊆ Zn = {1, . . . , n} . (2)

In this definition, two arrangements are considered to be identical if they only differ by a
rotation inside the loop, that is:

G1 ∼= G2 ⇐⇒ ∃s : G1 = G2 + s mod (n), (3)

where s is an integer that belongs to the ring Zn . In addition, another important concept to
introduce is the symmetry of a necklace (Sym(G)), defined as:

Sym(G) = min {1 ≤ r ≤ n : G + r ≡ G mod (n)} , (4)

where Sym(G) is the number of times that the configuration must be shifted in order to obtain
a configuration identical to the initial.

3 The 3D necklace flower constellations theory

Equation (1) defines the distribution of a 3D Lattice Flower Constellation. This distribution
has the particularity of presenting a symmetric configuration in the lattice of the constellation
with respect to all its variables, the right ascension of the ascending node, the argument of
perigee and the mean anomaly. The objective now is to introduce the concept of necklaces
in the formulation, but preserving the symmetries of the initial configuration.

In order to introduce the necklaces, Eq. (1) must be expanded:

ΔΩi jk = 2π

LΩ

(i − 1) ,

Δωi jk = 2π

Lω

(k − 1) − 2π

Lω

LωΩ

LΩ

(i − 1) ,

ΔMi jk = 2π

LM
( j − 1) − 2π

LM

LMω

Lω

(k − 1)

− 2π

LM

(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1) , (5)

where this configuration corresponds to a fictitious constellation that is used to define the
available positions in which the real satellites of the constellation are located.

From Eq. (5), it can be observed that the value of Δωi jk is different for i = 1 and
i = LΩ + 1, and thus, moving in i ∈ [1, LΩ + 1] does not close the configuration in the
torus for a particular value of k. This means that in general Δωi jk 
= Δω(i+LΩ) jk . In the
3D Lattice formulation, this has no effect since all the positions are filled, and consequently,
the configuration is complete. However, with the use of necklaces, this effect has to be taken
into account in order to generate symmetric configurations. The same consideration has to
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be made in the expression of the mean anomaly. In that sense, a complete rotation in the right
ascension of the ascending node or the argument of perigee does not generate in general the
same value on the mean anomaly since ΔMi jk 
= ΔM(i+LΩ) jk and ΔMi jk 
= ΔMi j (k+Lω).

Two different necklaces can be defined in a 3D Lattice Flower Constellation, one in the
mean anomaly and the other in the argument of perigee. It is possible to generate necklaces
in the right ascension of the ascending node with the 3D Lattice Flower Constellation config-
uration. However, this is equivalent to generate the distribution and keeping just the orbital
planes that we are interested in. For this reason, we do not consider this case, since the use
of necklaces is not required in these kind of configurations.

Let GM be a necklace defined in the mean anomaly with a number of elements equal to
NM = |GM | and such that GM ⊆ ZLM . This represents NM satellites taken from a set of
LM available positions defined in a particular orbit. The necklace in the mean anomaly GM

is represented as a vector of dimension NM :

GM = (GM (1), . . . ,GM ( j∗), . . . ,GM (NM )
)
, (6)

with
1 ≤ GM (1) ≤ · · · ≤ GM ( j∗) ≤ · · · ≤ GM (NM ) ≤ LM , (7)

and where the index j∗ represents an integer modulo NM , that is, j∗ + NM is the same index
as j∗. This allows to define an application (T1) that points to the positions occupied by the
necklace from the available positions:

T1 : ZNM −→ ZLM

j∗ 
−→ GM ( j∗). (8)

Thus, it makes sense to refer to GM ( j∗), where the integer parameter j∗ ∈ {1, . . . , NM }
represents the position inside the necklace defined. In addition, and for simplicity of notation,
we denotemod(a, b) = a mod (b). Thus, due to themodular arithmetic inside the necklace:

GM ( j∗) = GM (mod( j∗ + NM , NM )), (9)

which corresponds to a complete loop in the available positions in the mean anomaly. It is
important to note that this rotation is equivalent to a movement in the admissible locations
defined by:

j = j + LM mod (LM ), (10)

as both represent the same movement of the necklace, one using the parametrization of the
necklace and the other using the parametrization of the fictitious constellation.

