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Abstract We use a formulation of the N -body problem in spaces of constant Gaussian
curvature, κ ∈ R, as widely used by A. Borisov, F. Diacu and their coworkers. We consider
the restricted three-body problem in S2 with arbitrary κ > 0 (resp. H2 with arbitrary κ < 0)
in a formulation also valid for the case κ = 0. For concreteness when κ > 0 we restrict
the study to the case of the three bodies at the upper hemisphere, to be denoted as S2+. The
main goal is to obtain the totality of relative equilibria as depending on the parameters κ

and the mass ratio μ. Several general results concerning relative equilibria and its stability
properties are proved analytically. The study is completed numerically using continuation
from the κ = 0 case and from other limit cases. In particular both bifurcations and spectral
stability are also studied. The H2 case is similar, in some sense, to the planar one, but in the
S
2+ casemany differences have been found. Some surprising phenomena, like the coexistence

of many triangular-like solutions for some values (κ, μ) and many stability changes will be
discussed.
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222 R. Martínez, C. Simó

1 Introduction

The gravitational N -body problem is usually studied in flat spaces, R2 or R3. However it is
already a classical problem to study the effect of the space curvature. See, e.g., Borisov et al.
(2004), Diacu (2012), Diacu to appear in CJM, and references therein for detailed accounts
on historical facts. The interest of the study is also stressed in problem 13 of the nice series of
problems in Kozlov (1995). One can consider spaces of constant Gaussian curvature κ �= 0
like 3-spheres (resp. 2-spheres) of radius R = κ−1/2 embedded inR4 (resp. inR3) for κ > 0,
and on hyperbolic 3-spheres (resp. 2-spheres) of imaginary radius i R = κ−1/2 embedded in
the Minkowski space R3,1 (resp. in R

2,1) for κ < 0.
Properties of the solutions can allow to test assumptions on the curvature or, based on

experimental data, to put bounds on the admissible value of κ . To this end one has to extend
the classical Newtonian force function to the curved space. See Diacu to appear in CJM for
details and context.

We are interested in how the relative equilibria of the flat case change due to curvature.
For concreteness we shall reduce to 2-dimensional problems, the spherical case S2+ and the
hyperbolic case H

2. Furthermore it is very convenient to consider a unified formulation
allowing to pass from the flat case R2 when κ = 0 to S

2+ for κ > 0 and to H
2 for κ < 0.

While a point in R
2 is identified by coordinates (x, y), looking at the surfaces S2 and H

2 in
the form

S
2
κ = {(x, y, z)|κ(x2 + y2) + (κ1/2z + 1)2 = 1},

H
2
κ = {(x, y, z)|κ(x2 + y2) + (|κ|1/2z + 1)2 = 1, z≥0},

it is clear that they are revolution surfaces tangent to z = 0 at x = y = 0. S2 has the equator
located on z = −1/

√
κ . In the case ofH2 one can put z as a function of x, y, κ . The same is

true for κ > 0 if we restrict ourselves to consider points in S2+, i.e., on the upper hemisphere.
Further studies can consider the problem in S3 and H3. Then, for small κ one can look at

the practical domain of stability around the triangular points, to be compared with the real
observations of Jupiter Trojan asteroids (a total of 6457 on August 20, 2016, according to the
Minor Planet Center). Beyond the local behavior around the points this domain is bounded by
several large invariant manifolds, see Simó et al. (2013) and references therein for details. At
least for this physical application it seems reasonable to consider only the upper hemisphere.

Based on results in Diacu to appear in CJM, F. Diacu has presented in arXiv:1508.06043
the following unified equations for the N -body problem with masses mi , i = 1, . . . , N

ẍi =
N∑

j=1

m j

[
x j −

(
1 − κr2i j

2

)
xi

]

r3i j

(
1 − κr2i j

4

)3/2 − κ ṙ2i xi ,

ÿi =
N∑

j=1

m j

[
y j −

(
1 − κr2i j

2

)
yi

]

r3i j

(
1 − κr2i j

4

)3/2 − κ ṙ2i yi , (1)

where r2i j = (xi − x j )2 + (yi − y j )2 + σ(zi − z j )2 and ṙ2i = ẋ2i + ẏ2i + σ ż2i , being σ = 1
if κ ≥ 0 and σ = −1 if κ < 0.

The study of relative equilibria of the N -body problem in the flat case has a long history.
In particular, for the three body problem it is well known, since Euler and Lagrange, the
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Relative equilibria of the restricted three-body problem 223

existence of 3 collinear and 2 triangular relative equilibria for any values of the masses, see.
e.g., Siegel and Moser (1971) and Szebehely (1967). The stability for these equilibria for
arbitrary positive masses and for the related homographic solutions with any value of the
eccentricity has been studied by different authors. See for instance Martínez et al. (2006) and
references therein for this problem which depends on two essential parameters.

A study of Kepler’s problem in manifolds of constant curvature can be found in Kozlov
and Harin (1992) and Chernoïvan and Mamaev (1999). Several papers, like García-Naranjo
et al. (2016), Diacu and Pérez-Chavela (2011), Diacu (2012, 2014) and Zhu (2014), study
the existence of relative equilibria of the curved problem for 3 or more bodies. In Martínez
and Simó (2013) a related problem was studied, looking at the general three-body problem
with equal masses in S

2 and considering homographic solutions and its stability. In Diacu
et al. (2013) four bodies are considered, also in S

2, one of them of mass m1 = 1 located at
the north pole (x = y = z = 0 in the present variables) and the other three of equal mass
at the vertices of an equilateral triangle located on a parallel (z = constant) and looking for
stability. In both cases there are few parameters in the problem.

In Borisov et al. (2004) and Chernoïvan and Mamaev (1999), the study of the two body
and Kepler problems, respectively, in S2 is completed with periodic orbits and the existence
of chaotic dynamics is shown for somemasses. An interesting question could be the existence
of invariant tori and the fractions of the phase space which have regular/chaotic dynamics
and how this depends on the mass ratio and the energy.

Our goal in this paper is to study the full set of relative equilibrium solutions in the case
of the restricted three-body problem and its stability properties. That is, we consider two
massive bodies of masses m1 and m2. One can scale the unit of mass in such a way that
m1 +m2 = 1 and use simply the mass ratio μ = m2 to specify the masses. First we look for
solutions of this two-body problem such that they are at rest in a system which rotates with
angular velocity α around the z axis. Then we consider the possible location of a massless
body such that the three bodies are in a relative equilibrium.

In this way the problem depends on parameters μ, α and κ . However, after a suitable
normalization, one can reduce to consider 2 parameters, μ and κ (taking α = 1) or μ and α

(taking κ = 1 or κ = −1). We shall choose the most convenient normalization to simplify
the proofs and the numerical computations. As done in Martínez and Simó (2013), the use
of 2 parameters allows for a rich set of solutions.

For the restricted problem there are important differences between the cases κ > 0 and
κ < 0. While in the case of H2, κ < 0, the relative equilibria appear to be the classical 3
Eulerian and 2 Lagrangian solutions, like in the planar case, in the case of S2+, κ > 0, several
bifurcations appear, changing the number of equilibria. The most relevant facts in S2+ are the
following:

1. The number of collinear solutions, with the three bodies on the same meridian in the
rotating system, ranges between 1 and 5,

2. The number of triangular solutions, the three bodies being not located on a maximal
circle, ranges between 0 and 8,

3. Collinear and triangular equilibria of the planar case, κ = 0, can be continued numerically
to κ �= 0. In particular, starting at one of the classical Lagrangian solutions, L5, the
continuation path to κ > 0 passes through a collinear solution and reaches the other
Lagrangian solution L4 when κ returns to zero.

In Sect. 2 the equations ofmotion arewritten in a suitable rotating frame and the conditions
for relative equilibrium are obtained. The two-body problem is studied completely in Sect. 3.
If κ < 0, for any μ ∈ (0, 1) and α �= 0, there is a unique equilibrium. However, if κ > 0, for
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224 R. Martínez, C. Simó

any fixed μ ∈ (0, 1) the number of equilibria changes depending on α. The spectral stability
is also determined in both cases. See Kilin (1999) for related numerical results.

Section 4 is devoted to obtain existence results for the restricted problem, considering the
collinear and triangular cases in Sects. 4.1 and 4.2, respectively. The case H2 is completely
described in Propositions 4.1 and 4.2. In the caseS2+, analytic results are provided forμ = 1/2
and for some limit cases, both for collinear and triangular equilibria. It is also proved that
for any admissible fixed μ and α the number of triangular relative equilibria is at most 8.
Moreover there are triangular equilibria that can not be obtained by continuation of the planar
case. Furthermore, some bifurcation curves are obtained analytically.

Section 5 is devoted to complete numerically the results obtained in Sect. 4. A complete
picture is given for the full range of parameters, both in the collinear and triangular cases. The
bifurcation curves are completely described. In the triangular case, we found a tiny region in
the parameter domainwhere there are exactly 8 relative equilibria. Thenumerical continuation
of the solution from the planar case shows the connections between the Lagrangian solutions
L4 and L5 as mentioned above in point 3. Moreover, the domain where there exist triangular
equilibria not connected with the ones in the planar case, is numerically described.

Section 6 is devoted to the spectral stability of the relative equilibria, including both
theoretical and numerical results.

2 Equations of motion

It will be convenient to rewrite Eqs. (1) in the case of three bodies in an equivalent form
which introduces several auxiliary functions to be widely used in what follows

q̈i =
3∑

j=1, j �=i

m j

d3i j
[q j − fi jqi ] − κviqi , i = 1, 2, 3, (2)

where qi = (xi , yi ) and

vi = |q̇i |2 + κ
(qi , q̇i )

2

E2
i

, Ei = √
1 − κAi , Ai = x2i + y2i ,

ρ2
i j = (xi − x j )

2 + (yi − y j )
2+κ

(Ai −A j )
2

(Ei + E j )2
, fi j = 1− κ

2
ρ2
i j ,

di j = ρi j

(
1 − κ

4
ρ2
i j

)1/2
. (3)

Let us denote by Ui = (ξi , ηi )
T , i = 1, 2, 3 the coordinates of the masses m1,m2,m3 in a

frame which rotates with angular velocity α, that is,

qi = R(θ)Ui , R(θ) =
(
cos θ − sin θ

sin θ cos θ

)
,

where α = θ̇ (t). In the rotating frame the equations of motion are

Üi − 2α J U̇i − α2Ui =
∑

j �=i

m j gi j [U j − fi jUi ] − κviUi , i = 1, 2, 3, (4)
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where

vi = α2(ξ2i + η2i ) + |U̇i |2 + 2αUT
i J U̇i + κ

(UT
i U̇i )

2

E2
i

, Ei =
√
1 − κ(ξ2i + η2i ),

ρ2
i j = (ξi − ξ j )

2+(ηi − η j )
2+κ

(ξ2i +η2i − ξ2j − η2j )
2

(Ei + E j )2
, gi j = 1

d3i j
, J =

(
0 1

−1 0

)

(5)

and fi j , di j are defined as in (3). We note that for κ > 0, Ei is defined if ξ2i + η2i < 1/
√

κ .
However, in the case κ < 0, there is no restriction on (ξi , ηi ). Reduced expressions for these
functions are given in the “Appendix”.

The restricted three body problem is obtained when m3 = 0. Then (4) reduce to

Ü1 − 2α J U̇1 − α2U1 = m2g12[U2 − f12U1] − κv1U1,

Ü2 − 2α J U̇2 − α2U2 = m1g21[U1 − f21U2] − κv2U2, (6)

Ü3 − 2α J U̇3 − α2U3 =
∑

j=1,2

m j g3 j [U j − f3 jU3] − κv3U3.

The equations for an equilibrium are

α2(1 − κ(ξ21 + η21))U1 + m2g12(U2 − f12U1) = 0, (7)

α2(1 − κ(ξ22 + η22))U2 + m1g12(U1 − f21U2) = 0,

−m1g13U1 − m2g23U2 + [m1g13 f13 + m2g23 f23 − α2(1 − κ(ξ23 + η23))]U3 = 0.

(8)

We shall assume η1 = η2 = 0 at the equilibrium. In fact, by the rotational symmetry we can
take η1 = 0. Then (7) implies η2 = 0. Therefore the equations for an equilibrium of the two
body problem reduce to

α2(1 − κ(ξ21 + η21))ξ1 = −m2g12(ξ2 − ξ1 f12), (9)

α2(1 − κ(ξ22 + η22))ξ2 = −m1g12(ξ1 − ξ2 f21). (10)

However, if η1 = η2 = 0 from (50) we have f12 = κξ1ξ2 + E1E2 and then ξ2 − ξ1 f12 =
E1(ξ2E1 − ξ1E2) and ξ1−ξ2 f21=−E2(ξ2E1−ξ1E2). Hence, in order to satisfy (9) and (10),
ξ1 and ξ2 must have opposite sign. So, from now onwe shall assume that the bodies of masses
m1,m2 are located at U1 = (r1, 0)T , U2 = (−r2, 0)T , respectively, where r1 > 0, r2 > 0
satisfy the equilibrium equations

α2r1(1 − κr21 ) = m2g12E1(r2E1 + r1E2), (11)

α2r2(1 − κr22 ) = m1g12E2(r2E1 + r1E2). (12)

First we shall study the existence of solutions of (11), (12) and consider the corresponding
equilibria (r1, 0)T , (−r2, 0)T for the primaries. Then we shall study the stability of these
equilibria.

