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Abstract The majority of confirmed terrestrial exoplanets orbits close to their host stars and
their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic
properties on the tidal frequencies, their response cannot be described exactly by standardly
employed constant-lag models. We therefore introduce a tidal model based on the numerical
evaluation of a continuum mechanics problem describing the deformation of viscoelastic
(Maxwell or Andrade) planetary mantles subjected to external force. We apply the method
on amodel Earth-size planet orbiting a low-mass star and study the effect of the orbital eccen-
tricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex
Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque)
grows with increasing mantle viscosity, similarly to the analytical model of Correia et al.
(Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly
influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the
considered rheological model. The increase in viscosity affects the amplitude of their varia-
tions. The tidal heating described by the Maxwell rheology attains local minima associated
with low spin-orbit resonances, with depth and shape depending on both the eccentricity and
the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and
the tidal heating for all viscosities resembles a “fluid limit.” The tidal heating is the quantity
influenced the most by the rheology, having thus possible impact on the internal thermal
evolution.
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1 Introduction

Following the first detection of a planet orbiting a main-sequence star other than the Sun
(Mayor and Queloz 1995), the past two decades have witnessed the birth and successive
rapid development of exoplanetary science. The number of confirmed exoplanets increases
each year and, due to improvements in both the observation and the data reduction, even
small bodies of masses comparable to the Earth become detectable and characterizable (e.g.,
Weiss and Marcy 2014; Mullally et al. 2015; Zeng et al. 2016 and many others). Among the
rocky worlds discovered by indirect techniques, the majority orbits very close to their host
star and is presumably subjected to intensive tidal loading, resulting eventually into enhanced
heating of the planetary interior, secular despinning and circularization of the orbit.

The first comprehensive mathematical theory of Earth tides was formulated by George
Darwin in hisworks from the1870s and1880s (e.g.,Darwin1880) andgeneralizedbyWilliam
Kaula in the 1960s (Kaula 1961, 1964). Throughout the second half of the twentieth century,
many other authors greatly contributed to the theory, explaining a variety of phenomena
related to the tidal interaction and exploring new ways of their description (e.g., Gerstenkorn
1955; MacDonald 1964; Goldreich 1966; Goldreich and Soter 1966; Singer 1968; Mignard
1979; Néron de Surgy and Laskar 1997). Darwin’s and Kaula’s method, consisting in Fourier
expansion of the tidal and the disturbing potential, enables estimation of tidal effects in
homogeneous bodies governed by any rheology, under the condition that each mode of the
expansion can be treated as independent on the other modes. A rheological model of the body
is inserted into the tidal equations through the potential Love number k and the phase lag ε,
which is related to the quality factor Q of the planet by Q−1 = sin |ε|.

Both parameters can be, in general, frequency dependent and a consistent theory derives
their functional form from basic rheological considerations (e.g., Castillo-Rogez et al. 2011).
However, owing to the lack of data, the Love number of exoplanets has often been treated
as constant and equal to the values measured for the Earth or the other planets and moons
of the Solar system. Similarly, the phase lag between the tidal and the disturbing potential
is assumed to be constant in a number of studies (e.g., Kaula 1964; Goldreich 1966; Barnes
et al. 2009). Such an assumption, corresponding to the assumption of constant tidal Q,
is underlied by measurements of seismic wave attenuation in a wide range of frequencies
(Goldreich and Soter 1966; Kjartansson 1979). Its implications for the tidal torque acting on
the entire planetary body during its revolution around the host star are, however, not fully
justified (see e.g., Makarov and Efroimsky 2013).

Another class of models prescribes a linear dependence of the phase lag on the loading
frequency, or a constant time lag (e.g., Singer 1968; Mignard 1979; Néron de Surgy and
Laskar 1997; Correia and Laskar 2010). The constant time lag model was originally derived
by Darwin (1880) for bodies exhibiting low viscosity and negligible rigidity. Its applicability
is therefore limited to a specific range of bodies, preferentially to gaseous planets and stars
(for a more precise discussion of the limitations, see Makarov and Efroimsky 2013). In the
context of the tidal evolution of binary stars, this model is known as the “weak friction”
approximation (e.g., Alexander 1973; Hut 1981).

Although the simplified constant-lagmodels are applicable in particular cases, the response
of terrestrial planets and moons subjected to tides is more adequately characterized by
viscoelastic rheologies, where neither the phase lag, nor the time lag is a constant value.
Efroimsky and Lainey (2007) introduced a tidal model based on thorough geophysical con-
siderations, with the phase lag proportional to a negative power of the tidal frequency. A
special case of this functional dependence is obtained if we describe the planetary body
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Tidal effects in differentiated viscoelastic bodies 237

by the Andrade rheology. da Andrade (1910) measured the stretching of metal wires under
constant stresses and found, that in addition to the elastic and the viscous effects, there is a
transient component of the deformation, gradually dying out in time. Similar results were
later obtained for silicate rocks and ices (Tan et al. 1997; McCarthy et al. 2007). In addition
to the laboratory measurements, there is a seismological and geodetical evidence for appli-
cability of the Andrade model on the solid Earth (for a summary see Efroimsky 2012). The
transient component, describing the anelastic behavior of the material, becomes important in
the case of high-frequency loading, while in the low-frequency domain the reaction is well
described by more simple Maxwell rheology.

Due to their better agreement with observation and despite their complexity, viscoelastic
models are slowly finding their way to the studies of tidal evolution. Segatz et al. (1988) use
the Maxwell model for the calculation of tidal dissipation in Io and Henning et al. (2009)
analyze tidal heating in a hot exo-Earth for three viscoelastic rheologies. Combination of
the Maxwell and the Andrade model was employed also for considerations of internal and
rotational dynamics (e.g., Castillo-Rogez et al. 2011; Makarov and Efroimsky 2013). An
internally consistent analytical model of the tidal deformation and long-term orbital evolution
of planets described by theMaxwell rheologywas approached in two distinct ways by Ferraz-
Mello (2013) and Correia et al. (2014). The latter study was extended by Boué et al. (2016)
to apply also to planets with nonzero obliquity.