On the other hand, let Gω be a necklace defined in the argument of perigee with a number
of elements equal to Nω = |Gω|, the number of real orbits per plane and a number of available
positions equal to Lω, which correspond to the size of the space of this variable in the fictitious
constellation. This necklace is defined as a vector in the same way as GM :

Gω = (Gω(1), . . . ,Gω(k∗), . . . ,Gω(Nω)
)
, (11)

with
1 ≤ Gω(1) ≤ · · · ≤ Gω(k∗) ≤ · · · ≤ GM (Nω) ≤ Lω, (12)

where the index k∗ is an integer modulo Nω. This allows to define an application (T2) that
points to the positions occupied by the necklace from the available positions:

T2 : ZNω −→ ZLω

k∗ 
−→ Gω(k∗), (13)
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which is used to refer to Gω(k∗), where the integer parameter k∗ ∈ {1, . . . , Nω} represents the
movement inside the necklace defined. Moreover, the necklace represents a ring of integers;
thus, there exists a modular arithmetic inside the necklace:

Gω(k∗) = Gω(mod(k∗ + Nω, Nω)), (14)

which is equivalent to a complete loop in the available positions in the argument of perigee:

k = k + Lω mod (Lω), (15)

as both are two formulations for the same movement, one using the parametrization of the
necklace and the other using the parametrization of the fictitious constellation.

Now, an application (T3) has to be definedwhich relates the distribution indexes (i, j∗, k∗)
from the necklace, to the indexes of the available positions (i, j, k):

T3 : ZLΩ × ZNM × ZNω −→ ZLΩ × ZLM × ZLω

(i, j∗, k∗) 
−→ (i, j, k), (16)

where the effects of the possiblemovementwith respect to the right ascension of the ascending
node and the argument of perigee are introduced in the formulation by the use of the three
shifting parameters, SωΩ the shifting parameter that relates the argument of perigee to the
right ascension of the ascending node, SMΩ the shifting parameter that relates the mean
anomaly to the right ascension of the ascending node, and SMω the shifting parameter that
relates the mean anomaly to the argument of perigee. That way, the possible movements of
the integers k and j are described, respectively, by:

k = Gω(k∗) + SωΩ(i − 1),

j = GM ( j∗) + SMω(k − 1) + SMΩ(i − 1). (17)

We now subtract one unit of each expression to relate to the original formulation provided
by Eq. (5), obtaining:

k − 1 = Gω(k∗) − 1 + SωΩ(i − 1),

j − 1 = GM ( j∗) − 1 + SMω(k − 1) + SMΩ(i − 1). (18)

Both expressions present modular arithmetic with respect to the symmetries of their neck-
laces, thus:

k − 1 = Gω(k∗) − 1 + SωΩ(i − 1) mod Sym(Gω),

j − 1 = GM ( j∗) − 1 + SMω(k − 1) + SMΩ(i − 1) mod Sym(GM ). (19)

However, j depends on k, and we require a dependency over k∗; consequently, a substitution
of k is performed in the second expression, leading to:

j − 1 = GM ( j∗) − 1 + SMωmod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

+ SMΩ(i − 1) mod Sym(GM ), (20)

where it can be seen that the movement in j depends also on the necklace in the argument
of perigee.

Once the distribution over each index is performed, we introduce Eqs. (19) and (20) into
Eq. (5), resulting in:
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ΔΩi j∗k∗ = 2π

LΩ

(i − 1) ,

Δωi j∗k∗ = 2π

Lω

[
mod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
) − LωΩ

LΩ

(i − 1)

]
,

ΔMi j∗k∗ = 2π

LM

[
mod

(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1

+ SωΩ(i − 1), Sym(Gω)
) + SMΩ(i − 1), Sym(GM )

)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1)

]
, (21)

which describes the possible movements of the two necklaces defined (GM and Gω) inside
the distribution created in the fictitious constellation.

Equation (21) allows not only tomake the distribution of the satellites in the lattice, but also
to find all symmetric configurations using the necklace theory. Note that, in the expression
for ΔMi j∗k∗ , the necklace in the argument of perigee appears, which means that properties
in this necklace are affecting the distribution of the constellation in the mean anomaly. This
effect is also seen in the conditions for the shifting parameters of the configuration as it will
be seen later.