Once r1 > 0, r2 > 0 are fixed we shall look for the equilibria, U3 = (a, b), of m3. We
shall distinguish mainly two cases: collinear and triangular.

For collinear solutions, that is b = 0, (8) reduces to

[m1g13 f13 + m2g23 f23 − α2(1 − κa2)]a − m1g13r1 + m2g23r2 = 0. (13)
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The corresponding equations for non collinear solutions, that is b �= 0, are

m1g13r1 − m2g23r2 = 0, (14)

m1g13 f13 + m2g23 f23 − α2(1 − κ(a2 + b2)) = 0. (15)

Remark 2.1 For κ �= 0 the Eqs. (2) can be reduced to the case κ = 1 if κ is positive and
to κ = −1 if κ is negative. This is achieved by introducing new variables Qi = qi |κ|1/2,
i = 1, 2, 3, and a new time τ , defined by dτ = |κ|3/4dt . This scaling will be useful to
simplify some analytic and numerical computations. However we shall keep the dependence
on κ to study the continuation of solutions from the planar case κ = 0 to the curved space
κ �= 0. We note that for the equilibria Eqs. (11) to (15) the scaling is achieved by introducing
ρi = ri |κ|1/2, i = 1, 2, A = a|κ|1/2, B = b|κ|1/2 and α̂ = α|κ|−3/4. In a similar way one
can keep κ without any normalization and set α = 1.

3 The two body problem in S
2+ and H

2

First we consider the Eqs. (11) and (12) for the primaries. They can be written as

μ = F(r1, r2), α2 = G(r1, r2), (16)

where

F(r1, r2) = r1E1

r1E1 + r2E2
, G(r1, r2) = 1

(r1E2 + r2E1)2(r1E1 + r2E2)
(17)

and we have used (51) and (52). See also (23).
Given some values of μ and α2, we are interested in the number of solutions (r1, r2) of

(16) with (r1, r2) ∈ Q := (0, 1/
√

κ)×(0, 1/
√

κ) if κ > 0, and (r1, r2) ∈ (0,∞)×(0,∞) if
κ <0.

We work in S2+ for κ > 0. See Borisov et al. (2004), Chernoïvan and Mamaev (1999) and
Kilin (1999), for results in the lower hemisphere.

Proposition 3.1 Assume κ > 0. For any μ∈ (0, 1)\{1/2}, there exists αc(μ)2 >κ3/2, such
that

1. If 0 < α2 < α2
c then (16) has no solutions for r1, r2 in Q,

2. If α2 = α2
c , (16) has exactly two solutions in Q,

3. If α2 > α2
c , (16) has exactly four solutions in Q.

If μ = 1/2 then (16) has no solutions for 0 < α2 < κ3/2, four solutions for α2 > κ3/2, and
exactly one solution (r1, r2) = (1/

√
2κ, 1/

√
2κ) if α = κ3/2.

Proof In order to simplify computations we shall take κ = 1 (see Remark 2.1) and we keep
the same notation r1, r2, α for the scaled variables. Given some values of μ and α we look
for the number of intersections of the level curves of F and G corresponding to values μ and
α respectively.

The level curves of F can be obtained explicitly. In particular, if μ = 1/2 they have
two components: r2 = r1 and r21 + r22 = 1 which intersect at the point P∗ = ( 1√

2
, 1√

2
).

In fact, P∗ is the unique critical point of the functions F(r1, r2) and G(r1, r2) in the square
Q = (0, 1)×(0, 1), and F( 1√

2
, 1√

2
) = 1/2 and G( 1√

2
, 1√

2
) = 1. So, P∗ is a solution of (16)

for μ = 1/2 and α2 = 1.
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To emphasize the symmetries we introduce a change of variables

(r1, r2) ∈ Q �→ (u, v) ∈ Q = {(u, v) ∈ R
2 | − π/2 < u ± v < π/2},

where u = φ1 + φ2 − π/2, v = φ1 − φ2 being φ1, φ2 in (0, π/2) such that ri = sin(φi ),
i = 1, 2. In the new variables the Eq. (16) become

μ = F̂(u, v) := 1

2
(1 − tan u tan v), (u, v) ∈ Q, (18)

α2 = Ĝ(u, v) := 1

cos3 u cos v
, (u, v) ∈ Q. (19)

From (19) it is clear that there are no solutions if α2 < 1 (that is, α2 < k3/2 for the non scaled
α). If α2 = 1 then u = v = 0, and μ = F̂(0, 0) = 1/2. Then P∗ is the unique solution in
this case. From now on we shall consider α2 > 1.

The following equalities hold

F̂(u, v) = F̂(−u,−v), Ĝ(u, v) = Ĝ(−u, v) = Ĝ(u,−v) = Ĝ(−u,−v).

Moreover, (18) is equivalent to 1 − 2μ = tan u tan v. Then, it is sufficient to consider
0 < μ < 1/2. In this case (18) has two symmetrical branches in the first and third quadrants,
respectively. Notice that F̂(u, v) = 1/2 reduces to the axes. Therefore it is sufficient to
consider 0 < μ < 1/2, and (u, v) ∈ Q̂ := {(u, v) ∈ Q | u > 0, v > 0}.

In Q̂, (18) and (19) are, respectively, the graphs of the following functions

v = f (u) := arctan

(
1 − 2μ

tan u

)
, v = g(u) := arccos

(
1

α2 cos3 u

)
.

For (u, v) ∈ Q̂ an elementary computation gives f ′(u) < 0, f ′′(u) > 0, g′(u) <

0, g′′(u) < 0. Therefore, given μ ∈ (0, 1/2) and α2 > 1, the graphs of f and g in Q̂ can
intersect in 0, 1 or 2 points. The number of solutions changes when a tangency is achieved.
It is easy to check that tangencies occur along the bifurcation curve

v = arcsin(
√
3 sin u), (20)

which is an increasing function from the origin to the point (u, v) = (π/6, π/3). Given a
value of μ, 0 < μ < 1/2, let (uμ, vμ) ∈ Q̂ be the point of the bifurcation curve (20) such
that F̂(uμ, vμ) = μ. Then we define αc(μ)2 = Ĝ(uμ, vμ)>1 and the Lemma follows. ��

Figure 1 shows level curves of F and G, as functions of the angles φ1 and φ2, for different
values of μ and α, displaying also the symmetry lines φ2 = φ1 and φ1 + φ2 = π/2. In the
left plot we show two different values of α2, both giving rise to solutions. For α2 = α2

c (0)
the G level curve is tangent to the boundaries of the domain and it has four components for
α2 > α2

c (0). Note that increasing α2 for κ fixed is equivalent to fix α2 and let κ tend to 0.
Figure 2 shows the two branches of the bifurcation curve in magenta, using the angles

φ1, φ2. Also tangent level curves of F and G have been plotted. As additional information
we display the critical scaled function α2

c as a function of μ ∈ (0, 1/2). It is immediate to
check that αc(μ)2 is decreasing, with limit values αc(0) = 16/

√
27, αc(1/2) = 1. One also

has α2
c (μ) = α2

c (1 − μ).

Proposition 3.2 Assume κ < 0. For any fixed μ ∈ (0, 1) and α2 �= 0, there is a unique
solution of (16) with r1 > 0, r2 > 0.
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Fig. 1 Some level curves of F (in red) and G (in blue), as functions of (φ1, φ2), for μ = 0.4, α2 = 1.5 and
α2 = 4 (left), μ = 0.6, α2 = 1.2 < α2c (μ) (middle), μ = 0.6, α2 = 1.5 > α2c (μ) (right)

 0

 0.5

 1

 1.5

0 0.5 1 1.5
φ1

φ2

 0

 0.5

 1

 1.5

0 0.5 1 1.5
φ1

φ2

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5

α2
c

μ

Fig. 2 Bifurcation curves inmagenta and some level curves of F andG with the bifurcation curve, represented
in the (φ1, φ2) variables. Left μ = 0.3701431592, α2 = 1.480380414. Middle μ = 0.5474073109, α2 =
1.168557976. The right plot shows α2c as a function of μ

Proof According to Remark 2.1 we can take κ = −1. Similar to what was done for Propo-

sition 3.1 let us introduce γ1, γ2 such that ri = sinh(γi ), i = 1, 2 and then Ei =
√
1 + r2i =

cosh(γi ). The level curves of F and G satisfy

sinh(2γ2) = 1 − μ

μ
sinh(2γ1) and

G∗(γ1, γ2) := sinh2(γ1 + γ2)(sinh(2γ1) + sinh(2γ2)) = 2

α2 , (21)

respectively. From the first Eq. in (21) one has γ2 strictly increasing wrt γ1 (and, hence, r2
wrt r1) for fixed μ. From the second one, and using ∂G∗/∂γi > 0, i = 1, 2, one has γ2
strictly decreasing wrt γ1 (and, hence, r2 wrt r1) for fixed α. The level curves of F pass
through (0, 0) and the ones of G through (0, r∗

2 ) and (r∗
1 , 0) where the related γ ∗

i satisfy
sinh2(γ ∗

i ) sinh(2γ ∗
i ) = 2/α2. This proves the existence of a unique intersection point. ��

Proposition 3.3 Assume that μ, α2 and κ �= 0 are fixed. Let r1 > 0, r2 > 0 satisfy the
equilibrium Eqs. (11) and (12). Then the relative equilibrium of the two body problem is
spectrally stable if κ2r21r

2
2 < 1/4 and, it is unstable if κ2r21r

2
2 > 1/4.

Proof We introduce new variables xi = ξi , yi = ηi , Xi = ξ̇i , Yi = η̇i , i = 1, 2 to write
(6) as a first order system

ẋi = Xi , ẏi = Yi , Ẋi = 2αYi + α2xi − κxivi + Fi ,

Ẏi = −2αXi + α2yi − κyivi + Gi , i = 1, 2,
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where

F1 = m2

d312
(x2 − x1 f12), F2 = m1

d312
(x1 − x2 f12),

G1 = m2

d312
(y2 − y1 f12), G2 = m1

d312
(y1 − y2 f12),

f12 = κ(x1x2 + y1y2) + E1E2,

vi = α2(x2i + y2i ) + X2
i + Y 2

i + 2α(xiYi − yi Xi ) + κ

E2
i

(xi Xi + yiYi )
2, i = 1, 2,

and d−3
12 = �

−3/2
12 where

�12 = x21 + y21 + x22 + y22 − κ(x21 + y21 )(x
2
2 + y22 ) − κ(x1x2 + y1y2)

2

−2(x1x2 + y1y2)E1E2.

Let M be the differential matrix associated to the system above at the equilibrium

(x1, x2, y1, y2, X1, X2, Y1, Y2) = (r1,−r2, 0, 0, 0, 0, 0, 0).

Then

M =
(
0 I4
A B

)
, A =

(
α2A1 + F 0

0 α2A2 + G
)

, B = 2α

(
0 A2

−I2 0

)
,

A1 = diag(E2
1 − 2κx21 , E

2
2 − 2κx22 ), A2 = diag(E2

1 , E
2
2).

F (G) stands for the 2 × 2 differential matrix of (F1, F2) ((G1,G2)) with respect to x1, x2
(y1, y2) at the equilibrium, and Ik stands for the identity of order k.

The characteristic polynomial of M reduces to

p(λ) = det (−λ2 I4 + λB + A) = 0. (22)

Using the special structure of the matrix above, the Eq. (22) can be written as

det ((−λ2 I2 + α2A1 + F)(−λ2 I2 + α2A2 + G) + 4α2λ2A2) = 0,

which is equivalent to

det (λ4 I2 + λ2C + D) = 0,

where

C = 3α2A2 − α2A1 − F − G, D = (α2A1 + F)(α2A2 + G).

