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Abstract Weoutline some aspects of the dynamics of an infinitesimalmass under theNewto-
nian attraction of three point masses in a symmetric collinear relative equilibria configuration
when a repulsive Manev potential (−1/r + e/r2), e > 0, is applied to the central mass. We
investigate the relative equilibria of the infinitesimal mass and their linear stability as a func-
tion of the mass parameter β, the ratio of mass of the central body to the mass of one of two
remaining bodies, and e. We also prove the nonexistence of binary collisions between the
central body and the infinitesimal mass.
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1 Introduction and statement of the problem

A quasi-homogeneous potential of the form −(a/r + e/r2), where r is the distance between
particles, and a, e are real constants, was considered by Newton in his work Philosophiae
Naturalis PrincipiaMathematica (Book I,Article IX, PropositionXLIV,TheoremXIV,Corol-
lary 2). The reason to add the term e/r2 was the impossibility to explain the Moon’s apsidal
motion within the framework of the inverse-square force law. Nevertheless, the model was
abandoned in favor of the classical potential.Many years laterManevManeff (1924) proposed
a similar corrective term in order to maintain dynamical astronomy within the framework of
classical mechanics and offering at the same time equally good justifications of the observed
phenomena as in the relativity theory. For instance, when a and e are positive, the corrective
term provides a justification of the perihelion advance of Mercury.

Our aim is to study the dynamics of a few-body celestial system considering the gravita-
tional field of a charged, nonrotating, spherically symmetric body of mass M , also known as
Reissner–Nordström metric, that is, a Manev potential with positive e. Such kinds of poten-
tials are relevant in astronomical and astrophysical context when the big body, like a star,
owns a net electric charges. See the introduction in Iorio (2012) and the references therein
for more details.

We consider the motion of an infinitesimal mass P under the gravitational attraction of
three point masses, P0, P1, P2 called primaries, see Maranhão and Llibre (1999) for the
Newtonian case. Assume that the gravitational attraction of the primary P0 is generated by a
Manev potential (−1/r + e/r2), with parameter e > 0, and that the gravitational attraction
due to P1 and P2 is Newtonian (−1/r ). We also shall assume that the primaries are in a
collinear central configuration, that is, bodies P1 and P2 have the same mass m1 = m2 = m,
and are located symmetrically with respect to the central body P0, of mass m0 = βm, which
is at the center of masses of the system. P0 will also be called the central body, and P1 and P2
the peripherals, as in the Maxwell’s ring model. In an inertial reference system the peripheral
bodies move in a circular orbit around P0 with angular velocity ω.

In Fakis andKalvouridis (2013) the authors study numerically some aspects of the dynam-
ics of a small body under the action ofMaxwell-type N-body systemwith a spheroidal central
body. Theymodeled the nonsphericity by a corrective term that coincidewithManev potential
[our setup with two peripherals equals to the case n = 2 in Fakis and Kalvouridis (2013)].
See also Elipe et al. (2007), Arribas et al. (2003) and Arribas et al. (2007). In Alavi and
Razmi (2015), such a correction term in a Newtonian potential, with e > 0 (that represents
a repulsive centripetal force), is used in disk galaxies evolution. Also, in Mioc and Stoica
(1997) the Manev-type potential is considered in the frame of a two-body problem.

When e > 0 one effect of the repulsive term e/r2 is the existence of equilibrium points
out of the plane of motion of the primaries which increases the dynamical richness of the
problem.We study analytically the existence and the linear stability of the equilibrium points
of the problem. The existence of out-of-plane equilibrium points is one novelty with respect
to restricted problems with Newtonian potentials. Another problem in which out-of-plane
equilibrium points appear is the symmetric collinear restricted four-body problemwith radia-
tion pressure [see Arribas et al. (2016b)]. For the interested reader about problemswhere both
gravitational and radiation forces are considered see Arribas et al. (2016a) and the references
therein.

We begin taking a synodic reference frame Oxyz with origin at the central body P0 where
the Ox axis coincides with the line joining the primaries. We choose the units of distance,
mass and time such that the distance between the two peripherals is one and Gm = 1,
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Spatial collinear restricted four-body problem 155

where G is the gravitational constant. Then, the coordinates of the primaries P0, P1, P2 in
our synodic reference frame are, respectively, (0, 0, 0), (1/2, 0, 0) and (−1/2, 0, 0).

According to Fakis and Kalvouridis (2013) and Elipe et al. (2007), the condition to keep
the peripherals on their circular orbit of radius 1/2 and angular velocity ω is that ω2 = Δ,
where

Δ = Δ(β, e) = 2(1 + 4β − 16eβ). (1)

The function Δ has to be positive. Thus, the parameter e must satisfy the following sharp
bound,

e < e0 := 1 + 4β

16β
, (2)

for each fixed β > 0. We will say that a value of e > 0 is admissible if it follows inequality
(2) for a fixed value of β.

The equations of motion of an infinitesimal mass P in a rotating coordinate system Oxyz,
in which the peripherals are fixed in the Ox axis, are given by the following differential
equations

ẍ − 2 ẏ = Ωx ,

ÿ + 2ẋ = Ωy,

z̈ = Ωz,

(3)

where the function Ω is defined by

Ω = Ω(x, y, z) = 1

2
(x2 + y2) + 1

Δ

[
β

(
1

r0
− e

r20

)
+ 1

r1
+ 1

r2

]
, (4)

with

r0 = √
x2 + y2 + z2,

r1 = √
(x − 1/2)2 + y2 + z2,

r2 = √
(x + 1/2)2 + y2 + z2.

(5)

See Fakis and Kalvouridis (2013) and Elipe et al. (2007) for details.
The phase space associated with system (3) (as a first-order differential system) is given

by

M =
{
(x, y, z, ẋ, ẏ, ż) ∈ (

R
3 \ {(0, 0, 0), (1/2, 0, 0), (−1/2, 0, 0)}) × R

3
}
.

Our goal in this paper is to study important aspects of the dynamics of the spatial restricted
four-body problemwith repulsiveManev potential (Manev R4BP in short) from an analytical
point of view. Initially we prove that, due to the repulsive force emanating from the central
body, it is not possible to have a binary collision between the infinitesimalmass and the central
body in the Manev R4BP (see Sect. 2). In Sect. 3 we observe that any equilibriummust lie on
the coordinates axes. Using this information we are able to determine the type of equilibrium
points and the number of them as function of the parameters β and e. Bifurcation parameters
are characterized. After that, in Sect. 4, we analyze the Hill’s regions as a function of the
parameters using the Jacobi integral. In Sect. 5 several general results concerning the stability
are proved analytically, and the study is completed numerically in some cases. Finally, in
Sect. 6 the dynamics of the particular one-dimensional case with x = y = ẋ = ẏ = 0 is
studied. We also study numerically the linear stability of the family of periodic orbits that
emanates from the equilibrium point of this subproblem.
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2 Main features

The problem has two invariant subspaces, the plane z = ż = 0, named Planar Manev R4BP
and the z axis, named Rectilinear Manev R4BP. These two subproblems can be studied
separately. We will see in Sect. 6 that the Rectilinear Manev R4BP is integrable.

