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Abstract This paper globally searches for low-thrust transfers to the Moon in the planar,
circular, restricted, three-body problem. Propellant-mass optimal trajectories are computed
with an indirect method, which implements the necessary conditions of optimality based on
the Pontryagin principle.We present techniques to reduce the dimension of the set over which
the required initial costates are searched. We obtain a wide range of Pareto solutions in terms
of time of flight and mass consumption. Using the Tisserand–Poincaré graph, a number of
solutions are shown to exploit high-altitude lunar flybys to reduce fuel consumption.

Keywords Low-thrust transfer · Pareto solution · Planar circular restricted three-body
problem · High-altitude flyby · Tisserand–Poincaré graph

1 Introduction

Electric propulsion is a key technology for space exploration, as has been demonstrated by
the Deep Space 1 (Rayman et al. 2000), DAWN (Russell et al. 2007), SMART-1 (Racca
et al. 2002), and HAYABUSA (Kawaguchi et al. 2008) missions. The high fuel efficiency
of ion engines enables microsatellite missions, such as PROCYON (Funase et al. 2014) and
Lunar IceCube (Folta et al. 2016). However, the design of low-thrust trajectories remains
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a challenging task, especially in the Earth–Moon system, where multi-body dynamics is
important and solutions include multiple revolutions.

Several studies have presented optimal low-thrust transfers in the Earth–Moon system,
starting from Earth orbits and targeting libration point orbits, distant retrograde orbits, and
orbits around the Moon (Kluever and Pierson 1995; Betts and Erb 2003; Topputo 2007;
Mingotti et al. 2009; Ozimek and Howell 2010; Caillau et al. 2012; Zhang et al. 2015).
Although global searches were sometimes performed (Russell 2007; Ohndorf et al. 2009;
Abraham et al. 2013), solutions with longer transfer times have not yet been fully explored.
Such solutions cannot be easily designed because they require hundreds of revolutions around
the Earth, which is computationally costly, and high-altitude lunar flybys (Ross and Lo 2003;
Ross and Scheeres 2007; Topputo et al. 2008; Belbruno et al. 2008; Jerg et al. 2009; Grover
and Ross 2009; Campagnola and Russell 2010; Lantoine et al. 2011; Campagnola et al.
2014), which require the use of chaotic dynamics in multi-body regimes.

In the present paper,we computemass-optimal transfers to theMoon in the planar, circular,
restricted, three-body problem for a wide range of transfer times and for two representative
thrust levels. The optimal control is computedwith an indirect method; however, the transver-
sality conditions are not fully enforced, because of the well-known numerical instabilities of
bang-bang solutions (Russell 2007). Instead, we perform an extensive search over the set of
initial costates and extract the Pareto-front of suboptimal solutions. In the present study, we
apply two techniques to reduce the dimension of the search set: assuming an initial tangential
thrust and using the similarity to two-body dynamics on the initial orbit around the Earth.
Finally, Pareto-front solutions are analyzed using the Tisserand–Poincaré graph, where low-
propellant-mass solutions are found to exploit the 2:5 resonance, as reported by Pernicka
et al. (1995) and Topputo et al. (2005) for trajectories using impulsive maneuvers.

The remainder of the present paper is organized as follows. Section2 summarizes the
dynamicalmodel, theTisserand–Poincaré graph, the optimal control problem, and themethod
in Russell (2007). Section3 presents methods by which to reduce the dimension of the search
set. Finally, Sect. 4 presents the computational results of low-thrust transfers to the Moon.

2 Background

2.1 Dynamics

The planar, circular, restricted, three-body problem (PCR3BP) describes the motion of a
massless particle m (a spacecraft) under the gravitational influence of two massive celes-
tial bodies m1 (Earth) and m2 (Moon), which are revolving on circular orbits around their
barycenter. This simplified model captures the essential dynamics of a spacecraft in the
Earth–Moon system assuming the negligible inclination of the spacecraft trajectory.