Then

p(λ) = λ8 + (c11 + c22)λ
6 + (det (C) + d11 + d22) λ4

+(c11d22 + c22d11 − c12d21 − c21d12)λ
2 + det (D),

where ci j , di j are the elements of the matrices C and D, respectively.
To compute these matrices it is useful to take into account the expression for d−3

12 given
above in terms of �12. Furthermore, if we denote by � the function �12 at the equilibrium,
it turns out that

� = L2, L = x1E2 − x2E1 = r1E2 + r2E1. (23)
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Then the matrices F and G are easily computed as

F =�−3/2

⎛

⎝m2

(
2 f12 + κr1

L
E1

)
−2m2 f12

E1
E2

−2m1 f12
E2
E1

m1

(
2 f12 + κr2

L
E2

)

⎞

⎠ , G=�−3/2
(−m2 f12 m2

m1 −m1 f12

)
.

Using (16), (17) we obtain

F = α2

⎛

⎝ κr21 + 2r1E1 f12
L − 2r1E2

1 f12
E2L−2r2E2

2 f12
E1L

κr22 + 2r2E2 f12
L

⎞

⎠ , G = α2

L

(−r1E1 f12 r1E1

r2E2 −r2E2 f12

)
,

and

α2A2 + G = α2

L

(
r2E1 r1E1

r2E2 r1E2

)
.

It is clear that det (α2A2 + G) = 0. Hence λ = 0 is a double zero of p(λ) as it would be
expected.

In a similar way we compute the matrices C and D as

C = α2

L

(
2r2E1 + r1E2

r1E1
E2

(2E1 f12 − E2)
r2E2
E1

(2E2 f12 − E1) r2E1 + 2r1E2

)
,

D = α2

L

(
r2(1 − 2κr21 )E1 r1(1 − 2κr21 )E1

r2(1 − 2κr22 )E2 r1(1 − 2κr22 )E2

)
.

Moreover it is easy to compute

c11 + c22 = 3α2, d11 + d22 + det (C) = (3 − 4κ2r21r
2
2 )α4,

c11d22 + c22d11 − c12d21 − c21d12 = (1 − 4κ2r21r
2
2 )α6.

So, the characteristic polynomial becomes

p(λ) = λ8 + 3α2λ6 + (3 − 4κ2r21r
2
2 )α4λ4 + (1 − 4κ2r21r

2
2 )α6λ2

= λ2(λ2 + α2)(λ4 + 2α2λ2 + (1 − 4κ2r21r
2
2 )α4).

Let us introduce ν = λ2/α2. The polynomial q(ν) := ν2+2ν +1−4κ2r21r
2
2 has a minimum

at ν = −1 and q(−1) = −4κ2r21r
2
2 < 0. Then if 1 − 4κ2r21r

2
2 > 0 the zeroes of q(ν) are

negative and they give imaginary values of λ. In this case the equilibrium is spectrally stable.
If 1 − 4κ2r21r

2
2 < 0, q(ν) has a positive zero giving rise to one eigenvalue λ > 0, so the

equilibrium is unstable. ��

Remark 3.1 Once r1 and r2 are given, the values ofμ and α2 are determined using (16). Then
one can look for collinear relative equilibria (a, 0), with a satisfying (13) and triangular
equilibria (a, b), being (a, b) a solution of (14), (15). So, we can consider the Eqs. (11)
to (15) depending on r1, r2, a and b. These equations are invariant under the symmetry
(r1, r2, a, b) → (r2, r1,−a, b). Therefore it is sufficient to consider r1 ≤ r2.

Some results about stability, in a different sense, for the H2 case can be found in García-
Naranjo et al. (2016).
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4 Relative equilibria for the restricted problem

4.1 Collinear relative equilibria

Assume r1, r2, μ, and α fixed satisfying (16). We consider the Eq. (13) for a

α2a(1 − κa2) = (1 − μ)g13( f13a − r1) + μg23( f23a + r2). (24)

Using (55) and (57) (see the “Appendix”) for (x, y) = (a, 0) the Eq. (24) can be written as

(1 − μ)
S1

|S1|3 + μ
S2

|S2|3 − α2aE3 = 0, (25)

where E3 = √
1 − κa2, S1 = aE1 − r1E3, S2 = aE2 + r2E3.

One has to distinguish three cases according to the position of m3: r1 < a (S1 > 0, S2 >

0), −r2 < a < r1 (S1 < 0, S2 > 0), a < −r2 (S1 < 0, S2 < 0). However, the third case
reduces to the first one by exchanging r1 and r2 and changing the sign of a.

To study the solutions of (25) it will be useful to write it as hL(a) = hR(a) where

hL(a) = (1 − μ)
S1

|S1|3 + μ
S2

|S2|3 , hR(a) = α2aE3.

4.1.1 The collinear relative equilibria in H2

Proposition 4.1 Assume κ < 0. For any fixed μ ∈ (0, 1), α �= 0, there are 3 collinear
relative equilibria.

Proof We shall prove that there is exactly one solution of (25) at each interval a > r1,
−r2 < a < r1, and a < −r2.

Notice that hR(a) = α2a
√
1 + |κ|a2 is a function of a increasing without bound and

hR(0) = 0.
Assume a > r1. Then S1 > 0, S2 > 0 and hL(a) = 1−μ

S21
+ μ

S22
.Using (58) and Lemma 7.1

dhL(a)

da
= −(1 − μ)

2 f13
E3S31

− μ
2 f23
E3S32

< 0.

Then hR(a) and hL(a) intersect at a unique point a > r1 which is a solution of (25).
If −r2 < a < r1, then S1 < 0, S2 > 0 and hL(a) = − 1−μ

S21
+ μ

S22
. As before, hL(a) is a

decreasing function of a and then there is a unique solution of (25) in that interval. The third
case follows by symmetry. ��

4.1.2 The collinear relative equilibria in S2+

Let us consider κ > 0. In this case, for 0 < a < 1/
√

κ , hR(a) = α2a
√
1 − κa2 is a concave

function which has a maximum at a = 1/
√
2κ and hR(0) = hR(1/

√
κ) = 0. So, we can

expect more than three solutions of (25) depending on the values of r1, r2.
First we consider the case r1 = r2. In this case μ = 1/2 and α2 = 1/(8r31 E

3
1).

Proposition 4.2 Assume κ > 0 and r1 = r2 fixed. Then there is a value r∗ =
0.337849954 . . ., zero of a polynomial given in the proof, such that
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1. If
√

κ r1 < r∗ then there are 5 collinear relative equilibria one of them between the
primaries, and two additional ones at each side of the primaries.

2. If
√

κ r1 > r∗ then there is a unique collinear equilibrium between the primaries.
3. If

√
κ r1 = r∗ then there are three collinear equilibria, one of them between the primaries

and one at each side of the primaries.

In any case, a = 0 for the equilibria between the primaries.

Proof To simplify the computations we shall take κ = 1 (see Remark 2.1). In the case
−r1 < a < r1 the Eq. (25) can be written as

−16r41 E
4
1

a

(a2 − r21 )2
= a

and it has a unique solution a = 0. Therefore for any value of r1 there is a unique collinear
relative equilibrium with negligible mass between the two primaries.

Let us consider a collinear equilibrium with a > r1. In this case S1 > 0, S2 > 0 and

hL(a) = 1
2

(
1
S21

+ 1
S22

)
. We compute

d

da
hL(a) = − 2a

(a2 − r21 )3
(a2P + Q),

d2

da2
hL(a) = 2

(a2 − r21 )4
(3Pa4 + (3r21 P + 5Q)a2 + Qr21 ),

where P = 1 − 2r21 , Q = r21 (3 − 2r21 ).

We claim that hL(a) is a decreasing convex function for 0 < r1 < a < 1.
This is trivial if 0 < r1 ≤ 1/

√
2. Let us assume that 1/

√
2 < r1 < 1. Using that a2 < 1

and P < 0 we obtain

a2P + Q > (1 + r21 − 2r41 ) > 0.

Then d
da hL(a) < 0 for r1 < a < 1. Let be

N̂ (a2) = 3Pa4 + (3r21 P + 5Q)a2 + Qr21 .

It is easy to check that N̂ (0) > 0 and

N̂ (1) = (3 + 12r21 − 13r41 − 2r61 ) > 0.

Therefore N̂ (a2) > 0 and d2

da2
hL(a) > 0 for any r1 < a < 1. So, the claim is proved.

Using that hR(a) is a concave function if a > 0, we conclude that the number of solutions
of hL(a) = hR(a) with r1 < a < 1 is less than or equal to two.

Now we shall look for tangencies between hL(a) and hR(a).
After eliminating square roots, the equation hL(a) = hR(a) for collinear equilibria with

a > r1, is reduced to

a12 − (1 + 4r21 )a10 + 2r21 (2 + 3r21 )a8 − 2r41 (3 + 2r21 )a6

+r61 (−256E8
1r

2
1 + 64E6

1 − E2
1 + 5)a4 + r81 (256E8

1 − 128E6
1 − 1)a2 + 64r101 E6

1 = 0.

So, we obtain a polynomial equation of degree 6 in A := a2. To look for bifurcation points we
compute the resultant of the polynomial above and its derivative with respect to A. Besides
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a constant factor the resultant is t20(t − 1)20R, where t = r21 and R is an even polynomial in
T = t − 1/2

R = T 12 − 3

4
T 10 + 45

256
T 8 + 11

256
T 6 − 2421

65536
T 4 + 2319

262144
T 2 − 11449

16777216
.

It is easy to prove that R has exactly two real zeroes 0 < t1 < 1/2 < t2 < 1. However, only
the value t1 gives a bifurcation point with a > r1 (t2 gives rise to a value of a, a < r1). So, we
conclude that if r1 = r2 there is a unique bifurcation point such that the number of collinear
equilibria with a > r1 passes from two to zero as r1 increases. The numerical values are
t1 = 0.1141425915 . . . , r∗ = √

t1 = 0.3378499541 . . . and then a = 0.8939525657 . . .. ��
Limit cases

Two limit cases can be easily studied: r1 = 0 and r2 = 1/
√

κ (i.e., the second mass is at
the equator). In any case the solutions of (25), will be called limit collinear relative equilibria
(LCRE). In the first case one has μ = 0 and the equations reduce to r32 E2 = |a|3E3 for
|a| < 1/

√
κ . Using the function f1(x) := x3

√
1 − κx2, it is easy to prove the following

Proposition

Proposition 4.3 Assume r1 = 0 and 0< r2 < 1/
√

κ . Then for any r2 there is a LCRE with
a = r2. If r2 �=√

3/(2
√

κ), there exist two additional LCRE symmetrical wrt the origin.

If r2 = 1/
√

κ and 0 < r1 < 1/
√

κ wehaveμ = 1 andwe obtain the equation r1E3
1 = aE3

3
for a > 0. As before the following Proposition holds.

Proposition 4.4 Assume r2 = 1/
√

κ and 0 < r1 < 1/
√

κ . Then

1. If r1 �= r2/2, there is one LCRE with a > r1 if r1 < r2/2, and 0 < a < r1 if r1 > r2/2.
2. If r1 = r2/2 there are no LCRE.

4.2 Triangular relative equilibria

Assume r1, r2, μ, and α fixed satisfying (16). One has to solve (14), (15) for a, b.
Using (14), (50) and (17) we can eliminate g13 in (15) to obtain the equivalent system

σ1�23 = �13, (r1E2 + r2E1)
3E1 = E3�

3/2
23 , (26)

where σ1 := (E2/E1)
2/3 and �13, �23 are given in (55) with x = a, y = b. This suggests

to introduce new variables U := �13 > 0 and V := �23 > 0, that is (see 55)

U = b2 + S21 , V = b2 + S22 , S1 = aE1 − r1E3, S2 = aE2 + r2E3.

To write E3 in terms of the new variables, we note that using (54) with x = a, y = b, we
obtain

E3 = r2 f13 + r1 f23
r1E2 + r2E1

, a = (E2 f13 − E1 f23)

κ(r1E2 + r2E1)
. (27)

Moreover, from (50) one has f 213 = 1− κU and f 223 = 1− κV . That is, onceU, V are fixed,
f13 and f23 are determined except by a sign. Therefore

E2
3 = r22 (1 − κU ) + r21 (1 − κV ) ± 2r1r2

√
1 − κU

√
1 − κV

(r1E2 + r2E1)2
, (28)

where we shall take the sign +(−) if f13 f23 > 0 (< 0). Using U, V (26) becomes

σ1V = U, (r1E2 + r2E1)
6E2

1 = E2
3V

3, (29)
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where E2
3 is given by (28). Therefore (29) reduces to

P±(V ) := V 3(r2
√
1 − κσ1V ± r1

√
1 − κV )2 − σ2 = 0, (30)

where σ2 = (r1E2 + r2E1)
8E2

1 . We recall that it is sufficient to consider r1 ≤ r2 (see
Remark 3.1). In this case if κ > 0, one has σ1 < 1 and then P±(V ) are defined for V ∈
[0, 1/κ]. If κ < 0, then f13 > 0 and f23 > 0 for any a, b (see (3)). So in this case we only
need to consider the function P+(V ) which is defined for any V ≥ 0.