The importance of analytical models lies in their ability to effectively parametrize and
explore the main features of tidal evolution. Appropriate parametrization enables utilization
of effective and precise time schemes for the computation of long-term processes, including
the secular variations of orbital parameters. Most analytical models of tides are, however,
describing the planet as a homogeneous sphere. If we are interested in the effects of the
internal structure on the tidal deformation and internal heating, it is necessary to proceed
to numerical simulations. As a recent example, Frouard et al. (2016) presented a general
numerical model of tides on viscoelastic bodies described by the Kelvin–Voigt rheology.
Their approach is based on an N-body simulation of gravitating particles connected together
in a spring-dashpod network, and therefore represents an alternative to our method.

In this paper, we introduce a numerical model enabling the computation of the tidal torque
and the tidal heating inside of a possibly nonhomogeneous mantle of rocky exoplanets. The
model of a viscoelastic mantle governed by either the Maxwell or the Andrade rheology is
described in Sect. 2, with further details on the numerical scheme provided in “Appendix
A.” Section3 is dedicated to the parameter dependence of tidal torque, with qualitative
comparison of our results for the Maxwell model with the work of Correia et al. (2014). In
Sect. 4, we present a parameter study of tidal heating, showing substantial difference between
the predictions of both rheological models. Finally, the two traditional tidal parameters—the
Love number k and the phase lag ε—are discussed in Sect. 5.

2 Model

The model planet is a spherical body composed of a solid inner core, liquid outer core
and a viscoelastic mantle, described either by the Maxwell or the Andrade rheology. We
compute the deformation and stress field solely inside of the mantle, which is assumed to be
incompressible and hydrostatically prestressed, and neglect the deformations and dissipation
in the core, as well as the core-mantle friction. For the sake of simplicity, we also neglect the
tides raised by the planet on the host star.
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238 M. Walterová, M. Běhounková

If the deformations are small compared to the overall size of the body, we may use the
linear approximation and write the Eulerian governing equations, representing the mass
conservation and the linear momentum conservation (neglecting inertia), as (Tobie et al.
2008; Běhounková et al. 2015; Souček et al. 2016)

∇ · u = 0, (1)

−∇π + ∇ · D = −ρM f, (2)

with a constitutive equation

2ε = 1

μ
D +

∫ t

0

1

η
D(t ′) dt ′ +

∫ t

0
μα−1

(
t − t ′

ζη

)α

Ḋ(t ′) dt ′ (3)

and linearized boundary conditions expressing the force equilibrium on the undeformed
boundaries (e.g., Souček et al. 2016)

(−πI + D) · er + ur ρM gs er = 0 on the upper boundary (4)

and

(−πI + D) · er − ur (ρC − ρM) gb er = −ρC U er on the lower boundary. (5)

Here, u is the displacement vector, ε = 1
2 (∇u+∇T u) stands for the incremental strain tensor,

π and D are the isotropic and the deviatoric parts of the incremental Cauchy stress tensor,
f = ∇U represents the body force per unit mass, η and μ are the viscosity and the rigidity
(shear modulus) of the mantle, respectively, and α and ζ are empirically given parameters
of the Andrade rheology. For the boundary conditions, ρC is the density of the liquid outer
core, ρM denotes the density of the mantle, gs and gb are the mean gravity accelerations on
the upper and the lower boundary, I is the identity matrix, er is the radial unit vector and
ur = u · er represents the radial component of the displacement.

Equation (3) in general holds for the Andrade rheology: its first term represents the instan-
taneous elastic reaction, while the other two terms account for the viscous and the anelastic
creep, respectively. A constitutive equation for the linear Maxwell rheology can be obtained
by excluding the last term, that is

2ε = 1

μ
D +

∫ t

0

1

η
D(t ′) dt ′. (6)

The body force f (and accordingly the potential U) in our model consists of three parts:
the tidal force ft due to the host star, the centrifugal force fcf due to planet rotation and the
self-gravity fself induced by the tidal deformation. First, we will focus on the tidal force. The
model planet with mass m orbits a star with mass M∗ and its orbit is described by the semi-
major axis a and the eccentricity e. The star is considered spherical and the planet’s obliquity
is, for the sake of simplicity, assumed to be zero. At each instant of time, the tidal force acting
on a unit volume with planetocentric coordinates r′ = (r ′, ϑ ′, ϕ′) due to a disturbing body
at coordinates r = (r, ϑ∗, ϕ∗) can be written as

ft
(
r ′, ϑ ′, ϕ′) =

∑
lm

f l−1
lm (r ′)Yl−1

lm

(
ϑ ′, ϕ′) , (7)
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where Yl−1
lm are vector spherical harmonics (see “Appendix B” or, e.g., Varshalovich et al.

1988) and coefficients f l−1
lm are given by

f l−1
lm (r ′) = GM∗

r2
4π

√
l

2l + 1

(
r ′

r

)l−1

Ȳlm(ϑ∗, ϕ∗), (8)

with G being Newton’s gravitational constant and bar above Ylm symbolizing complex con-
jugation. The instantaneous distance of the planet from the star is r = a(1− e cos E(t)) and
the eccentric anomaly E(t) is obtained from the iteratively solved Kepler equation. Similarly,
the tidal potential can be decomposed into spherical harmonics as

Ut
(
r ′, ϑ ′, ϕ′) =

∑
lm

vlm(r ′)Ylm
(
ϑ ′, ϕ′) (9)

with coefficients

vlm(r ′) = GM∗
r

4π

2l + 1

(
r ′

r

)l

Ȳlm(ϑ∗, ϕ∗). (10)