In the present study, we consider the dynamics of the PCR3BP in the barycentric rotating
frame, where m1 and m2 are fixed on the x-axis (Szebehely 1967). The equations of motion
include thrust and a mass equation, the dimensionless form of which is given as (Russell
2007)

Ẋ = f (X, u, t), (1)

X :=
⎡
⎣
r
v

m

⎤
⎦ , (2)
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Table 1 Physical constants Parameter Value Unit

Mass parameter μ 0.0121506683 –

Earth mass 5.972 × 1024 kg

Gravitational constant 6.67384 × 10−11 m3 kg−1 s−2

Standard gravity g0 9.80665 m/s2

Distance unit 384405 km

Time unit 4.34811305 day

Moon radius RM 1738 km

Abscissa of L1 xL1 0.8369147189 –

Jacobi constant of L1 CL1 3.2003449098 –

f (X, u, t) :=
⎡
⎣

v,

g(r) + h(v) + uT/m,

−T/Ve

⎤
⎦ , (3)

where t is time, r:=[x y]T , v:=[vx vy]T , and m are the position, velocity, and mass of a
spacecraft, u is the thrust direction (|u| = 1), T is the thrust magnitude, Ve is the exhaust
velocity of an engine, and

g(r):=
[
x − μ(x−1+μ)

{(x−1+μ)2+y2}3/2 − (1−μ)(x+μ)

{(x+μ)2+y2}3/2
y − μy

{(x−1+μ)2+y2}3/2 − (1−μ)y
{(x+μ)2+y2}3/2

]
, (4)

h(v):=
[
2vy

−2vx

]
. (5)

The equations are non-dimensionalized with a length scale factor of m1–m2 distance, a time
scale factor of (orbital period of m1 and m2)/2π , and a unit mass scale factor of m1 + m2.
Table1 summarizes the physical constants used for the PCR3BP.

Figure1a shows an example of a low-thrust transfer in the Earth–Moon PCR3BP. During
coast arcs, the system given by Eq. (1) preserves the Jacobi constant

C = −(vx
2+vy

2)+(x2+ y2)+ 2(1 − μ)√
(x + μ)2 + y2

+ 2μ√
(x − 1 + μ)2 + y2

+μ(1−μ). (6)

Figure1b shows the change in the Jacobi constant in the final part of the transfer. The final
value of the Jacobi constant becomes slightly higher than that of L1, i.e.,CL1 , as shown in the
magnified inset figure, which indicates that the spacecraft is energetically captured around
the Moon (Koon et al. 2011).

2.2 Tisserand–Poincaré graph

The Tisserand–Poincaré (T–P) graph is a powerful tool for analyzing the global space of
solutions. The T–P graph is a Poincaré section of the system given by Eq. (1); the section is
placed far from m2, so that the states of a spacecraft are well represented by its osculating
orbital elements around m1. The graph includes level sets of the Tisserand parameter, which
approximates the Jacobi constant and is a measure of the spacecraft velocity relative to m2

(v∞).
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Fig. 1 a Example of a low-thrust transfer in the Earth–Moon PCR3BP. The thick arcs represent the thrust
arcs. b Change in the Jacobi constant C in the final part of the transfer in a. The horizontal line represents the
Jacobi constant of L1. The inset figure magnifies the ending part of the change in the Jacobi constant

Fig. 2 Osculating perigees and apogees of the trajectory in Fig. 1a (triangles) and those of ESA’s SMART-1
(circles) in the T–P graph

Figure2 shows an exampleT–P graphwith level sets of theTisserand parameter. (Here, TL1

is the Tisserand parameter associated with L1, and TL3 is the Tisserand parameter associated
with L3.) The graph includes lines of slope −1, which are constant-period level sets. The
period is determined by the resonant ratio N:M, where N is the number of revolutions of the
Moon, and M is the number of spacecraft revolutions in the inertial frame.

Figure2 also shows the boundaries (solid curves) of the trajectories reachable from the
resonances (Campagnola et al. 2012) via a lunar flyby. The region bounded by TL1 and TL3

corresponds to the low-energy regime. There are also the level sets of v∞ in the patched-
conics domain. See Campagnola and Russell (2010) and Campagnola et al. (2012, 2014) for
details of the T–P graph.