Let us see now how to recover a and b from the zeroes of P+(V ) in the general case
κ �= 0. Assume that V0 satisfies P+(V0) = 0 and let be U0 = σ1V0. In this case f13 and f23
have the same sign that we take positive in order to have E3 > 0. So f13 = √

1 − κU0 and
f23 = √

1 − κV0. Using (27) we compute E3 and a. Finally, if (1 − κa2 − E2
3)/κ > 0, we

get two equilibria with

b = ±
√

(1 − κa2 − E2
3)/κ . (31)

For κ > 0, if V0 ∈ (0, 1/κ) is a solution of P−(V0) = 0 and U0 = σ1V , one has to take f13
and f23 with opposite sign such that E3 > 0 in (27). Then the equilibria are determined as
before.

4.2.1 Triangular relative equilibria in H
2

Proposition 4.5 Assume κ < 0. For any fixed μ ∈ (0, 1) and α2 > 0, there are exactly
two symmetric triangular relative equilibria (a,±b) with b �= 0. Moreover, if r1 = r2 then
a = 0.

Proof First we assume r1 = r2. In this case σ1 = 1 and U = V . Then |S1| = |S2|. This
implies a = 0 and so, E2

3 = 1 − κb2 and V =b2 + r22 E
2
3 =r21 +b2E2

1 . The second equation
of (29) becomes

26r61 E
8
1 = E2

3(r
2
1 + b2E2

1)
3. (32)

The right hand side of the equation above is an increasing function of b2 equal to r61 for
b = 0. Using that 26E8

1 > 1 we conclude that for any r1 > 0, (32) has a unique solution
b2 �= 0 giving rise to two triangular equilibria (0,±b).

Now we shall prove that in the general case, that is, r1 different of r2, the triangular
equilibria do not degenerate to collinear, that is, b �= 0. To do this we assume that (a, 0) is a
solution of (29). Then U = S21 , V = S22 with E3 = √

1 − κa2 and (29) reduces to

E1|S1|3 = E2|S2|3, E1(r1E2 + r2E1)
3 = E3|S2|3,

which is equivalent to

h1(a) := E3|S1|3 − E2(r1E2 + r2E1)
3 = 0,

h2(a) := E3|S2|3 − E1(r1E2 + r2E1)
3 = 0. (33)

Using d(E3|S1|3)/da it is easy to check that h1(a) has exactly two zeroes: a = −r2,
a = a1 > r1, and h1(a)< 0 if and only if −r2 <a<a1. In a similar way, h2(a) has exactly
two zeroes: a = −a2 <−r2, a = r1. Therefore (33) has not real solutions and there are no
triangular equilibria with b = 0.

Going to the general case we know that it is sufficient to look for the zeroes of

P+(V ) := V 3(g(V ))2 − σ2 = 0, (34)
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where

g(V ) = r1
√
1 − κV + r2

√
1 − κσ1V , σ2 = E2

1(r1E2 + r2E1)
8.

We note that for V > 0, P+(V ) is a monotonically increasing function with P+(0) < 0
and going to infinity as V goes to infinity. Therefore there is a unique V0 > 0 such that
P+(V0) = 0.

Assume that V0 is a solution of (34). To obtain a relative equilibrium we proceed as
explained before. First we compute E3 using (27) and (34) as

E3 = g(V0)

r1E2 + r2E1
= E1(r1E2 + r2E1)

3

V 3/2
0

.

Then

a = r21 − r22 + V0(E2
1 − σ1E2

2)

(r1E2 + r2E1)(E1
√
1 − κV0 + E2

√
1 − κσ1V0)

andb2 = V0−(aE2+r2E3)
2. Tofinish the proof it remains to prove thatV0−(aE2+r2E3)

2 >

0.
Assume that for some r1 = r̂1 > 0, r2 = r̂2 > 0, the expression above is negative.

Using the symmetry we can assume also that r̂1 < r̂2. Let us consider the segment γ =
{(r1, r2) | r1 = r̂1, r̂1 ≤ r2 ≤ r̂2}.We know that for (r1, r2) = (r̂1, r̂1) there are two equilibria
(0,±b) with b �= 0. The continuity with respect to r2 implies that there is some r̂1 ≤ ρ ≤ r̂2
such that V0 − (aE2 + r2E3)

2 = 0. In this case, we should obtain a triangular/collinear
relative equilibrium, which is not possible. This ends the proof. ��

4.2.2 Triangular relative equilibria in S
2+

The case κ > 0 is more rich that the case κ < 0. After Lemma 7.1 we know that if κ > 0,
the functions f13 and f23 do not have constant sign. So we have to study the zeroes of the
two functions P±(V ).

First we shall study the existence of triangular relative equilibria in the case r1 = r2.
The case r1 = r2

If r1 = r2 from (16) and (17) μ = 1/2 and α2 = 1/(8r31 E
3
1).

Proposition 4.6 Assume r1 = r2. Then one has a = 0 and there exist three values 0<β1<

β2< β3 =1 − 2−3/2 such that

1. If 0 < κr21 < β1 or β2 < κr21 < β3 there are exactly 4 triangular configurations.
2. If β3<κr21 < 1 there are exactly 2 triangular configurations.
3. If β1 < κr21 < β2 there are no triangular configurations.
4. If κr21 = β1 or κr21 = β2 there are exactly 2 triangular configurations (a, b) =

(0,±
√

(3 − 4κr21 )/(4(1 − κr21 ))).

5. If κr21 = β3 there are 2 triangular configurations and another configuration (a, b) =
(0, 0) which is in fact collinear.

Proof In order to simplify the computations we shall take κ = 1 (see Remark 2.1). If r1 = r2,
then E1 = E2, σ1 = 1 and U = V . In this case P−(V ) = −σ2 < 0 constant, so we only
need to consider the function P+(V ).
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Let V0 be a solution of P+(V ) = 0. Then f13 = f23 = √
1 − V and using (27) we obtain

E3 = f13
E1

=
√
1 − V0
E1

, a = 0.

Therefore

b2 = 1 − E2
3 = V0 − r21

E2
1

.

So, if V0 > r21 is a solution of P+(V ) = 0 we obtain two triangular equilibria

(a, b) =
(
0,±

√
V0 − r21

E2
1

)
.

If V0 = r21 there is a unique configuration (a, b) = (0, 0) which in fact is collinear.
We are interested in the number of zeroes of P+(V ) which satisfy r21 < V < 1. We call

them admissible zeroes of P+(V ), each one giving rise to two triangular configurations.
In this case P+(V ) becomes

P+(V ) = 4r21 (V 3(1 − V ) − 26r61 E
10
1 ).

It is obvious that P+(0) < 0 and P+(1) < 0.
This function has a unique maximum in the interval (0, 1) located at V = 3/4 and

P+(3/4) = r21

(
27

43
− 28r61 E

10
1

)
.

Bifurcations can appear when P+(3/4) = 0 that is, if we introduce β := r21 , when

27 = 214β3(1 − β)5

holds. This equation has exactly two solutions in the interval (0, 1), β1 = 0.1570186981 . . . ,

and β2 = 0.6357277816 . . .. Therefore P+(V ) has no zeroes if β1 < r21 < β2, it has exactly
one zero if r21 = β1 or r21 = β2, and two zeroes otherwise.

On the other hand P+(r21 ) = 4r81 E
2
1(1 − 26E8

1) and P+(r21 ) = 0 if r21 = β3. Then, if
r21 > β3, P+(r21 ) > 0 and so, P+(V ) has two zeros V1, V2 with 0 < V1 < r21 < V2 < 1. The
solution V1 is not admissible and from V2 we obtain two triangular equilibria.When r21 = β3,
P+(V ) has two zeros, 0 < V1 = r21 < V2 < 1. From V2 we obtain two equilibria and from
V1 we get b = 0, that is, a collinear equilibrium. For r21 < β3 the two zeros, which exist for
r21 ∈ (0, β1) ∪ (β2, β3), are admissible. The Fig. 3 summarizes the solutions displaying b2

as a function of r21 . ��
General case

Let us consider now the general case, r1 �= r2. As usual we can restrict to r1 < r2.

Theorem 4.1 Assume κ > 0, r1, r2, μ, α2 fixed satisfying (16), (17). The number of trian-
gular relative equilibria is at most equal to 8. Moreover, if κ(r21 + r22 ) = 1, there are no
triangular relative equilibria.

Proof As usual we can take κ = 1 and it is enough to consider r1 < r2 and, hence, σ1 < 1.
For the functions P±(V ), as defined in (30), it is clear that P±(0) = −σ2 < 0 and

P+(1) = P−(1). Moreover P−(V ) < P+(V ) for any V ∈ (0, 1) (see Fig. 4).
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Fig. 3 Plot of the triangular solutions for r1 = r2. The horizontal (vertical) variable is r
2
1 (b2). The vertical

lines correspond to r21 = β1 and r
2
1 = β2. (β3, 0) is the lower end point of the right curve located on b2 = 0.

On the right a magnification around [β2, β3]. This Figure is an equivalent version of Figure 11 in Kilin (1999)
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Fig. 4 Plots of P±(V ) for r2 = 0.4 and a r1 = 0.05, b r1 = 0.16, c r1 = 0.2, d r1 = 0.38

Let us consider P+(V ) and let be

g+(V ) := r2
√
1 − σ1V + r1

√
1 − V .

Then g+(0) = r1 + r2 > 0 and dg+/dV < 0. Moreover dP+(V )/dV = 0 implies that

3g+(V ) = −2V dg+(V )/dV .

This equation has a unique solution V∗ ∈ [0, 1] (notice that the right hand side is an increasing
function of V and g+(V ) is decreasing)which is amaximumof P+(V ). Therefore, depending
on the values of r1, r2, P+(V ) can have 0, 1 or 2 zeroes.
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We note that
dP+(V )

dV
→ −∞ and

dP−(V )

dV
→ +∞ as V → 1−.

We claim that P−(V ) has at most two critical points in the interval (0, 1).
Then the maximum number of zeroes of P−(V ) in (0, 1) is three. However, as P+(1) =

P−(1) we conclude that the total number of zeroes of P±(V ) is at most equal to four. Using
that for any zero of P±(V ) we can obtain at most two (symmetrical) relative equilibria, the
maximum number of triangular relative equilibria is eight.

To prove the claim we compute

dP−(V )

dV
= V 2g−(V )

(
3g−(V ) + 2V

dg−(V )

dV

)
, (35)

where

g−(V ) = r2
√
1 − σ1V − r1

√
1 − V .

If g−(V ) = 0 we obtain V = (r22 − r21 )/(r22σ1 − r21 ). However we are assuming r1 < r2
and σ1 < 1, which would give V > 1. Therefore, the positive critical points of P−(V ) must
satisfy

3g−(V ) + 2V
dg−(V )

dV
= 0,

or, equivalently,

r2(3 − 4σ1V )
√
1 − V = r1(3 − 4V )

√
1 − σ1V . (36)

For further use we note that if in (35) we use P+ we shall obtain

r2(3 − 4σ1V )
√
1 − V = −r1(3 − 4V )

√
1 − σ1V . (37)

Eliminating the square roots we obtain, both for (36) and (37)

Q(V ) := 16σ1(r22σ1 − r21 )V 3 + 8(−3(σ1 + 1)(r22σ1 − r21 ) + r22σ 2
1 − r21 )V 2

+3(8(r22σ1 − r21 ) + 3(r22 − σ1r21 ))V + 9(r21 − r22 ) = 0.
(38)

A simple computation shows that

Q(0) < 0, Q

(
3

4

)
= −9

4
r22 (σ1 − 1)2 < 0, Q

(
3

4σ1

)
= 9

4σ 2
1

r21 (σ1 − 1)2 > 0,

Q(1) = r21 (1 − σ1)>0.

Then, for any r1 <r2, Q has at least one zero in the interval (3/4, 3/(4σ1)) and so, it has at
most two zeroes outside this interval. However, if 3/4<V <3/(4σ1) then (3−4σ1V )(3−4V )

< 0 and so, it is not a solution of (36). We conclude that (36) has at most two solutions in
(0, 1) which are critical points of P−(V ) and the claim is proved.

Assume now r21 + r22 = 1 and, hence, E1 = r2, E2 = r1, σ2 = r22 . We shall prove that
P+(V ) has no zeroes in this case. Because of the symmetry and that the case r1 = r2 is
proved in Proposition 4.6 item 3., it is enough to consider 0 < r1 < r2. Furthermore, as for
r1 = r2 there are no solutions with r1 = 1/

√
2, it is enough to see that no zeros appear in the

range 0 < r1 < r2.
Let t := √

σ1 = (E2/E1)
1/3. Then the equation P+(V ) = 0 can be written as

V 3(1 − t2V + t6(1 − V )) − 1 = −2V 3t3
√
1 − t2V

√
1 − V . (39)
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Let Q(T, V ) be the polynomial obtained by taking squares in (39) and setting T = t2.
The domain of interest is (T, V ) ∈ (0, 1)2. We compute the resultant of Q and ∂Q/∂V to
look for the existence of critical points of Q wrt V which are zeros of Q and divide it by
216T 19(T − 1)8(T + 1)6. One obtains the symmetrical polynomial R(T ) given by

R(T ) = 729(T 12 + 1) + 1458(T 11 + T ) + 1944(T 10 + T 2) − 15363(T 9 + T 3)

−33102(T 8 + T 4) + 51309(T 7 + T 5) + 137602T 6.