One important thing to notice regarding Eq. (21) is that, since the shifting parameters
(SωΩ, SMω, SMΩ ) are subjected to a modular arithmetic in the symmetry of the necklaces,
duplicities can appear if no boundaries are defined. In that sense, and in order to avoid these
duplicities in the formulation, we impose:

SωΩ ∈ [0, Sym(Gω) − 1],
SMω ∈ [0, Sym(GM ) − 1],
SMΩ ∈ [0, Sym(GM ) − 1], (22)

to the shifting parameters. That way, we can assure that all combinations of parameters
generate different constellation configurations, whilewe are still able to create all the different
distributions that this formulation can provide.

3.1 Symmetry in the 3D Lattice Flower Constellations

In this section, we impose the conditions of symmetry to the constellation configurations that
can be obtained using Eq. (21). That way, a relation between the distribution and the shifting
parameters is obtained, which allows to define all the possible symmetric configurations that
can be generated inside a given fictitious constellation.

3.1.1 Symmetry with respect to the mean anomaly

The conditions for symmetry in the three variables when a complete rotation in the mean
anomaly is performed are:

ΔΩi j∗k∗ = ΔΩi( j∗+NM )k∗ ,

Δωi j∗k∗ = Δωi( j∗+NM )k∗ , (23)

ΔMi j∗k∗ = ΔMi( j∗+NM )k∗ ,
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where all expressions are automatically fulfilled as ΔΩi j∗k∗ and Δωi j∗k∗ do not depend on
the movement of the mean anomaly, while ΔMi j∗k∗ is also achieved due to the modular
arithmetic nature of the problem seen in Eq. (9).

3.1.2 Symmetry with respect to the argument of perigee

In order to have symmetry in the argument of perigee, the configuration of the constellation
has to fulfill the following conditions:

ΔΩi j∗k∗ = ΔΩi j (k∗+Nω),

Δωi j∗k∗ = Δωi j∗(k∗+Nω), (24)

ΔMi j∗k∗ = ΔMi j∗(k∗+Nω),

where the first equation is always true as it does not depend on the movement in the argument
of perigee. On the other hand, the other two equations depend on k∗, and as such, they have
to be studied.

Taking the condition in Δωi j∗k∗ , and from the equivalences in the definition between
Eqs. (14) and (15), we can conclude that the operation k∗ +Nω is equivalent to a full rotation
in the argument of perigee, that is:

Δωi j∗k∗ + 2π = Δωi j∗(k∗+Nω), (25)

which applied to the expression of the argument of perigee, leads to:

2π

Lω

[
mod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
) − LωΩ

LΩ

(i − 1)

]
+ 2π

= 2π

Lω

[
mod

(Gω(k∗ + Nω) − 1 + SωΩ(i − 1), Sym(Gω)
) − LωΩ

LΩ

(i − 1)
]
, (26)

from where a relation between the two modular operators can be established:

mod
(Gω(k∗ + Nω) − 1 + SωΩ(i − 1), Sym(Gω)

)

−mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

) = Lω, (27)

where this equation will be used later in order to impose the condition of symmetry in the
mean anomaly with respect to the argument of perigee.

On the other hand, regarding the condition in ΔMi j∗k∗ from the system of Eqs. (24), and
using (21), the following expression can be derived:

2π

LM

[
mod

(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1

+ SωΩ(i − 1), Sym(Gω)
) + SMΩ(i − 1), Sym(GM )

)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1)

]

= 2π

LM

[
mod

(
GM ( j∗) − 1 + SMωmod

(Gω(k∗ + Nω) − 1

+ SωΩ(i − 1), Sym(Gω)
) + SMΩ(i − 1), Sym(GM )

)

123



442 D. Arnas et al.

− LMω

Lω

mod
(Gω(k∗ + Nω) − 1 + SωΩ(i − 1), Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1)

]
, (28)

which can be simplified to:

mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
)

+ SMΩ(i − 1), Sym(GM )
)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

= mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗ + Nω) − 1 + SωΩ(i − 1), Sym(Gω)
)

+ SMΩ(i − 1), Sym(GM )
)

− LMω

Lω

mod
(Gω(k∗ + Nω) − 1 + SωΩ(i − 1), Sym(Gω)

)
. (29)

Moreover, expanding the modular arithmetic in Sym(GM ) and using Eq. (27) lead to:

ASym(GM ) = SMωLω − LMω, (30)

where A is an unknown integer number. This equation can be also represented with the
following expression:

Sym(GM ) | SMωLω − LMω, (31)

which reads, Sym(GM ) divides (SMωLω − LMω).
Equation (31) shows the first condition for the shifting parameters of the configuration.