Figure2 shows the osculating perigees and apogees of the trajectory in Fig. 1a (triangles)
and those of the trajectory of ESA’s SMART-1 (circles, for every T–P graph in the present
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paper). In order to analyze the trajectories, we plot osculating perigees and apogees on
Poincaré sections at perigees only when the distance from the center of the Moon is greater
than 70,000km.

The plot reveals that the trajectory in Fig. 1a exploits the 2:5 resonance before reaching
the Moon realm. In the present paper, we demonstrate that this is a common feature of a
number of long-time-of-flight solutions. The plot also shows that SMART-1 eventually used
the 1:2 resonance. Note that these trajectories move in the low-energy regime, which cannot
be handled by the patched-conics model.

2.3 Mass-optimal problem in the PCR3BP

In the present study, we consider mass optimal problems with performance index

J = −mf , (7)

and boundary conditions
ψ(t0, t f , X0, X f , τ ) = 0, (8)

where the subscripts 0 and f represent initial and final values, respectively, X0 and X f are
the boundary states of the dynamical system given by Eq. (1), and τ is a parameter, which
will be explained more in detail later.

The optimal control Hamiltonian is defined through the costates λ as

H(X,λ, u, t) = λT
r v + λT

v (g(r) + h(v) + uT/m) − λm
T

Ve
, (9)

where the subscripts of λ denote the components of λ.
The Pontryagin principle (Pontryagin 1987) states that the optimal control (uopt , Topt ) is

the one that globally minimizes the Hamiltonian, and is provided by the following equations
[see for example Lawden (1963) and Russell (2007)]:

u = − λv

|λv| , (10)

and
T =0 (S < 0),

T =Tmax (S > 0),

0 ≤ T ≤ Tmax (S = 0),

(11)

where

S = |λv|
m

+ λm

Ve
(12)

is the switching function.
The Pontryagin principle also provides the equations of motion for the costates

λ̇r = −
(

∂ g
∂ r

)T

λv, (13)

λ̇v = −λr −
(

∂h
∂v

)T

λv, (14)

λ̇m = −|λv| T
m2 , (15)
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and the full set of boundary conditions (transversality conditions):

H0 = dΦ

dt0
, (16)

H f = −dΦ

dt f
, (17)

λ0 = − dΦ

dX0
, (18)

λ f = dΦ

dX f
, (19)

0 = dΦ

dτ
, (20)

where
Φ(t0, t f , X0, X f , ν) = J + νTψ(t0, t f , X0, X f , τ ), (21)

and ν are Lagrange multipliers associated with the boundary constraints given by Eq. (8).

2.4 Brief summary of Russell (2007)

Typical indirect methods try to solve the transversality conditions given by Eqs. (16) through
(20),with iterative techniques that rely onfirst-order derivatives and converge to localminima.
They are numerically unstable because of the discontinuous control, which is provided in a
feedback form by Eqs. (10) and (11).

For these reasons, Russell (2007) proposed a method of searching through the set of
admissible initial states and costates, defined by the initial conditions and by Eqs. (18) and
(20), and disregarding the transversality conditions on the final costates. Although not all of
the trajectories are optimal, the computation of a single solution is very quick because no
iterative procedure is implemented. Thus, the method enabled global searches for low-thrust
transfers, and trade-off studies by globally filtering the optimal solutions for a wide range of
time of flights. An example was shown for transfers from a near circular 125,000km orbit
at the Earth to a 50,000km distant retrograde orbit at the Moon in the PCR3BP [for another
example, see Russell (2007)].

3 Global search approach

This paper implements a global search method that is similar to that of Russell (2007), but
computes low-thrust trajectory solutions froma lowerEarth orbit of approximately 35827 km
altitude, which requires more revolutions around the Earth, to the vicinity of the Moon with
a Jacobi constant greater than that of L1 (thus ensuring permanent capture). Moreover, we
focus on longer-time-of-flight solutions. Thus, we develop techniques to reduce the search
space to a computationally manageable set. The details of the method and techniques are
described in the reminder of this section.