The centrifugal force and the centrifugal potential depend on the rotational frequency of
the planet Ωrot through

fcf (r ′, ϑ ′, ϕ′) =
√
16π

3
Ω2

rotr
′ Y1

00(ϑ
′, ϕ′) +

√
8π

3
Ω2

rotr
′ Y1

20(ϑ
′, ϕ′) (11)

and

Ucf (r
′, ϑ ′, ϕ′) = −

√
4π

9
Ω2

rot(r
′)2 Y00(ϑ ′, ϕ′) +

√
4π

45
Ω2

rot(r
′)2 Y20(ϑ ′, ϕ′). (12)

Finally, using theHelmert’smethod of condensation (Helmert 1884), the effect of self-gravity
inside of the homogeneous mantle is introduced by

fself
(
r ′, ϑ ′, ϕ′) = 4πG

∑
lm

{√
l + 1

2l + 1
(ρC − ρM)

(
ubr

)
lm

(rb
r ′

)l+2
Yl+1
lm

(
ϑ ′, ϕ′)

+
√

l

2l + 1
ρM

(
usr

)
lm

(
r ′

rs

)l−1

Yl−1
lm

(
ϑ ′, ϕ′)

}
, (13)

where indices “b” and “s” denote the lower and the upper boundary, respectively, and (ur)lm
are spherical harmonic coefficients of the radial component of displacement, related to the
coefficients of displacement vector unlm at any radius r ′ by

(ur)lm =
√

l

2l + 1
ul−1
lm (r ′) −

√
l + 1

2l + 1
ul+1
lm (r ′) . (14)

For the corresponding additional potential, we have

Uself (r
′, ϑ ′, ϕ′) = 4πG

∑
lm

1

2l + 1

{
rb (ρC − ρM)

(
ubr

)
lm

( rb
r ′

)l+1 + rs ρM
(
usr

)
lm

(
r ′

rs

)l+1
}
Ylm

(
ϑ ′, ϕ′) .

(15)

The set of partial differential Eqs. (1)–(3) is solved directly in the time domain. We use an
extension of the tool described and employed in Tobie et al. (2008) and Běhounková et al.
(2015) and implemented by Ondřej Čadek. For the spatial discretization, we use a spherical
harmonic decomposition in the lateral directions and a staggered finite difference scheme
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in the radial direction. The mantle is decomposed into 95 layers and the maximum degree
of spherical harmonic decomposition is set to l = 5. For an evaluation of the tidal torque
alone it would be sufficient to assume l = 2; numerical computation of the tidal heating,
however, requires higher values of l. In order to include the self-gravity term correctly, we
calculate the memory terms of constitutive Eqs. (3) or (6), and thus the coefficients of ur as
well, iteratively in each time step. The time scheme is described in “Appendix A.” Depending
on the considered viscosity, we evaluate the tidal torque and the tidal dissipation hundred
or thousand times per orbit. Typical timestep for the model planet described in Table1 is
therefore Δt = 10−3 or Δt = 10−4 years.

Additionally, beforewe start the computation itself, it is necessary to choose an appropriate
set of initial conditions. The time integration is then performed from these conditions until a
relaxed solution is found.We consider the solution as relaxedwhen the changes in the average
tidal dissipation or tidal torque over one orbital period become negligible (see Běhounková
et al. 2010). Naturally, our desire is to choose such set of initial strains and stresses, from
which the relaxed solution is found as fast as possible. We seek the suitable initial conditions
by analyzing the tidal potential. Eachmode of the tidal potential consists of two parts: the first,
which is constant in time, and the second, with short-term or long-term variations in the orbit
(compare with the Fourier series of Kaula 1964). Under our assumption of zero obliquity,
the zonal modes (m = 0) always involve a nonzero constant term due to the gravitational
field of the host star and the centrifugal acceleration caused by the planetary rotation. The
sectoral modes (m = l), on the other hand, are generally strictly time dependent and their
constant term becomes nonzero only in the spin-orbit resonances.

For this reason and in order to improve the rate of convergence of the solution, two kinds
of initial conditions were used for our computations. Outside of the spin-orbit resonances
we assume that the coefficients of sectoral modes for both the deformation and the internal
stresses are initially zero. When considering a tidally locked planet or the zonal modes,
however, we first precompute a fast converging “fluid limit,” i.e., the relaxed shape and
stresses corresponding to a low-viscosity body influenced solely by the constant part of the
tidal potential. The computation for the actual viscosity then proceeds from these results,
which naturally include nonspherical shape of the body—a hydrostatical shape acquired
under the constant part of the potential.

With the stress and strain tensors converged and given, wemay proceed to the computation
of tidal heating and tidal torque. The average rate of tidal dissipation over a time interval T
is computed as

P = 1

T

∫
V

∫ t+T

t
ε̇(τ ) : D(τ ) dτ dV, (16)

where V represents the volume of the planetary mantle and ε̇ is the strain rate tensor. Only
in a special case of the Maxwell rheology we may compute the dissipation rate directly as
(see e.g., Hanyk et al. 2005)

P = 1

T

∫
V

∫ t+T

t

D(τ ) : D(τ )

2η
dτ dV . (17)

To compare the shape of our numerical resultswith a semi-analytical solution,we re-derive
a formula for the tidal heating of a homogeneous spherical body based on Eqs. (10)–(12) of
Segatz et al. (1988). Discretizing the time integral and using the Parseval’s theorem for the
discrete Fourier transform (DFT), one gets
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P = 5

8π2

norbΔt

G rs N

∫
S

N−1∑
i=0

Im{k̄2(ωi )}
ωi

|ξi |2 dS, (18)

where norb is the meanmotion,ωi are tidal frequencies, k̄2 is a frequency-dependent complex
Love number of degree 2 and ξi are DFT coefficients of ∂Ut

∂t . Time derivatives of the tidal
potential are computed numerically with a timestep Δt at N points in the orbit. The complex
Love number is defined, e.g., in Castillo-Rogez et al. (2011) in correspondence with the static
Love number as

k̄2(ω) = 3

2

J̄ (ω)

J̄ (ω) + 57
8πGρ2r2s

, (19)

whereρ is themean density of the planet and J̄ (ω) signifies the complex compliance. Relation
(19) is valid as long as we remain in the linear approximation. The compliance of a material
described by the Andrade rheology can be expressed as (Castillo-Rogez et al. 2011)

J̄ (ω) = 1

μ
− i

ηω
+ 1

μ(iζ τMω)α
Γ (1 + α), (20)

with τM = η
μ

representing the Maxwell time and Γ (x) being the Gamma function. The
compliance of the Maxwell model is obtained by dropping the last term in the expression.