If R(T ) has a zero T1 ∈ (0, 1), it should also have a zero 1/T1 > 1. It is immediate to check
that all the derivatives are positive at T = 9/8. Hence there are no zeros with T > 9/8.
The expansion around T = 1 in the variable τ = T − 1, R̂(τ ) = R(1 + τ) = ∑12

k=0 ckτ
k

has all ck > 0 except c5 = −94188. But c4 = 1080645. This ensures that no zeros occur
for T ∈ (1, 9/8). Summarizing R has no zeros in (0, 1) and, therefore, no zeros of P+(V )

appear in the range. ��
Remark 4.1 From Theorem 4.1 it follows that the lack of connection between the domains
of existence of triangular relative equilibria already seen in Proposition 4.6 for r1 = r2 is
general. That is, there are disconnected domains of existence of these solutions.

Limit cases
To simplify the formulas we shall take κ = 1 in all this subsection.
Our purpose is to study the solutions of (29) in two limit cases: r1 = 0, excluding r2 = 0,

and r2 = 1, excluding r1 = 1. In any case we refer to these solutions as “limit triangular
relative equilibria” (LTRE).

First we consider r1 = 0. In this case, P+ and P− coincide and they are equal to

P(V ) := r22 [ V 3(1 − σ1V ) − r62 ].
Proposition 4.7 Assume r1=0, r2>0. There exists a value r̂2=0.8260313577 . . . such that

1. If 0 < r2 ≤ r̂2 then there are two LTRE with

a = 1

r2

(
1 − r22 −

√
1 − V̂

)
, b = ±

√
r22 − a2, V̂ = r22 (1 − r22 )−1/3. (40)

2. If r̂2 < r2 < 1 there are no LTRE.

Moreover for
√
1 − 2−3/2 < r2 < r̂2, two additional LTRE are obtained with

a = 1

r2
(1 − r22 +

√
1 − V̂ ), b = ±

√
r22 − a2. (41)

If r2 = √
1 − 2−3/2, then (41) becomes collinear. For r2 = r̂2, (40) and (41) coincide.

Proof If r1 = 0, P+ = P− and they are equal to

P(V ) = r22 (V 3(1 − sV ) − r62 ) = r22 (sV − r22 )(−V 3 + s2V 2 + r22 sV + r42 ),

where s = (1 − r22 )1/3. P has a unique extremum, which is a maximum, located at Vm =
3/(4s). The value of Vm is less than 1 if r2 <

√
37/8 = 0.760345 . . .. Moreover

P(1) = r22 [1 − r62 − (1 − r22 )1/3],
which is positive if 0 < r2 < r̂2 = 0.8260313577 . . . and negative if r̂2 < r2 < 1.

Then if 0 < r2 ≤ r̂2, P(V ) has a unique zero V̂ = r22 (1 − r22 )−1/3 in the interval [0, 1],
and for r̂2 < r2 < 1, P(V ) has no zeroes in the interval [0, 1].
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Assume 0 ≤ r2 ≤ r̂2. From (27) we obtain E3 = f13, so f13 =
√
1 − sV̂ =

√
1 − r22 =

E2 and f23 = ±
√
1 − V̂ . If f23 =

√
1 − V̂ , then a = (E2

2 −
√
1 − V̂ )/r2.

Using that E3 = E2 in this case, the condition 1 − a2 − E2
3 ≥ 0 to have a LTRE reduces

to r22 ≥ a2, that is,

−r22 ≤ E2
2 −

√
1 − V̂ ≤ r22 or 1 − 2r22 ≤

√
1 − V̂ ≤ 1 .

It is clear that the right hand side inequality is satisfied. For the one on the left we assume
1− 2r22 ≥ 0, otherwise the inequality is trivially satisfied. Then, the inequality is equivalent
to 4(1 − r22 )4/3 ≥ 1, and this is satisfied, in particular, if r22 ≤ 1/2. So, we obtain a LTRE.

Now assume f23 = −
√
1 − V̂ and then a = (E2

2 +
√
1 − V̂ )/r2. As before, the condition

to have a LTRE is r22 ≥ a2 which reduces to
√
1 − V̂ ≤ −1 + 2r22 .

This inequality is satisfied if r2 ≥ √
1 − 2−3/2 ≈ 0.80401903. Then for a small range of

values of r2,
√
1 − 2−3/2 ≤ r2 ≤ r̂2 there are two additional LTRE given in (41).

We note that if r2 = r̂2, then V̂ = 1 and (40) and (41) coincide. Furthermore, in r2 =√
1 − 2−3/2 the value of b in (41) is zero, so in fact the LTRE is collinear. ��
The second limit case corresponds to r2 = 1 and then

P±(V ) = V 3[1 ± r1
√
1 − V ]2 − (1 − r21 )5.

Proposition 4.8 Assume r2 = 1, 0 < r1 < 1. For any r1 ∈ (0, 1), there are exactly two
solutions of P±(V ) = 0, 0 < V̂+ < V̂− = 1−r21 < 1 , such that P+(V̂+) = 0, P−(V̂−) = 0.

Moreover, there is a unique solution (a, b) = (r1, 0) which corresponds to a collision.

Proof In this case, P±(0) = −(1 − r21 )4 < 0 and P±(1) = 1 − (1 − r21 )5 > 0 for any
0 < r1 ≤ 1. Moreover P+(V ) has a unique extremum in (0, 1) which turns out to be a

maximum located at Vm = 3(8r21 −3+
√
9 + 16r21 )/(32r21 ). P−(V ) is an increasing function

of V in this interval which has a unique zero V = 1− r21 . Therefore for any r1 ∈ (0, 1) there
are exactly two solutions of P±(V ) = 0.

Let us consider V̂− = 1 − r21 . Then f13 = 1, f23 = −r1 and using (27) E3 =
√
1 − r21 ,

a = r1 and then b = 0. Notice that this corresponds to a collision of the negligible mass with
m1.

If we take V̂+, then f13 = 1, f23 =
√
1 − V̂+, and

E3 = 1 + r1

√
1 − V̂+

√
1 − r21

, a = −
√
1 − V̂+ .

It is easy to check that 1− a2 − E2
3 <0 if 0 < r1 < 1 and so, there is no LTRE in this case. ��

Triangular/Collinear relative equilibria
In this section we study the existence of solutions of the Eqs. (14), (15) with b = 0. We

note that these solutions satisfy also (13) and so they are collinear. In this sense we call them
triangular/collinear relative equilibria (T/CRE).

We assume 0 < r1 < 1.
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Let us take b = 0. Then the system (26), in the form (29) reduces to

t |aE2 + r2E3| = |aE1 − r1E3| , (r1E2 + r2E1)
3E1 = E3|aE2 + r2E3|3,

where t = σ
1/2
1 = (E2/E1)

1/3 and now E3 = √
1 − a2.

Three cases must be considered

1. aE2 + r2E3 > 0, aE1 − r1E3 > 0 with the negligible mass at the right hand side of m1.
2. aE2 + r2E3 > 0, aE1 − r1E3 < 0 with the negligible mass between m1 and m2.
3. aE2 + r2E3 < 0, aE1 − r1E3 < 0 with the negligible at the left hand side of m2.

Once the signs of aE2 + r2E3 and aE1 − r1E3 are fixed, the variable a can be eliminated
from the system above to derive an implicit equation for r1 and r2. The results are summarized
in the following Proposition

Proposition 4.9 Let t = (E2/E1)
1/3. Then

1. If r1, r2 satisfy

1 − t4 = [1 + t2 + 2t (r1r2 − E1E2)]2, (42)

then there exists a T/CRE, (a, 0) being a = (r1 + tr2)√
(E1 − t E2)2 + (r1 + tr2)2

, with the

negligible mass at the right hand side of m1.
2. If r1, r2 satisfy

1 + t4 = [1 + t2 − 2t (r1r2 − E1E2)]2, (43)

then there exists a T/CRE, (a, 0) being a2 = (r1 − tr2)2

(E1 + t E2)2 + (r1 − tr2)2
, with the neg-

ligible mass between m1 and m2. The sign of a must be the one of r1 − tr2.
3. If r1, r2 satisfy

t4 − 1 = [1 + t2 + 2t (r1r2 − E1E2)]2, (44)

then there exists a T/CRE, (a, 0) being a = − (r1 + tr2)√
(E1 − t E2)2 + (r1 + tr2)2

, with the

negligible mass at the left hand side of m2.

The behavior of the curves mentioned in Proposition 4.9 is shown in Fig. 5.

Fig. 5 Using the variables
(r1, r2) we display in red the
T/CRE curves corresponding to
(42), going from (0, 0) to (0, r∗∗)

with r∗∗ =
√
1 − 2−3/2, to (43),

going from (0, 1) to (1, 0) and to
(44), going from (0, 0) to
(r∗∗, 0). For reference we show
in black level curves of μ for
μ = j/10, j = 2, . . . , 8 and also
for μ = 0.48, 0.52
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Remark 4.2 We note that in case 1. the curve (42) reaches r1 = 0 at r2 = r∗∗ = √
1 − 2−3/2,

in agreement with the result in Proposition 4.7. A symmetrical behavior appears in the case
3 (which also follows from 1. by replacing t by 1/t). Furthermore in case 2. the curve (43)
intersects r1 = r2 at r1 = r∗∗, which agrees with item 5. of Proposition 4.6.

From Fig. 5 one can see that two curves are tangent to r1 = r2 at (0, 0) and one has
horizontal (resp. vertical) tangent at (0, 1) (resp. at (1, 0)). It can be interesting to see the
order of tangency. Because of the symmetry it is enough to consider what happens near
r1 = 0 with r2 > r1. This is the contents of the following Proposition

Proposition 4.10 1. The curve corresponding to (42) behaves as r2 = r1 + 12r31 + O(r51 )

around r1 = 0.
2. The curve corresponding to (43) behaves as r2 = 1 − 32r61 + O(r81 ) around r1 = 0.

Proof For simplicity we rename r1 = ε, r2 = δ. Then the local expression of t , expanded in
powers of (ε, δ), is

t = 1 + (ε2 − δ2)/6 + (7ε4 − 2ε2δ2 − 5δ4)/72 + O6,

where O6 denote terms of total degree ≥ 6 wrt ε, δ. The square roots due to E1, E2 in (42)
are eliminated by suitable transfer of terms and taking squares. Up to order 4 the terms on
the related equation are

8

3
ε2 − 8

3
δ2 + 5ε4 + 56

3
ε3δ + 22ε2δ2 + 40

3
εδ3 + 5δ4 = 0.

The usual Newton polygon arguments produce the desired answer. Note that in the quadratic
part one has to take the positive root.

The case of (43) is slightly different. As in t it appears (1− r22 )1/6, it is convenient to look
for r2 of the form 1 − δ6/2 while we put again r1 = ε. Proceeding as before one obtains

4ε2 − 4εδ + δ2 − 8ε3δ + 12ε2δ2 − 4εδ3 + O6,

which gives δ = 2ε + O(ε3). The result follows. ��
As already said, the present paper restricts to S

2+. For some results including the lower
hemisphere, see Kilin (1999).

5 The restricted 3-body problem in S
2+: A numerical study

We have proved that in the symmetrical case, μ = 1/2, the number of collinear relative
equilibria in S

2+ are 1, 3 or 5 (see Proposition 4.2), and the number of triangular (and non
collinear) equilibria are 0, 2 or 4 (see Proposition 4.6). Moreover, in Theorem 4.1 we have
proved that in the general case μ ∈ (0, 1), the number of triangular equilibria is at most 8.

In this section we complete the study of the number of equilibria in S2+ for any μ ∈ (0, 1)
using numerical methods.

To compute the relative equilibria for the restricted 3-body problem in S
2+, given r1 and

r2, we should solve Eq. (13) for the collinear case and Eqs. (14–15) in the triangular one,
together with Eqs. (11–12) for the position of the primaries.

