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Abstract The main form of the representation of a gravitational potential V for a celestial
body T in outer space is the Laplace series in solid spherical harmonics (R/r)n+1Yn(θ, λ)

with R being the radius of the enveloping T sphere. The surface harmonic Yn satisfies the
inequality

〈Yn〉 < Cn−σ .

The angular brackets mark the maximum of a function’s modulus over a unit sphere. For
bodies with an irregular structure σ = 5/2, and this value cannot be increased generally.
However, a class of irregular bodies (smooth bodies with peaked mountains) has been found
recently in which σ = 3. In this paper, we will prove the exactness of this estimate, showing
that a body belonging to the above class does exist and

0 < lim n3〈Yn〉 < ∞
for it.
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76 K. V. Kholshevnikov, V. Sh. Shaidulin

1 Introduction

The main form of the representation of a gravitational potential V for a celestial body T in
outer space is the Laplace series, which can be written in spherical coordinates r, θ, λ as

V (r, θ, λ) = M

R

∞∑

n=0

(
R

r

)n+1

Yn(θ, λ). (1)

Here M is the mass of T , Yn is a dimensionless spherical harmonic; gravitational constant is
set equal to unity. The radius R of the enveloping sphere S (Brillouin sphere) is taken as the
scale factor. By definition, its centre O lies at the origin of the coordinate system; it contains
T inside and possesses at least one common point with T . Generally, a spherical harmonic
depends on 2n+1 parameters (Stokes coefficients). Below we consider compact bodies with
a finite positive integrable density �(r, θ, λ) only. As Y0 ≡ 1, we put n � 1 below.

Since the beginning of the space era, the problemof estimation of the series (1) general term
becomes actual. Several qualitative estimates of the decreasing rate of 〈Yn〉 were proposed
by Chuikova (1980), Moritz (1978), Petrovskaya (1982) and others. Kaula (1968) proposed
an empirical quantitative rule

〈Yn〉 = Cn

nσ
, Cn � C (2)

with σ = 2. Diverse quantities depending on properties of the density � are labeled asCn, C ;
〈·〉 is the Chebyshevian norm, maximummodulus of a function on the sphere. Yarov-Yarovoi
(1963) deduced the same estimation (2) with the same value σ = 2 theoretically.

Most general theoretic results were obtained by K.V.Kholshevnikov, improved by
V.A.Antonov, and accumulated in the book (Antonov et al. 1988). They were refined in
Kholshevnikov and Shaidulin (2015a). Three classes of irregularly structured bodies were
introduced there, and two of them are pertinent to this paper:

T3 containing bodies with a density possessing a uniformly bounded variation along any
circumference with the centre at the origin;

T5 containing bodies having a finite number of points on S. For any such a point Qk there
exists a circular cone Kk with the vertex Qk , axis OQk , and the semivertex angle αk < π/2,
provided that the intersection of some neighborhood of the point Qk and the body T lies
entirely in Kk . It can be readily illustrated as a planet with peaked mountains, with their
summits lying on S.

According to Kholshevnikov and Shaidulin (2015a) σ = 5/2 for T ∈ T3, σ = 3 for
T ∈ T5.

After an estimate is established, a question on its exactness arises. The last notion may
have different meanings, so it is better to define it rigorously.

Let us consider a sequence Fn(T ) of non-negative numbers defined for any T belonging
to a set T . Let Fn(T ) for each T ∈ T satisfies the inequality

Fn(T ) �
C

nσ
(3)

with a fixed σ ∈ R, C > 0. We call this inequality exact with respect to σ if there exists
T0 ∈ T such that

0 < lim nσ Fn(T0) < ∞. (4)

In other words, the element T0 of the set T possesses 2 properties.
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On the Laplace series of irregularly structured bodies 77

1. There exists a constant C0 such that Fn(T0) � C0n−σ .
2. For any σ1 > σ , and any C1 > 0 there exists a number n1 such that Fn1(T0) > C1n

−σ1
1 .

So exactness means that it is impossible to improve (3) replacing σ by a certain σ1 > σ .

Remark Usually T contains elements T for which Fn(T ) decrease much faster, so the left
inequality (4) holds true not for all T ∈ T . For example, the classes T3, T5 contain balls, and
Yn = 0 for them.