As it can be seen, it depends on the symmetry of the necklace and some elements from the
Hermite Normal Form. Note that the shifting parameter of the mean anomaly with respect to
the argument of perigee (SMω) depends on the number of fictitious orbits per orbital plane and
not the real number, a property that increases the number of possibilities in the configuration.

3.1.3 Symmetry with respect to the right ascension of the ascending node

The conditions of symmetry that we have to impose with respect to the right ascension of
the ascending node are the following:

ΔΩi j∗k∗ = ΔΩ(i+LΩ) j∗k∗ ,

Δωi j∗k∗ = Δω(i+LΩ) j∗k∗ , (32)

ΔMi j∗k∗ = ΔM(i+LΩ) j∗k∗ ,

where each one of these conditions is treated separately.
The condition in the right ascension of the ascending node is automatically fulfilled as:

ΔΩi j∗k∗ = 2π

LΩ

(i − 1) = 2π

LΩ

(i − 1) + 2π mod (2π), (33)

which is independent of any of the shifting parameters of the problem.
From the condition in the argument of perigee:

Lω

2π
Δωi j∗k∗ = Lω

2π
Δω(i+LΩ) j∗k∗ , (34)
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that can be used to obtain the following expression:

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

) − LωΩ

LΩ

(i − 1)

= mod
(Gω(k∗) − 1 + SωΩ(i − 1) + SωΩ LΩ, Sym(Gω)

)

− LωΩ

LΩ

(i − 1) − LωΩ, (35)

which can be simplified, leading to:

mod
(Gω(k∗) − 1 + SωΩ(i − 1) + SωΩ LΩ, Sym(Gω)

)

−mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

) = LωΩ, (36)

where Eq. (36) is used later to solve the symmetries in the mean anomaly.
Expanding now the modular arithmetic in Sym(Gω) from Eq. (36) and simplifying, we

obtain:
BSym(Gω) = SωΩ LΩ − LωΩ, (37)

where B is an unknown integer. This expression is equivalent to:

Sym(Gω) | SωΩ LΩ − LωΩ. (38)

Equation (38) shows the second condition for the shifting parameters. As it can be
observed, it relates the shifting of the argument of perigee with respect to the right ascension
of the ascending node SωΩ , to the symmetries of the necklace in the argument of perigee
Sym(Gω) and some elements of the Hermite Normal Form (LΩ and LωΩ ).

Once the problem of symmetry in the argument of perigee is solved, we impose the
condition of symmetry in the mean anomaly by the use of its condition from Eq. (32):

LM

2π
ΔMi j∗k∗ = LM

2π
ΔM(i+LΩ) j∗k∗ , (39)

from where we can derive:

mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
)

+ SMΩ(i − 1), Sym(GM )
)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1)

= mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1 + SωΩ(i − 1)

+ SωΩ LΩ, Sym(Gω)) + SMΩ(i − 1) + SMΩ LΩ, Sym(GM )
)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1) + SωΩ LΩ, Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1) −

(
LMΩ

LMωLωΩ

Lω

)
, (40)

which, using Eq. (36), can be simplified to:

mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1 + SωΩ(i − 1)

+ SωΩ LΩ, Sym(Gω)) + SMΩ(i − 1) + SMΩ LΩ, Sym(GM )
)
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−mod
(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
)

+ SMΩ(i − 1), Sym(GM )
)

= LMΩ. (41)

Now, we expand the modular arithmetic in Sym(Gω) and apply again the relation from
Eq. (36) in order to obtain:

CSym(GM ) = SMΩ LΩ − (LMΩ − SMωLωΩ) , (42)

where C is an unknown integer. The former expression can also be written as:

Sym(GM ) | SMΩ LΩ − (LMΩ − SMωLωΩ) . (43)

Equation (43) shows the third condition for the shifting parameters. As we can see, this
relation has a particularity, SMΩ depends also on other shifting parameter, SMω, which
generates a logical order in the generation of the shifting parameters.

