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Abstract Consider a collection of n rigid, massive bodies interacting according to their
mutual gravitational attraction. A relative equilibriummotion is one where the entire config-
uration rotates rigidly and uniformly about a fixed axis in R

3. Such a motion is possible only
for special positions and orientations of the bodies. A minimal energy motion is one which
has the minimum possible energy in its fixed angular momentum level. While every minimal
energy motion is a relative equilibrium motion, the main result here is that a relative equilib-
rium motion of n ≥ 3 disjoint rigid bodies is never an energy minimizer. This generalizes a
known result about point masses to the case of rigid bodies.
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1 Introduction

The full n-body problem studies themotion of n rigid, massive bodies inR3 moving under the
influence of their mutual gravitational attraction. The usual n-body problem deals with point
masses and provides a good model for celestial mechanics when the masses are far away
from one another or are spherically symmetric. The full problem is especially important when
asymmetrical masses interact at comparatively close range. In that case, tidal forces and other
dissipative effects can lead to changes in the orbits and the rotational motions. Dissipative
forces due to tidal interactions among the bodies lead to a decrease in the total energy of
the system, but leave the total angular momentum unchanged. From this point of view it is
interesting to ask for the minimal energy states for a given level of angular momentum.
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4 R. Moeckel

Fixing the angular momentum and center of mass gives a submanifold of the phase space.
For the point mass n-body problem, it has long been known that the critical points of the
energy on such a momentum level are the relative equilibrium states Smale (1970a, b). The
same holds true for the full n-body problem. This means that the entire configuration rotates
uniformly around some axis in R

3. The centers of mass move on circles around the axis and
the rigid bodies rotate simultaneously to maintain phase locking. Pluto and its moon Charon
provide a rough example for n = 2.

If such a motion is to arise due to energy dissipation, it should be a local minimum of
the energy and not just a critical point. While such energy minimizing motions are possible
for n = 1, 2, it will be shown below that they are impossible for n ≥ 3. The implication for
celestial mechanics is that starting with n ≥ 3 bodies, one expects that dissipative effects
will lead to the collisions of some of the masses so that in the end they form one or two
amalgamated bodies or else will result in some of the bodies moving off to infinity.

The fact that relative equilibria cannot be energy minimizers was known for the point
mass case Moeckel (1990). It was conjectured for the full n-body problem by Scheeres
(2012) and this paper was written specifically to settle this conjecture. In light of this result,
it is interesting to look for energy minimizers among motions where the bodies are in contact
and Scheeres has done this in the case of a few spherical bodies.

In addition to proving the main result in Theorem 4, we also provide elementary proofs of
some known facts about relative equilibria. Namely, relative equilibria in phase space coin-
cide with critical points of the energy on manifolds of fixed angular momentum (Theorem 1)
and relative equilibrium configurations can be viewed as critical points of an amended poten-
tial function on configuration space with corresponding local minima (Theorem 2). These are
special cases of general facts about relative equilibria for mechanical systems with symmetry
as described, for example, in Smale (1970a), Arnold (1989), Marsden (1992), Simo et al.
(1991),Maciejewski (1995) but a more elementary approachmight be of some value. In addi-
tion to the amended potential, we also work with another, simpler function used extensively
by Scheeres. This function has the same critical points as the amended potential (Theorem 3)
and, at least under certain conditions, they also have the same local minima. This is used in
the proof of Theorem 4.

2 Equations of motion

Consider a collection of n rigid, massive bodies in R3. Each body can be described in its own
body coordinate system by a compact subset Bi ⊂ R

3 together with a mass measure dmi on
Bi , i = 1, . . . , n. This might take the form dmi = νi (Qi ) dQi where νi ≥ 0 is a continuous
mass density function but other measures are also allowed provided all of the integrations
which occur below are valid. Denote the i-th body coordinate system by Qi ∈ R

3. Then the
total mass of the i-th body is given by the triple integral

mi =
∫
Bi

dmi

and we assume mi > 0. It is convenient to assume that its center of mass is at the origin in
body coordinates, i.e.,

∫
Bi

Qi dmi = 0.
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Minimal energy configurations 5

We will need the symmetric 3 × 3 inertia matrix of Bi

Ii =
∫
Bi

(
|Qi |2I − Qi Q

T
i

)
dmi , (1)

where I is the 3 × 3 identity matrix. To avoid degenerate situations we will assume that the
mass distributions are such that the matrices Ii are all invertible. This excludes point masses
and one-dimensional mass distributions.

The position and orientation of the body with respect to the inertial coordinates, x ∈ R
3

is given by a time-dependent Euclidean transformation Ei (t) where

x(t, Qi ) = Ei (t)(Qi ) = Ai (t)Qi + qi (t), Qi ∈ Bi . (2)

The rotation matrix Ai (t) ∈ SO(3) describes the orientation of the body and qi (t) ∈ R
3 is

the center of mass in the inertial system.
The positions and orientations of all of the bodies is given by Z = (q1, . . . , qn, A1, . . . ,

An) ∈ R
3n × SO(3)n . The configuration space will be the open subset of R3n × SO(3)n

where the bodies are disjoint

Ũ = {Z : Ei (Bi ) ∩ E j (B j ) = ∅, i �= j}.
The gravitational interaction is governed by the Newtonian potential function. For each

pair of indices (i, j), i �= j , there is a mutual potential

Ui j (qi , q j , Ai , A j ) =
∫
Bi

∫
B j

dmi dm j

|qi − q j + Ai Qi − A j Q j |
which involves integrals over each body. The Newtonian potential is given by

U (Z) =
∑
i< j

Ui j .