Furthermore, we can also consider the following three limit problems:

– For β = 0, we obtain the classical circular restricted three-body problem (CR3BP) with
two equal masses. This is also known as the Copenhagen problem [see for example
Szebehely (1967)].

– For e = 0, we obtain a Newtonian restricted four-body problem (R4BP) where the
primaries are in collinear configuration, and two of them (the exterior ones) have equal
masses [see for example Papadakis (2007)].

– We can also consider the case when β → ∞. In this case, the two peripherals disappear
and the potential Σ associated is

Σ = 1

2
(x2 + y2) + 1

8(1 − 4e)

(
1

r0
− e

r20

)
,

which can be viewed as a perturbed central force field.

System (3) admits the following time-reversible symmetries:

S1 : (x, y, z, ẋ, ẏ, ż, t) → (−x, y, z, ẋ,−ẏ,−ż,−t).

S2 : (x, y, z, ẋ, ẏ, ż, t) → (x,−y,−z,−ẋ, ẏ, ż,−t).

S3 : (x, y, z, ẋ, ẏ, ż, t) → (−x, y,−z, ẋ,−ẏ, ż,−t).

(6)

In particular, if γ (t) ∈ M is a solution, then γ̃ (t) = S j (γ (−t)), for j = 1, 2, 3 is also a
solution. Of course, the composition of these symmetries give us new symmetries.

Similarly to the classical circular R3BP, system (3) possesses the first integral, known as
Jacobi constant, given by

C = 2Ω(x, y, z) − (ẋ2 + ẏ2 + ż2). (7)

Finally, due to the repulsive term emanating from the central body, it is not possible to
have a binary collision between the infinitesimal mass and the central body in the Manev
R4BP. This is consequence of the following result.

Theorem 1 For any β > 0 and an admissible e, a solution of Manev R4BP (3)must satisfy

lim inf
t→±∞ r0(t) > 0,

where r0 is given in (5).

Proof Consider γ (t) a solution of the Manev R4BP. Then by (7), there exists a constant
C ∈ R such that C(γ (t)) = C , ∀ t . Suppose that lim inf t→∞ r0(t) = 0 (analogously when
t → −∞). Then, there exists a sequence tn −→

n↗∞ ∞ such that

lim
n→∞C(γ (tn)) = −∞

which is a contradiction.
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Spatial collinear restricted four-body problem 157

3 Equilibrium points

The equilibrium points of (3) correspond to the points (x, y, z, 0, 0, 0) ∈ M such that

x − 1

Δ

[
β

(
1

r30
− 2e

r40

)
x + (x − 1/2)

r31
+ (x + 1/2)

r32

]
= 0,

y

(
1 − 1

Δ

[
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

])
= 0,

z

(
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

)
= 0.

(8)

Since any equilibrium point is determined by the position (x, y, z) of the infinitesimal mass,
from now we represent the equilibrium points of (3) only by the position vector.

Theorem 2 For any β > 0 and an admissible e, the equilibrium points of the Manev R4BP
must lie on the coordinates axes.

Proof Let (x, y, z) be the position vector of an equilibrium point. Because of symmetries
(6) we only need to study the case x ≥ 0, y ≥ 0 and z ≥ 0. System (8) can be written as

2Δ x Q = 1

r32
− 1

r31
,

y Q = 0,

Δ z (1 − Q) = 0,

where Q = 1 − 1
Δ

[
β

(
1
r30

− 2e
r40

)
+ 1

r31
+ 1

r32

]
. From the third equation we have two possi-

bilities:

(i) Suppose that z = 0. If y = 0, the solutions are on the x axis. Suppose that y �= 0. Then,
Q = 0, and therefore r1 = r2, which implies that x = 0, so the equilibrium points are
on the y axis.

(ii) Suppose now that z �= 0. Then, Q = 1, y = 0 and

x = 1

2Δ

(
1

r32
− 1

r31

)
.

Since we are looking for solutions x ≥ 0, we have that r2 ≤ r1, and using (5), (x +
1/2)2 + z2 ≤ (x − 1/2)2 + z2, which means that x = 0, and the solutions are on the z
axis.

Next our purpose is to characterize the localization and number of equilibrium points for
a fixed value of β > 0 and admissible e. As we have mentioned, using symmetries (6), for
any equilibrium point, there exists the symmetric one with respect to the origin in the same
axis. We will denote the equilibrium points as L±

ξ , ξ ∈ {x, y, z}, depending on the axis and
the sign of the position coordinate.

In what follows, there are some quantities and expressions that appear repeatedly. We
summarize in the next table the most used ones where they appear for the first time (Table 1).
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Table 1 Notations and quantities
most used Δ = 2(1 + 4β − 16βe) Eq. (1)

e0 = 1 + 4β

16β
Eq. (2)

s∗ =
(
2βe

3Δ

)1/4
Lemma 1

xi , i = 1, 2, 3 Propositions 4 and 6

y j , j = 1, 2 Proposition 2

z Proposition 1

3.1 Equilibrium points on the z axis

From (8), an equilibrium point on the positive z axis, L+
z , is a solution z > 0 of

β

(
1

z3
− 2e

z4

)
+ 2

(1/4 + z2)3/2
= 0. (9)

Proposition 1 For any β > 0 and an admissible e, there exists a unique equilibrium point
on the positive z axis, L+

z = (0, 0, z). Furthermore, min{e, βe} < z < 2e.

Proof Consider the auxiliary functions

h1(z) = β

(
1

z3
− 2e

z4

)
, and h2(z) = − 2

(1/4 + z2)3/2
.

Then, an equilibrium point on the positive z axis is a solution of the equation h1(z) = h2(z).
On the one hand, we have that limz→0+ h1(z) = −∞, h1(z) < 0 and h′

1(z) > 0 for
0 < z < 2e, and h1(z) > 0 for z > 2e. On the other hand, h′

2(z) > 0 for z > 0. Then, it is
straightforward that there exists a unique positive solution of h1(z) = h2(z).

To obtain the upper and lower bounds of the solution, notice that h2(0) = −16 and

h1(e) = −β

e3
< −16 ⇔ e <

1

2
3

√
β

2
,

h2(e) = β − 2

β3e3
< −16 ⇔ e <

1

2β
3

√
2 − β

2
.