3.1.4 Symmetric configurations

In this subsection, the formulation of the theory is summarized in order to present all the
methodology in a more compact and clear way. All possible distributions of a particular set
of necklaces can be described by these expressions:

ΔΩi j∗k∗ = 2π

LΩ

(i − 1) ,

Δωi j∗k∗ = 2π

Lω

[
mod

(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)
) − LωΩ

LΩ

(i − 1)

]
,

ΔMi j∗k∗ = 2π

LM

[
mod

(
GM ( j∗) − 1 + SMωmod

(Gω(k∗) − 1

+ SωΩ(i − 1), Sym(Gω)
) + SMΩ(i − 1), Sym(GM )

)

− LMω

Lω

mod
(Gω(k∗) − 1 + SωΩ(i − 1), Sym(Gω)

)

−
(
LMΩ

LΩ

− LMω

Lω

LωΩ

LΩ

)
(i − 1)

]
, (44)

where the values of the shifting parameters SωΩ , SMω and SMω have to fulfill the following
relations in order to obtain symmetric configurations:

Sym(Gω) | SωΩ LΩ − LωΩ,

Sym(GM ) | SMωLω − LMω,

Sym(GM ) | SMΩ LΩ − (LMΩ − SMωLωΩ) . (45)

As it can be seen, the set of Eqs. (44) and (45) leads to the 3DLattice Flower Constellations
distributions if no necklace is defined and to the 2D Lattice Flower Constellations (Davis
et al. 2013) if additionally no distribution is performed in the argument of perigee. Regarding
the 2D Lattice Flower Constellations using necklaces (Casanova et al. 2014a), the shifting
parameter in the mean anomaly was defined as:

Sym(G) | SMΩ LΩ − Nc, (46)
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where G is a necklace in the mean anomaly and Nc is the configuration number for the 2D
Lattice Flower Constellations which corresponds to the LMΩ parameter in the 3D Lattice
Flower Constellations. This relation is equivalent to the last condition in Eq. (45) when the
argument of perigee is not a variable of the configuration; thus, the 3D Necklace Flower
Constellations also includes the 2D Lattice Flower Constellations using necklaces.

Therefore, Eqs. (44) and (45) constitute the generalization of the necklace theory for the 3D
Lattice Flower Constellations, which include all the former Lattice Flower Constellations: 2D
Lattice Flower Constellations, 2D Lattice Flower Constellations using necklaces, 3D Lattice
Flower Constellations and now 3D Lattice Flower Constellations using necklaces.

In the next section, a detailed example is presented in order to show, in a clear manner,
the methodology to generate 3D Necklace Flower Constellations.

3.2 Example of application

For this example, we assume that a constellation made of 42 satellites is chosen. Let suppose
that the constellation is required to be built in 7 orbital planes; thus, LΩ = 7, and each plane
contains two orbits, that is, the number of real orbits per plane is Nω = 2. Moreover, the
number of real satellites per orbit is NM = 3.

Now, an expansion of the search space is done, choosing a fictitious constellation with
parameters Lω = 6 and LM = 9. This means that we are generating two different necklaces,
one in the argument of perigee and the other in the mean anomaly. Moreover, as it can be
seen, the available positions both in mean anomaly and in the argument of perigee have been
trebled, being just the ninth part of all available real positions of satellites in the constellation.

Applying the 3D Necklace Flower Constellations to these parameters, we obtain |GM | =
10 different necklaces in the mean anomaly and |Gω| = 3 in the argument of perigee (Arnas
et al. 2017a; Cattell et al. 2000; Sawada 2003), generating a total of |GM ||Gω|L2

Ω Lω =
8820 different symmetrical configurations (compared to the L2

ΩNω = 98 configurations
obtained using just the 3D Lattice Flower Constellations theory due to the boundaries in
the configuration numbers). Note that the number of configurations using necklaces can be
increased even further by expanding the fictitious constellation or generating other fictitious
constellations.

As there are too many configurations to analyze, we choose, without losing generality,
LMΩ = 4, LMω = 3 and LωΩ = 6 as combination numbers of the constellation, and
GM = {1, 4, 7} and Gω = {1, 4} as the necklaces in the mean anomaly and the argument of
perigee, respectively. Applying the definition of symmetry of a necklace from Eq. (4), these
results are obtained: Sym(GM ) = 3 and Sym(Gω) = 3.