This is a well-defined, smooth, positive functionU : Ũ → R. Although we are callingU (Z)

the Newtonian potential, the potential energy of the system is −U (Q).
The velocity of the point (2) is

ẋ(t, Qi ) = q̇i (t) + Ȧi (t)Qi = vi (t) + Ai (t)�̂i (t)Qi ,

where vi denotes the velocity of the center of mass and

�̂i (t) = A−1
i (t) Ȧi (t)

is the antisymmetric angular velocity matrix with respect to body coordinates. We will also
make use of the corresponding angular velocity vector �i ∈ R

3 such that �̂i u = �i × u for
all vectors u ∈ R

3. If �i (t) is known, then the rotation matrix Ai (t) can be reconstructed
from the differential equation

Ȧi (t) = Ai (t)�̂i (t).

In addition to the configuration variables qi , Ai we will use vi ,�i as velocity variables on
the phase space T Ũ .

To find the equations of motion, we will consider the translational and rotational motions
of Bi separately. The motion of the centers of mass qi are governed by

mi q̈i (t) = mi v̇i (t) = fi (Z),
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6 R. Moeckel

where fi (Z) is the total force on Bi due to the other bodies. The force vector acting at the
point (2) due to the other bodies is given by

gi (Z , Qi ) = −
∑
j �=i

∫
B j

(qi − q j + Ai Qi − A j Q j )dm j

|qi − q j + Ai Qi − A j Q j |3 . (3)

Integrating this over Bi gives

fi (Z) = −
∑
j �=i

∫
Bi

∫
B j

(qi − q j + Ai Qi − A j Q j ) dmi dm j

|qi − q j + Ai Qi − A j Q j |3 = Uqi (Z).

Here Uqi denotes the partial gradient vector with respect to qi .
Later we will also need the Hessian quadratic form of matrix of U with respect to the qi

variables, which we call D2
qU . If w ∈ R

3n is the vector such that wi ∈ R
3 represents the

displacement of qi then

D2
qU (w,w) =

∑
i< j

∫
Bi

∫
B j

dmidm j

r3i j

(−|wi j |2 + 3(ui j · wi j )
2) , (4)

where wi j = wi − w j ∈ R
3 and where

ri j = |qi − q j + Ai Qi − A j Q j | ui j = qi − q j + Ai Qi − A j Q j

|qi − q j + Ai Qi − A j Q j | .

The rotational equations of motion are best described in terms of angular momenta and
the inertia matrices. In the inertial frame, the angular momentum vector of the i-th body with
respect to the origin is

λi =
∫
Bi

x(t, Qi ) × ẋ(t, Qi ) dmi = miqi × vi +
∫
Bi

Ai (Qi × (�i × Qi )) dmi

= miqi × vi + Ai Ii�i ,

where Ii is the inertia matrix (1). Since we already have equations for the motion of the center
of mass, we can focus on the angular momentum with respect to the center of mass

μi (t) = Ai (t)Ii�i (t).

This satisfies the differential equation

μ̇i (t) = τi (Z),

where τi (Z) is the total torque with respect to the center of mass on Bi due to the other
bodies. The torque vector acting at the point (2) due to the other bodies is given by the cross
product

Ai (t)Qi × gi (Z , Qi ),

where gi (Z) is given by (3). Integrating this gives

τi (Z) = −
∑
j �=i

∫
Bi

∫
B j

Ai Qi × (qi − q j + Ai Qi − A j Q j ) dmi dm j

|qi − q j + Ai Qi − A j Q j |3 .

Pulling back to the body frame of Bi using A−1
i = AT

i we get the body angular momentum
vector

Mi (t) = Ii�i (t),
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Minimal energy configurations 7

which satisfies the differential equation

Ṁi = Mi × �i + Ti ,

where

Ti (Z) = AT
i τi = −

∑
j �=i

∫
Bi

∫
B j

Qi × (AT
i (qi − q j + Ai Qi − A j Q j )) dmi dm j

|qi − q j + Ai Qi − A j Q j |3 .

It is possible to interpret the torque vectors as derivatives of the Newtonian potential with
respect to the rotation matrices Ai . To see this, note that a tangent vector to SO(3) at the
matrix Ai is represented by a curve of rotation matrices Ai R(t) where R(t) ∈ SO(3) and
R(0) = I. The matrix ρ̂ = Ṙ(0) ∈ SO(3) can be identified with a vector ρ ∈ R

3 in the usual
way via the cross-product. Let Zi (t) be the curve in configuration space where Ai is replaced
by Ai R(t) and all other variables are unchanged. Then after some computation we find

d

dt
U (Z(t))|t=0 = Ti (Z) · ρ.

Thus with these identifications, the torque vector Ti (Z) becomes a kind of partial gradient of
U (Z) with respect to Ai . By abuse of notation we will write Ti (Z) = UAi (Z). We will use
this approach to handle differentiation with respect to the orthogonal matrices Ai throughout
the paper.

