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Abstract The aim of the time distributionmethodology presented in this paper is to generate
constellations whose satellites share a set of relative trajectories in a given time, and maintain
that property over time without orbit corrections. The model takes into account a series of
orbital perturbations such as the gravitational potential of the Earth, the atmospheric drag,
the Sun and the Moon as disturbing third bodies and the solar radiation pressure. These
perturbations are included in the design process of the constellation. Moreover, the whole
methodology allows to design constellations with multiple relative trajectories that can be
distributed in a minimum number of inertial orbits.

Keywords Satellite constellations · Formation flying · Orbital perturbations · Orbit design

1 Introduction

Space has become a strategic resource that offers an unlimited number of possibilities. Sci-
entific and military missions, telecommunications or Earth observation are some of its most
important applications and have led the sector to a quick expansionwith an increasing number
of satellites orbiting the Earth.

Satellites lie in a very advantageous position that allows the observation of vast regions of
the Earth in short periods of time, an objective which is difficult to achieve with human and
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technical means in ground. This advantage can be improved even further with the concept
of satellite constellations. Satellite constellations are groups of satellites that, having the
same mission, work cooperatively to achieve it. This concept increases the complexity of the
Celestial Mechanics problem to solve, but opens new and interesting possibilities for future
missions.

Satellite constellation design has been since its beginning a process that required a high
number of iterations due to the lack of established models for the generation and study of
constellations. This situation resulted in the necessity of specific studies for each particular
mission, being unable to extrapolate the results from one mission to another. Fortunately, in
the last decades, new theoreticalmodels have been developed that include in their formulation
all the former configurations. Examples of that are the Walker Constellations (Walker 1984)
for circular orbits or the design of Draim (1987) for elliptic orbits. Afterwards, a new design
theory was introduced, which included all the former designs and allowed more possibilities
of configuration for circular and elliptic orbits: the Flower Constellations Theory.

Flower Constellations were introduced for the first time byMortari et al. (2004) in the year
2004. The most relevant feature of this model consists of the visualization and study of the
constellations using a rotating frame of reference instead of an inertial frame of reference.
That way, a relative orbit whose geometry reminds the shape of the petals of a flower is
obtained.

The initial Flower Constellations model was reformulated in the 2-D Lattice (Avendaño
et al. 2013) and 3-D Lattice (Avendaño et al. 2013) models which improved the parametriza-
tion of the problem. However, due to the strictly Keplerian formulation of the model, the
inclusion of orbital perturbations is required to enhance the precision. In Casanova et al.
(2014) the perturbation created by the J2 term of the gravitational potential of the Earth
was introduced in the model. Nevertheless, other orbital perturbations are also significantly
modifying the orbits, so it is important to include them in the design process of the constel-
lation (Arnas et al. 2016).

The goal of the methodology presented in this paper is to generate satellite constellations
that include the effects of orbital perturbations such as the gravitational potential of the
Earth, the atmospheric drag, the Sun and the Moon as disturbing third bodies or the solar
radiation pressure (Arnas et al. 2016). The proposed constellation design allows to generate
a configuration in which a number of different relative trajectories is defined, each of these
containing a number of satellites that present the same instantaneous relative trajectory over
time. Moreover, in order to decrease the number of orbital launches to build the constellation,
another constraint will be set: satellites from different relative trajectories have to share the
same inertial orbit, allowing a decrease in the number of inertial orbits.

The time distribution methodology introduced is able to generate all kinds of satellite
configurations including equally spaced in time distributions (as the Flower Constellations
Theory does), but also formation flying (or cluster fight Mazal and Gurfil 2013). Examples of
these are presented in this paper for both Keplerian formulation and perturbed models using
the time distribution methodology introduced in this work.

2 Keplerian model for constellation design

Throughout this paper, the so called classical orbital elements will be used, namely: a the
semi-major axis, e the eccentricity, i the inclination, ω the argument of perigee, Ω the right
ascension of the ascending node and M the mean anomaly. Other common parameters used
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are: f the true anomaly, ω⊕ the angular velocity of the Earth, μ the Earth gravitational
constant, R⊕ the Equatorial Earth radius and J2 the second order term of the gravitational
potential of the Earth.

In an unperturbed dynamic model, the classical orbital parameters (a, e, i , ω, Ω) are
constant whilst the mean anomaly (M) varies through time. This property will be used to
show in a clear way the analytical model behind the constellation design proposed in this
paper.

Along this section, three different constellation designswill be shown, each one expanding
the possibilities of the former one with a new concept. First, a constellation design model
in which satellites share the same relative trajectory with respect a rotating reference frame
will be presented. Second, this model will be expanded with the possibility of distribution of
the satellites in several different relative trajectories. And finally, a constraint will be set in
order to reduce the number of inertial orbits to a minimum. That way, the costs of building
the constellation in orbit are considerably reduced.

All these constellation designs share the mean values of the semi-major axis, the eccen-
tricity, the inclination and the argument of perigee. This is done in order to achieve the sharing
of the relative trajectories.

One important thing to notice is that the definition of the relative trajectory done throughout
this paper can be established in whatever rotating frame of reference that rotates at a constant
speed respect to the inertial frame of reference, and thus, it does not have to be the one fixed
with the movement of the Earth. This has two important implications. The first one is that the
methodology can be used in constellations orbiting any celestial body. The second one is that
even if the satellites rotate a particular celestial body, the definition of the constellation does
not have to be made in the reference frame fixed to the central body, it can be made in other
reference systems, increasing the freedom in the design. However, in most applications, it
is more practical the use of the ECEF (Earth Centered - Earth Fixed) frame of reference as
it defines the constellation in a relative to Earth position, so during this paper, it is assumed
that the design of the constellation is done in the ECEF frame of reference.