In order to assess the tidal torque acting on the model planet, we first need to evaluate the
disturbing force due to the tidal bulge, i.e., due to the deformation of both upper and lower
boundary. At the position of the host star, the disturbing force is given by

fdist (r, ϑ∗, ϕ∗) =
∑
lm

[
ζ b
lm

(rb
r

)l+2 + ζ s
lm

(rs
r

)l+2
]

Yl+1
lm (ϑ∗, ϕ∗) , (21)

with coefficients

ζ b
lm = 4π

√
l + 1

2l + 1
G (ρC − ρM) (ubr )lm and ζ s

lm = 4π

√
l + 1

2l + 1
G ρM

(
usr

)
lm . (22)

The tidal torque acting on a unit mass of the planet due to the star at a distance r is then

T = r × fdist. (23)

We apply the model on an Earth-size terrestrial planet orbiting a low-mass star (see Table1)
and study the tidal effects as a function of the eccentricity, the mantle viscosity, the spin-orbit
ratio and the rheological model.

3 Tidal torque

Evolution of the planetary spin rate is driven by the tidal torque, given by Eq. (23). This torque
causes the planet rotation to deceleratewhen negative and to acceleratewhen positive. A long-
term stability of the spin state requires zero average tidal torque and a distinct shape of its
dependence on the spin-orbit ratio (see Figs. 1, 2): The function is above zero to the left from
the stable state and below zero to the right. We employ the numerical model to compute
the secular tidal torque acting on a deformed planetary body with a highly eccentric orbit
(e = 0.4). The choice of this particular eccentricity is motivated by a qualitative comparison
of our results with the analytical study of Correia et al. (2014).
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Table 1 Model parameters

Parameter Definition Value

a Semi-major axis 0.1AU

e Eccentricity 0.0–0.5

M∗ Mass of the host star 0.1 solar mass

ρM Density of the mantle 5000kgm−3

ρC Density of the liquid outer core 9000kgm−3

ρI Density of the inner core 12,000kgm−3

rs Planetary radius 6370km

rb Radius of the core-mantle boundary 2480km

rI Inner core radius 1200km

μ Mantle rigidity 200GPa

η Mantle viscosity 1014–1024 Pa s

α Parameter of the Andrade model 0.3

ζ Parameter of the Andrade model 1

Figure1 shows the frequency dependence of the average tidal torque for a body described
by the Maxwell rheology, Fig. 2 is the average torque for the Andrade rheology. Individual
plots illustrate distinct rheological regimes of the planet, given by themantle viscosity and the
orbital period, which is held constant at Torb = 0.1years. The two different sets of viscosities
were chosen in order to evaluate the tidal effects in a broad range of realistic terrestrial
exoplanets. While the tidal viscosity in the Andrade model could be identified with the same
parameter in the mantle convection problems, the viscosity in the Maxwell model should be
understood rather as an effective value for the tidal deformation, which correctly predicts the
tidal heating in rocky bodies, mimicking the dissipation in the Andrade model (Běhounková
et al. 2010, 2013). The effective tidal viscosity is introduced as a frequency-dependent
quantity and in the case of terrestrial planets loaded at high frequencies is up to few orders
lower than the standard viscosity. Here, we neglect its frequency dependence and consider it
as a parameter.

The first picture (upper left corner on both figures) represents the low-viscosity regime
(η = 1.4 × 1016 Pa s) with only one stable spin state. Such a system would evolve toward
pseudo-synchronization, as predicted by the constant time lag theories (Darwin 1880;
Alexander 1973; Mignard 1979; Ferraz-Mello et al. 2008), with spin-orbit ratio given by
Ω
n = 1 + 6e2 + O(e4). When we increase the viscosity of the mantle, the shape of the
function becomes more complex and multiple stable spin states arise, associated with the
spin-orbit resonances. This pattern is consistent with predictions of rheologically motivated
analytical studies, such as Ferraz-Mello (2013),Correia et al. (2014) andFerraz-Mello (2015).
Finally, in a purely elastic case, the average tidal torque would be zero for every rotational
frequency.

The general trend of the tidal torque is similar for both rheological models. However, as
is shown, e.g., in Figure 1 of Efroimsky (2012), once we are above a characteristic frequency
threshold, determined by the rheological parameters, the decrease in the dissipation rate
with increasing tidal frequency (or, alternatively, with increasing viscosity) is slower for
the Andrade rheology than for the Maxwell rheology. The dissipation in an Andrade body
with given viscosity therefore corresponds to the dissipation in a Maxwell body with lower
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Tidal effects in differentiated viscoelastic bodies 243

Fig. 1 Average tidal torque as a function of the spin-orbit ratio for six different viscosities in the Maxwell
rheological model. The orbital eccentricity was set to e = 0.4 (cf. Correia et al. 2014)

viscosity, and this difference becomes prominent especially in the high-viscosity cases. From
comparison of Figs. 1 and 2, we may also see that the secular Andrade torque at higher spin-
orbit ratios tends to zero much more gradually than its Maxwellian counterpart.

4 Tidal heating

Conclusions of the previous section can be compared with the spin-orbit ratio dependence
of average tidal heat rate, depicted in Figs. 3 and 4. For the sake of consistency, we keep the
high eccentricity of the orbit, i.e., e = 0.4, constant orbital period, Torb = 0.1 years, and
the same range of viscosities for both models. The most striking feature of the figures is a
significant difference between themagnitude of tidal heating in theMaxwell and the Andrade
model at high frequencies (high spin-orbit ratios). While the average power computed in the
Maxwell model tends to decline at high rotation rates (the planet operates close to the elastic
regime), the power produced in the Andrade model continues to rise and acquires values
much higher than observed around the synchronous rotation (Ω/n = 1). The overall shape
of the spin-orbit ratio dependence of tidal heating in the Andrade case remains similar for all
mantle viscosities.