Thus we have arrived at the equations of motion

mi q̈i = fi (Z) = Uqi (Z)

Ṁi = Mi × �i + Ti (Z) = Mi × �i +UAi (Z)

Ȧi = Ai �̂i

(5)

with Mi = Ii�i and Ti the total torque on Bi in the body frame. Since the inertia matrices
Ii are invertible, these determine a system of first order differential equations on the phase
space T Ũ .

These equations admit the usual symmetries and the corresponding constants of motion.
First we have symmetry under translation of all of the bodies, qi 	→ qi + c, c ∈ R

3, which
leaves the potential U (Z) invariant. It follows that

∑
i Uqi (Z) = 0 and therefore the total

momentum vector

ptot = m1v1 + · · · + mnvn

is constant. Without loss of generality we assume ptot = 0. Then the center of mass is
constant and may be taken as the origin of the inertial system. This amounts to restricting to
a translation-reduced phase space TU where

U = {
Z ∈ Ũ : m1q1 + · · · + mnqn = 0

}
.

We have dim U = 6n − 3 and dim TU = 12n − 6.
Theproblem is also symmetric under rotations. If R ∈ SO(3) then the rotated configuration

RZ has centers ofmass Rqi andorientationmatrices RAi , i = 1, . . . , n. In otherwordsSO(3)
acts on R

3n × SO(3)n diagonally from the left. The velocities of the centers of mass are also
rotated to Rvi but the body angular velocities �i are unchanged. As a result of the rotational
symmetry, the total angular momentum vector in the inertial frame

λ =
∑
i

miqi × vi +
∑
i

Ai Ii�i (6)
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8 R. Moeckel

is constant.
Finally the total energy

H(Z , Ż) = T (Z , Ż) −U (Z)

is constant, where T (Z , Ż) is the kinetic energy

T (Z , Ż) = 1

2

∑
i

mi |vi |2 + 1

2

∑
i

∫
Bi

|�i × Qi |2 dmi

= 1

2

∑
i

mi |vi |2 + 1

2

∑
i

�T
i Ii�i .

3 Relative equilibria

For a relative equilibrium motion, the configuration of n bodies rotates uniformly around a
fixed axis through the origin in space. Let e ∈ R

3 be a unit vector specifying the direction
of the rotation axis and let R(t) ∈ SO(3) be the matrix with R(0) = I representing rotation
around the axis with constant angular speed ω �= 0. Suppose Z = (q1, . . . , A1, . . .) ∈ U is
the initial configuration of a relative equilibrium motion. Then

Z(t) = R(t)Z(t) = (q1(t), . . . , A1(t), . . .) = (R(t)q1, . . . , R(t)A1, . . .)

must be a solution of the equations of motion.
Since qi (t) = R(t)qi and since the angular velocity in the inertial frame is ω e, we have

q̇i (t) = ω e × qi (t) = ω R(t)(e × qi )

q̈(t) = ω2 e × (e × qi (t)) = ω2 R(t)(e × (e × qi )).

Rotation invariance of U (Z) implies that

Uqi (Z(t)) = R(t)Uqi (Z).

Substituting these formulas into the equations of motion shows that centers of mass of the
relative equilibrium configuration Z must satisfy

Uqi (Z) = ω2mi (e × (e × qi )) = −ω2mi Keqi , (7)

where Ke is the projection onto the orthogonal plane e⊥.
Similarly, from Ai (t) = R(t)Ai we find that the body angular velocity vector of Bi is the

constant vector

�i = ωAT
i e.

It follows that the body angular momentum vector Mi = Ii�i = ωIi AT
i e must also be

constant. On the other hand, the torque vector in body coordinates satisfies Ti (R(t)Z) =
Ti (Z), so the equations of motion give

0 = Mi × �i + Ti (Z)

or
Ti (Z) + ω2

(
(Ii A

T
i e) × (AT

i e)
)

= 0. (8)
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Minimal energy configurations 9

If Z ∈ U satisfies (7) and (8), it will be called a relative equilibrium configuration. The
point in the reduced phase space TU with configuration variables Z and velocity variables

vi = ω e × qi , �i = ωAT
i e (9)

is the corresponding relative equilibrium state.
From Eq. (9) we find that the total angular momentum of a relative equilibrium state in

the inertial frame is given by

λre = ωR(t)

(∑
i

miqi × (e × qi ) +
∑
i

Ai Ii A
T
i e

)
,

= ωR(t)I (Z)e

where
I (Z) =

∑
i

mi

(
|qi |2I − qiq

T
i

)
+

∑
i

Ai Ii A
T
i (10)

is the 3 × 3 total inertia matrix of the whole configuration. Since λ is constant, the vector
I (Z)e must be of the form ce for some constant c. In other words, e is an eigenvector of the
total inertia tensor. Taking the inner product with e shows that the corresponding eigenvalue
is c = Ge(Z), where

Ge(Z) = eT I (Z)e =
∑
i

miq
T
i Keqi +

∑
i

eT Ai Ii A
T
i e (11)

is the moment of inertia of the configuration Z with respect to the e-axis. So we have

λre = ωI (Z)e = ωGe(Z)e. (12)

Similarly, we find that the total energy of a relative equilibrium is

Hre = 1

2
Ge(Z)ω2 −U (Z). (13)

In what follows we will be interested in relative equilibria with a given, nonzero angular
momentum vector λ ∈ R

3. Then the rotation axis and angular speed are uniquely determined
by

e = λ

|λ| , ω = |λ|
Ge(Z)

. (14)

A configuration Z ∈ U admits a relative equilibrium motion with angular momentum λ if
and only if it satisfies (7) and (8) with e, ω given by (14), that is,

Uqi (Z) + |λ|2
Ge(Z)2

mi Keqi = 0

Ti (Z) + |λ|2
Ge(Z)2

((
Ii A

T
i e

)
×

(
AT
i e

))
= 0.