2.1 Constellation design with a common relative trajectory

The objective of this design model is to generate a constellation whose satellites share the
same relative trajectory over time. The first thing required to achieve this condition is to
define that particular relative trajectory. It is worth noting that the relative trajectory is not
required to be closed in the proposed methodology.

The position of a satellite along its trajectory in the perifocal frame of reference is:

x = (r cos f, r sin f, 0) , (1)

where r is the radius of the orbit in each instant of time:

r = a
(
1 − e2

)

1 + e cos f
. (2)

These positions can be expressed in the inertial frame of reference (ECI: Earth Centered
Inertial) using rotational matrices (R3 and R1):

x|EC I = R3 (Ω)R1 (i)R3 (ω) x, (3)

and it can also be expressed in the ECEF (Earth Centered - Earth Fixed) frame of reference:

x|ECEF = R3 (−ψG0 − ω⊕t) x|EC I , (4)
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whereψG0 is the longitude of Greenwich at the time of reference t = 0 andω⊕ is the angular
velocity of rotation of the Earth.

Thus, using Eqs. (1), (3) and (4), the position of a certain satellite is obtained in the ECEF
frame of reference:

x|ECEF = R3 (−ψG0 − ω⊕t)R3 (Ω)R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ , (5)

where combining the first two matrices, the following expression is obtained:

x|ECEF = R3 (Ω − ψG0 − ω⊕t)R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ . (6)

The aim now is to create a constellation of satellites whose trajectories in the ECEF frame
of reference are the same. To be able to do that, the orbital elements a, e, i andωmust be equal
for all the satellites of the constellation. Let a, e, i , ω, Ω0 be the orbital parameters of the
reference trajectory and let t0 be the reference time of the constellation which is associated
with a reference satellite of the constellation (which can be an actual satellite or a fictitious
position). This reference trajectory (named x0) can be expressed in the relative frame of
reference as:

x0|ECEF = R3 (Ω0 − ψG0 − ω⊕t)R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ , (7)

where r and f are a function of t . This relative trajectory must be fulfilled by every satellite
in the constellation, so it is fixed in the design of the constellation. If another point of this
relative trajectory is considered, a satellite that shares the same relative trajectory can be
obtained. If the value of t0 is modified, this relative trajectory remains the same. Let t1 be
the changed value of t0, then, the right ascension of the ascending node suffers a variation of
ΔΩ = −ω⊕(t1 − t0). Thus, the relative trajectory of the satellite (x1) when t1 is considered
is:

x1|ECEF = R3 (Ω0 − ψG0 − ω⊕(t1 − t0 + t))R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ , (8)

where r and f are now a function of (t1 + t). From Eq. (8) and using the inverse relation of
Eq. (4), the inertial orbit of this second satellite can be obtained through:

x1|EC I = R3 (ψG0 + ω⊕t) x1|ECEF , (9)

so the inertial orbit is:

x1|EC I = R3 (Ω0 − ω⊕(t1 − t0))R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ . (10)

In other words, let {a, e, i, ω,Ω0, M0} and {a, e, i, ω,Ω1, M1} be the classical orbital
elements of two satellites where M0 and M1 are given for the initial time. We impose that
both satellites lay in the same relative trajectory:

x0|ECEF (t + (t1 − t0)) = x1|ECEF (t) ∀t ∈ R, (11)

123



Time distributions in satellite constellation design 201

where t1 − t0 is the time that satellite 0 requires to reach the same position of satellite 1 in the
relative trajectory. Then, in the inertial frame of reference and following Eq. (10), a relation
between both right ascensions of the ascending nodes can be obtained:

Ω1 = Ω0 − ω⊕(t1 − t0). (12)

On the other hand, the mean anomaly of the reference satellite can be defined as:

M = n(t + t0 − τ), (13)

where τ is the time of pass for the perigee, t0 is the time of reference of the constellation and
n is the mean motion of the satellite, which, for a Keplerian movement is:

n =
√

μ

a3
, (14)

beingμ the standard gravitational constant of the Earth. As all the inertial orbits are identical
except for a rotation and a time of reference, we can define τ as the time of pass for the
perigee of the leading satellite of the constellation, that is, satellite 0. It is important to notice
that with this definition, τ becomes independent of the satellite of study. Thus, the mean
anomaly of satellite 1 can be expressed as:

M1 = n(t + t1 − τ), (15)

where t1 is the reference time of satellite 1. Then, a relation between both mean anomalies
can be obtained:

M1 = M0 + n(t1 − t0). (16)

As it can be seen, combining Eqs. (12) and (16), a function between M1 and Ω1 can be
established:

M1 =
(
M0 + n

ω⊕
Ω0

)
− n

ω⊕
Ω1, (17)

which represents a straight line (M1(Ω1) with a slope of n/ω⊕) as it can be seen in the
(Ω, M)-space (Avendaño and Mortari 2012) representation of the relative trajectory shown
in Fig. 1, where each vertical line represents the inertial orbit and the diagonal represents the
relative trajectory of the satellite for a particular instant.

If instead of only one satellite, a certain number of them are taken, it is possible to generate
a constellation whose satellites share the same relative trajectory. Let tq be the temporal
positions in the relative trajectory (in the same sense as t1 worked) and let Nst be the number
of satellites in the relative trajectory, where q ∈ [1, Nst ] represents each particular satellite
of the constellation. Then, for each q:

Mq =
(
M0 + n

ω⊕
Ω0

)
− n

ω⊕
Ωq (18)

and the inertial orbits can be expressed as:

xq|EC I = R3
(
Ω0 − ω⊕(tq − t0)

)R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ . (19)

As Eq. (19) shows, the first matrix corresponds to a rotation in a modified right ascension
of the ascending node for each satellite. Let Ωq be the right ascension of the ascending node
of the satellite q , then:

Ωq = Ω0 − ω⊕(tq − t0). (20)
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Fig. 1 (Ω, M)-space representation of a relative trajectory