In order to get a complete picture of the solutions we do the following:

1. We consider a grid of values of (r1, r2) ∈ Q = (0, 1) × (0, 1) with a small step size,
assuming κ = 1. Then,
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Fig. 6 Left Curves of constant value of μ in Q. Right Number of solutions of the collinear problem as a
function of (r1, r2). Blue, green and red correspond to 5, 3 and 1 solutions

(a) We compute the values of a for a collinear equilibrium and the values of (a, b) for a
triangular one, for every value of (r1, r2) in the grid. The results are shown in Figs. 6
and 10. Different colors correspond to different number of equilibria.

(b) In order to refine the curves in the (r1, r2) square which separate regions with a
different number of equilibria, we describe the evolution of the (r1, r2, a, b) variables
(with b = 0 in the collinear case) and detect bifurcations.

2. We start at the planar case κ = 0, with (r1, r2, a, b, k) as variables (keeping b = 0 for the
collinear case). Carrying out arc-length parameter continuation for fixed values of the
mass ratio μ, we describe the evolution of the planar equilibria in S

2+. The arc-length
parameter will be denoted as s. See, e.g., Simó (1990) for details on continuation in
general problems. To do the representation in the normalized sphere with κ = 1, one
should plot (r1

√
κ, r2

√
κ) and, hence, the planar case leaves from the origin. Along the

continuation we detect and refine turning points and bifurcations. As mentioned at the
end of Remark 2.1 one can normalize α. The value α = 1 has been used along the
continuation in all cases.
We remark that the possibility of passage from κ = 0 to κ �= 0, for |κ| small, follows
immediately from the implicit function theorem, because of the stability properties in the
planar case: no one of the non-trivial eigenvalues is equal to zero.
The same continuation method is used to describe the evolution of equilibria which start
at other limit cases.

Note that if κ < 0 we can proceed in a similar way, using
√−κ to normalize.

In Fig. 6 left we recover lines of constant μ in the (r1, r2) variables. For μ = 1/2 one
has the lines r1 = r2 and r21 + r22 = 1, meeting at the point (

√
1/2,

√
1/2), to be denoted as

C . Curves to the left/right of C correspond to μ < 1/2 and the ones in the upper/lower part
to μ > 1/2. The values used for μ are 0.1, 0.2, 0.3, 0.4, 0.45 and 0.49 and its complements
to 1, that is, the values 1 − μ. On the line μ = 0.2 one can see two points of coordinates
P1 ≈ (0.121712, 0.609584) and P3 ≈ (0.115614, 0.550032). The role of these points will
be discussed later. Points with the same role appear on the other μ = constant lines.

5.1 The collinear case: global results

Collinear solutions are computed scanning (r1, r2) as explained. The results are shown in
Fig. 6 right. Some lines of constant value of μ, leaving from the origin, are shown.
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Fig. 7 Left Evolution of the values of r2 along the continuation, as a function of arctan(s) for μ = 0.2.
The red (resp. blue, resp. magenta) line corresponds to case 1) (resp. 2) and 3)). Right A similar plot for the
evolution of a, with the same color convention. The maximal value of the red (resp. magenta) curve in the left
plot corresponds to P1 (resp. to P3)

For the planar case, κ = 0, using the initial (non scaled) variables there are three Euler
solutions with −r2 < r1 < a, −r2 < a < r1 and a < −r2 < r1. They are located at the
origin in the closure of Q.

Using continuation the values of r1, r2 start to increase, moving up along a line of constant
μ, but the behavior is different in the three cases.
(1) The solution with r1 < a has a turning point at P1 (see line μ = 0.2 in Fig. 6 left) at the
boundary of the green and red domains shown in the figure. Then it goes back to the origin
in Q while a tends to 1. We recall that for a variable going to ±1 means that the related body
is going to the equator of S2+. See Fig. 7 for the evolution of r2 and a (in red).
(2) For the case −r2 < a < r1 the solution continues up to the point (r1, r2) = (0, 1), i.e.,
along the full line of constant μ. Concerning a it starts decreasing and then it increases,
tending to 0− when r1 tends to 0+ (blue lines in Fig. 7). No turning point shows up for this
branch.
(3) In the case a <-r2, there is again a turning point like P3 at the boundary between blue
and green regions. From that point on, both r1 and r2 tend to 0+. Concerning a it is always
decreasing, tending to −1 (magenta lines in Fig. 7).

Hence, it follows that for given values of (r1, r2) along a μ constant line, the continuation
gives 5 collinear solutions up to the point P3, then 3 solutions between P3 and P1 and, finally,
one solution between P1 and the point (0, 1) in Fig. 6.

On Fig. 6 right we see that there are other collinear solutions which can not be obtained
from the planar case. Some of them, for μ < 1/2, appear in the region bounded by r1 =
1, r1 = r2 and r21 + r22 = 1. In that region, for every point (r1, r2) near (1, 1), there is a
unique collinear equilibrium with −r2 < a < r1 that can be continued along the full line of
constant μ up to (1, 0). Figure 8 left shows a, r1 and r2 as functions of s, where s = 0 is
taken at a = 0.

There are other solutions emerging from (0, 1) (and symmetrically from (1, 0)), not con-
necting to (0, 0). They lie on the left top green part of Fig. 6 right. In that region there are
three collinear solutions, one of them with −r2 < a < r1 has been obtained by continuation
from the planar case. The other two satisfy a > r1. Using continuation one has a turning
point at the green-red boundary of that domain. The values of r1 (r2) go from 0 (1) to the
turning point and again to 0 (1). The value of a tends to 1 from one side (say, when s → −∞)
and to 0 from the other side (see Fig. 8).

It is also interesting to look at the behavior of solutions near limit cases. In Fig. 9 left we
plot the solutions near r1 = 0 with constant r2 <

√
3/2. We found 5, 3 and 1 solutions (blue,
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Fig. 8 A couple of examples of solutions not emerging from r1 = r2 = 0 for μ = 0.3. Left emerging from
(1, 0) and going to (1, 1). Right emerging from (0, 1) and returning to it. In both plots the red, magenta and
blue lines correspond to the locations of r1, −r2 and a, respectively. The horizontal variable is the continuation
parameter s in a moderate range
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Fig. 9 The locations of r1 and −r2 are shown in blue. The red lines show the values of a for the collinear
solutions. Left r2 = 0.7, r1 ∈ (0, 0.1]. Right r1 = 0.05, r2 ∈ [0.95, 1)

green and red domains in Fig. 6 right). Moreover we see that solutions which come from the
planar problem in cases (2) and (3) tend to the location of −r2 when r1 → 0+. So, skipping
these solutions leading to collision, only 3 solutions remain in the limit case as predicted by
Proposition 4.3. In Fig. 9 right we fix r1 = 0.05 and r2 in the interval [0.95, 1). One passes
from 1 to 3 solutions at the turning point related to the red-green boundary. Solutions in cases
(1) and (2) tend to the location of r1 when r2 → 1−. Again skipping the solutions leading to
collision, only 1 solution remains in the limit case as predicted by Proposition 4.4.

5.2 The triangular case: global results

Figure 10 shows the number of triangular solutions as a function of (r1, r2). As proved in
Proposition 4.6 for r1 = r2, there is a range of values for which no triangular solutions exist.
This has also been found to occur when scanning the (r1, r2) plane, for a large set of values
(domain in green) including r21 +r22 = 1, see last part of Theorem 4.1. This domain separates
two regions, see Remark 4.1: one accessible from (0, 0) by continuation, the other not.

To perform the continuation from κ = 0, we start at (r1, r2, a, b) = (μ, 1 − μ,μ −
1/2,

√
3/2), i.e., at L5. The continuation starting at L5 for κ = 0 is similar for a big range

of values of μ, but there is a tiny domain, not visible in Fig. 10, where it is different.
As an example of the first case we consider μ = 0.499. Figure 11 shows the evolution

of the different variables. Leaving from (0, 0) the value of r1 increases up to a maximum,
M1, then it decreases up to a minimum m (see the magnification in the second plot) and
then it reaches a new maximum, M2. After that point the behavior is symmetrical, ending
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Fig. 10 Number of solutions with b > 0 in the triangular case, as a function of (r1, r2). In the green, red,
magenta and blue domains there are, respectively, 0, 1, 2 and 3 solutions. Similar for b < 0. The bound-
aries between green-magenta and red-blue domains correspond to turning points. The black curves between
magenta-red (r1 + r2>1) and magenta-blue (r1+r2<1) domains correspond to passages through collinear.
We plot in black the case r1 = r2, discussed theoretically, and a line for μ = 0.172. Close to that line other
phenomena, to be described, occur in a tiny domain. Note that the blue domains and the uppermagenta domain
(magnified on the right) are very narrow
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Fig. 11 Evolution of the solution leaving from L5 in the planar case for μ = 0.499. From left to right the
value of r1 as a function of s; magnification in the r1 direction of the flat part in the left plot; behavior of (a, b)

along the continuation; the distance to the equator as a function of s shown as log10(1 −
√
a2 + b2)

in the L4 planar solution. The points M1 and m correspond to turning points located at the
magenta-green boundary and the blue-red boundary respectively. The point M2 belongs to
the other boundary of the blue domain. At that point the solution is degenerated in the sense
that b = 0 and so, the triangular solution becomes collinear as found in Proposition 4.9.
This collinear solution is nothing else that the one obtained for that μ in the region r1 < a
(case 1)) after leaving from the planar case, reaching the turning point of the type P1 and
going back. In a figure like Fig. 7 left it would be located in the red curve in the part which
goes down. In the third part of Fig. 11 we plot the evolution of (a, b) along the continuation.
Initially a is almost constant, moving first a little to the left, then to the right, until b is close
to 1. After this the (a, b) point is close to the equator.

A different evolution is obtained for μ = 0.172. In Fig. 12 we display curves similar to
the ones in Fig. 11. Comparing the two figures we see that the passage through collinear
(b = 0) corresponds to a maximum of r1 for μ = 0.499 and a minimum for μ = 0.172.
The inspection for a slightly smaller value of μ like μ = 0.15 shows that the two leftmost
extrema in the middle plot of Fig. 12 have disappeared, and after the first turning point, r1
reaches the minimum corresponding to the collinear passage. This suggests the existence of
two critical values of μ, with μc1 < 0.172 < μc2 , such that the following holds:
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left plot. The central minimum corresponds to collinear, but before it one can see two extrema in the plot, in
contrast with the second plot in Fig. 11. Right evolution of (a, b)
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Fig. 13 Amagnification of a tiny domain crossed by the μ = 0.172 black line shown in Fig. 10. To make the
visualization easier, the variables plotted are (r1, r2 + 2.53r1). The red curves correspond to turning points,
while the blue one to passage through collinear solution. The black lines show part of the continuation data
for μ = 0.1654, μ = 0.172 and μ = 0.1794, from left to right. The value μ = 0.1654 is close to μc1 , as
introduced in item (a) above, and μ = 0.1794 is close to μc2 , as introduced in item (b)

(a) For μ = μc1 there exists a value sc1 such that dr1
ds (sc1) = d2r1

ds2
(sc1) = 0, d3r1

ds3
(sc1) < 0.

The value of r1 at the collinear solution is below r1(sc1). Hence, for μ > μc1 two new
turning points are created. This leads to a domain with 4 triangular solutions with b > 0,
as shown by Fig. 12 middle. The new lines of turning points meet at a cusp.

(b) For μ = μc2 there exists a value sc2 such that dr1
ds (sc2) = d2r1

ds2
(sc2) = d3r1

ds3
(sc2) = 0,

while d4r1
ds4

(sc2) < 0 and for s = sc2 the solution has b = 0. In other words, the three
extrema in Fig. 12 middle, two maxima for b > 0, b < 0 and a minimum for b = 0,
coincide for s = sc2 . The value μc2 gives the end of the domain having 4 triangular
solutions with b > 0.

Figure 13 gives a full evidence of the above suggestion.We consider only solutionswith b>0.
The same number of solutions appears with b<0. To the left of μc1 , near the leftmost black
vertical curve (μ = 0.1654) there is one solution below the blue curve (hence red color in
Fig. 10) and two on top of it (magenta domain). To the right of the μc2 , near the rightmost
black vertical curve (μ = 0.1794) there is one solution below the red curve (red domain in
Fig. 10), three between the red and the blue curves (blue domain) and two on top of the blue
curve (magenta domain).

Finally, for intermediate valuesμc1 < μ < μc2 , like the central black line in Fig. 13, there
is one solution below the lower red curve (red domain), three between that curve and the blue
one (blue domain), four solutions between the blue curve and the upper red one (a tiny size
domain not seen in Fig. 10) and two on top of the upper red curve (magenta domain). This
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Fig. 14 Example of the behavior of the triangular solutions emerging from (and tending to) the point (1, 1)
for μ = 0.5603. Left Plot of r1 as a function of s showing a maximum M between two nearby minima. Right
A plot displaying (a, b) showing the location of M on b = 0

implies that the blue domain in Fig. 10, with μ < 1/2 and when r2 goes up, is not ending at
r1 = 0 but at the cusp shown in Fig. 13. Compare with Fig. 20 in next Section.