With these parameters, we can use Eq. (38) to obtain the shifting of the argument of
perigee with respect to the right ascension of the ascending node:

Sym(Gω) | SωΩ LΩ − LωΩ ⇒ 3 | 7SωΩ − 6, (47)

which leads to SωΩ = 0. On the other hand, the shifting parameter of the mean anomaly
with respect to the argument of perigee can be computed using Eq. (31):

Sym(GM ) | SMωLω − LMω ⇒ 3 | 6SMω − 3, (48)

which has three solutions, SMω = 0, 1, 2.Now,with this result,we applyEq. (43) to obtain the
shifting parameter of the mean anomaly with respect to the right ascension of the ascending
node:

Sym(GM ) | SMΩ LΩ − (LMΩ − SMωLωΩ) ⇒ 3 | 7SMΩ − (4 − 6SMω), (49)
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Fig. 3 (Ω, ω, M)-space representation of the constellation distribution

Fig. 4 Tori representation of the constellation distribution

which is SMΩ = 1 no matter the value of SMω = 0, 1, 2 used. Note that in other examples,
different values of SMω require different SMΩ .

As it can be seen, three configurations can be generated due to the multiple solutions of
SMω. In particular, we choose SωΩ = 0, SMω = 2 and SMΩ = 1 as the selected configuration.
The lattice obtained from this configuration is shown in Fig. 3 where the (Ω,ω, M)-space of
the distribution selected is shown. The circles represent available positions, while the colored
ones are the real satellites of the configuration.

Moreover, it is interesting to study the representation of this lattice using tori. This is
shown in Fig. 4 where the three tori that define the distribution are shown. As shown in Figs. 3
and 4, the distribution is symmetrical in all three orbital parameters: the right ascension of
the ascending node, the argument of perigee and the mean anomaly.

Now, this configuration is applied to a satellite constellation.Without losing generality, we
choose an eccentricity of e = 0.3, an inclination equal to the critical inclination i = 63.43◦
and a semimajor axis equal to a = 12, 770km. With these orbital parameters, an inertial
configuration as shown in Fig. 5 is obtained.

This constellation is just an example of the possibilities that the application of necklaces
into the 3D Lattice Flower Constellations theory can bring. As it has been said, the number of
possibilities can be increased indefinitely, being the only constraint the computational power
available.
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Fig. 5 Inertial orbits of the constellation

4 Conclusions

3DLattice FlowerConstellations is a powerful tool that allows the generation of constellations
with symmetric configurations andminimum parametrization. The distribution obtainedwith
this methodology is fixed to certain positions which is a constraint in the number of possible
configurations that the theory can generate.

This paper introduces the concept of necklaces in the formulation of 3D Lattice Flower
Constellations, increasing the number of possible symmetric configurations, being the only
limitation the computational power available. This is achieved by an expansion of the search-
ing space of the constellation and applying the necklace to fit the configuration again to the
one sought.Moreover, all the configurations obtained by thismethodologymaintain the prop-
erties of the former Flower Constellations, presenting symmetry in the lattice of the right
ascension of the ascending node, the argument of perigee and the mean anomaly of all the
satellites in the constellation.

In addition, this new design framework can be used to introduce non-uniformities in
the distribution while maintaining a structure in the configuration. This is done by defining
necklaces adapted to the mission requirements, which provides a powerful tool during the
initial constellation design process. Other applications of this methodology include the study
of constellation reconfiguration problems, the assessment of satellite failure in a distribution,
or the definition of the launching schedule for a constellation made of a large number of
satellites.

Furthermore, the 3D Necklace Flower Constellations includes all the former Lattice
Flower Constellation designs, being as such, a generalization of the Lattice Flower Con-
stellation theory. This means that the 3D Necklace Flower Constellation theory is able to
generate all former configurations (2D, 3D Lattice Flower Constellations and 2D Lattice
Flower Constellations using necklaces) and create new distributions using the necklace the-
ory.

Finally, it is important to note that the expansion of the search space can be increased
as much as desired, providing more possibilities of design as the size of the fictitious con-
stellation becomes larger. Moreover, this expansion can also be done in an n-dimensional
Lattice instead of just a 2D or a 3D Lattice. This further generalization will be treated in
future works.
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