Note that (tq−t0) represents a distribution over timewith respect to the reference trajectory
defined in the beginning, and as such, it does not dependon the time (t) used in the propagation,
that is, it remains constant. Moreover, tq and ω⊕ are also constant in time, so it can be
concluded thatΩq is fixed for each satellite of the constellation. On the other hand, the initial
value of the true anomaly of each satellite of the constellation ( fq ) only depends on tq . Then,
it is possible to generate the full constellation by the only use of the parameter of distribution
tq . Each inertial orbit of the constellation is obtained by:

xq|EC I = R3
(
Ω0 − ω⊕(tq − t0)

)R1 (i)R3 (ω)

⎛

⎜⎜⎜⎜
⎝

a
(
1 − e2

)

1 + e cos fq
cos fq

a
(
1 − e2

)

1 + e cos fq
sin fq

0

⎞

⎟⎟⎟⎟
⎠

. (21)

Equation (21) allows to design a distribution of satellites inwhich all have the same relative
trajectory (and thus, they share the same ground-track). This distribution is done over time,
with no constraints in the selection of the different values of tq which is the parameter of
distribution in the configuration.

A more compact representation of the distribution can be done combining Eqs. (18)
and (20), which lead to:

Ωq = Ω0 − ω⊕(tq − t0),

Mq = M0 + n(tq − t0), (22)

where tq is the parameter of distribution of the configuration, and Ω0, t0 and M0 are the
parameters related to the leading satellite.

2.1.1 Example of constellation defined in a single relative trajectory

As an example of application, a constellation consisting on five satellites is selected. The
semi-major axis of the constellation is a = 14,420 km, the eccentricity is e = 0.4 and the
inclination is i = 63.435◦. Suppose that a distribution of satellites is required in such a way
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Table 1 Initial distribution of
the constellation

Element Sat. 1 Sat. 2 Sat. 3 Sat. 4 Sat. 5

Ωq (deg) 0.000 −1.2534 −2.5068 −3.7603 −5.0137

Mq (deg) 0.000 6.2671 12.5342 18.8013 25.0684

Fig. 2 Inertial (left) and relative (right) trajectories of the constellation

that once the first satellite has observed a particular region, the rest of the satellites have to
pass over the same region but with a delay of 5 min between them.

Without losing generality, letΩ0 = 0,M0 = 0 and t0 = 0 be the parameters of the leading
satellite. Then, the time distribution of the constellation is defined by the following relation:

tq = 300(q − 1), (23)

where q ∈ [1, 5] defines the parameter of distribution for each particular satellite and 300
represents the delay in seconds between satellites. From Eq. (22), the following distribution
is obtained:

Ωq = −ω⊕tq ,
Mq = ntq , (24)

which leads to the configuration shown in Table 1.
Figure 2 shows the inertial and relative trajectories of the constellation. As it can be seen,

the relative trajectory is common for all the satellites in the constellation whilst they have
five different inertial orbits. One important property of this design is that, even if we decrease
the distances between satellites, it is not possible for the satellites to collide because they are
moving in the same relative trajectory which does not have self intersections.

2.2 Constellation design with multiple relative trajectories

The objective now is to distribute the satellites in more than one relative trajectory. The
methodology is similar to the previous one (see Sect. 2.1), but in this case, other degrees of
freedom are added in the spacing of the relative trajectories in the ECEF frame of reference.
Let Nt be the number of relative trajectories in which the constellation is distributed and let
k ∈ [1, Nt ] be the parameter that names each one of this trajectories. Therefore, the total
number of satellites in the constellation Ns is:
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Ns = Nst Nt , (25)

where Nst is the number of satellites in each relative trajectory.
Furthermore, the satellites named with the sub-index k0 are the leading satellites of each

k relative trajectory, that is, the reference satellites that define the trajectories in the ECEF
frame of reference. Moreover, the leading satellite, named with the sub-index 00, represents
the reference origin of the whole constellation. Thus, as seen before, the relative trajectories
can be defined as:

xkq|ECEF = R3 (σ )R1 (i)R3 (ω)

⎛

⎝
r cos f
r sin f

0

⎞

⎠ , (26)

where:
σ = Ω0 + ΔΩk − ψG0 − ω⊕(tkq − t0 + t), (27)

ΔΩk is the space distribution of the relative trajectories in the ECEF frame of reference
and tkq represents the distribution parameter of the constellation. Note that r and f are now
functions of tkq . The parameter tkq distributes the satellites in a k relative trajectory and the
q position in that relative trajectory. As it can be seen, two degrees of freedom control the
distribution of the constellation: ΔΩk and tkq .

Transforming those coordinates to the ECI frame of reference, and naming fkq the true
anomaly of the satellite q of the k relative trajectory at the initial time, the following inertial
orbits for each satellite of the constellation are obtained:

xkq|EC I = R3
(
Ωkq

)R1 (i)R3 (ω)

⎛

⎜⎜⎜⎜
⎝

a
(
1 − e2

)

1 + e cos fkq
cos fkq

a
(
1 − e2

)

1 + e cos fkq
sin fkq

0

⎞

⎟⎟⎟⎟
⎠

, (28)

where the right ascension of the ascending node of each satellite is:

Ωkq = Ω0 + ΔΩk − ω⊕(tkq − t0), (29)

which means that, in general, each satellite presents a different inertial orbit.
This distribution can also be represented in the (Ω, M)-space. As done before:

Ωkq = Ω0 + ΔΩk − ω⊕(tkq − t0),

Mkq = M0 + n(tkq − t0), (30)

and the relation between Ωkq and Mkq is:

Mkq =
(
M0 + n

ω⊕
Ω0

)
+ n

ω⊕
ΔΩk − n

ω⊕
Ωkq , (31)

which is a distribution of points over a family of straight lines that have the same slope.
Figure 3 shows a particular case of a satellite with respect to the reference trajectory (named
0). There, the satellite 11 (k = 1, q = 1) is located in the relative trajectory 1 which presents
a rotation of ΔΩ1 with respect to the reference trajectory.
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Fig. 3 (Ω, M)-space representation of the configuration for multiple relative trajectories