For β ≥ 1, we have that e0 < 1
2

3
√

β
2 , whereas for β < 1, we have that e0 < 1

2β
3
√

2−β
2 . Using

the fact that e < e0 (recall (2)), the claim is proved.

Remark 1 For any β > 0 and admissible e, let L+
z the equilibrium point given in Proposi-

tion 1. Then,

lim
e→0

z = 0, lim
β→0

z = 0, and lim
β→∞ z = 2e.

The first limit is obtained from the upper and lower bounds of z. To obtain the second limit,
notice that using (9), we can write (for any fixed value of e) β as a function of z as

β = 2z4

(2e − z)(1/4 + z2)3/2
.

Using Taylor expansion we get β = 8
e z

4 + O(z5). Finally the third limit is obtained directly
dividing Eq. (9) by β.
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Spatial collinear restricted four-body problem 159

In the first two cases, this means that there exist no equilibrium points on the z axis both
in the collinear R4BP and in the circular R3BP, as it is well known. In the circular R3BP, the
limit of L±

z as β → 0 corresponds to the equilibrium point known as L2.

3.2 Equilibrium points on the y axis

From (8), an equilibrium point on the positive y axis, L+
y , is a solution y > 0 of

1 − 1

Δ

[
β

(
1

y3
− 2e

y4

)
+ 2( 1

4 + y2
)3/2

]
= 0, (10)

where Δ is given in (1).
In order to calculate the equilibrium points we use the auxiliary functions

f1(s) = Δs3 + 2βe

s
, and f2(s) = β + 2s3(

1/4 + s2
)3/2 , (11)

defined for s > 0 (or s ≥ 0 when it is possible). Some properties of the function f1 will be
used in different proofs, so we resume them in the next lemma.

Lemma 1 For any fixed value of β > 0, the function f1(s), s > 0, defined in (11) has the
following properties:

(i) It has only one critical point, which is a minimum, at

s∗ = s∗(e) =
(
2βe

3Δ

)1/4

, 0 < e < e0,

where e0 is given in (2).
(ii) s∗(e) is an increasing function and s∗(3e0/4) = 1/2.

(iii) f1(s∗(e)) = 4Δ1/4
(
2βe
3

)3/4
has only one critical point, which is a maximum, at 3e0/4.

The proof is straightforward calculations.

Proposition 2 For any β > 0 and an admissible e, there exist exactly two equilibrium points
on the positive y axis, L+

yi = (0, yi , 0), i = 1, 2. Furthermore,

y1 ≤ min{s∗, 1/2}, max{1/2, s∗} ≤ y2 ≤
(
2 + β

Δ

)1/3

,

where s∗ is given in Lemma 1.

Proof A solution of Eq. (10) on the positive y axis is a solution of f1(y) = f2(y) for y > 0.
On the one hand, recall the properties of f1 given in Lemma 1. On the other hand f2(0) =

β, limy→+∞ f2(y) = 2 + β and f ′
2(y) > 0 for y > 0. We claim that for any β > 0 and

admissible e, f1(s∗) < f2(s∗). Then it follows that the equation has exactly two solutions.
Furthermore, using the claim and that f1(1/2) < f2(1/2), we obtain the upper bound of

y1 and the lower bound of y2. To obtain the upper bound of y2 we use the fact that y2 is
smaller than the solution of the equation Δs3 = s + 2.

To prove the claim, for any fixed value of β > 0 consider the functions gi (e) = fi (s∗(e)),
i = 1, 2. We want to see that g1(e) < g2(e) for all e ∈ (0, e0). On the one hand, using
Lemma 1, g1(e) has a maximum at 3e0/4 and g1(3e0/4) = 1

4 + β, On the other hand,
g′
2(e) > 0, g2(0) = β and g2(e0/4) = 1

4 + β. Then the claim follows.
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160 E. Barrabés et al.

Remark 2 For any β > 0 and admissible e, let L+
yi , i = 1, 2, be the equilibrium points given

in Proposition 2. Then, from the upper bound of y1 we have that

lim
e→0

y1 = 0, and lim
β→0

y1 = 0.

Furthermore, it is not difficult to see from Eq. (10) that

lim
e→0

y2 = y02(β) exists, and lim
β→0

y2 = √
3/2,

where

y02(β) = 1

2
+ −1 + 2

√
2

24

1

β
+ 6 − 5

√
2

288

1

β2 − 104 + 37
√
2

41472

1

β3 + O(1/β4).

This agrees with the fact that there exists only one equilibrium point on the y axis both
in the collinear R4BP and in the circular R3BP. In the circular R3BP, when β → 0, the
limit of L±

y1 corresponds to the equilibrium point known as L2, located at the origin, and the
limit of L±

y2 corresponds to the triangular equilibrium points L4,5, which are in equilateral
configuration with the peripherals.

In particular, in the Manev R4BP we can find a value of an admissible e for all β such
that L±

y2 are in an equilateral configuration with the secondaries.

Proposition 3 For any value of β, there exists an admissible value of e, e = 9−√
3

32 , such that
each equilibrium point L±

y2 forms an equilateral triangle with the two peripheral bodies.

Proof We look for values of e for which f1(
√
3/2) = f2(

√
3/2) for all β > 0. Simplifying

we get that

3

√
3

4
+ 3

√
3β − 32

3

√
3βe = β + 3

4

√
3.

The above equation is independent of β, and it is satisfied for e = 9 − √
3

32
< e0 for all β.

Remark 3 When β → ∞, the perturbed central force problem obtained has two equilibrium
points on the positive y axis.

From (10), the equilibrium points for the problem when β → ∞ must satisfy the equation

8(1 − 4e)y4 − y + 2e = (1 − 2y)((4e − 1)(4y3 + 2y2 + y) + 2e) = 0,

which has two positive solutions for each admissible value of e, one of them equals to 1/2.
In Fig. 1 left, some families of the equilibrium points L+

yi , i = 1, 2, for different values of
β are plotted. The equilateral triangular equilibrium point is marked with a dot. The families
of equilibrium points in the limit case β → ∞ are shown in the right plot.