Another distinction between the two models lies in the shape of local minima. Similarly
to the tidal torque with its sole stable spin state at low viscosity, there is only one local
minimum in the viscous regime (η = 1.4 × 1016 Pa s) and multiple minima elsewhere,
typically associated with low spin-orbit resonances. The local minima of the Maxwell model
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244 M. Walterová, M. Běhounková

Fig. 2 Average tidal torque in the Andrade rheological model. The orbital eccentricity was set to e = 0.4

Fig. 3 Average tidal heating of the model planet presented in Fig. 1, Maxwell model, e = 0.4
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Fig. 4 Average tidal heating of the model planet presented in Fig. 2, Andrade model, e = 0.4

get gradually deeper and narrower as we increase the viscosity of the mantle and their depths
differ, depending on the orbital eccentricity (Fig. 5). In the Andrade model, on the other hand,
local minima remain shallow and broad, disappearing eventually at high mantle viscosities
(η > 1.4 × 1019 Pa s). Further increase in viscosity (η = 1.4 × 1022 Pa s) leads the planet
close to the elastic regime with only one global minimum, similar to the global minimum in
viscous regime.

At this point we shall note that the planet on eccentric orbit is tidally loaded at a range
of frequencies, and while it responds as an elastic body at one frequency, it can still be far
from elasticity at another frequency. The terms “elastic” or “viscous” regime, which we use
throughout this study, refer to the highest or the lowest value of considered mantle viscosities
(see Table1). A purely elastic body would, in reality, dissipate no energy, independently of
the spin-orbit ratio.

A detailed picture of the tidal heating at low spin-orbit ratios (bounded by the 1:1 and
the 5:2 spin-orbit resonance) is presented in Figs. 5 and 6. Here, we compare the results for
six orbital eccentricities ranging from e = 0 to e = 0.5 and three different viscosities in
both rheological models: 1016, 1018 and 1020 Pa s in the Maxwell model and 1016, 1020 and
1024 Pa s in the Andrade model. In the viscous regime (η = 1016 Pa s) and at low spin-orbit
ratios, the Andrade rheology is well approximated by the Maxwell model and the results
therefore coincide. Here, we see that the position of the sole local minimum depends on the
orbital eccentricity—it tends to higher spin-orbit ratios with more eccentric orbit.

As was mentioned before, the multiple local minima of Maxwell model occur around the
spin-orbit resonances. The relative depths of these minima depend on the orbital eccentricity,
with the deepest minimum located at the 1:1 spin-orbit resonance of a circular orbit. It
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Fig. 5 Average tidal heating as a function of the spin-orbit ratio computed for the Maxwell rheology. Com-
parison of tidal heat flow for three different viscosities and six eccentricities

Fig. 6 Average tidal heating as a function of the spin-orbit ratio computed for the Andrade rheology. Com-
parison of tidal heat flow for three different viscosities and six eccentricities

is clear that the synchronously rotating, zero eccentricity planet exhibits no tidal heating,
independently on the viscosity, as it remains locked in its sole stable spin state. Generally,
the depth of the minima at higher spin-orbit resonances (2:1, 5:2) increases with increasing
eccentricity, while the depth of the minima associated with lower resonances (1:1, 3:2)
decreases. The tidal heating computed for the Andrade model with higher viscosities follows
a functional dependence on the spin-orbit ratio that is very similar to the viscous regime,
including the position of the global minimum. The local minima remain broad and shallow
for each of the considered eccentricities.

5 Love numbers

The additional potential δU due to tidal distortions is related to the tide-raising potential U
via Love number k. In a static case, which is treated as fiducial in the standard theories (Kaula
1964; Mignard 1979), the Love number of the l-th mode is a real number, defined as

kl = δUl

Ul
, (24)

where both potentials are evaluated at the surface of nonrotating planet. Each Love number
could be equippedwith a phase lag or a time lag, mimicking the overall lagging of the rotating
physical body. Choice of a particular frequency dependence (or independence) of the phase
lag determines the rheology of the planet.
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Fig. 7 Variations of the tidal phase lag ε22(t) as a function of the mantle viscosity for a model with fixed
orbital eccentricity e = 0.4. Dashed line indicates planetograhic longitude of substellar point

Here, we compute the Love numbers in the time domain as

klm(t) = δvlm(t)

vlm(t)
= |klm(t)|e−iεlm (t), (25)

with vlm(t) and δvlm(t) being the spherical harmonic coefficients of the overall potential U
and of the additional potential Uself , respectively, both evaluated at the surface. The phase
εlm(t) is an angle between the symmetry axes of the two potentials in the time domain. When
the order m is nonzero, the coefficients of the potentials are complex, rendering a complex-
valued klm(t) as well. In this special case and considering loading of the mode (l,m) only on
one frequency (e.g., a nonsynchronously rotating planet on a circular orbit), the phase εlm(t)
coincides with the phase lag between the tidal and the additional potential, as traditionally
defined in the frequency domain (e.g., Kaula 1964). To illustrate the tidal deformation in the
two rheological models considered here, we plot the Love numbers k22(t) and k20(t) for two
different orbital eccentricities and spin states.

Our first toy-model is a synchronously rotating planet on an eccentric orbit with e = 0.4.
We evaluate the quantities mentioned above, assuming that the planet behaves either as a
Maxwell body with effective viscosities between 1015 and 1018 Pa s or as an Andrade body
with viscosities ranging from 1015 to 1024 Pa s. Other parameters, including the rigidity of the
mantle, are kept constant. Figure7 shows time variations of the tidal phase lag ε22. The tidal
deformation in a viscous regime (η = 1015 Pa s) is properly described by a constant time lag
model (e.g., Darwin 1880; Mignard 1979; Correia and Laskar 2010), which prescribes the
phase lag as a linear function of the loading frequency. The instantaneous angular velocity
of the disturbing body on the planet’s sky, in our case, is related to the time derivative of the
true anomaly ν,

freq. = Ωrot − dν

dt
, (26)

and this gives the low-viscosity phase lag the shape of its time dependence (black curve in
Fig. 7).