(15)

In this case Z will be called the relative equilibrium configuration for angular momentum λ.
The velocities are given by (9)

vi = |λ|
Ge(Z)

e × qi , �i = |λ|
Ge(Z)

AT
i e. (16)
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10 R. Moeckel

and the corresponding point in the phase space TU will be called a relative equilibrium state
for angular momentum λ. The energy of such a state is

Hλ = |λ|2
2Ge(Z)

−U (Z). (17)

If Z is a relative equilibrium configuration for angular momentum λ and R ∈ SO(3), then
RZ is a relative equilibrium configuration for angular momentum Rλ. In particular, rotations
which preserve λ also preserve the relative equilibria for λ. Thus every relative equilibrium
is part of a circle of relative equilibria with the same angular momentum.

4 Minimal energy solutions

Next we consider the problem of minimum energy states for a given value of the angular
momentum vector. We will use the notation P = (Z , Ż) to denote points of TU . Fixing
λ �= 0 determines an integral manifold Mλ ⊂ TU . We want to find states which locally or
globally minimize the energy H = T (Z , Ż) −U (Z) on these manifolds.

Lemma 1 For λ �= 0, Mλ ⊂ TU is a submanifold of codimension 3, that is, dimMλ =
12n − 9.

Proof We need to show that the derivatives of the three components of λ together with the
6 linear equations defining TU are linearly independent at every P ∈ Mλ. Let λqi , λvi , λ�i

denote the 3 × 3 matrices whose columns are the partial gradients of the three components
λ. The analogous partial gradient matrices for the three components of m1q1 + . . . + mnqn ,
and m1v1 + . . . + mnvn , are simply mi I. If the required linear independence did not hold,
there would be vectors α, β, γ ∈ R

3, not all zero, such that

λqi α + miβ = λvi α + miγ = λ�i α = 0.

Furthermore, for every curve of matrices R(t) ∈ SO(3) with R(0) = I,

α · d

dt
λ(Zi (t), Ż)|t=0 i = 1, . . . , n,

where Zi (t) is the curve of configurations where Ai is replaced by Ai (t) = Ai R(t) and all
other variables are left constant. We will show that this can only happen when λ = 0.

The first two dependence conditions give

mivi × α + miβ = miα × qi + miγ = 0.

We have (
∑

i mi )β = −∑
i mivi × α = 0 since the total momentum is zero. Thus β = 0

and similarly γ = 0. Now the four dependence relations reduce to

α × qi = vi × α = Ii A
T
i α = (Ii�i ) × (AT

i α) = 0.

This means that all of the vectors qi , vi , Ai Ii�i are scalar multiples of α and, in addition,
that Ii AT

i α = 0. It follows that

Ii A
T
i (Ai Ii�i ) = I 2i �i = 0.

Since Ii is diagonalizeable, it follow that Ii�i = 0 too. All of this gives qi ×vi = Ai Ii�i = 0
and so the angular momentum vector (6) is λ = 0. ��
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Minimal energy configurations 11

We are looking for local minima of the energy on Mλ or, more generally, for critical
points which are not necessarily local minima.

Theorem 1 Let λ ∈ R
3 be any nonzero vector. A state P is a critical point of the restriction

of the total energy function to Mλ if and only if it is a relative equilibrium state.

Proof If P ∈ Mλ has configuration Z and velocities vi ,�i and is a critical point of H
restricted to Mλ, then there are vector Lagrange multipliers α, β, γ ∈ R

3 such that

Hqi = λqi α + miβ, Hvi = λvi α + miγ, H�i = λ�i α

and such that for every curve of matrices R(t) ∈ SO(3) with R(0) = I,

α · d

dt
H(Zi (t), Ż)|t=0 = α · d

dt
λ(Zi (t), Ż)|t=0 i = 1, . . . , n

with Zi (t) as above.
The first three conditions read

−Uqi = mi (vi × α + β), mivi = mi (α × qi + γ ), Ii�i = Ii A
T
i α

and the last one gives

−Ti (Z) = (Ii�i ) × (AT
i α).

As before we find that β = γ = 0. Then if we set α = ωe, where e is a unit vector, the
velocities are given by the relative equilibrium values (9) and the configuration variables
satisfy (7) and (8). So we have a relative equilibrium state.

Conversely, if (7), (8) and (9) hold we get the critical point equations for H restricted to
Mλ with α = ωe and β = γ = 0. ��

Theorem 1 characterizes the critical points P of the restriction of H(P) toMλ as relative
equilibrium states. Next we will show that the configuration Z of such a critical point P must
be a critical point of a function Wλ(Z), the amended potential. Begin by fixing Z ∈ U and
λ ∈ R

3. Then the angular momentum equation (6) defines an affine subspace of the velocity
space TZU :

Sλ(Z) = {vi ,�i : m1v1 + . . . + mnvn = 0 and (6) holds } .