Remark 5.1 After Theorem 4.1 we knew that the number of triangular relative equilibria is
at most equal to 8. Numerically a small domain where there are exactly 8 has been found.

Next we shortly comment on the triangular solutions which emerge from the (1, 1) point
in Fig. 10. Assume we start with a solution with b > 0. Following a line with constant value
of μ, see Fig. 6 left, for instance on the upper part, r2 close to 1 and hence μ > 1/2, that
line goes from (1, 1) to (0, 1). But before reaching (0, 1) the triangular solution meets the
green-magenta boundary in Fig. 10 where a turning point appears. When going back along
constant μ we meet the black curve of solutions with b = 0 and enter the zone b < 0. This
is exemplified in Fig. 14 for μ = 0.5603.
Bifurcation curves

In Fig. 10 we have identified the 3 curves T/CRE (triangular solutions with b = 0) given
in Proposition 4.9, as the boundary of magenta-red domain in the upper part (42), and the
boundaries of magenta-blue domain (43), (44).

The other bifurcation curves correspond to double zeros of functions P± defined in (30).
From (30) and (38), and taking squares in a suitable way, one can compute the resultant wrt
V giving rise to several curves in Q. Besides some spurious curves we obtain two which
correspond to the boundaries between green and magenta domains in Fig. 10. The lower
one goes from (0, r̂2) to (r̂2, 0) as given in Proposition 4.7. Two more curves appear in the
domain r1 < r2 (and the symmetrical ones in r2 < r1) and are shown as thick red curves in
Fig. 15 left. They start at (0, 0) and end at the cusp point labeled as C . In the same figure we
plot as a blue thin line the curve corresponding to T/CRE which goes from (0, 0) to (0, r∗∗)
with r∗∗ = √

1 − 2−3/2, in agreement with Proposition 4.9 and Remark 4.2 (see Fig. 5). The
red curves in Fig. 15 left correspond to double zeros of P+ (the closer one to r1 = 0) and
of P−. The blue curve is tangent to the second red curve at T , see Fig. 15 right. Following
the upper red curve between C and T the radicand in (31) is positive, giving rise to two
values of b. But from T till the origin the radicand is negative. So, no real triangular solutions
appear. Comparing Fig. 15 with Fig. 13 we see the agreement between continuation and the
theoretical approach.

To summarize we show in Fig. 16 left the curves involved in the main bifurcations for the
triangular (in red) and collinear (in blue) solutions. Skipping the values of (r1, r2) located
at the bifurcations curves, in the collinear case one has 1, 3 or 5 solutions. In the triangular
one, and counting both the solutions with b > 0 and b < 0, one has 0, 2, 4, 6 or 8 solutions.

123



Relative equilibria of the restricted three-body problem 249

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2

C

r1

r2

 0.861

 0.863

 0.865

 0.1  0.11  0.12

C

T

r1

r2

Fig. 15 Two branches, in thick red lines, giving double zeros of P± and a thin blue curve of T/CRE. Right a
magnification using (r1, r2 + 2.53r1) around the cusp point C and showing also the tangent point T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

r2

r1  0.998

 0.999

 1

 0  0.1  0.2  0.3  0.4  0.5

r2

r1

Fig. 16 Left Bifurcation curves for the triangular (in red) and collinear (in blue) solutions. Together they
bound different open sets where the number of relative equilibria is constant. Right A magnification

However, 8 solutions appear in a tiny domain (see Fig. 13) located near r1 = 0.10, r2 = 0.61.
This domain is contained between the two blue curves, in a region with 3 collinear solutions.
This gives a total of 11 relative equilibria. The same number can be found in other domains.
On the other hand, in the domain containing the point r1 = r2 = 1/

√
2 only one solution

exists: the collinear relative equilibrium with −r2 < a < r1. So we can conjecture that:
The number of relative equilibria (collinear + triangular) ranges between 1 and 11 in

S
2+.
In Fig. 16 left values near r2 = 1 are not properly seen, because of their small width. To

this end we magnify the vertical scale in Fig. 16 right. The red curves are tangent to r2 = 1 at
r1 = 0 and the blue one is tangent to r2 = 1 at r1 = 1/2, according to the results in Sect. 4.

6 Stability analysis

In this section we assume that the two primaries are in a relative equilibrium, that is, U1 =
(r1, 0), U2 = (−r2, 0)with r1, r2 satisfying (11), (12) andμ, α given by (17). We shall write
U3 = (x, y) and U̇3 = (X, Y ). From (4) with i = 3 we obtain the equations for the third
body, that we write as
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ẋ = X, ẏ = Y, Ẋ = 2αY + α2x − κv3x + F̂, Ẏ = −2αX + α2y − κv3y + Ĝ,

having (a, b, 0, 0) as equilibrium point, with b = 0 in the collinear case. Proceeding in an
analogous way to the proof of Proposition 3.3, with the help of (54), (55), it turns out that
the characteristic polynomial is of the form

p(λ) = λ4 + β2λ
2 + β0. (45)

According to the signs of β0, β2 in (45) and the discriminant D = β2
2 − 4β0 we can have the

following possibilities: (1) Complex-Saddle (CS) if D < 0; (2) Elliptic-Hyperbolic (EH) if
β0 < 0; (3) Elliptic-Elliptic (EE) if D > 0, β0 > 0 and β2 > 0; (4) Hyperbolic-Hyperbolic
(HH) if D > 0, β0 > 0 and β2 < 0.

6.1 The collinear case

Let us consider a collinear equilibrium, that is (x, y) = (a, 0) with a satisfying (13). For
convenience we shall write (13) as done in (24)

m1g13( f13a − r1) + m2g23( f23a + r2) = α2aE2
3 .

Using (57) the equation above is equivalent to

m1g13S1 + m2g23S2 = α2aE3. (46)

First we shall derive simple expressions for β0 and β2. By taking x = a, y = 0 in (59) we
obtain

Ĝ y := Ĝ y(a, 0) = −[m1 f13g13 + m2 f23g23]
and using (57)

F̂x : = F̂x (a, 0) = 3
[
m1 f13S

2
1�

−5/2
13 + m2 f23S

2
2�

−5/2
23

]
− [m1 f13g13+ m2 f23g23]

+κa

E3
[m1S1g13+ m2S2g23] .

However, S21�
−5/2
13 = g13 and S22�

−5/2
23 = g23. Moreover using (46) we obtain

F̂x (a, 0) = 2[m1 f13g13 + m2 f23g23] + α2κa2 = −2Ĝ y + α2κa2. (47)

Furthermore, if y = 0, F̂y(x, 0) = Ĝx (x, 0) = 0 and using (47) the coefficients of p(λ) in
(45) are

β2 = α2(2 − κa2) + Ĝ y, β0 = (α2E2
3 + Ĝ y)(α

2(1 − 2κa2) − 2Ĝ y). (48)

Proposition 6.1 For any μ ∈ (0, 1) and α2, a collinear relative equilibrium in S
2+ can not

be of type HH. In H2 they are of EH type.

Proof A collinear equilibrium is of type HH if the following inequalities hold β2
2 −4β0 > 0,

β0 > 0 and β2 < 0. It is well known that the collinear equilibria are EH if κ = 0.
Assume κ > 0. We recall that in the S2+ case, κa2 < 1.
Let (a, 0) be an equilibrium such that β2 < 0. Then from (48)

Ĝ y < −α2(2 − κa2) < −α2 < 0
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and α2 + 2Ĝ y < α2(−3 + 2κa2) < 0. Furthermore we can write

β0 = α4E2
3(1 − 2κa2) − Ĝ y(α

2 + 2Ĝ y).

If 1−2κa2 ≤ 0 it is clear that β0 < 0 and then the equilibrium should be of type EH. Assume
that 1 − 2κa2 > 0 then

β0< −Ĝ yα
2E2

3(1−2κa2)−Ĝ y(α
2 + 2Ĝ y)< −Ĝ yα

2(E2
3(1 − 2κa2) − 1)

= −Ĝ yα
2κa2(−3+κa2)<0.

As before the equilibrium should be of type EH.
Now we pass to prove that the collinear solutions in H

2 are EH. As κ < 0 and Ĝ y < 0
in this case, according to (48) it is enough to prove α2E2

3 + Ĝ y < 0. But according to (24)
we can write aĜy = −a[m1 f13g13 +m2 f23g23] = −α2aE2

3 −m1g13r1 +m2g23r2, where
g13, g23, S1, S2 are given in (55, 56). Thereforea(α2E2

3+Ĝ y) = −m1g13r1+m2g23r2 := R
and if a > r1 > 0 it is enough to prove R < 0. From (16,24), one has that m1 and m2 are
proportional to r2E2 and r1E1, respectively, with a factor > 0.

Replacing in the previous expression, taking r1r2(S1S2)−3 as a factor we obtain
h(r1, r2, a) := −E2(aE2 + r2E3)

3 + E1(aE1 − r1E3)
3, negative if μ ≤ 1/2 because

r2 ≥ r1. In particular this holds for the value of a which gives a relative equilibrium with
a > r1 > 0 for any r2 ≥ r1.

Consider now μ > 1/2 (i.e., r2 < r1). For a fixed a the absolute value of the first term
in h increases if r2 increases. The worst case appears for r2 = 0 and it reduces to −a3.
Let a = sinh(ψ3), r1 = sinh(ψ1). For any given ψ3 > ψ1 > 0 one has to check that
h1(ψ1) := −(sinh(ψ3))

3 + cosh(ψ1)(sinh(ψ3 −ψ1))
3 < 0, and we note h1(0) = 0. But the

derivative dh1(ψ1)/dψ1, skipping a positive factor, becomes tanh(ψ1) tanh(ψ3 − ψ1) − 3
obviously < 0.

This proves the case a > r1 for any μ ∈ (0, 1) and, by symmetry, the case a < −r2.
For −r2 < a < r1 consider a ≥ 0 (i.e., r1 ≥ r2, μ ≥ 1/2), the case a ≤ 0 following by
symmetry.

Given r1 ≥ r2 one can find a∗ such that h(r1, r2, a∗) = 0. Similar to the previous case
one checks dh(r1, r2, a)/da < 0 and, hence, h(r1, r2, a) < 0 for a > a∗. This value of
a∗(r1, r2) can be substituted in the equilibrium equation which, removing nonzero factors,
can be written as

L(r1, r2, a) := r2E2

(r1E3 − aE1)2
− r1E1

(r2E3 + aE2)2
+ aE3

(r1E − 2 + r2E1)2
.

It is easy to check L(r1, r2, a) ≤ 0 for a = a∗(r1, r2) if r1 ≥ r2. Then, the value of a for
which L = 0 is less than the one of the equilibrium. So, h(r1, r2, a) < 0 for the equilibrium
and β0 < 0. ��
6.2 The triangular case

The following lemma gives simplified expressions for the coefficients of the characteristic
polynomial in the triangular case.

Lemma 6.1 Let (a, b) be a triangular equilibrium. Then the characteristic polynomial is

p(λ) = λ4 + α2λ2 + β0,
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where

β0 = b2
(
9m1m2 f13 f23L

2�
−5/2
31 �

−5/2
32 − 3κα2

[
m1 f13r

2
1�

−5/2
31 + m2 f23r

2
2�

−5/2
32

])
,

(49)

being L = r2E1 + r1E2.

Proof We assume that (a, b) is a solution of the Eqs. (14), (15). Using (54) the Eq. (15)
becomes

κx[m1r1g13 − m2r2g23] + E3[m1E1g13 + m2E2g23] − α2E2
3 = 0.

The equilibrium satisfies (14), so, the equation above reduces to m1E1g13 + m2E2g23 =
α2E3.

However using (60) for β2 in (45) we obtain β2 = 2α2 − 1
E3

[m1E1g13 + m2E2g23].
Therefore at the equilibrium β2 = α2. A long but simple computation, using the formulas
provided at the Appendix, gives the value of β0 given in the statement. ��
Proposition 6.2 If κ < 0 there are no triangular relative equilibria of type HH nor EH.

Proof As β2 > 0, the case HH is not possible. Moreover β0 > 0 as far as f13, f23 are
positive. Then the case EH is not possible. ��

Assume κ > 0. For the triangular/collinear equilibrium, β0 = 0 and the characteristic
equation becomes

λ4 + α2λ2 = 0 �⇒ λ = 0 (double), ±|α|i.
In the general case, that is b �= 0, the stability is determined by the coefficient β0 as

follows:

1. If 0 < β0 < α4/4, then the equilibrium is spectrally stable (elliptic-elliptic case, EE).
2. If β0 < 0, then the equilibrium is unstable (elliptic-hyperbolic case, EH).
3. If β0 > α4/4 , then the equilibrium is in the complex-saddle case (CS).