Later we shall write simply exact instead of exact with respect to σ .
It is known (Kholshevnikov 1977; Antonov et al. 1988) that the estimate (2) is exact for

T ∈ T3 with σ = 5/2: examples of bodies are constructed for which

0 < lim n5/2〈Yn〉 < ∞. (5)

Exactness of the estimate (2) under σ = 3 is established in Shaidulin (2010) for T ∈ T5 via
an example of a spherical sector, but the proof is cumbersome. Here we consider this model
in detail and affirm the exactness of the estimate. As a by-product an amazing property is
revealed: different values of σ , and even σ = ∞, can correspond to the same body in diverse
frames of reference. The equality σ = ∞ means

lim nσ 〈Yn〉 = 0 (6)

for any σ . In our example (see Sect. 3.3) Yn satisfies the condition

〈Yn〉 = Cn

nσ
pn with 0 < p < 1, Cn � C (7)

instead of (2). It is obvious that (7) implies (5). The estimate (7) was established earlier
(Kholchevnikov 1971; Antonov et al. 1988) for bodies with analytical structure. Now it is
extended to bodies with analytical structure of their part only, namely the part nearest to the
enveloping sphere. This fact illustrates the principle of the surface layer (Kholshevnikov and
Shaidulin 2015a) once more.

Relations (1), (2) are simplified for bodies of revolution (the one examined in this paper
belongs to them) as zonal harmonic coefficient only remains:

Yn(θ, λ) ≡ Yn(θ) = cn Pn(cos θ), 〈Yn〉 = |cn |, (8)

Pn being Legendre polynomial with standard normalization Pn(1) = 1.
If the body is homogeneous, then Yn does not depend on the density. Let us consider the

density as unitary and the mass equal to the volume.
We have postponed proofs of several mathematical propositions to the “Appendix” for

ease of treatment.

2 Potential of a spherical sector

Let us consider a spherical sector T with unitary density, the radius a, and the semivertex
angle α choosing the reference frame O with the origin O at the sector’s vertex, and z-
axis directed along the axis of sector’s symmetry away from it, see Fig. 1. Let us suppose
0 < α < π , sometime allowing limiting cases α = 0 (a rod), and α = π (a ball). Let S be
the sphere bounding the ball from which the sector is cut off.
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78 K. V. Kholshevnikov, V. Sh. Shaidulin

Fig. 1 Section of a spherical
sector T by the plane passing
through the symmetry axis z;
OA1 = OA2 = OA3 = a,
� A1OA2 = α; � QOQ′ = θ ; Q′
represents a variable point of
integration over T ; the
circumference represents a
section of the enveloping sphere
S = S

S

x

z

α

θO

A1

A2

A3

Q

Q

Sector’s mass equals to

M = 2π
∫ a

0
w2 dw

∫ π

π−α

sin θ dθ = 2π(1 − cosα)

3
a3. (9)

We designate the variable radius via w in order to avoid confusion with the distance r from
the origin O to the test point Q.

Let us use the following scheme to determine Stokes coefficients (Hobson 1931). We seek
the potential on the axis of rotation at the point Q(0, 0, r) for r > R and expand it into
a Laurent series in negative powers of r , or equally into a Maclaurin series in powers of
u = 1/r

V (r) =
∞∑

n=0

c∗
n

rn+1 =
∞∑

n=0

c∗
nu

n+1. (10)

Hence, according to (1), (8) with θ = 0 we have

c∗
n = MRncn . (11)

The potential of the sector at the point Q(0, 0, z) equals to

V (z) = 2π
∫ a

0
w2 dw

∫ π

π−α

sin θ dθ√
w2 − 2wz cos θ + z2

. (12)

The internal integral is elementary, so

V (z) = 2π

z

∫ a

0
w [w + z − g(w, z)] dw (13)

with g(w, z) = √
w2 + 2wz cosα + z2. The integral (13) is evaluated in elementary func-

tions (Shaidulin 2010; Kholshevnikov and Shaidulin 2011):

V = π

3
[g1(z) + g2(z) + g3(z) + g4(z)] , (14)
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On the Laplace series of irregularly structured bodies 79

where

g1(z) = 3a2 + (2 − 3c2)z2, g2(z) = − [
ac + (2 − 3c2)z

]
g(a, z),

g3(z) = 2a2
a − g(a, z)

z
, g4(z) = 3cs2z2g5(z),

g5(z) = ln[a + cz + g(a, z)] − ln(cz + z).