3.1 Problem formulation

In the present study, the initial conditions are those for an approximately one-day initial
periodic orbit (IPO) in the PCR3BP around the Earth with a radius similar to that of GEO.
The IPO is parameterized by the time-like parameter τ (Russell 2007) (0 ≤ τ ≤ 0.238716 in
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Table 2 Spacecraft parameters

Parameter Non-dimensional value Dimensional value

Initial spacecraft mass m0 1 1500kg

Specific impulse Isp 0.0079855841 3000 s

Exhaust velocity Ve 28.7519610842 29419.95 m/s

Maximum thrust Tmax 0.0732492483 or 0.0366246242 0.3 or 0.15 N

Table 3 Initial conditions of the
initial periodic orbit

Parameter Value

Initial positions at τ = 0 (x , y)= (0.0976435979, 0)

Initial velocities at τ = 0 (vx , vy )= (0, 2.8897406004)

non-dimensional units), with the maximum value of τ corresponding to approximately one
day, which is the period of the IPO. Therefore, τ uniquely defines the position on the IPO
where the spacecraft ignites the thruster for the first time.

For every trajectory presented in the present paper, the final condition is a capture around
the Moon, defined by a state close to the Moon (xL1 ≤ x ≤ 1.15 and −0.15 ≤ y ≤ 0.15)
and a Jacobi constant higher than that of L1 (Cf ≥ CL1 ) to ensure permanent capture near
the Moon. The present study investigates low-thrust transfers of two thrust levels between
these boundary states. Table2 shows the spacecraft parameters, and Table3 summarizes the
initial conditions of the IPO. The spacecraft mass m and the thrust magnitude T are non-
dimensionalized by using the initial spacecraft mass m0. Since the present paper seeks the
Pareto-front of optimal solutions, we search mass-optimal solutions for different final times
of up to 695.7days.

In summary, the initial conditions are

ψ :=

⎡
⎢⎢⎣
r0 − r∗

0(τ )

v0 − v∗
0(τ )

m0 − m∗
0

t0

⎤
⎥⎥⎦ = 0, (22)

where ∗ denotes the user-defined value. The final conditions are not included in ψ , because
we are going to disregard the associated transversality conditions. The final time is found
implicitly, as the earliest time when the final conditions are met.

3.2 Set of admissible initial conditions

The admissible initial states can be easily searched, because they belong to a one-dimensional
closed set parametrized by τ . The admissible initial costates are computed using the transver-
sality conditions. We first rewrite Eq. (7) (Russell 2007; Ozimek and Howell 2010) as

J = −km f (k > 0). (23)

Then the transversality condition given by Eq. (19) associated with the mass:

λm f = −k, (24)
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Fig. 3 Polar coordinates for the velocity, acceleration, and costates on the initial periodic orbit

is automatically satisfied by choosing

λm0 = −1, (25)

because k is a free parameter and λm decreases with time. Equation (18) generates free
multipliers for the initial costates, which are combined with Eq. (20) (Russell 2007)

λr0
d r∗

0(τ )

dτ
+ λv0

dv∗
0(τ )

dτ
= 0. (26)

The set of admissible costates is open and three dimensional, being defined by the two
scalar Eqs. (25) and (26) in the five-dimensional space of λ0. In summary, the total set
of admissible initial conditions is open and four-dimensional including τ . Though Russell
(2007) globally explored the four-dimensional search set, an extensive search over this set
with longer transfer times and from a lower initial orbit is computationally very costly.
Therefore, we use the following techniques to reduce the search space to a manageable set.