3.3 Equilibrium points on the x axis

From (8), an equilibrium point on the positive x axis, L+
x , is a solution of

x − 1

Δ

[
β

(
1

x2
− 2e

x3

)
+ x − 1/2

|x − 1/2|3 + 1

(x + 1/2)2

]
= 0.
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(β
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 ∞

)

e

Fig. 1 Left Evolution of the coordinates y1 (in red) and y2 (in blue) as a function of e for different values
of β. The circle corresponds to the value for which L+

y2 forms an equilateral configuration for all values of β

(see Proposition 3). Right Families of equilibrium points for the limit problem when β → ∞

For x > 1/2 we have that the previous equation writes as

x − 1

Δ

[
β

(
1

x2
− 2e

x3

)
+ 2(x2 + 1/4)

(x2 − 1/4)2

]
= 0, (12)

whereas for x < 1/2 we obtain

x − 1

Δ

[
β

(
1

x2
− 2e

x3

)
− 2x

(x2 − 1/4)2

]
= 0. (13)

In order to calculate the equilibrium points we use the auxiliary function f1 introduced in
(11) and:

f3(s) = β − 2s3

(s2 − 1/4)2
, and f4(s) = β + 2s2(s2 + 1/4)

(s2 − 1/4)2
. (14)

Proposition 4 For any β > 0 and an admissible e, there exists exactly one equilibrium point
on the positive x axis with x > 1/2, L+

x1 = (x1, 0, 0). Furthermore, x1 ≥ max{1/2, s∗},
where s∗ is given in Lemma 1.

Proof Equation (12) is equivalent to f1(x) = f4(x). On the one hand, f4 is a decreasing
function, limx→1/2+ f4(x) = +∞ and limx→+∞ f4(x) = β + 2. On the other hand, using
Lemma 1 and f1(1/2) = β + 1/4, it is clear that both functions intersect only once for
x > 1/2. Finally, using that f1(s∗) < f1(1/2) < f4(x) for any x > 1/2, we obtain the
lower bound.

Remark 4 For any β > 0 and admissible e, let L+
x1 the equilibrium point given in Proposi-

tion 4. Then

lim
e→0

x1 = x01(β) exists, and lim
β→0

x1 = x10 ,

where x10 does no depend on e and coincides with the x coordinate of the equilibrium point
L1 of the R3BP with equal masses.

When e → 0, we can write the equation f1(s) = f4(s) as

2(1 + 4β)

β
s3 = 1 + 2

β

s2(s2 + 1/4)

(s2 − 1/4)2
,
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Fig. 2 Left Evolution of the coordinates x1 (in red) and x2,3 (in blue) as functions of e, for different values
of β. The circle corresponds to the value for which L+

x1 coincides with the point L1 of the R3BP for all values
of β > 0 (see Proposition 5). Right Difference x2 − s∗ as a function of e, for the values of β shown

which clearly has one solution for s > 1/2. It corresponds to the equilibrium point on the
right-hand side of the collinear R4BP.

When β → 0 the equation f1(s) = f4(s) transforms into

2s3 = 2s2(s2 + 1/4)

(s2 − 1/4)2
.

Removing the solution s = 0, we get s5 − s3/2 − s2 + s/16 − 1/4 = 0 that corresponds,
after the displacement s → x + 1/2, to the Euler’s quintic

x5 + 5

2
x4 + 2x3 − 1

2
x2 − x − 1

2
= 0

of the Copenhagen R3BP. Thus, the equilibrium point (x10 , 0, 0) coincides with the equilib-
rium point L1 of the R3BP.

Similarly to the case of the equilibriumpoints on the y axis, there exists an admissible value
of e such that for all values of β, the equilibrium point L+

x1 coincides with the equilibrium
point L1 of the R3BP (see Fig. 2).

Proposition 5 There exists an admissible value of e, such that be the equilibrium point
L+
x1 = (x10 , 0, 0) for all β > 0, where x10 is given in Remark 4.

Proof Recall that x1 is the only positive solution of the equation f1(s) = f4(s) given by
(11) and (14). This equation can be written as

2s2
(
s − s2 + 1/4

(s2 − 1/4)2

)
+ β

s
(8(1 − 4e)s4 − s + 2e) = 0.

Substituting s = x10 in the above equation, the first term vanishes and we get that

8(1 − 4e)x410 − x10 + 2e = 0.

Solving for e,

e = x10(4x
2
10 + 2x10 + 1)

2(2x10 + 1)(4x210 + 1)
<

1

4
,

which is an admissible value.
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The approximate value of e for which L±
x1 = (±x10 , 0, 0) is e � 0.239087978. See Fig. 2.

Next, we study the number of equilibrium points on the x axis for 0 < x < 1/2.

Proposition 6 For any β > 0, there exists a value e∗ = e∗(β) such that the number of the
equilibrium points along the x axis for 0 < x < 1/2 is

– 0 if e ∈ (e∗, e0),
– 1 if e = e∗,
– 2 if e < e∗.

Furthermore, e∗ < 3e0/4, where e0 is given in (2).

Proof From Eq. (13), the number of equilibrium points with 0 < x < 1/2 is equivalent to
the number of solutions of

f1(x) = f3(x) for 0 < x <
1

2
,

where f1 and f3 are given in (11) and (14).
Fix a value of β > 0. Recall that f1 has a unique minimum at s∗ = s∗(e) (see

Lemma 1). Notice also that f3 does not depend on e, is a decreasing function, f3(0) = β and
limx→1/2− f3(x) = −∞. Then, on one hand if e > 3e0/4, s∗(e) > 1/2, f1(1/2) = β + 1/4
and the two functions do not intersect. On the other hand, lime→0 f1(s∗(e)) = 0, so that for
small values of e, f1(s∗) < f3(s∗) and the two functions intersect twice.

Finally, by continuity, there exists a value of e such that f1 and f3 coincide tangentially
only once.

For the values of e ∈ (0, e∗]we denote the equilibrium points L±
xi = (±xi , 0, 0), i = 2, 3,

where 0 < x3 ≤ x2 < 1/2, and the equality holds when e = e∗. From the properties shown
in the previous proposition the following result can be proved.

Proposition 7 For any β, let e∗ and s∗ be as in Proposition 6 and Lemma 1, respectively.
Then, for any e < e∗, the equilibrium point L+

x3 satisfies that 0 < x3 < s∗.

In Fig. 2 left, some families of the equilibrium points L+
xi , i = 1, 2, 3, for different values

of β are plotted. The common equilibrium point L+
x1 is marked with a dot. The families of

equilibrium points in the limit case β → ∞ are the same as in Fig. 1 right.
As we have seen, x3 < s∗ < x1 for all admissible values of β and e, though x2 is greater

or less than s∗ depending on β and e. In Fig. 2 left, we show x2 − s∗ as a function of e for
different values of β.

Remark 5 For any β > 0 and admissible e ≤ e∗, let L+
xi , i = 2, 3 the equilibrium points

given in Proposition 6. Then

lim
e→0

x3 = 0, and lim
β→0

x3 = 0.

Furthermore, it is not difficult to see from Eq. (13) that

lim
e→0

x2 = x02(β) exists, and lim
β→0

x2 = 0.