2.2.1 Example of constellation defined in various relative trajectories

As an example of this section, we present a sun synchronous constellation based on 15
satellites distributed in three relative trajectories and circular orbits. The constellation has an
altitude of 880 km, and thus, a = 7260 km and i = 98.95◦. Now, we choose a distribution
of the constellation such that the relative trajectories are equally spaced and the satellites in
each orbital plane are equally spaced in time. That way, this distribution can be expressed
as:

ΔΩk = 2π
k − 1

Nt
,

tkq = 2π
q − 1

Nst
, (32)

where Nt = 3 is the number of relative trajectories and Nst = 5 is the number of satellites per
relative trajectory. Using Eq. (30) this initial distribution leads to the following configuration:

Ωkq = 2π
k − 1

Nt
− 2πω⊕

n

q − 1

Nst
,

Mkq = 2π
q − 1

Nst
, (33)

where k ∈ [1, Nt ] and q ∈ [1, Nst ]. The distribution is shown in the (Ω, M)-space in Fig. 4,
where it can be observed how the satellites are positioned in three different lines that represent
the relative trajectories of the constellation.

Figure 5 shows the inertial and relative trajectories of the constellation. As it can be seen,
there are 15 different orbits, one for each satellite, however there are only three different
relative trajectories (a solid line, a dashed line and a dotted line), which was the objective
sought.

As it can be seen from Figs. 4 and 5, this distribution generates too many different orbital
planes, one per satellite, a fact that increases the expenses of building the constellation in
orbit. Therefore, in the next subsection the constraint of minimum number of inertial orbits
will be set in order to correct this situation.
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Fig. 4 (Ω, M)-space, where each point represents a satellite in the constellation

Fig. 5 Inertial (left) and relative (right) trajectories of the constellation

2.3 Constellation design with minimum number of inertial orbits

Once a distribution over different relative trajectories is done, it is interesting to impose the
restriction that the constellation has to be built in the least number of inertial orbits due to costs
reduction. As seen before, the procedure places the satellites in different relative trajectories.
Nevertheless, there is no constraint with respect to the inertial frame of reference, and in fact,
each Ωkq is in general different. The aim now is to impose that the values of Ωkq are shared
between relative trajectories.

The parameter tkq is a time distribution of the satellites in the constellation, but in reality,
there exist two effects provoked by this parameter, the movement along the relative trajectory
and the spacing of the inertial orbits. On the other hand, the spacing of the relative trajectories
is controlled by the parameterΔΩk . As we require to reduce the number of inertial orbits to a
minimum, a relation between tkq and ΔΩk has to be found in order to achieve this condition.
As tkq is a distribution, we can separate it in two different parameters tk and tq such that:

tkq = tk + tq , (34)
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Fig. 6 Constellation distribution in the ECEF (left) and ECI (right) frames of reference

where tq is related to the distribution of satellites in the same relative trajectory as done in
Sect. 2.1, and we want tk to be related with the inertial orbits. In order to achieve that, we
impose the right ascension of the ascending node to be independent of the parameter k, in
the form of tk or ΔΩk . That way, the number of inertial orbits only depends on tq , which is
related with the number of points per relative trajectory.

Thus, applying Eqs. (34) in (29), we obtain:

Ωkq = Ω0 + ΔΩk − ω⊕(tk + tq − t0), (35)

where it is possible to eliminate the dependence on k imposing:

tk = ΔΩk

ω⊕
, (36)

and thus, introducing this value for tk in Eq. (35) the following expression for the right
ascension of the ascending node is obtained:

Ωkq = Ω0 − ω⊕(tq − t0). (37)

Note that now, Ωkq does not depend on the terms in k, and as such, is the same for every
satellite that shares the value of tq , one for each relative trajectory. That leads to a distribution
in which the satellites with the same q are distributed in the same inertial orbit whilst the
satellites with the same k are distributed in the same relative trajectory (remember that fkq
is a function of tq + tk). Figure 6 shows how the distribution works in the ECEF and the ECI
frames of reference for two generic relative trajectories.

The (Ω, M)-space representation can be defined as before:

Ωkq = Ω0 − ω⊕(tq − t0),

Mkq = M0 + n

(
ΔΩk

ω⊕
+ tq − t0

)
, (38)

obtaining the same expression as in Eq. (31):

Mkq =
(
M0 + n

ω⊕
Ω0

)
+ n

ω⊕
ΔΩk − n

ω⊕
Ωkq . (39)
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Fig. 7 (Ω, M)-space representation of the configuration with minimum number of inertial orbits

The difference now is that the right ascension of the ascending node is shared by one
satellite of each relative trajectory as seen in Fig. 7. In fact this is a particular case of the one
presented in Sect. 2.2.

Using the two time distributions tq and tk , it is possible to achieve the configuration desired
with no constraints in the distribution, generating constellation configurations distributed in
a reduced number of orbital planes.

2.3.1 Example of constellation defined in various relative trajectories with minimum
number of inertial orbits

As an example of application, a constellation of five satellites is chosen. This time we impose
as a requirement of the mission that the satellites have to be distributed forming a “+” shape
during their movement around the Earth. Let a = 26,562 km, e = 0 and i = 50◦ be the
orbital parameters of the constellation, and letΩ0 = 0, M0 = 0 and t0 = 0 be the parameters
of the leading satellite.

In order to design the constellation, three relative trajectories and three inertial orbits are
required to be able to obtain that shape. So three different values of tq (inertial orbits) and
three different values ofΔΩk (relative trajectories) must be taken. We define the first relative
trajectory as the one that contains the central point of the “+” (k = 1), being the upper and
lower points also contained in this relative trajectory (see Fig. 8). On the other hand, the
left and right points are contained in two different relative trajectories, k = 2 and k = 3
respectively. Moreover, the left and right points of the “+” are defined in the same inertial
orbits as the upper and lower points, more precisely, the left and the upper points have the
same inertial orbit q = 2, whilst the right and lower point are contained in the same inertial
orbit q = 3. The central point has its own inertial orbit q = 1.