Lemma 2 Fix Z ∈ U and λ �= 0. The equation λ = I (Z)α has a unique solution α(Z , λ) ∈
R
3 and then

vi = α × qi �i = AT
i α (18)

are the velocities which minimize the energy over Sλ(Z). The minimum energy is given by
the amended potential

Wλ(Z) = 1

2
α(Z , λ)T I (Z)α(Z , λ) −U (Z) = 1

2
λT I (Z)−1λ −U (Z). (19)

Proof The definition (10) shows that I (Z) is a sum of positive semi-definite 3 × 3 matrices
and all of the terms involving Ai are positive definite. It follows that I (Z) is positive definite
and hence invertible. So α(Z , λ) = I (Z)−1λ is uniquely determined. Choosing the velocities
as in (18) we find that the total momentum is zero and the angular momentum is I (Z)α = λ,
so these velocities are in Sλ(Z).

To see that they give the minimum energy, note that the kinetic energy is a positive definite
quadratic form in the velocities while the potential energy is constant on Sλ(Z). Viewing the
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12 R. Moeckel

kinetic energy as arising from an inner product on velocity space, it suffices to check that
the vector (18) is orthogonal to the affine subspace Sλ(Z). The tangent space to Sλ(Z) is the
subspace consisting of velocities ṽi , �̃i with m1ṽ1 + . . . + mn ṽn = 0 and such that

∑
i

miqi × ṽi +
∑
i

Ai Ii �̃i = 0.

Taking the kinetic energy inner product of such a velocity vector with (18) gives

1

2

∑
i

mi ṽi · (α × qi ) + 1

2

∑
mi �̃i · Ii AT

i α =
(∑

i

miqi × ṽi +
∑
i

Ai Ii �̃i

)
· α = 0

as required. ��

Next we show that critical points and local minima of H(P) onMλ correspond to critical
points and local minima of the amended potential Wλ(Z).

Theorem 2 P ∈ TU is a critical point of H(P) on Mλ if and only if its configuration Z is
a critical point of the amended potential Wλ(Z) on U and its velocities are the minimizing
ones (18). In this case P is a local minimum of H onMλ if and only if Z is a local minimum
of Wλ on U . Moreover, the minimum values are equal: H(P) = Wλ(Z).

Proof If P is a critical point of H(P) on Mλ, then its velocities must be a critical point of
the restriction of H to Sλ(Z). Since this restriction is given by a positive definite quadratic
form, the only critical point is the minimum given by (18). For any Z ∈ U , let Pmin(Z) ∈ TU
denote the state with these minimal velocities. The energy of this state is

H(Pmin(Z)) = Wλ(Z). (20)

If P is a critical point of H on Mλ then it follows that Z is a critical point of Wλ(Z) and
if P is a local minimum of H , then Z is a local minimum of Wλ. Pmin : U → TU will be
called the minimum energy section of the tangent bundle.

For the converse, suppose Z is a critical point ofWλ(Z) in U and that P = Pmin(Z). Then
(20) shows that P is a critical point of the restriction of H to the minimal energy section and
the velocities of P are critical for the restriction of H to Sλ(Z). Since Sλ(Z) together with
the tangent space to the minimal energy section span the tangent space TPMλ, it follows
that P is a critical point of H in Mλ. Finally, suppose Z is a local minimum of Wλ. To see
that P is a local minimum of H consider any curve P(s), |s| < δ with P(0) = P . If Z(s) is
the corresponding curve of configurations, we have

H(P(s)) ≥ H(Pmin(Z(s))) = Wλ(Z(s)) ≥ Wλ(Z) = H(P)

for |s| < δ and so P is a local minimum of H as required. ��

While the amended potential appears quite naturally in the minimum energy problem, we
now seek to replace it by a simpler function used by Scheeres in Scheeres (2012). Recall the
formula (17) for the energy Hλ(Z) of a relative equilbrium state inMλ. We will call Hλ the
critical energy function. From Theorem 2 we see that Wλ(Z) = Hλ(Z) at the critical points
of Wλ. In fact, this equation holds whenever e = λ/|λ| is an eigenvector of the total inertia
matrix I (Z). The following lemma of Scheeres (2012) clarifies the relationship between the
two functions.
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Minimal energy configurations 13

Lemma 3 For Z ∈ U and λ �= 0 ∈ R
3 we have

Hλ(Z) ≤ Wλ(Z) (21)

with equality if and only if λ is an eigenvector of I (Z). Both functions provide lower bounds
for the energy of any state P = (Z , Ż) ∈ Mλ.

Proof We need to show that λT I (Z)−1λ ≥ |λ|2
Ge(Z)

or equivalently

eT I (Z)−1e ≥ 1

eT I (Z)e
,

where e = λ/|λ| is the unit vector along λ. Since I (Z) is a positive definite symmetric matrix,
there is a positive definite symmetric matrix C with I (Z) = C2. Then the Cauchy–Schwarz
inequality gives

1 = e · e = (
C−1e

) · (Ce) ≤ |C−1e| |Ce| =
(
eT I (Z)−1e

) 1
2 ·

(
eT I (Z)e

) 1
2

as required. Furthermore, we have equality if and only if C−1e and Ce are proportional,
which means e is an eigenvector of C2. The last statement follows from Lemma 2 which also
shows that the lower bound Wλ(Z) is sharp. ��

Next we will show that Hλ provides an alternative variational characterization of relative
equilibrium configurations.