Therefore, in the collinear R4BP there exist two equilibrium points on the positive x axis,
one located between the central body and the peripheral (L+

x2 ), and the other one on the
right-hand side of the peripheral (L+

x1 ). In the circular R3BP, when β → 0, the limit of L±
xi ,

i = 2, 3 corresponds to the equilibrium point L2, located at the origin.
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Remark 6 When β → ∞, the perturbed central force problem obtained has two equilibrium
points on the positive x axis.

From (8), the equilibrium points for the problem when β → ∞ must satisfy the equation

8(1 − 4e)x4 − x + 2e = (1 − 2x)((4e − 1)(4x3 + 2x2 + x) + 2e) = 0,

which has two positive solutions. Notice that they are the same solutions as in Remark 3.

4 Hill’s regions

In this section we describe the geometry of the Hill’s region of the Manev R4BP,

RC = {(x, y, z) ∈ R
3 \ {(0, 0, 0), (1/2, 0, 0), (−1/2, 0, 0)} / 2Ω(x, y, z) ≥ C},

that is, the regions in the configuration space where the motion of the particle takes place for
a fixed value of the Jacobi constant C (given in (7)). The zero-velocity surface is defined as
the boundary of the Hill’s region, that is,

ZC = {(x, y, z) ∈ R
3 \ {(0, 0, 0), (1/2, 0, 0), (−1/2, 0, 0)} / 2Ω(x, y, z) = C}.

Following the arguments used in Theorem 1, it is clear that for any value of the Jacobi
constant C , there exists δ such that 2Ω(x, y, z) − C ≤ 0 for r0 ≤ δ. Therefore, at any value
of the Jacobi constant, there exists a neighborhood of the central body that it is not contained
in the Hill’s region RC .

It is well known that the equilibrium points of the problem correspond to the bifurcation
values of the zero-velocity surfaces. That is,when varyingC , the topology of theHill’s regions
RC changes when the equilibrium points appear. For C big enough, the Hill’s region has
three disjoint components: one contained in the exterior of a sphere r0 > R (for a certain R),
and two around each peripheral. When C decreases, the components merge and there appear
channels connecting different regions. These connections depend on the order in which the
equilibrium points appear. In Fig. 3, we plot the variation of the value of the Jacobi constant
at each equilibrium point Lξ ∈ {L±

ξ , ξ = x, y, z} for two different values of β. As we can
see, the order in which the equilibrium points are born (with respect to C) depends on β.

 1

 1.5

 2

 2.5

 3

 0  0.05  0.1  0.15  0.2  0.25

Lx

Lz

Ly

C

e

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.05  0.1  0.15  0.2  0.25

Lx

Lz

Ly

C

e

Fig. 3 Evolution of Jacobi constant along the equilibrium points for β = 1 (left) and β = 100 (right)
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(a) (b) (c) (d) (e)

Fig. 4 For β = 1 and e = 0.1, projections of the Hill’s regions into the xy (first row), xz (second row) and
yz (third row) planes, respectively. The values of the Jacobi constant are: a C = 2.0358, b C = 1.86917, c
C = 1.83383, d C = 1.5208, e C = 1

In Figs. 4 and 5 we plot the projections onto the coordinate planes of the Hill’s regions for
β = 1 and β = 100, respectively, and e = 0.1 (in both cases) and five different values of the
Jacobi constant close to the values of some equilibrium points, in decreasing order. When
β = 1 and e = 0.1, C(L±

x1) > C(L±
y1) > C(L±

z ) > C(L±
y2) (notice that L

±
xi , i = 2, 3 do not

exist in this case). Therefore, after the apparition of L±
x1 the regions around the peripherals

can connect with the exterior region and a particle can escape. To connect both peripherals
directly (that is, from the neighborhood of one peripheral to the other one passing close to the
central body) it is necessary that C < C(L±

y1) (see third column in Fig. 4). When β = 100
and e = 0.1, C(L±

x3) > C(L±
y1) > C(L±

z ) > C(L±
x2) > C(L±

x1) > C(L±
y2). Then, after

the apparition of L±
x2 it is possible to connect both peripherals directly (see third column in

Fig. 5), and the motion is still bounded until L±
x1 appear.

5 Stability of the equilibrium solutions

Next, we will focus on the study of the linear stability of the equilibrium points. In any
dynamical system, the periodic orbits play an important role in the description of the local
dynamics of the model. One way to find periodic orbits is through the equilibrium points. It is
well known that when the Lyapunov Center Theorem applies, there exist families of periodic
orbits emanating from the equilibrium point. On the other hand, when the equilibrium points
are unstable, there exist stable/unstable manifolds (and in some cases, the periodic orbits
can be also unstable, so they will have their own stable/unstable manifolds associated with
them). The (heteroclinic) connections of these invariant manifolds, when they exist, can
be used to obtain orbits starting around one equilibrium point, and ending in a different
one.
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(a) (b) (c) (d) (e)

Fig. 5 For β = 100 and e = 0.1, projections of the Hill’s regions into the xy (first row), xz (second row) and
yz (third row) planes, respectively. The values of the Jacobi constant are: a C = 1.09442, b C = 1.05276, c
C = 0.983845, d C = 0.95, e C = 0.9

System (3) can be written in Hamiltonian form with Hamiltonian

H = H(x, y, z, X, Y, Z) = 1

2
(X2 + Y 2 + Z2) + (yX − xY ) − V (x, y, z),

where the function V is given by

V = V (x, y, z) = 1

Δ

[
β

(
1

r0
− e

r20

)
+ 1

r1
+ 1

r2

]
.

The linearization of the Hamiltonian system is given by the matrix

A = A(x, y, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1
Vxx Vxy Vxz 0 1 0
Vxy Vyy Vyz −1 0 0
Vxz Vyz Vzz 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

Vxx = −1

Δ

[
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

]
+ 1

Δ

[
β

(
3

r50
− 8e

r60

)
x2

+3

(
(x − 1/2)2

r51
+ (x + 1/2)2

r52

)]
,

Vxy = y

Δ

[
βx

(
3

r50
− 8e

r60

)
+ 3

(
x − 1/2

r51
+ x + 1/2

r52

)]
,
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Vxz = z

Δ

[
βx

(
3

r50
− 8e

r60

)
+ 3

(
x − 1/2

r51
+ x + 1/2

r52

)]
,

Vyy = −1

Δ

[
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

]
+ y2

Δ

[
β

(
3

r50
− 8e

r60

)
+ 3

(
1

r51
+ 1

r52

)]
,

Vyz = zy

Δ

[
β

(
3

r50
− 8e

r60

)
+ 3

(
1

r51
+ 1

r52

)]
,

Vzz = −1

Δ

[
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

]
+ z2

Δ

[
β

(
3

r50
− 8e

r60

)
+ 3

(
1

r51
+ 1

r52

)]
.