If the delay between satellites in the same relative trajectory is taken as 10min, the values
of tq can be defined as: t1 = 0 s, t2 = 600 s and t3 = −600 s. Regarding the values of ΔΩk

and for the sake of simplicity, we choose ΔΩ1 = 0, ΔΩ2 = −ω⊕t2 and ΔΩ3 = −ω⊕t3.
With those parameters, the distribution of the constellation is shown in Table 2, where Sat.
(k, q) represents the satellite contained in the inertial orbit q and the relative trajectory k.
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Fig. 8 Inertial (left) and relative (right) trajectories of the constellation

Table 2 Initial distribution of the constellation

Element Sat. (1, 1) Sat. (1, 2) Sat. (1, 3) Sat. (2, 2) Sat. (3, 3)

Ωkq (deg) 0 −2.5068 2.5068 −2.5068 2.5068

Mkq (deg) 0 5.0137 −5.0137 0 0

Figure 8 shows the inertial orbits and relative trajectories of the constellation. As it can be
seen, the constellation is built in three different inertial orbits and three relative trajectories
generating the “+” shape that we were aiming for.

3 Perturbed model for constellation design

It has been previously seen how to generate the constellation design in a Keplerian model.
The objective now is to apply this methodology to the case of orbital perturbations. Orbital
perturbations such as the gravitational potential of the Earth, the solar radiation pressure, the
Sun and Moon as disturbing third bodies or the atmospheric drag, will destroy the Keplerian
configuration proposed in a short period of time, so other complementary model has to be
developed to solve this problem. The perturbed model proposed in this paper achieves the
sharing of the relative trajectories despite of being the satellites subjected to certain known
orbital perturbations. This methodology can be applied with any kind of orbital propagators
(analytical, semi-analytical or numerical) not having any constraint in that respect.

As done in the latter section, three different constellation designs will be presented, corre-
sponding to the ones studied previously in theKeplerianmodel. Thatway, a clearer exposition
of the methodology is presented.

3.1 Constellation design with a common relative-trajectory

The objective is to generate a constellation whose satellites share the same relative trajectory
despite of being subjected to several known orbital perturbations. Note that sharing the same
relative trajectory does not mean that it has to be closed, in fact, the model is independent of
this property.
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The idea behind the perturbed model is to propagate first a reference satellite x0, which
will be called the leading satellite, taking into account all the perturbations of the dynamical
model chosen, and keeping the results of times, positions and velocities of the propagation in
certain moments to generate the positions and velocities of the satellites of the constellation.
The information that is kept corresponds to the moments when:

t = tq − t0, (40)

where t0 is the reference time of the leading satellite, and tq represents the parameter of
distribution of each particular satellite. Moreover, using the nomenclature introduced in the
Keplerian model, q ∈ [1, Nst ].

Then, a transformation of these positions and velocities, given in the ECI frame of refer-
ence, will be performed in order to define the initial positions and velocities of the satellites
of the constellation. Therefore, two transformations will be required: the first one to define
the relative trajectory, and the second one to obtain the inertial orbits that have generated that
relative trajectory and correspond to satellites of the constellation.

Let x̃q|EC I and ṽq|EC I be the positions and velocities of the leading satellite in the inertial
frame of reference. The relative positions (xq|ECEF ) and velocities (vq|ECEF ) are obtained
from the inertial ones by using the following expressions:

xq|ECEF = R3
(−ψG0 − ω⊕(tq − t0)

)
x̃q |EC I , (41)

vq|ECEF = R3
(−ψG0 − ω⊕(tq − t0)

)
ṽq |EC I − ω⊕ × xq|ECEF . (42)

However, the initial inertial positions xq|EC I and velocities vq|EC I are required in order
to define the constellation, thus, the second transformation of frames of reference is needed:

xq|EC I = R3 (ψG0) xq|ECEF , (43)

vq|EC I = R3 (ψG0) vq|ECEF + ω⊕ × xq|EC I . (44)

One important thing to notice is that, having included the perturbations in the initial orbit
propagation, all the satellites follow the same relative trajectory for the perturbations con-
sidered in the constellation design. Thus, the more realistic the orbital perturbation model is,
the better the constellation will perform in the reality.

3.2 Constellation design with multiple relative trajectories

The next step in complexity in the design of a constellation is to include multiple relative
trajectories in the configuration. The process is similar as before, but now, several leading
satellites are required in order to define the different relative trajectories, one leading satellite
for each relative trajectory. Furthermore, the distribution of the satellites is done using two
parameters: the time distribution over the different relative trajectories tkq and the angular
distribution of the relative trajectories in the ECEF frame of reference ΔΩk .

As it has been said, each relative trajectory requires a leading satellite. Those satellites
have the same values of a0, e0, i0 and w0, whilst the right ascension of the ascending node
follows:

Ωk0 = Ω0 + ΔΩk − ω⊕ (tk0 − t0) , (45)

where Ωk0 are the right ascension of the ascending nodes of the leading satellites and each
relative trajectory is named as k ∈ [1, Nt ]. Moreover, each one can present a different
reference with respect to the global reference time of the constellation t0, that means that in
general, each leading satellite defines a time of reference for each relative trajectory tk0.
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Once the leading satellites are defined, each one of them is propagated for a time equal
to at least the maximum value of (tkq − tk0), that is, the maximum distance in time between
the leading satellite and the satellites in the constellation related to it. This generates a
number of relative trajectories equal to Nt , the number of different relative trajectories of
the constellation. As previously, the values of the positions and velocities of each relative
trajectory for the moments when (t = tkq − t0) are kept, which represent the distribution of
the constellation, and two transformations are performed:

xkq|ECEF = R3
(−ψG0 − ω⊕(tkq − t0)