3.3 Reduction of the search set

3.3.1 Initial thrust direction

We assume that the initial thrust direction is tangential to the IPO. Since the tangential thrust
changes the Jacobi energy maximally, it could be a good option for the initial thrust direction
to compute suboptimal solutions, with the advantage of reducing the search set. Thus, λvx0
and λvy0

can be related to the initial velocity vx0 and vy0 through Eq. (10) as

− λvx0

|λv0 |
= vx0

|v0| ,

− λvy0

|λv0 |
= vy0

|v0| .
(27)

3.3.2 Similarity to two-body dynamics

We express Eq. (26) using d r0(τ )
dτ

= v0,
dv0(τ )
dτ

= a0 (asterisks are omitted for brevity), and
the polar coordinates shown in Fig. 3 for the velocity, acceleration, and costates on the IPO
as

|λr0 ||v0| cos (θλr0
− θv0) + |λv0 ||a0| cos (θλv0

− θa0) = 0. (28)

Equation (27) can be rewritten as

θλv0
= θv0 + π. (29)
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Table 4 Parameters for a grid
search (coarse/fine)

Parameter Minimum Maximum Number of grid points

τ 0 0.238716 100

|λr0 | 0.7 5/1 1500/2000

ε −0.00014 0.00014 1500/2000

Table 5 Admissible region of trajectories

Parameter Value Unit

Absolute values of positions |x | ≤ 1.2, |y| ≤ 1.2 –

Minimum distance from the center of the Earth 41000 km

Minimum distance from the center of the Moon RM km
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m
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100

TOF (day)

Δ
m

(k
g)

(b)

Fig. 4 a Pareto (dark) and non-Pareto (light) solutions in terms of time of flight (TOF) and mass consumption
(Δm) for the case in which Tmax =0.3N. b Pareto solutions extracted from a

Substituting Eq. (29) into Eq. (28) yields

|λv0 | = |v0|
|a0| |λr0 |

cos (θλr0
− θv0)

cos (θv0 − θa0)
, (30)

which is used to determine |λv0 | as a function of |λr0 | and θλr0
.

The dynamics on the IPO resembles the circular orbit in the two-body problem, and the
velocity and the acceleration on the IPO are nearly perpendicular to each other:

cos (θv0 − θa0) ≈ 0. (31)

Thus, from Eqs. (30) and (31), we have

cos (θλr0
− θv0) ≈ 0, (32)
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Fig. 5 Trajectories of the selected Pareto solutions shown in Fig. 4b. The nearly circular thick orbit represents
the initial periodic orbit around the Earth. The two black points indicate the Earth (left) and the Moon (right),
and the numbers indicate the TOF and Δm, respectively

or equivalently,

θλr0
− θv0 =π

2
+ ε,

θλr0
− θv0 = − π

2
+ ε,

(33)

where |ε| � 1.
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Fig. 6 Osculating perigees and apogees of the Pareto solutions of odd numbers in Fig. 5 in the T–P graph

Fig. 7 Magnification of the final part of transfers in Fig. 6

From Eq. (33), we use ε as a parameter to compute θλr0
. Since the signs of both sides of

Eq. (30) must be the same, we need only investigate ε, which satisfies

cos (θλr0
− θv0)

cos (θv0 − θa0)
≥ 0. (34)

In summary, our method requires a search over the three-dimensional τ − |λr0 | − ε set,
but with |ε| � 1. Since the dimension of the search set directly affects computational cost,
the presented techniques ease the global search for low-thrust transfers.

It could be possible to apply the presented techniques to other problems such as targeting
a specific orbit around the Moon, where initial guesses could be provided for subsequent
local optimization, and a global search from a specific near-circular, inclined initial orbit in
the spatial problem, where one extra dimension would be added to the search set.
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Fig. 8 Osculating perigees and apogees of the Pareto solutions of even numbers in Fig. 5 in the T–P graph

Fig. 9 Magnification of the final part of transfers in Fig. 8

4 Global search for low-thrust transfers to the Moon

Based on the procedure in the previous sections, we perform two grid searches (coarse and
fine) in the τ − |λr0 | − ε set using the Runge–Kutta–Fehlberg method of orders 4 and 5
with a tolerance of 10−10. Table4 summarizes the search set and corresponding numbers of
grid points using a coarse/fine notation if needed, and Table5 shows the admissible region
of trajectories during the integration. We use all of the solutions obtained from both grid
searches to show the following results.
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Table 6 Final resonances of all
14 Pareto solutions with TOFs
longer than 265days for the case
in which Tmax = 0.3 N