Theorem 3 The amended potential Wλ(Z) and the critical energy function Hλ(Z) have
the same critical points in U , namely the relative equilibrium configurations for angular
momentum λ.

Proof Theorems 1 and 2 show that critical points of Wλ are exactly the relative equilibrium
configurations for angular momentum λ. We will show that the same is true for Hλ. Simplify
notation by writing G(Z) instead of Ge(Z). Then the critical point equations for Hλ on U
are such that

− |λ|2
2G2Gqi + miβ = Uqi ,

where β ∈ R
3 is a Lagrange multiplier, and also that

− |λ|2
2G2

d

dt
|t=0G(Zi (t)) = d

dt
|t=0U (Zi (t)) i = 1, . . . , n,

where R(t) ∈ SO(3) with R(0) = I and Zi (t) is the curve of configurations where Ai is
replaced by Ai (t) = Ai R(t) and all other variables are left constant. If Z ∈ U then summing
over i in the first equation shows that β = 0.

Differentiating the formula (11) shows that these equations agree with the Eq. (15) for
relative equilibrium configurations with angular momentum λ. ��

It remains to consider the questionof localminima.Assuming a certain technical condition,
we will show that local minima of Wλ(Z) correspond to local minima of Hλ(Z) and vice
versa. It is not clear that this condition is really necessary but we don’t know how to eliminate
it.Wewill need to use the behavior of these functions under the diagonal action of R ∈ SO(3).
We have

U (RZ) = U (Z), I (RZ) = RI (Z)RT , I (RZ)−1 = RI (Z)−1RT .
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14 R. Moeckel

From this we find

Wλ(RZ) = WRT λ(Z) = 1

2

(
RT λ

)T
I (Z)−1

(
RT λ

)
−U (Z)

Hλ(RZ) = HRT λ(Z) = |λ|2
2GRT e(Z)

−U (Z).

(22)

In other words, the kinetic energy terms are rotated by RT while the potential energy term is
unchanged.

Now suppose that Z is a local minimum of Hλ(Z). Then the unit vector e must be a
maximal eigenvector of I (Z), that is,

Ge(Z) = max|u|=1
uT I (Z)u.

Otherwise we could find a rotation R arbitrarily close to the identity withGRT e(Z) > Ge(Z)

and then (22) shows that Z is not a local minimum of Hλ. Similarly if Z is a local minimum
of Wλ(Z), then λ must be an eigenvector of I (Z) with eigenvalue Ge(Z) which is maximal
in this sense. The technical condition is that±e are the uniquemaximal eigenvectors of I (Z),
or equivalently, that the maximal eigenvalue Ge(Z) is simple.

Lemma 4 Let Z ∈ U be a configuration such that e is an eigenvector of I (Z) which is
uniquely maximal in the sense that

Ge(Z) = eT I (Z)e = max|u|=1
uT I (Z)u

and the maximum is achieved only at u = ±e. Then there is a codimension-two submanifold
M ⊂ U through Z such that e is a uniquely maximal eigenvector of I (Z ′) for all Z ′ ∈ M.
Moreover Wλ(Z ′) = Hλ(Z ′) for all Z ′ ∈ M and there is a neighborhood V of (Z , I) in
M × SO(3) such that for (Z ′, R) ∈ V we have

Wλ(RZ
′) ≥ Wλ(Z

′), Hλ(RZ
′) ≥ Hλ(Z

′). (23)

Finally, Z is a local minimum of Wλ on U if and only if it is a local minimum of Hλ on U .

Proof Assume without loss of generality that e = (0, 0, 1) and that the matrix of I (Z) is
diagonal:

I (Z) =
⎡
⎣I11 0 0

0 I22 0
0 0 I33

⎤
⎦

with I33 = Ge(Z) and I33 > max(I11, I22). Consider the matrices I (Z ′) for Z ′ near Z . The
condition that e be an eigenvector is that I13(Z ′) = I23(Z ′) = 0. We will use the implicit
function theorem to show that these two equations define a submanifold M containing Z .

Let R1(t) be the rotation around (1, 0, 0) with unit angular speed and let Z ′(t) = R1(t)Z .
Then I (Z ′(t)) = R1(t)I (Z)R1(t)T and we calculate

d

dt
I13(Z

′)|t=0 = 0,
d

dt
I23(Z

′)|t=0 = I22 − I33 �= 0.

Similarly, if R2(t) is the rotation around (0, 1, 0)with unit angular speed and Z ′(t) = R2(t)Z ,
then

d

dt
I13(Z

′)|t=0 = I33 − I11 �= 0
d

dt
I23(Z

′)|t=0 = 0.
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Minimal energy configurations 15

Note that for Z ∈ U the rotated curves Z ′(t) lie entirely in U . It follows that the matrix of
D(I13, I23) on TZU has rank 2. By the implicit function theorem, the equations I13(Z ′) =
I23(Z ′) = 0 define a local codimension-two submanifold M near Z .

For each Z ′ ∈ M, e is an eigenvector of I (Z ′) and therefore Wλ(Z ′) = Hλ(Z ′). By
continuity, e will be uniquely maximal for Z ′ sufficiently close to Z . Unique maximality
implies that rotating Z ′ will not decrease the functions Wλ, Hλ, so (23) holds.