)
x̃kq|EC I ,

vkq|ECEF = R3
(−ψG0 − ω⊕(tkq − t0)

)
ṽkq|EC I − ω⊕ × xkq|ECEF ;

xkq|EC I = R3 (ψG0) xkq|ECEF ,

vkq|EC I = R3 (ψG0) vkq|ECEF + ω⊕ × xkq|EC I . (46)

The values of the inertial positions xkq|EC I and velocities vkq|EC I of each satel-
lite determine the initial configuration of the constellation. This configuration distributes
the constellation in Nt different relative trajectories and a number of inertial orbits
equal to the number of satellites (in general). This is the same case as the one seen in
Sect. 2.2 but for a non Keplerian model. Having too many different orbital planes in
the constellation increases the costs of the mission, therefore, it is required to include
the constraint of minimum number of inertial orbits which is presented in the next sec-
tion.

3.3 Constellation design with minimum number of inertial orbits

The latter configuration distributes the constellation in Ns different inertial orbits, which
is a design decision that carries a lot of expenses to build the constellation in orbit. In
order to solve that, and as done Sect. 2.3, the distribution parameter can be separated
in two different distribution parameters tk and tq where tkq = tk + tq . Then, a relation
can be established between tk and Ωk using Eq. (36). However, the orbital perturbations
make the right ascension of the ascending node to shift and therefore, the configura-
tion obtained from the Keplerian procedure does not generate orbits in the same inertial
planes.

In order to solve that, we introduce a modification in the distribution of tk from Eq. (36)
that allows to include the effects of the shifting of the right ascension of the ascending node
in the formulation. If we fix a frame of reference in the orbit, we observe that the Earth does
not rotate at ω⊕ due to the shifting in the right ascension of the ascending node. In this frame
of reference, the Earth rotates respect to the orbit at ω⊕ − Ω̇ , where Ω̇ is the derivative of
the right ascension of the ascending node. Thus, applying this modification to Eq. (36), we
obtain:

tk = ΔΩk

ω⊕ − Ω̇k0
, (47)

where Ω̇k0 is the derivative of the right ascension of the ascending node for the leading
satellite of the relative trajectory k, which can be obtained using the secular value of the
perturbation. The value of tk is introduced in Eq. (46) leading to a constellation based on Ns

satellites distributed in Nt relative trajectories and Nst inertial orbits. All this design includes
the orbital perturbations considered in the propagations that were made.
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4 Constellation design based on equally spaced in time distributions

The aim of this section is to define a constellation distribution that is equally spaced in time,
basing the design in the case of multiple relative trajectories and minimum number of inertial
orbits. In order to do this kind of distribution, it is required to have a closed relative track,
which defines a repeating cycle that allows to define the distribution.

Let a cycle be the time that a satellite requires to repeat its ground-track, and let Tc be
the period of this cycle. In order to achieve the repeating ground-track property, the orbital
parameters have to fulfill a relation with the rotation of the Earth, given by:

Tc = NpTΩ = NdTΩG , (48)

where Np is the number of orbital revolutions to cycle repetition, Nd is the number of
revolutions of the ECEF frame with respect the orbital plane to cycle repetition, TΩ is the
nodal period of the orbit and TΩG is the nodal period of Greenwich.

Let Nst be the number of satellites in each different relative trajectory, and let q ∈ [1, Nst ]
be the integer that names each satellite of each relative trajectory of the constellation. In
order to obtain an equally spaced time distribution in each relative trajectory, we distribute
the values of tq over the period of the cycle Tc, where tq < Tc, generating the following
configuration:

tq = (q − 1)
Tc
Nst

. (49)

Furthermore, let Nt be the number of different relative trajectories, and let k ∈ [1, Nt ]
be the integer that names each different relative trajectory of the constellation. The right
ascension of the ascending nodes of the leading satellites of each relative trajectory are
expressed as:

Ωk = Ω0 + (k − 1)
2π

Nt
, (50)

where:

ΔΩk = Ωk − Ω0 = (k − 1)
2π

Nt
. (51)

Note that the right ascension of the ascending node of the leading satellites is not shared
in general with the rest of the satellites situated in the same relative trajectory (see Eq. 20).

Using Eq. (47), the distribution of tk is obtained:

tk =
(k − 1)

2π

Nt

ω⊕ − Ω̇k0
, (52)

thus, the distribution of each satellite (tkq = tk+tq ) for an equally spaced in time configuration
is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

Nt
(
ω⊕ − Ω̇k0

) . (53)

One thing to notice is that due to the possible symmetries in the configuration, two condi-
tions have to be assured by the designer. The first one is that the parameters Nd and Np must
be relatively primes in order to avoid duplicities in the formulation (for example Np = 2 and
Nd = 3 is equivalent to Np = 4 and Nd = 6).
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The second condition is related to avoiding the overlapping of satellites in the configu-
ration. This may occur if the distribution is uniform with symmetries in time and space, a
condition that appearswhen the parameters Np and Nt are relatively primes between them.Let
N f be themaximumcommondivisor between Np and Nt . Then, the distributionover space is:

Ωk = Ω0 + (k − 1)
2π

Nt N f
, (54)

and therefore, the distribution over time is:

tkq = (q − 1)
Tc
Nst

+ (k − 1)
2π

Nt N f
(
ω⊕ − Ω̇k0

) , (55)

where Eqs. (54) and (55) substitute Eqs. (50) and (53) in order to avoid the overlapping of
satellites.

5 Examples of application

In this section, two examples of application are shown. In particular, a Medium Earth Orbit
Constellation and a Low Earth Orbit Constellation are presented. In these designs, constel-
lations whose satellites are equally spaced in time are defined (see Sect. 4). Moreover, the
satellites will present the repeating ground-track property and will be distributed in the least
number of inertial orbits using the perturbed model (see Sect. 3.3).