In the next section we shall see numerically that the three cases are realizable.
Several results about qualitative stability properties can be found in Kilin (1999).

6.3 Numerical study of the stability

In this section we study numerically the linear stability properties of the different relative
equilibria using the results of the continuation procedure. The stability changes are compared
to the folds detected along the continuation, as described in Sects. 5.1 and 5.2 and with the
previous theoretical results.

6.3.1 Numerical studies for the collinear case

Let us consider first the solutions obtained by continuation of the planar case in S2+. To obtain
a complete picture we perform the computations of stability parameters for different values
of μ in (0, 1). All these solutions leave from the planar case as EH, as known for κ = 0.

The solution with r1 < a reaches the green-red boundary in Fig. 6 if μ < 1/2 and the
blue-green one if μ > 1/2. At these boundaries a fold bifurcation is produced giving rise
to an elliptic-hyperbolic bifurcation and the solution becomes EE at the fold (see Fig. 17).
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Fig. 17 Stability properties of the collinear solutions leaving from κ = 0 as a function of a normalized
parameter s. Left case r1 < a. Right case a < −r2. The red lines denote relative equilibria of EH type, and
the green points denote EE equilibria. The different curves, from top to bottom, correspond to values of μ

from 0.1 to 0.9 with step 0.1. For μ = 0.2 the points P1, P3 of Fig. 6 left, are shown

Fig. 18 Domain of EE relative
equilibria in Q after the passage
through the fold line. On top of
the diagonal for μ < 1/2. The
point marked as C corresponds to
the critical value μc
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Then, for smallμ, when going back approaching to (r1, r2) = (0, 0) (but not the planar case)
there is an inverse bifurcation returning to EH. This is produced quite soon if μ ∈ (0, μc)

for some critical value μc = 0.081... The computations suggest that there is no interval of
EE type for μ = μc (see also Fig. 18). Then, increasing μ the EE range increases, reaching
the full arc approaching (0, 0) for μ ≥ 1/2.

The results for the solution with a < −r2 are obtained from the previous one by changing
the roles of μ and 1 − μ (see Fig. 17 right). The solution with −r2 < a < r1 is of EH type.

Figure 18 shows the values of (r1, r2) forwhich one has some collinear relative equilibrium
with r1 < a of EE type. We note that for the solution with a < −r2, one obtains a figure
symmetrical with respect the diagonal.

Summarizing, the numerical computations show that
The collinear solutions obtained by continuation from the planar case are of EH or EE

type. Only the solutions with r1 < a or a < −r2 can be of EE type after the fold according
to Fig. 18 and the symmetrical one.

Now we analyze the solutions not connected with the planar case. The solution leaving
from (0, 1) and returning to it (Fig. 8, right) changes stability at the fold when it reaches the
red-green domain in Fig. 6. It passes from EH to EE according to Fig. 19, left.

Let us consider now the solutions starting at (1, 0) and going to (1, 1). Initially they are
of EH type, then they change to EE and finally to CS (Fig. 19, right). But to have stability
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Fig. 20 Evolution of the stability along the continuation as a function of a normalized arc-length parameter.
In the vertical variable the value of r2 is plotted. The color code is red, green and blue for EH, EE and CS,
respectively. From left to right the values of μ are 0.030, 0.050, 0.165 and 0.166 on the top line and 0.179,
0.180, 0.300 and 0.490 in the bottom one. The behavior for μ > 1/2 is the same as for 1 − μ

one must require also stability of the two body problem, that is, 2
√

κr1r2 < 1. In Fig. 19
black lines correspond to instability of the two body problem.

6.3.2 Numerical studies for the triangular case

In Sect. 5.2, for any μ, the triangular solutions for κ = 0 are continued to κ > 0. Then
they pass through a triangular-collinear configuration in the middle of the range and return
to κ = 0 in a symmetrical way. In between, they have several folds depending on the values
of μ where stability changes. We summarize the results in Fig. 20, where we plot r2 as a
function of the normalized arc-length parameter s.

First we note that solutions leave the planar case as EE type for smallμ, but asμ increases
they leave from κ = 0 being of CS type. As it is well known the transition occurs at the
Routh critical value μR = (1 − √

23/27)/2. This change can be seen in the two left upper
plots in Fig. 20 for μ = 0.030 and μ = 0.050, respectively.

By increasing μ, (r1, r2) enter to the small domain in Fig. 13. The evolution of stability
in this domain is shown in Fig. 20 for μ = 0.166 and μ = 0.179. We can see that two small
intervals of EE type appear in the central region which become larger until they intersect
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Fig. 21 In the top left, top right and bottom left the values of (r1.r2) for which at least one of the solutions
obtained by continuation from κ = 0 to κ > 0 is of EE, EH or CS type, respectively. The bottom right plot
shows the results for κ < 0 (until a moderate value κ = −10; going to values κ <−10 the blue zone, of CS
type, increases). Only a tiny domain of EE type is found for μ or 1 − μ small

giving rise to a unique EE interval in the central part as in the case μ = 0.180. The evolution
of stability for μ = 0.180 is maintained for large values of μ up to 0.5.

Note that in the two top right and the two bottom left plots in Fig. 20, it is hard to distinguish
the minima and maxima in the central part. This is due to the narrowwidth of the blue zone in
Fig. 10. See, for instance Fig. 12 for μ = 0.172 where the central zone has been magnified.
In that figure the vertical variable is r1, but the behavior for r2 is the same.

Remark 6.1 In the blue domain of Fig. 10 there are four triangular solutions of EE type.

If we look at the left plot in Fig. 14, the stability range (assuming r1r2 < 1/2) corresponds
to the domain between the two symmetric minima that appear in the figure.

A summary of the stability character is shown in Fig. 21. For given values (r1, r2) (and,
hence, for the related value of μ) several different solutions can exist. So, we plot in green,
red and blue the domains for which at least one of the solutions is EE, EH or CS type,
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Fig. 22 Stability properties EE,
EH, CS, with the usual color
code, for the solutions as seen in
the (a, b) variables. In the EE
case (green) it can happen that
the same point corresponds to
different solutions, i.e., different
values of (r1, r2, μ)

 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1a

b

respectively. Note that the different regions are not disjoint. Their boundaries coincide with
the ones which separate different regions in Fig. 10, except for the EE → CS transition.

Triangular solutions leaving from the (1,1) point are EH type until they reach themagenta-
green boundary in the right upper part of Fig. 10, when they turn to EE. Then they have the
passage through collinear (magenta-red boundary) and return to magenta-green boundary,
where they recover the EH character. If we look at the stability of the full three bodies, one
has to recall that 2

√
κr1r2 < 1 is a necessary condition for the stability of the primaries.

At the right bottom plot in Fig. 21 we show the results for κ < 0 up to κ = −10. Only
tiny domains are of EE type (in green), close to the axes. Most of the solutions are of CS
type. If κ < −10 the blue region increases without bound.

We can also consider what happens to the stability properties of the solutions in S2 leaving
from the planar case when seen in the (a, b) variables. This is shown, globally, in Fig. 22.
Only the upper part, b ≥ 0, is shown, because of the symmetry. This corresponds to the
solutions going from L5 for κ = 0 to collinear. The color code is as usual. In EH and CS
domains (red and blue in Fig. 22) every point (a, b) corresponds to one triangular solution.
However, in the EE domain (green) a point (a, b) can correspond to triangular solutions for
different values of μ.
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7 Appendix

In this Appendix we give reduced formulas for the functions which appear in the equations
of the restricted problem.

Let us consider the functions ρi j , fi j , gi j defined in (5). It is easy to check that they can
be written as

κρ2
i j = 2[1 − κ(ξiξ j + ηiη j ) − Ei E j ],

fi j = κ(ξiξ j + ηiη j ) + Ei E j , 1 − f 2i j = κ�i j , (50)

�i j =ξ2i +η2i +ξ2j +η2j −κ(ξ2i +η2i )(ξ
2
j +η2j ) − κ(ξi ξ j +ηiη j )

2 − 2(ξiξ j + ηiη j )Ei E j ,

(51)
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gi j := 1

d3i j
=

(
κ

1 − f 2i j

)3/2

= 1

�
3/2
i j

, (52)

where Ei =
√
1 − κ(ξ2i + η2i ).

If U1 = (ξ1, η1)
T = (r1, 0)T , U2 = (ξ2, η2)

T = (−r2, 0)T , U3 = (ξ3, η3)
T = (x, y)T ,

then

κρ2
13 = 2(1 − κr1x − E1E3), κρ2

23 = 2(1 + κr2x − E2E3), (53)

f13 = κr1x + E1E3, f23 = −κr2x + E2E3, (54)

g13 = �
−3/2
13 , g23 = �

−3/2
23 , �13 = y2 + S21 , �23 = y2 + S22 , (55)

S1 = x E1 − r1E3, S2 = x E2 + r2E3, (56)

where E j =
√
1 − κr2j , j = 1, 2, E3 = √

1 − κ(x2 + y2). Then one has

f13x − r1 = −κr1y
2 + S1E3, f23x + r2 = κr2y

2 + S2E3 (57)

and, furthermore

∂ f13
∂x

= −κS1
E3

,
∂ f23
∂x

= −κS2
E3

,
∂S1
∂x

= f13
E3

,
∂S2
∂x

= f23
E3

. (58)

Lemma 7.1 Assume κ > 0 and r1, r2 fixed. Then f13 and f23 are convex functions in
Cκ := {(x, y) ∈ R

2 | κ(x2 + y2) < 1}, such that for any (x, y) ∈ Cκ

−√
κr1 < f13 ≤ 1, −√

κr2 < f23 ≤ 1.

Moreover f13 = 0 along the curve γ13 = {(x, y)|x ≤ 0, κ(x2 + E2
1 y

2) = E2
1}, and f23 = 0

on the curve γ23 = {(x, y)|x ≥ 0, κ(x2 + E2
2 y

2) = E2
2}.

If κ < 0, then f13 > 0 and f23 > 0 at any point.

Proof Using

∂2 f13
∂x2

= −κE1

E3
3

(1 − κy2) < 0,
∂2 f13
∂y∂x

= −κ2xy
E1

E3
3

,
∂2 f13
∂y2

= −κE1

E3
3

(1 − κx2) < 0,

it follows that the Hessian of f13 is negative definite in Cκ . Similar formulas hold for f23
by replacing E1 by E2. The maximum for f13 is equal to 1 and it is attained at the point
(x, y) = (r1, 0) and the minimum is achieved at the point (x, y) = (−1/

√
κ, 0). Similar for

f23. The case κ < 0 is obvious from (3). ��
Let us consider the functions F̂ , Ĝ introduced inSect. 6.Wecompute the partial derivatives

F̂x = 1

E3

{
−3m1(r1 − x f13) f13S1�

−5/2
13 + 3m2(r2 + x f23) f23S2�

−5/2
23

−E3[m1 f13g13 + m2 f23g23] + κx[m1S1g13 + m2S2g23]} ,

F̂y = y

E3

{
−3m1(r1 − x f13)E1 f13�

−5/2
13 + 3m2(r2 + x f23)E2 f23�

−5/2
23

+κx [m1E1g13 + m2E2g23]} ,

Ĝx = y

E3

{
3m1S1 f

2
13�

−5/2
13 + 3m2S2 f

2
23�

−5/2
23 + κ [m1S1g13 + m2S2g23 ]

}
,
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Ĝ y = − [m1 f13g13 + m2 f23g23]

+ y2

E3

{
3m1 f

2
13E1�

−5/2
13 + 3m2 f

2
23E2�

−5/2
23 + κ [m1E1g13 + m2E2g23 ]

}
.

(59)

Lemma 7.2 For any real κ , the following identity holds

F̂x + Ĝ y = 1

E3
[m1E1g13 + m2E2g23]. (60)

Proof From (59) it follows

F̂x + Ĝ y = −2 [m1 f13g13 + m2 f23g23] + κx

E3
[m1S1g13 + m2S2g23]

+κy2

E3
[m1E1g13 + m2E2g23 ]

+3m1 f13
E3

�
−5/2
13

[
(r1 − x f13)S1 + y2 f13E1

]

+3m2 f23
E3

�
−5/2
23

[
(r2 + x f23)S2 + y2 f23E2

]
.

Using (57) and (54)

(r1 − x f13)S1 + y2 f13E1 = E3(y
2 + S21 ), (r2 + x f23)S2 + y2 f23E2 = E3(y

2 + S22 ).

Note that from (55), �
−5/2
13 (y2 + S21 ) = �

−3/2
13 = g13 and �

−5/2
23 (y2 + S22 ) = g23. Using

(56) to write

m1S1g13 + m2S2g23 = x [m1E1g13 + m2E2g23 ] + E3 [−m1r1g13 + m2r2g23] ,

one can easily obtain (60) after some cancellations. ��
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