Finally, suppose Z is a localminimumof oneof the two functions. SinceWλ(Z ′) = Hλ(Z ′)
for Z ′ ∈ M both functions have local minima at Z when restricted to M. The computation
for the implicit function theorem shows that every point near Z in U can be written as RZ ′
for (Z ′, R) ∈ V . By (23), both functions have local minima at Z . ��

Now we have most of the ingredients for our main result, namely, that for n ≥ 3 and
λ �= 0, relative equilibria are never energy minimizers in Mλ.

Theorem 4 Let P ∈ Mλ be a relative equilibrium state with angular momentum λ �= 0.
If n ≥ 3 then P is not a local minimum of H on Mλ. Equivalently, a relative equilibrium
configuration Z ∈ U is never a local minimum of the amended potential Wλ on U for n ≥ 3.

Proof By Theorem 2, it suffices to prove the statement about critical points of Wλ and we
may assume without loss of generality that e = (0, 0, 1) and λ = (0, 0, |λ|) �= 0.

Let Z ∈ U be a relative equilibrium configuration for angular momentum λ. First consider
the case where Z satisfies the technical condition of Lemma 4. Then it suffices to show that
Z is not a local minimum of the simpler function Hλ.

Let Z ∈ U be any critical point of Hλ. We will construct a curve in configuration space
Z(s) ∈ U , |s| < δ with Z(0) = Z as follows. We will leave the orientation matrices Ai

constant and the positions of the centers of mass will have the form qi (s) = qi + swi for
some vectors wi ∈ R

3 with m1w1 + . . . +mnwn = 0. The vector w = (w1, . . . , wn) ∈ R
3n

will be chosen such that D2
q Hλ(w,w) < 0, where D2

q Hλ is the Hessian of Hλ with respect
to the qi variables. Since Z = Z(0) is a critical point of Hλ we have

DqHλ(Z)w = 0, D2
q Hλ(w,w) < 0.

For δ > 0 sufficiently small, wewill have Hλ(Z(s)) < Hλ(Z(0)) for |s| < δ, s �= 0, showing
that Z is not a local minimum.

For simplicity we will write G(Z) instead of Ge(Z). We have

DHλ(Z)w = − |λ|2
2G(Z)2

Gq(Z) · w −Uq(Z) · w = 0

and

D2
q Hλ(w,w) = |λ|2

G(Z)3
(Gq(Z) · w)2

− |λ|2
2G(Z)2

D2
qG(Z)(w,w) − D2

qU (Z)(w,w).

(24)

Let M be the 3n × 3n block diagonal matrix with 3× 3 blocks mi I. The vector w will be
an eigenvector of the matrix B = M−1D2

q Hλ with a negative eigenvalue μ < 0. The three
terms in (24) give a decomposition B = B1 + B2 + B3. Since

Gq(Z) = 2(m1Keq1, . . . ,mnKeqn),
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16 R. Moeckel

the matrix B1 breaks up into 3 × 3 blocks b1i j , where

b1i j = 4m j |λ|2
G(Z)3

⎡
⎣xi x j xi y j 0
yi x j yi y j 0
0 0 0

⎤
⎦ .

The matrix B2 is block diagonal with 3 × 3 diagonal blocks

b2i i = − |λ|2
G(Z)2

Ke = − |λ|2
G(Z)2

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ .

Finally, using (4) we find the third term B3 = −M−1D2
qU (Z) breaks up into 3 × 3 blocks

b3i j = − 1

mi

∫
Bi

∫
B j

dmidm j

r3i j

(
−I + 3ui j u

T
i j

)
i �= j

and diagonal blocks

b3i i = −
∑
j �=i

b3i j .

All of the blocks of B3 have zero trace, essentially due to the fact that the Newtonian potential
is a harmonic function on R

3. Calculating the traces of B1, B2 we get

trace(B) = (4θ − 2n)|λ|2
G(Z)2

,

where

θ =
∑

j m j

(
x2j + y2j

)

G(Z)
.

Now the formula (11) for G(Z) includes the sum in the numerator plus other positive terms.
It follows that 0 ≤ θ < 1 and therefore

trace(B) <
(4 − 2n)|λ|2

G(Z)2
.

The mass matrix M defines an inner product on R
3n :

〈v,w〉 = vT Mw.

B is an M-symmetric matrix so its eigenvalues are all real and its eigenvectors are orthogonal
with respect to this inner product. Let ê1 = (e1, e1, . . .)where e1 = (1, 0, 0) and define ê2, ê3
similarly. An easy computation shows that êi are eigenvectors of B with eigenvalues

μ1 = μ2 = − |λ|2
G(Z)2

, μ3 = 0.

Note that the M-orthogonal complement of the span of the êi is exactly the zero center of
mass subspace and it is an invariant subspace for B. Let μ4, . . . , μ3n be the eigenvalues of
B on this subspace. Then we have

μ4 + . . . + μ3n <
(6 − 2n)|λ|2

G(Z)2
.
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Minimal energy configurations 17

Since n ≥ 3 this sum is strictly less than zero and we have a negative eigenvalue, as required.
To finish, we need to rule out the possibility of local minima for which e is not uniquely

maximal. This time we have to work directly with the amended potential Wλ. If e is not
uniquely maximal, then without loss of generality we may assume that the total inertia tensor
takes one of the two forms:

I (Z) =
⎡
⎣I11 0 0

0 I33 0
0 0 I33

⎤
⎦ I (Z) =

⎡
⎣I33 0 0

0 I33 0
0 0 I33

⎤
⎦ = I33 I.