During these examples the following perturbations have been taken into account: the
gravitational potential of the Earth (National Imagery and Mapping Agency 2000) up to
4th order terms (including tesserals), the Sun and Moon as disturbing third bodies (Abad
2012), the solar radiation pressure (Fortescue et al. 2003) and the atmospheric drag (Harris
and Priester 1962, 1963 model). In addition, it has been supposed that all the satellites are
identical in each constellation.

5.1 Example of Medium Earth Orbit Constellation

First, it is supposed, as part of the mission requirements, that the parameters Np , Nd , Nst

and Nt are known, as well as the inclination and eccentricity of the orbits. Moreover, as
a mission requirement, the pass of the constellation over a certain point of the Earth with
coordinates in longitude and latitude (ψr , φr ) is imposed, and we choose f = π over that
point to maximize the time of coverage of the constellation in these coordinates.

On the other hand, we impose that the semi-major axis of all the satellites of the con-
stellation present the repeating ground-track property. This condition is achieved by the use
of osculating elements in the constellation for each satellite, having considered the orbital
perturbations mentioned before. This is performed by the use of a numerical method to find
the semi-major axis that is able to achieve the ground-track repetition for each satellite.

The basis of the numerical method is to correct the value of the semi-major axis by
adjusting the orbit of the satellite in the ECEF frame of reference. This correction is achieved
by using a basic property in celestial mechanics: if the semi-major axis of an orbit increases,
its period also increases and vice versa. Therefore, the goal of the correction is to find the
value of the semi-major axis that allows the closing of the ground-track in a period of time
equal to a cycle: Tc = T Np (being T the orbital period and Np the number of orbital periods
to complete a cycle). This is done by a series of iterations in which the secant method and
the intermediate value theorem are used to find the value of the semi-major axis that allows
the closing of the ground-track for the orbital perturbations considered.
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Table 3 Initial positions and velocities of the constellation

Sat. (k,q) x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

1,1 29742.291 −453.883 26500.795 −1.171 1.358 1.337

1,2 154.758 9918.577 −8829.518 −4.072 −3.511 −4.013

1,3 −29744.259 452.557 26498.609 1.171 −1.358 1.338

1,4 −160.231 −9924.333 −8822.957 4.072 3.509 −4.016

2,1 16921.730 8809.410 31186.380 −2.343 1.135 −0.134

2,2 −14103.296 −21475.852 −5338.235 −0.094 −2.969 2.559

2,3 −16924.510 −8809.572 31186.600 2.343 −1.135 −0.134

2,4 14100.583 21472.679 −5342.417 0.094 2.970 2.559

3,1 −2593.920 13813.974 22164.558 −2.884 −0.004 −2.655

3,2 −9567.105 −32767.410 13084.071 1.093 −0.422 2.330

3,3 2590.853 −13813.672 22168.897 2.884 0.004 −2.654

3,4 9564.986 32767.859 13080.263 −1.093 0.422 2.330

4,1 −9918.577 154.758 −8829.518 3.511 −4.072 −4.013

4,2 −452.557 −29744.259 26498.609 1.358 1.171 1.338

4,3 9924.333 −160.231 −8822.957 −3.509 4.072 −4.016

4,4 451.231 29746.226 26496.423 −1.357 −1.171 1.338

5,1 21475.852 −14103.296 −5338.235 2.969 −0.094 2.559

5,2 8809.572 −16924.510 31186.600 1.135 2.343 −0.134

5,3 −21472.679 14100.583 −5342.418 −2.970 0.094 2.559

5,4 −8809.735 16927.289 31186.819 −1.135 −2.343 −0.134

6,1 32767.410 −9567.105 13084.071 0.422 1.093 2.330

6,2 13813.672 2590.854 22168.896 −0.004 2.884 −2.654

6,3 −32767.859 9564.986 13080.264 −0.422 −1.093 2.330

6,4 −13813.370 −2587.787 22173.233 0.004 −2.884 −2.653

Once the orbital parameters are established for one satellite, it is time to generate the
initial configuration of a constellation with minimum number of inertial orbits, that is, the
methodology presented in Sect. 3.3 is used. However, in order to do that, the constella-
tion distribution must be chosen firstly. For the sake of simplicity, the value of t0 is fixed
as t0 = 0 and Eqs. (49) and (55) are used in order to define the equally spaced in time
configuration.

Using this equally spaced in time distribution, we apply it to a constellation consisting
of 24 satellites and show the results. The constellation repeats its ground-track each two
orbital revolutions (Np = 2) and each day (Nd = 1). Furthermore, all satellites have an
inclination of i = 63.435◦ and an eccentricity of e = 0.5. A high eccentricity orbit has been
selected in order to show the possibilities of the constellation designmodel. The constellation
is distributed in 6 different relative trajectories (Nt = 6) and 4 inertial orbits (Nst = 4), thus
Ns = Nt Nst = 24.

Note that Nt = 6 and Np = 2 have a maximum common divisor of N f = 2, so, Eqs. (54)
and (55) must be used to perform the distribution. As a further requirement, it has been
imposed that one ground-track of the constellation passes over the city of Zaragoza (Spain)
with coordinates (φr = 41.698169◦ and ψr = −0.874295◦).

With these conditions, the constellation is designed following the perturbed model pro-
posed in thiswork obtaining the initial positions and velocities shown in Table 3. These results
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Fig. 9 Ground-track of the constellation

Fig. 10 Inertial (left) and relative (right) trajectories of the constellation

are given in the inertial frame of reference and generate a constellation whose satellites are
distributed in 4 different inertial orbits and 6 relative trajectories. The satellites are subjected
to the orbital perturbations named at the beginning of this section: the gravitational potential
of the Earth, the Sun and Moon as disturbing third bodies, the solar radiation pressure and
the atmospheric drag.