(15)

Next, we study the eigenvalues and eigenvectors of the matrix A evaluated on each equi-
librium point. Due to the symmetries, we will only study the stability of the equilibrium
points L+

ξ , ξ ∈ {xi , y j , z}, i = 1, 2, 3, j = 1, 2.

5.1 Stability of the equilibrium points on the z axis

Consider the equilibrium point L+
z = (0, 0, z) (see Proposition 1). Using the fact that z must

satisfy relation (9), it is not difficult to see that

Vxy(L
+
z ) = Vxz(L

+
z ) = Vyy(L

+
z ) = Vyz(L

+
z ) = 0,

Vxx (L
+
z ) = 3

2Δ

1

(1/4 + z2)5/2
,

Vzz(L
+
z ) = β

Δz4(1/4 + z2)

(
3

4
z − 2e − 2ez2

)
.

(16)

Proposition 8 For any β > 0 and an admissible e, let γ = Vxx (L+
z ) be as in (16). Then,

the eigenvalues associated with the equilibrium point L+
z are ±λ3 = ±wi, w > 0, and

– ±λ1,2 = ±a ± bi, a > 0, b > 0, if γ ∈ (0, 8);
– ±λ1,2 = ±√

3, if γ = 8;
– ±λ1,2 ∈ R, if γ > 8.

Proof Using (16), the eigenvalues of the matrix A(L+
z ) are ±λ3 = ±

√
Vzz(L

+
z ) and the

solutions ±λ1,2 of

p(λ) = λ4 − (γ − 2)λ2 + 1 + γ,

where γ = Vxx (L+
z ) > 0.

On the one hand, using the fact that z < 2e (see Proposition 1), we have that

3

4
z − 2e − 2ez2 <

3

4
z − 2e <

3

4
2e − 2e = −1

2
e < 0.

Therefore, Vzz(L+
z ) < 0 and two of the eigenvalues are pure imaginary.

On the other hand, the solutions of p(λ) = 0 are

λ2± = 1

2

(
γ − 2 ± √

γ (γ − 8)
)

.

This completes the proof.
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Fig. 6 Evolution of the
Vxx (L

+
z ) as a function of e for

different values of β ∈ [1, 100]
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Notice that for any fixed value of β, lime→e0 Vxx (L+
z ) = +∞ and for β > 1/2,

lime→0 Vxx (L+
z ) < 8. Then for any fixed value of β > 1/2 there are values of e where

Vxx (L+
z ) is less, equal or greater than eight. In Fig. 6 we show the variation of Vxx (L+

z ) as
a function of e for different values of β.

5.2 Stability of planar equilibrium points

Consider the equilibrium points L+
xi = (xi , 0, 0), i = 1, 2, 3, and L+

y j = (0, y j , 0), j = 1, 2
(see Propositions 4, 6, 2, respectively). From the expressions of second derivatives (15), we
have that

Vxz(L
+
ξ ) = Vyz(L

+
ξ ) = Vxy(L

+
ξ ) = 0,

and

Vzz(L
+
ξ ) = − 1

Δ

[
β

(
1

r30
− 2e

r40

)
+ 1

r31
+ 1

r32

]
,

where ξ ∈ {xi , y j }, i = 1, 2, 3, j = 1, 2. Then, the eigenvalues of the matrix A(L+
ξ ) can be

written as

±λ1 = ± 1√
2

(
Γ + √

Λ
)1/2

,

±λ2 = ± 1√
2

(
Γ − √

Λ
)1/2

,

±λ3 = ±√
Vzz,

(17)

where
Λ = (Vxx − Vyy)

2 − 8(Vxx + Vyy), Γ = Vxx + Vyy − 2, (18)

and the derivatives are evaluated at the corresponding equilibrium point. Notice that

Λ < Γ 2 ⇔ (1 + Vxx )(1 + Vyy) > 0. (19)
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5.2.1 Stability of the equilibrium points on the y axis

We consider the points L+
y j , j = 1, 2. From Eq. (10) we have that

1 − 1

Δ

⎡
⎢⎣β

(
1

y3j
− 2e

y4j

)
+ 2(

1
4 + y2j

)3/2
⎤
⎥⎦ = 0.

Introducing this relation in (15), we have that,

Vxx (L
+
y j ) = −1 + 3

2Δ

1

(y2j + 1/4)5/2
,

Vyy(L
+
y j ) = 2 − 2βe

Δy4j
− 3

2Δ

1

(y2j + 1/4)5/2
, (20)

Vzz(L
+
y j ) = −1.

Notice that Γ can be written as

Γ = −1 − 2βe

Δy4j
< 0, (21)

for j = 1, 2.
The next result proves that the equilibrium point L+

y1 is a center × center × saddle.

Proposition 9 For any β > 0 and admissible e, the eigenvalues associated with the equi-
librium point L+

y1 are

±λ1 ∈ R, ±λ2 = ±w i, w > 0, ±λ3 = ±i.

Proof From (17) and (20), λ3 = i . On the one hand, it is also clear that 1+ Vxx > 0. On the
other hand, using the fact that y1 < s∗ (see Proposition 2), we get 1 + Vyy < 0. Then, from
(19), Γ 2 < Λ. Since Γ < 0, we have that 0 < Γ + √

Λ and Γ − √
Λ < 0. Thus, ±λ1 are

real and ±λ2 are pure imaginary.

With respect to the equilibrium point L+
y2 , the sign of Λ depends on β and e. Next results

give a region in the (β, e) plane where Λ(L+
y2) > 0.

Proposition 10 Let L+
y2 be given in Proposition (2), and e0 andΛ be defined in (2) and (18),

respectively. For any β > 9
√
2 − 1/4 and 0 < e < e0 − 9

√
2

4β
, Λ(L+

y2) > 0.

Proof From (18) and (20), and using that y2 > 1/2 we have that

Λ(L+
y2) ≥ 1 − 18

Δ(y22 + 1/4)5/2
≥ 1 − 36

√
2

1 + 4β − 16βe
.

The expression on the right is positive for e < e0 − 9
√
2

4β
, which is a positive bound only for

β > 9
√
2 − 1/4.
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Fig. 7 For the equilibrium point
L+
y2 the regions in the (β, e)

plane in which Λ < 0 and Λ > 0.
The curve plotted corresponds to

e = e0 − 9
√
2

4β (see
Proposition 10)
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We have explored numerically how Λ(L+
y2) varies with respect to both parameters. In

Fig. 7 we show the region in the (β, e) plane for which Λ(L+
y2) is positive or negative. We

see that for β > 9
√
2 − 1/4 and any admissible value of e, Λ(L+

y2) > 0. In fact, the region
obtained in Proposition 10 is smaller than the region where Λ(L+

y2) > 0.
When Λ(L+

y2) > 0, using (21), the equilibrium point L+
y2 has at least two pure imaginary

eigenvalues,

±λ2 = ±w i, w > 0, ±λ3 = ±i,

and the third eigenvalue can be real or pure imaginary depending on the sign of Γ + √
Λ.