A characteristic feature arises also in the high-viscosity regime, where the relaxation
time gets long compared to the orbital period. Here, we initiate the computations in a “fluid
limit.” The “fluid” tidal bulge, corresponding to the constant part of the tidal potential,
virtually freezes at the zero longitude, resulting in a periodically changing nonzero tidal
lag (and nonzero instantaneous tidal torque), which follows the geometric libration of the
planet. The phase lag is therefore zero, when the planet resides in the periapsis or apoapsis,
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Fig. 8 Variations of the magnitude of potential Love numbers |k20(t)| and |k22(t)| as a function of mantle
viscosity

and—if there were no other components to the tidal bulge—would attain a maximum value
of approximately 2 arcsin e (that is ≈ 0.8 in our case, dashed line in Fig. 7) at a planet–
star distance r = a 4

√
(1 − e2) (Dobrovolskis 2007). Another, nonconstant parts of the tidal

potential excite the mantle on a variety of frequencies, resulting in an overall tidal lag which
differs from the prescribed value and which is here plotted in tan color.

Figure8 presents the time variations of the magnitudes of the Love numbers k20(t) and
k22(t) for theMaxwell (left column) and theAndrade (right column) rheology.Again,wemay
see that the time variations are small for the viscous limit, when the planet almost perfectly
complies with the changing tidal potential, and are large in the high-viscosity regime, when
the planet acts like a rigid body. Furthermore, we may see that the mean value of both Love
numbers in the low-viscosity case is close to the fluid limit k = 1.5. When we increase the
viscosity, the relaxation time of the mantle increases as well and it becomes longer than the
loading period. The planet then keeps a permanent shape corresponding to the constant part
of the potential. In the periapsis, its deformation is smaller than that of a fluid body subjected
to the same tidal potential, and the value of k20(t) and k22(t) is substantially lower than 1.5.
In the apoapsis, on the other side, the acquired permanent deformation is larger than would
correspond to the tidal potential, and the Love numbers exceed 1.5. The highest viscosity
case (η = 1018 Pa s in the Maxwell model or η = 1024 Pa s in the Andrade model), plotted
in light green and light blue in Fig. 8, confronts us with a time dependence of Love numbers
that is driven essentially by the variations of the denominator in (24).

Our second toy-model is a nonsynchronously rotating planet on a circular orbit. In this
case, the magnitudes of the Love numbers k20(t) and k22(t) as well as the phase lag ε22(t)
attain a constant value,which is, among other parameters, a function of the tidal frequency and
the viscosity. Here, we set the tidal frequency constant (Ω/n = 2.1) and explore the viscosity
dependence of the Love number k22. As depicted in Fig. 9, tidal loading may operate in two
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Fig. 9 The phase lag ε22 and the Love number |k22| as a function of the mantle viscosity for a planet on
circular orbit rotating nonsynchronously with spin-orbit ratio Ω/n = 2.1. Red dots indicate the Maxwell
rheology, blue squares stand for the Andrade rheology

extreme regimes, characterizing the elastic and the viscous limit with a negligible tidal lag,
and in a transitional regime, where the tidal lag attains its maximal value (cf. Love numbers
in the analytical model of Correia et al. 2014). At higher viscosities the Love numbers, and
especially their phase lags, differ substantially for the two rheologies under considerations.
The decrease in the phase lag toward the elastic limit is much more gradual in the case of the
Andrade rheology than for the Maxwell rheology. Differences in the magnitude of the Love
number are less pronounced.

6 Discussion

The thermal and rotational state of close-in exoplanets subjected to significant tidal dissipa-
tion is dictated by their orbital elements and the rheological regime. Increase in the orbital
eccentricity may enhance the tidal heating by an order of magnitude. Different frequency
dependencies of the tidal response in both rheological models in question may lead to a com-
pletely different thermal evolution. While a planet governed by theMaxwell rheology attains
deep local minima of the tidal heating, associated with the lower spin-orbit resonances, and
the dissipation undergone by its interior diminishes as we proceed to higher spin rates, the
heat production of a body described by the Andrade model increases with faster rotation and
the local minima are observed rather at high spin-orbit resonances. We note that the location
and depth of the local minima, as well as the occurence of other tidal effects (e.g., locking into
stable spin states), depend not only on the mantle viscosity, but rather on a combination of the
viscosity and the tidal frequency. These two parameters together determine the rheological
regime of the planet.

The tidal heating depicted in Figs. 3, 4, 5 and 6 would be, in extreme cases, able to melt the
entire planetary mantle, leading eventually to a fluid-like behavior. Furthermore, even in a
less extreme scenario, the enhanced heat production combinedwith possible tidal locking and
resulting uneven insolation may alter the planet’s rheological regime (due to the temperature
dependence of viscosity or due to different deformation mechanisms involved in the mantle
dynamics) and lead to decrease or further increase in the tidal dissipation. The tidal evolution
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of a close-in rocky exoplanet, e.g., its despinning, its thermal history or the rate of orbital
evolution, is therefore closely related to its rheological regime, which may, on the contrary,
vary with the instantaneous orbital or rotational parameters.