Final resonance Number of Pareto solutions

2:5 5

1:2 3

1:3 6
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Fig. 10 a Pareto (dark) and non-Pareto (light) solutions in terms of TOF and Δm for the case in which
Tmax =0.15N. b Pareto solutions extracted from a

4.1 Low-thrust transfers to the Moon for Tmax = 0.3 N

This section summarizes the computational results for Tmax = 0.3 N and the initial massm0 =
1500kg,which correspond to an initial acceleration that is slightly higher than that of SMART-
1. Figure4a shows the solutions in terms of time of flight (TOF) andmass consumption (Δm),
where the dark points represent the Pareto solutions and the light points represent the non-
Pareto solutions. For clarity, Fig. 4b shows the extracted Pareto solutions. Unfortunately, it
is difficult to make a direct comparison with the results in previous works because boundary
conditions are different.

Figure5 shows the trajectories of the twelve representative Pareto solutions shown in
Fig. 4b, numbered #1 to #12. The thrust arcs tend to appear near the Earth and the Moon,
and the coast arcs typically appear in the “three-body” region where the lunar perturbation
becomes significant.

Figures 6 and 8 show the twelve Pareto solutions on the T–P graph. For clarity, Fig. 6
shows the odd-numbered solutions and Fig. 7 shows its magnification, whereas Fig. 8 shows
the even-numbered solutions and Fig. 9 shows its magnification. The T–P graph indicates
that trajectories with lower perigees can exploit larger effects of resonant lunar flybys (see
the boundaries of the trajectories reachable from the resonances). This is why the solutions
having smaller Δm exhibit less inclined paths.

Solutions #7, #9, and #12 exploit 2:5 resonance in the final phase before reaching theMoon
realm. This is in contrast to SMART-1, which used 1:2 resonance as in solutions #8 and #11.
Previous studies indicated that the invariant manifolds emanating from L1 were close to
2:5 resonance in the Earth–Moon system (Pernicka et al. 1995; Topputo et al. 2005). Thus,
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Fig. 11 Trajectories of the selected Pareto solutions from Fig. 10b. The nearly circular thick orbit represents
the initial periodic orbit around the Earth. The two black points indicate the Earth (left) and the Moon (right).
The numbers indicate the TOF and and Δm, respectively

future missions to the Moon may be able to further reduce Δm by exploiting 2:5 resonance
to pass through low-energy manifold tubes (Koon et al. 2011) around L1 while accepting
some transfer time and radiation dose penalties. Table6 summarizes the final resonances of
the Pareto solutions with TOFs longer than 265days.
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Fig. 12 Osculating perigees and apogees of the Pareto solutions of odd numbers in Fig. 11 in the T–P graph

Fig. 13 Magnification of the final part of transfers in Fig. 12

4.2 Low-thrust transfers to the Moon for Tmax = 0.15 N

This section summarizes the computational results for Tmax =0.15N and the same initial
mass, m0 =1500kg, which correspond to an initial acceleration similar to that of the JAXA
proposed DESTINY mission (Kawakatsu et al. 2014).

Figure10a shows the solutions in terms of TOF and Δm. For clarity, Fig. 10b shows the
extracted Pareto solutions. Since the acceleration is smaller than that in Sect. 4.1, the solutions
have longer TOFs.