Numerically we have observed that the equilibrium point is linearly stable, that is, center ×
center × center for the values explored (β ≤ 1000).

5.2.2 Stability of the equilibrium points on the x axis

We consider the points L+
xi , i = 1, 2, 3. Using (8), we have that

1 − 1

Δxi

(
xi − 1/2

r31
+ xi + 1/2

r32

)
= β

Δ

(
1

x3i
− 2e

x4i

)
,

where r1 = |xi − 1/2| and r2 = xi + 1/2, i = 1, 2, 3. Using the above relation, it is not
difficult to see that

Vyy(L
+
xi ) = −1 + 1

2Δxi

(
1

r32
− 1

r31

)
,

Vxx (L
+
xi ) = −2Vyy(L

+
xi ) − 2βe

Δx4i
,

Vzz(L
+
xi ) = Vyy(L

+
xi ).

(22)

Using that x1 > 1/2 and xi < 1/2, i = 2, 3

Vyy(L
+
x1) = −1 − 1

2Δx1

3x21 + 1/4

(x21 − 1/4)3
,

Vyy(L
+
xi ) = −1 − 1

Δ

x2i + 3/4

(1/4 − x2i )
3
, i = 2, 3. (23)

Lemma 2 For any β > 0 and admissible e, let Λ be defined in (18). Then Λ(L+
xi ) > 0, for

i = 1, 2, 3.
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Proof Using (22), we can write Λ as a quadratic polynomial in the variable Vyy :

Λ = 9V 2
yy + 4(2 + 3αi )Vyy + 4αi (αi + 4),

where Vyy = Vyy(L+
xi ), αi = βe

Δx4i
, and its roots are

V±
yy = −2

9

(
3αi + 2 ± 2

√
1 − 6αi

)
,

i = 1, 2, 3. If the roots V±
yy are complex, Λ > 0 for any value of Vyy . If the roots are real,

using that αi > 0, V−
yy > −1 > V+

yy the claim follows.

We want to study whether eigenvalues (17) are real or complex. Clearly Vzz(L+
xi ) < 0,

i = 1, 2, 3, so that

±λ3 = ±w i, for some w > 0,

at the three equilibrium points. Using Lemma 2, it is only necessary to study the sign of
Γ 2 − Λ and Γ .

Lemma 3 For any β > 0 and admissible e, letΛ and Γ be defined in (18). Then Γ 2(L+
x1) <

Λ(L+
x1).

Proof Using (19) and the fact that Vyy < −1, it is enough to study the sign of 1+Vxx . From
(22) and (23) we have that

1 + Vxx (L
+
x1) > 3 − 2βe

Δx41
,

and using that x1 > s∗ (see Lemma (1) and Proposition 4), we get 1 + Vxx (L+
x1) > 0.

From the above results, it follows that the equilibrium point L+
x1 is a center × center ×

saddle.

Proposition 11 For any β > 0 and admissible e, the eigenvalues given in (17) associated
with the equilibrium point L+

x1 are

±λ1 ∈ R, ±λ2 = ±σ i, σ > 0, ±λ3 = ±w i, w > 0.

We can prove similar results for L+
x2 for some values of β and e.

Lemma 4 For any β > 0 and admissible e, let Λ and Γ be defined in (18). Let f1 and f3
the functions given in (11) and (14), and s∗ given in Proposition 4. Then, for any fixed value
of β:

1. There exists one value e ∈ (0, e0) solution of f1(s∗) = f3(s∗).
2. For e ∈ (0, e), x2 > s∗ and Γ 2(L+

x2) < Λ(L+
x2).

Proof The first two claims follow directly from the behavior of the functions f1 and f3. The
third claim follows from the fact that 1 + Vxx (L+

x2) > 0 as in Lemma 3.

When the hypothesis of Lemma 4 applies, L+
x2 is also a center × center × saddle, and we

obtain the following proposition. Numerically, for values β ≤ 100, we have observed that
Γ 2(L+

x2) < Λ(L+
x2) for all values of e, but we have not been able to prove it.
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Proposition 12 For any β > 0 and admissible e < e, where e is given in Lemma 4, the
eigenvalues given in (17) associated with the equilibrium point L+

x2 are

±λ1 ∈ R, ±λ2 = ±σ i, σ > 0, ±λ3 = ±w i, w > 0.

Finally, we have not been able to study analytically the sign of 1+Vxx (L+
x3). Numerically,

for values β ≤ 100, we have observed that it is negative, so that Γ 2(L+
x3) − Λ(L+

x3) > 0.
Furthermore Γ 2(L+

x3) < 0 so the equilibrium point is linearly stable.

6 Global dynamics of the rectilinear Manev R4BP

As we said in Sect. 2, the (z, ż) plane is an invariant plane of the Manev R4BP. Equation (3)
reduces to the first-order system

ż = Z ,

Ż = − z

Δ

[
β

(
1

|z|3 − 2e

z4

)
+ 2

(1/4 + z2)3/2

]
. (24)

Furthermore, due to the symmetry (z, Z) → (−z,−Z), it is enough to study the problem
for z > 0. We consider in this section the rectilinear Manev R4BP, that is, the subproblem
given by (24) for z > 0.

The problem can be written in Hamiltonian form with Hamiltonian function associated

H = H(z, Z) = 1

2
Z2 + V (z), (25)

where the potential V (z) = −Ω(0, 0, z) [see (4)], can be written for z > 0 as

V (z) = − 1

Δ

[
β

(
1

z
− e

z2

)
+ 2

(1/4 + z2)1/2

]
.

V (z) possesses a unique critical point, which is a local minimum, that coincides with the
equilibrium point z [see Eq. (9)]. The constant value of H = h, called energy, is related
to Jacobi constant (7) by H = −C/2. Clearly, the energy of the equilibrium point L+

z is
negative.

Analogously to the 2-body problem, we will say that a solution of (24), (z(t), Z(t)), is
hyperbolic if comes from (and arrive at) infinity with positive velocity, and it is parabolic
if come from (and arrive at) infinity with zero velocity. Next result states that the solutions
of the rectilinear Manev R4BP are similar to the solutions of the one-dimensional two-body
problem: periodic (bounded), parabolic and hyperbolic orbits.