This configuration can be seen in Fig. 9, where the ground-track of the whole constellation
is presented. There, it can be observed that the constellation is distributed in 6 different
ground-tracks, being them completely closed and shared by 4 satellites each.

Figure 10 shows the inertial (left) and relative (right) trajectories of all the satellites in
the constellation. There, it can be seen how the constellation is distributed in only 4 different
inertial orbits, and how the relative trajectory is shared by groups of satellites (4 for each
relative trajectory). The figure allows also to see the possibilities that the definition of the
constellation in the relative frame of reference brings, generalizing the orbits from a conic
shape in the inertial frame of reference into a more diverse group of configurations in the
relative frame of reference.

Finally, in Fig. 11, the polar view of the constellation in the ECEF frame of reference can
be observed. It can be concluded that the satellites are able to share their relative trajectories
(4 satellites in each trajectory) despite of being subjected to orbital perturbations.
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Fig. 11 Polar view of the constellation in the ECEF frame of reference

5.2 Example of Low Earth Orbit Constellation

For this second example, we choose a constellation composed by 16 satellites that has as
main mission Earth observation. The constellation is distributed in circular orbits and in the
same relative trajectory in the ECEF frame of reference using the uniform in time distribution
seen in Sect. 4. As in the former example, the repeating ground-track property is imposed
following the methodology explained for orbital perturbations. However, due to the nature
of the mission, two new requirements are included, the sun-synchrony of the orbits and the
ability to scan all the Earth surface in the minimum time considering a sensor with a field of
view of 7.5◦ that requires to work at 705 ± 5 km over the Earth surface.

With these conditions, we obtain a constellation whose satellites have a = 7978.61 km,
e = 0, i = 98.21◦ and that repeat a cycle of their ground-tracks in 233 orbital revolutions or
16 days. The initial positions and velocities of the satellites of the constellation can be seen
in Table 4.

On the other hand, in Fig. 12, the inertial orbits of the constellation in the initial time (left)
and during a propagation of 16 days (right) are presented. As it can be seen, all the satellites of
the constellation lay in the same inertial orbit that, due to the orbital perturbations considered,
ismodified during the time of propagation as seen clearly in the figure. Nevertheless, although
the inertial orbits are greatly perturbed, we can observe in Fig. 13 that the ground-track of the
constellation for 16 days of propagation remains fixed for all the satellites of the constellation.

The property of ground-track repetition (or the sharing of the same relative trajectory)
can be maintained over time without orbital maneuvers using the design methodology
proposed in this work. However, due to the non periodic perturbations such as the atmo-
spheric drag or the solar radiation pressure, the constellation will be modified and thus,
orbital maneuvers will be required in the long term. One important thing to notice is
that although in orbit maneuvers are always needed, the use of this methodology reduces
the effects of orbital perturbations over the constellation (specially periodic perturba-
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Table 4 Initial positions and velocities of the constellation

Sat. (q) x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

1 5284.700 −80.647 4708.740 −4.921 −1.361 5.499

2 −3121.980 563.734 −6332.950 6.679 1.224 −3.175

3 453.969 −965.619 6999.826 −7.4332 −0.903 0.362

4 2247.912 1216.725 −6601.230 7.060 0.446 2.489

5 −4640.872 −1286.606 5197.538 −5.605 0.081 −4.976

6 6302.855 1158.491 −3006.073 3.312 −0.595 6.711

7 −7027.148 −856.836 358.524 −0.502 1.019 −7.412

8 6664.128 421.497 2352.191 −2.388 −1.290 6.999

9 −5310.014 73.102 −4688.967 4.897 1.361 −5.512

10 3123.734 −562.082 6330.047 −6.675 −1.228 3.188

11 −495.962 960.076 −6995.614 7.433 0.910 −0.397

12 −2237.058 −1217.700 6610.987 −7.061 −0.452 −2.467

13 4605.905 1287.042 −5217.115 5.636 −0.073 4.955

14 −6295.586 −1164.822 3040.536 −3.340 0.587 −6.686

15 7016.553 862.183 −387.252 0.538 −1.015 7.419

16 −6686.889 −433.575 −2302.522 2.337 1.286 −7.010

Fig. 12 Inertial orbits of the constellation for the initial time (left) and 16 days of propagation (right)

tions such as the non-uniformity of the Earth gravitational field) and thus, this perturbed
design model allows the reduction of the fuel required for the station-keeping of the
constellation.

6 Conclusions

This paper has shown a newdesignmodel to create constellationswhose satellites share one or
several relative trajectories using time as parameter of distribution in the configuration. This
design allows to distribute satellites in several relative trajectories without no restrictions
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Fig. 13 Coverage and ground-track of the constellation for 16 days of propagation

at all in their distribution, a property that can be used to configure missions in which the
satellites have to pass consecutively over a certain point of the Earth’s surface.

This design model opens a wide variety of possibilities in the configuration of satellite
constellations, and it is able to handle any combination of orbital parameters, being the model
applicable even with constellations based on high eccentricity orbits.

Furthermore, two different approaches have been presented for this design model, a Kep-
lerian model in which no orbital perturbation was considered, and a perturbed model that
can handle orbital perturbations. These two methodologies represent the same idea, but each
one has its own peculiarities and uses. Specifically, the perturbed model allows to include
the orbital perturbations inside the design process, improving the results obtained.

Moreover, this constellation design model allows to include orbital properties to the basic
design. In that respect, a semi-major axis correction has been applied to the example presented
in the paper in order to achieve the repeating ground-track property in the constellation despite
of being the satellites subjected to certain known orbital perturbations. The ability to include
other properties such as the sun-synchrony or the frozen character will be studied in a future
work.

Finally the decrease on the number of inertial orbits to a minimum, represents a big design
advantage, due to the fact that the reduction of inertial orbits allows to group satellites in
their launches, therefore reducing the costs of the mission.
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