Figure11 shows the trajectories of the twelve representative Pareto solutions in Fig.10b,
numbered from #1 to #12. Trajectories for which Tmax = 0.15 N include longer intervals of
thrust arcs, as compared to those for which Tmax = 0.3 N, but exploit lunar flybys to reduce
fuel consumption.
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Fig. 14 Osculating perigees and apogees of the Pareto solutions of even numbers in Fig. 11 in the T–P graph

Fig. 15 Magnification of the final part of transfers in Fig. 14

Table 7 Final resonances of all
24 Pareto solutions with TOFs
longer than 365days for the case
in which Tmax =0.15N

Final resonance Number of Pareto solutions

2:5 17

1:2 6

1:3 1

Figures12 and 14 show the twelve Pareto solutions on the T–P graph. For clarity, Fig. 12
shows the odd-numbered solutions and Fig. 13 shows its magnification, whereas Fig. 14
shows the even-numbered solutions and Fig. 15 shows its magnification. As summarized in
Table7, many Pareto solutions with smallΔm and long TOF exploit the 2:5 resonance before
reaching the Moon realm.
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Fig. 16 Distribution of Pareto solutions for a Tmax =0.3N and b Tmax =0.15N in terms of TOF and the
parameter τ , shaded in accordance with the value of Δm
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Fig. 17 Distribution of Pareto solutions for a Tmax =0.3N and bTmax =0.15N in terms of TOF and the
parameter ε, shaded in accordance with the value of Δm
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Fig. 18 Distribution of Pareto solutions for aTmax =0.3N and bTmax =0.15N in terms of TOF and the
parameter |λr0 |, shaded in accordance with the value of Δm

4.3 Distribution of solutions

Figure16 shows the distribution of the Pareto solutions for (a) Tmax =0.3N and
(b) Tmax =0.15N in terms of the TOF and the parameter τ , shaded in accordance with
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Fig. 19 Distribution of Pareto (dark dots) and non-Pareto (light dots) solutions for a Tmax =0.3N and
bTmax =0.15N in terms of the parameters τ and ε. The curve represents ε′ in Eq. (35)

the value of Δm. Figures17 and 18 show the distributions of the Pareto solutions for (a)
Tmax =0.3N and (b) Tmax =0.15 N in terms of the TOF and the parameters ε and |λr0 |
respectively. The value of ε corresponds to the first equation of Eq. (33) because the second
equation of Eq. (33) always violates the constraints for the minimum distance from the Earth
in Table5.

The Pareto solutions for both values for Tmax exhibit no tendencies for τ or ε, but show the
characteristic distributions for |λr0 |, i.e., solutions with smaller |λr0 | tend to result in smaller
Δm but longer TOF. Therefore, these results indicate that |λr0 | characterizes the families of
low-thrust transfers to the Moon. Note that Fig. 18 indicates the existence of even faster or
cheaper solutions beyond the bounds on |λr0|. However, we already computed a wide range
of Pareto solutions, the fastest solution of which is a nearly continuous-thrust transfer and the
cheapest solution of which is a multiple-gravity-assisted transfer, and searching even faster
or cheaper solutions is beyond the scope of this paper.

4.4 Further refinement for ε

Figure19 shows the distribution of the Pareto (dark dots) and non-Pareto (light dots) solutions
for (a) Tmax =0.3N and (b) Tmax =0.15N in terms of the parameters τ and ε. The curve
represents

ε′ = −π

2
+ θa0 − θv0 , (35)

which heuristically replaces θλr0
with θa0 in the first equation of Eq. (33).

Since the obtained solutions shadow the curve of ε′, Fig. 19 indicates a heuristic that we
can target ε in the vicinity of ε′ in order to further reduce the search set of ε in future studies.

5 Conclusions

In the present paper, we presented global searches of low-thrust transfers to the Moon in
the planar, circular, restricted, three-body problem. The method used herein implements the
necessary conditions of optimality from the Pontryagin principle to define an initial search
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space that is four dimensional and open. We assumed an initial tangential thrust and used an
analogywith two-body dynamics to reduce the size of the search space. For two representative
thrust levels, we computed a wide range of Pareto solutions in terms of time of flight andmass
consumption, including many long-time-of-flight solutions that had not been fully explored
in previous studies. Analysis via a Tisserand–Poincaré graph showed that numerous solutions
exploit high-altitude lunar flybys, and 2:5 resonance is useful for reducing fuel consumption.
A new heuristic indicated the possibility of further reducing the search set in future studies.
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