Theorem 3 For any β > 0 and admissible e, let L+
z = (0, 0, z) be the equilibrium point

of the Manev R4BP given in Proposition 1. Let H be Hamiltonian (25) and h = H(z, 0). If
(z(t), Z(t)) is a solution of the rectilinear Manev R4BP problem with h = H(z(t), Z(t)),
then

(i) it is periodic, if and only if, h < h < 0,
(ii) it is parabolic, if and only if, h = 0,
(iii) it is hyperbolic, if and only if, h > 0.

Proof Since this restricted problem is given by an autonomous Hamiltonian with one-degree
of freedom, any solution of system of (24) lies on a level curve of H = h. Clearly, H ≥
V (z) = h.
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Fig. 8 Phase portrait of
Hamiltonian system (24) for
β = 1 and e = 1
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For h ∈ (h, 0), the level curve H = h in the (z, Z) plane cuts the positive z axis in two
points. Using the symmetry (z, Z) → (z,−Z), the crossings are perpendicular, so the level
curve is symmetric with respect to the z axis, and the solution is periodic. If h = 0, the level
curve is Z2 = −2V (z), which corresponds to the parabolic solution. Finally, if h > 0, the
level curve is 2h − 2V (z) = Z2 −→ 2h when z ↗ ∞. That correspond to the hyperbolic
orbits.

The phase portrait of the rectilinear Manev R4BP is shown (for a specific values of β and
e) in Fig. 8. Notice that, as stated in Theorem 1, solutions cannot accumulate at z = 0.

Recall that we have seen that the equilibrium point L+
z of the Manev R4BP has a center

in the z direction (see Sect. 5.1). The Lyapunov Center Theorem ensures that if the ratios
between the associated eigenvalues of L+

z are not integers, there exists a family of periodic
orbits emanating from the equilibrium point. Theorem 3 shows that this family of periodic
orbits (p.o.) exists for all values of β and admissible e (vertical p.o. from now on).

It would be interesting to explore the existence of orbits connecting the vertical periodic
orbits with planar orbits (in the (x, y) plane). For this reason, we explore numerically the
linear stability of the family of vertical p.o. as periodic orbits of the whole Manev R4BP for
different values of β and e.

Fixed a p.o., its linear stability is given by the eigenvalues of monodromy matrix, which
due to theHamiltonian structure of theManevR4BPare 1, 1, λ1, 1/λ1, λ2, 1/λ2. The stability
parameters associated are defined as si = λi + 1/λi , i = 1, 2. If si is real and |si | > 2, then
λi is real; if si is real and |si | ≤ 2, then λi is complex of modulus 1; if si is complex with
Im(si ) �= 0, then λi is complex of modulus different from 1.

If both stability parameters are real with modulus less (or equal) than 2, then the p.o.
is linearly stable and it has associated a center manifold of dimension 5. If both stability
parameters are real, one of modulus greater than 2, the other with modulus less than 2, the
p.o. has associated stableWs and unstableWu invariant manifolds of dimension 2 each one,
and a center manifold of dimension 3. When both stability parameters are real with modulus
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Fig. 9 Stability parameters si , i = 1, 2 for the families of vertical p.o. for different values of β and e.
Continuous lines (in red) correspond to si , i = 1, 2 when they are real. Dashed lines (in blue) correspond to
si , i = 1, 2 complex; in that case only Re(s1) is plotted. First row: β = 1 and e = 0.1 (left) and e = 0.25
(right). Second row: β = 100 and e = 0.1 (left) and e = 0.25 (right)

greater than 2, or both are complex nonreal, the p.o. has associated stable Ws and unstable
Wu invariant manifolds of dimension 3 each one. See Perko (1996), for example.

Fixed a value of β and e we compute the stability parameters along the family of vertical
p.o.We look for orbits that are not linearly stable, so the existence of stable/unstablemanifolds
allows the possibility for connecting orbits with planar ones. The exploration of the existence
of such orbits will be the aim of a future work. Here we present the results about the linear
stability of the vertical p.o. for different values of the parameters.

In Fig. 9 we show the behavior of s1 and s2 for β = 1, 100 and e = 0.1, 0.25. For other
values we have obtained similar results. In all the cases explored only two scenarios appear:
both stability parameters are real with modulus greater than two (so the four eigenvalues are
real), or both stability parameters are complex nonreal (so the four eigenvalues are complex).
In all the plots, the red (continuous line) S1-shaped curves corresponds to the value of Re(s1)
when the stability parameters are complex nonreal, whereas the blue curves (dashed line)
corresponds to the case when both si are real. As β gets bigger, the set of values of C such
that both si are real shrinks, and their values get closer to ±2, but always |si | > 2.

Therefore, all the p.o. explored are unstable and there exist invariant manifolds associated
with them. This opens a door to the existence of orbits connecting the vertical p.o. with
planar ones. Looking at the stability of the equilibrium points, the best candidates to start
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with are L±
x1 and L

±
y1 . Both equilibriumpoints are of type center× center× saddle. Therefore,

when the Lyapunov Center Theorem applies, there exist families of p.o. that will inherit the
instability of the equilibrium points. Considering suitable values of the Jacobi constant (so
the Hill’s regions are open), the exploration of the intersections of the stable and unstable of
the corresponding p.o. will show if connections between the p.o. along the z axis and p.o.
around the planar equilibrium points can exist.

7 Conclusions

We have studied a spatial R4BP where the gravitational attraction of the central mass is
given by a Manev potential (−1/r + e/r2), e > 0, and the other two masses are equal
with Newtonian potential (−1/r ), called Spatial Manev R4BP. The problem depends on two
parameters, the ratio of mass of the central body to the mass of one of two other bodies, β
and the Manev perturbation, e. For instance, due to the repulsive term emanating from the
central body, we have proved that it is not possible to have a binary collision between the
infinitesimal mass and the central body.

In the present work we have focused on the existence and stability of equilibrium points.
An important property is the apparition of equilibrium points in the z axis which are unstable
from a global point of view. Moreover, the restriction of the Manev R4BP to this axis is an
integrable problem, and a family of periodic orbits emanate from each equilibrium point. We
have seen numerically that these periodic orbits inherit their instability.

There are always four equilibrium points on the y axis, and there exist 2, 4 or 6 equilibrium
points on the x axis, depending on β and e. Two of the equilibrium points on the y axis and
two on the x axis are always of type center × center × saddle. That means that, when the
Lyapunov Center Theorem applies, there exist families of periodic orbits emanating from
each equilibrium point, which will be unstable (at least close to the equilibrium points). The
invariant manifolds associated with all these periodic orbits can be explored in order to find
connections between neighborhoods of the planar equilibrium points and the equilibrium
points along the z axis. The existence of such a kind of connections will be the core of future
work.
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