As the tidal heating and the insolation pattern depend on the exact orbital parameters
(e.g., Beuthe 2013; Dobrovolskis 2013), the rheological structure of realistic close-in exo-
planets may become considerably heterogeneous. Tidal locking into a spin-orbit resonance
or, specifically, into the synchronous spin state, also leads to a distinct convection pattern
(Běhounková et al. 2010; Gelman et al. 2011; van Summeren et al. 2011). The numerical
model described here enables computation of tidal effects also in a planet with generally
3D viscosity structure and with possibly radially dependent rigidity. However, in the present
parametric studies, we held the mantle viscosity homogeneous and studied only the effects
of its varying magnitude, so that the numerical model could be compared with existing ana-
lytical tidal theories. Figure1, depicting the spin-orbit ratio dependence of tidal torque in
the Maxwell model, is intended to be compared qualitatively with Figure 4 of Correia et al.
(2014). Similarly, Fig. 9 is identified with Figure 2 of the same paper or with any plot of the
dissipation spectrum for the Maxwell and the Andrade rheology (e.g., Castillo-Rogez et al.
2011; Efroimsky 2012; Běhounková et al. 2013).

The characteristic pattern of the average tidal torque and the existence of two distinct
regimes—a sole pseudo-synchronous rotation of low-viscosity bodies versus multiple stable
spin states of high-viscosity spheres—has already been explored and discussed by the authors
of recent analytical tidal models (Correia et al. 2014; Ferraz-Mello 2015). It is worth noting
that the rheological regime of the planet is determined not only by its viscosity, but rather
by a combination of the viscosity and the excitation frequency. Therefore, even a terrestrial
planet may behave as a “fluid” body and a close-in gas giant (a “hot Jupiter”) on eccentric
orbit may become locked into a nonsynchronous spin-orbit resonance. Both Correia et al.
(2014) and Ferraz-Mello (2015) take this into account by introducing a combination of the
mean motion and the relaxation time or relaxation factor, which could be related to the mean
viscosity of the planet.

Moreover, the number and exact positions of zero points of the average tidal torque are
a function of eccentricity. We have particularly presented the case of a highly eccentric
orbit with e = 0.4. Several other cases, however, can be found in Ferraz-Mello (2015),
who studies the stationary spin states for eccentricities ranging from e = 0 to e = 0.5.
The author shows that increase in the eccentricity causes shifting of the sole solution in
the low-viscosity case (in concordance with constant time lag models) and increase in the
number of solutions in the high-viscosity case. The relative stabilities of particular solutions
are affected as well, enabling the prediction of rotation states of moons and planets on
eccentric orbits. Ferraz-Mello (2015) also shows that spin-orbit resonances, in contrast to
pseudo-synchronous rotation, are not stationary solutions but periodic attractors: a planet on
eccentric orbit undergoes physical libration.

In order to compare the numerically obtained tidal heating with a semi-analytical solution,
we evaluated the dissipation in a homogeneous sphere subjected to the same tidal potential
as in the numerical model. The average heat production due to the tidal dissipation was
computed in correspondence with Segatz et al. (1988), where we substituted the frequency
independent static Love number k2 with a set of frequency (and rheology) dependent complex
Love numbers, described, e.g., in Castillo-Rogez et al. (2011). This was done for both the
Maxwell and the Andrade rheology. Resulting tidal heating of a body with η = 1018 Pa s is
shown in Fig. 10. For the sake of comparison, we also replot Fig. 9 with the addition of semi-
analytically obtained Love numbers |k2| and phase lags ε2. Here, it is necessary to point out
that the planet in the semi-analytical model is considered a homogeneous sphere, dissipating
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Fig. 10 Average tidal heating computed semi-analytically for η = 1018 Pa s and both rheological models

Fig. 11 Comparison of semi-analytical (solid line) and numerical (dashed line) phase lags and Love numbers
for a planet on circular orbit with spin-orbit ratio Ω/n = 2.1

the energy in the entire volume, whereas our numerical model computes the dissipation solely
in the mantle. The tidal heating obtained semi-analytically is therefore several times higher
than the numerical predictions. The overall shape of the spin rate dependence of tidal heating
is, nevertheless, very similar in both approaches, verifying the applicability of our model.

Similarly, the semi-analytical and the numerical Love numbers (Fig. 11) tend to different
values at the limits of the viscosity scale. This is naturally caused by the presence of a
planetary core. Folonier et al. (2015) and Wahl et al. (2017) predict that for a two-layer core-
shell model of a fluid planet the surface flattening is always smaller than would correspond to
a homogeneous body. Using Eq. (41) of Folonier et al. (2015) and approximating our solid-
liquid core by a single fluid sphere (as we do not consider the deformation of the inner core),
we find the theoretical value of the fluid Love number to be kf ≈ 1.349. This is close to our
numerical result, giving kf ≈ 1.346 in the lowest viscosity case (η = 1014 Pa s). The slight
discrepancy can be attributed to different density structure of the core in our study and to the
fact that our “lowest viscosity case” is still only an approximation to the real fluid limit.
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7 Conclusion

In this paper, we presented a numerical model of tides based on the direct solution of contin-
uum mechanics equations for a disturbed planetary mantle. The model enables computation
of tidal deformation and dissipation for generally nonhomogeneous planets governed either
by the Maxwell or the Andrade rheology. We then performed a series of calculations, study-
ing the parameter dependence of the tidal heating, the tidal torque and the complex Love
numbers. The results for the Maxwell rheology were qualitatively compared to the analytical
model of Correia et al. (2014). We also computed the tidal heating semi-analytically, by a
method based on Segatz et al. (1988) and Castillo-Rogez et al. (2011).

When describing the tidal response of terrestrial bodies, the Maxwell model is often
utilized as a practical substitute for the more complex and more accurate Andrade rheology.
Indeed, the two models almost coincide at low viscosities (or low frequencies) and their
predictions for the tidal torque and the Love numbers are very similar also in the higher
viscosity regimes, as long as we keep the notion of effective tidal viscosities, which can be
up to few orders lower than the “standard” viscosities utilized, e.g., in the mantle convection
models. The crucial difference between the two rheological models arises in the comparison
of spin-orbit ratio dependence of the tidal heating. However, even in this case the Andrade
model can be approximated by the Maxwell model—the concept of frequency-dependent
effective viscosity remains valid. When computing the tidal evolution or the tidal heating
of terrestrial exoplanets, we must remember that only a planet on circular orbit is excited at
one sole frequency. Hence, only the dissipation inside planets on circular orbits would be
consistently approximated by a single-viscosity Maxwell model. For the eccentric orbits, it
would be necessary to find all present frequencies and to sum the tidal heating over multiple
Maxwell models, with a variety of effective viscosities. Only after this procedure, we would
be able to get Figs. 4 or 6 without using the Andrade model directly.