We will show that these conditions together with the relative equilibrium Eq. (15) put strong
restrictions on the configuration.

First suppose Z is a local minimum of Wλ with I (Z) = I33 I. Then (22) shows that
Wλ(RZ) = Wλ(Z) for all R ∈ SO(3). Since Z is a local minimum, the rotated configurations
RZ with R sufficiently close to Imust also be localminima. In particular RZ is a critical point
of Wλ. By rotational symmetry, Z = RT (RZ) must be a critical point of WRT λ, in addition
to being a critical point of Wλ. Now the first equation of (15) shows that Uqi ∈ e⊥ and the
corresponding equation for RT λ shows that Uqi ∈ (RT e)⊥ for all R ∈ SO(3) sufficiently
close to I. But this impliesUqi = 0. Therefore the projections of the position vectors qi onto
all of the (RT e)⊥ must vanish and therefore qi = 0 for all i = 1, . . . , n. Clearly it is a very
special type of relative equilibrium where the bodies are disjoint, but they all have the same
center of mass. An example would be nested spherical shells of mass.

In the case where I33 = I22 > I11, a similar argument applies using rotations R around
(1, 0, 0). The conclusion is that Z must be a relative equilibrium not just for λ, but also for
RT λ and that the projections of the qi onto all of the subspaces (RT e)⊥ must vanish. In this
case, all of the centers of mass qi are collinear and lie on the first coordinate axis. In other
words, qi = (xi , 0, 0). The previous case can be subsumed into this one by taking xi = 0.

To show that local minima are impossible in these two cases, consider the Hession D2
qWλ

ofWλ with respect to q . As before, our goal will be to find a vector w in the zero momentum
subspace such that D2

qWλ(w,w) < 0. After some computation we find that the formula for
D2
qWλ agrees with formula (24) for D2

q Hλ except that the first term is replaced by the more
complicated expression

|λ|2
2G(Z)2

(Dq I (Z)(w)e)T I (Z)−1(Dq I (Z)(w)e).

This term is positive semi-definite.Wewill eliminate it by choosing a vectorw in the subspace
such that Dq I (Z)(w)e = 0.However, to make the rest of the proof work, it will be important
to use subspaces which are invariant under the diagonal action of the rotation group SO(3).
To this end, we also require Dq I (Z)(Rw)e = 0 for every rotation R ∈ SO(3).

Differentiating (10) with respect to the qi at qi = (xi , 0, 0) and recalling that e = (0, 0, 1),
we find

Dq I (Z)(w)e =
∑
i

mi

⎡
⎣ 0 0 −xi

0 0 0
2xi 0 0

⎤
⎦

⎡
⎣wi1

wi2

wi3

⎤
⎦ .

Define vectors v1 = (0, 0,−x1, 0, 0,−x2, . . .) and v2 = (x1, 0, 0, x2, 0, 0, . . .) in R
3n .

To complete the proof we want to restrict w to a rotation invariant subspace such that
Dq I (Z)(w)e. We can use G⊥, where

G = span{Rv1, Rv2 : R ∈ SO(3)} ⊂ R
3n .
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18 R. Moeckel

Note that v1 and v2 are actually in the same orbit of the diagonal action of SO(3) so we can
use just one of them, say v2 in the definition of G. Note that all of the vectors (xi , 0, 0) ∈ R

3

can be expressed as linear combination of just one of them. These dependence relations define
a three-dimensional subspace of R3n . The rotated vectors Rv2 satisfy the same dependence
relations. Therefore G is contained in this three-dimensional subspace and dim G ≤ 3. Note
that the zeromomentum subspace is also rotation invariant and contains G. Taking the orthog-
onal complement of G within the zero momentum space gives a rotation invariant subspace
of dimension dim G⊥ ≥ 3n − 6 ≥ 3.

Choose any nonzero vector w ∈ G⊥ and consider the average of the quadratic form
D2
qWλ(Z)(Rw, Rw) as R runs over the rotation group SO(3). Then using the last two terms

of (24) and (4) we have

D2
qWλ(w,w) = − |λ|2

G(Z)2

∑
i

miw
T
i Kewi

−
∑
i< j

∫
Bi

∫
B j

dmidm j

r3i j

(−|wi j |2 + 3(ui j · wi j )
2) .

This expresses D2
qWλ(w,w) as a sum of quadratic form on R

3. Since the rotation group
acts diagonally, we can find the average of D2

qWλ(Z)(Rw, Rw) as a sum of averages of
these three-dimensional quadratic forms. Since SO(3) acts orthogonally and irreducibly on
R
3, it follows from Schur’s lemma that these averaged forms are just scalar multiples of the

identity, where the scalar is the trace of the matrix representing the form.
Since Ke is orthogonal projection onto a plane, its average is 2 I. The quadratic forms in

wi j are given by integrals but their traces are all zero. Hence the average over R ∈ SO(3) of
the forms D2

qWλ(Rw, Rw) is

D2
qWλ = − |λ|2

G(Z)2

∑
i

2mi |wi |2 < 0.

Hence there is a vector of the form w′ = Rw with D2
qWλ(w

′, w′) < 0 and the proof is
complete. ��
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