As was already pointed out by Frouard et al. (2016), the place of numerical models
among analytical theories is irreplaceable when dealing with complex rheologies, planets
with nontrivial internal structure or nonspherical shape, and with analytically challenging
phenomena. While the analytical models provide us with general predictions for the tidal
evolution of terrestrial bodies, semi-analytical or numericalmodelsmay help us to understand
subtle details, given for example by coupling of the orbital (or rotational) and the internal
dynamics or by sensitivity of the tidal heating to the chosen rheology.
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Appendix A Iterative time scheme

To find the numerical solution of the governing equations, we use and further develop a tool
employed in Tobie et al. (2008) andBěhounková et al. (2015), implemented byOndřej Čadek.
We have extended this code to account for a general tidal potential, rotational deformation
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and self-gravity. In order to evaluate the tidal torque correctly, we have updated originally
explicit time scheme to include the self-gravity and the memory term implicitly.

For the (i + 1)-th time step and the explicit time scheme, considering constant time step
Δt , Eqs. (1)–(5) are discretized as follows (Běhounková et al. 2015):
Governing equations:

∇ · ui+1 = 0 (27)

−∇πi+1 + ∇ · Di+1 = ρM

[
(ft)i+1 + (fcf )i+1 + (fself )i

]
. (28)

Constitutive equation:

2εi+1 − Di+1

μ
=

Mi︷ ︸︸ ︷
1

2

D0

η
Δt +

j=i∑
j=1

D j

η
Δt

+ 1

2
w(i+1)0

(
D1

(ζη)α
− D0

(ζη)α

)
+

j=i−1∑
j=1

1

2
w(i+1) j

(
D j+1

(ζη)α
− D j−1

(ζη)α

)

︸ ︷︷ ︸
Ai

,

(29)

where wi j are weights,

w(i+1) j = (i + 1 − j)αΔtαμα−1, (30)

Mi is the explicit memory term for the Maxwell rheology and Ai is the additional explicit
memory term describing the Andrade rheology.
Boundary conditions:

(−πi+1I + Di+1) · er − (
usr

)
i+1 ρM gs = 0, (31)

(−πi+1I + Di+1) · er + (
ubr

)
i+1 (ρC − ρM) gb = −ρC

[
(Ut)i+1 + (Ucf )i+1 + (Uself )i

]
er.

(32)

The initial step (l = 0) in the iterative scheme is determined explicitly. For the lth (l ≥ 1)
iteration, we then have
Governing equations:

∇ · ui+1 = 0 (33)

−∇πi+1 + ∇ · Di+1 = ρM

[
(ft)i+1 + (fcf )i+1 + (fself )

l−1
i+1

]
. (34)

Constitutive equation:

2εi+1 − Di+1

μ
= Mi + 1

2

Dl−1
i+1

η
Δt + Ai + 1

4
w(i+1)i

(
Dl−1
i+1

(ζη)α
− Di−1

(ζη)α

)
. (35)
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Boundary conditions:

(−πi+1I + Di+1) · er − (
usr

)
i+1 ρM gs = 0, (36)

(−πi+1I + Di+1) · er+
(
ubr

)
i+1 (ρC−ρM) gb = −ρC

[
(Ut)i+1 + (Ucf )i+1 + (Uself )

l−1
i+1

]
er.

(37)

The iteration is repeated until
|Dl

II−Dl−1
II |

Dl
II

< ε, where we usually assume ε = 10−4.

Appendix B Spherical harmonics

Any quadratically integrable scalar function f of spherical coordinates ϑ and ϕ can be
expressed as a linear combination of surface spherical harmonics Ylm (see e.g., Varshalovich
et al. 1988)

f (ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

flmYlm(ϑ, ϕ) (38)

with coefficients

flm =
2π∫

0

π∫

0

f (ϑ, ϕ)Ȳlm(ϑ, ϕ) sin ϑ dϑ dϕ . (39)

We introduce the spherical harmonics as

Ylm(ϑ, ϕ) = (−1)mNlmPlm(cosϑ)eimϕ, (40)

where Nlm is the normalization factor

Nlm =
√

(2l + 1)(l − m)!
4π(l + m)! , (41)

and Plm(cosϑ) are fully normalized associated Legendre polynomials of degree l and order
m. Spherical harmonics represent a complete set of orthonormal functions on the surface of
a sphere, with the orthonormality relation given by

2π∫

0

π∫

0

Yl1m1(ϑ, ϕ)Ȳl2m2(ϑ, ϕ) sin ϑ dϑ dϕ = δl1l2δm1m2 . (42)

The notion of spherical harmonic decomposition can be generalized to account for the vector
and tensor functions as well. Vector spherical harmonics are introduced as

Yk
lm(ϑ, ϕ) =

+1∑
μ=−1

k∑
ν=−k

Clmkν1μYkν eμ, (43)

with Clmkν1μ being the Clebsch–Gordan coefficients and eμ being the components of a basis
which appropriately follows the pattern of Ylm under rotations. They are related to the carte-
sian basis vectors {ex , ey, ez} by
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e−1 = 1√
2

(
ex − iey

)
,

e0 = ez, (44)

e1 = − 1√
2

(
ex + iey

)
.

Finally, we define the tensor spherical harmonics

Ykn
lm(ϑ, ϕ) =

+1∑
μ=−1

k∑
ν=−k

ClmkνnμYkν enμ, (45)

with a basis
e jλ =

∑
ν,μ

C jλ
1ν1μ eν ⊗ eμ, (46)

where ⊗ symbolizes a dyadic product.
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