We use the notations

c = cosα, s = sin α, g(a, z) =
√
a2 + 2acz + z2.

We shall consider the sector not only in the frame O, but also in the frame O(b), with its
origin placed at the point O1(0, 0,−b), and the directions of axes are the same. If b > 0, the
point O1 displaces downwards, whereas if b < 0 it goes upwards. In all cases coordinates
of a test point Q referred to the frame O(b) are (0, 0, r), and z = r − b. The formula (14)
holds valid under

g1 = 3a2 + (2 − 3c2)η2
(1 − βv)2

v2
, g2 = −

[
ac

v
+ (2 − 3c2)η

1 − βv

v2

]
ηg0,

g3 = 2a2
av − ηg0
η(1 − βv)

, g4 = 3cs2η2
(1 − βv)2

v2
g5,

g5 = ln

[
c + a − bc

η
v + g0

]
− ln[(1 + c)(1 − βv)],

g = η

v
g0, g0 =

√
1 − 2ξv + v2. (15)

We use the notations

η =
√
a2 − 2abc + b2, ξ = b − ac

η
, u = 1

r
, v = ηu,

β = b

η
, z = 1 − bu

u
= η(1 − βv)

v
. (16)

It is important that |ξ | < 1 irrespective of arbitrary parameters of the sector a > 0, 0 < α <

π , or of an arbitrary shift parameter b.
Let us find the closest to zero u = v = 0 singular points of V as an analytical function of

u (or, equally, of v). The point u = 0 itself is an ordinary one in virtue of the convergence
of the series (10) if |u| < 1/R. Hence, we do not pay attention to the presence of v in the
denominators of several gk .

2.1 Potential’s singularities under a shift down, b > 0

Let b > 0.

1. g1. No singularities.
2. g0, g2. Two complex singular points v1,2 = ξ ± √

ξ2 − 1 with a common modulus
|v1,2| := �0 = 1.

3. g3. The denominator of g3 vanishes at v = v3 := 1/β. At the same time g0|v=v3 = a/b,
so the numerator vanishes too. Let us put v = v3 + ε. Then

g0 = a

b

[
1 + β

a
(a − bc)ε + · · ·

]
, av − ηg0 = bcε + · · · , 1 − βv = −βε + · · · ,

so g3 is regular at v = v3, and singularities of g3 and g0 coincide.

123



80 K. V. Kholshevnikov, V. Sh. Shaidulin

4. g5. Let us transform g5 to a more convenient form. The derivatives with respect to v are

dg0
dv

= v − ξ

g0
,

dg5
dv

= g6 + g7 ,

g6 = (a − bc)g0 + η(v − ξ)

g0[ηg0 + ηc + (a − bc)v] , g7 = β

1 − βv
. (17)

Multiplying the numerator and denominator of g6 by ηg0 − ηc − (a − bc)v we obtain
after manipulations

g6 = a − bg0
ηg0(1 − βv)

,

hence

dg5
dv

= a

ηg0(1 − βv)
. (18)

Taking into account g5 |v=0 = 0 we find

g5 = a

η

∫ v

0

dv′

(1 − βv′)g0(v′)
. (19)

The function g5 is singular at v = v1,2, |v1,2| = �0 = 1, and at v = v3 = 1/β.
5. g4. Evidently

g4 = 3acs2η

v2
(1 − βv)2

∫ v

0

dv′

(1 − βv′)g0(v′)
. (20)

Singularities of g5 and g4 coincide.

2.2 Potential’s singularities under a shift up, b < 0

Let b < 0. The sign of b only plays a role for the property 3. So we discuss this case in short.

1. g1. No singularities.
2. g0, g2. Two complex singular points v1,2 with a common modulus �0 = 1.
3. g3. At v = v3 = 1/β we have g0 = −a/b, av − ηg0 = 2aη/b. So g3 is singular at

v = v1,2 and v = v3.
4. g4, g5. Both functions are singular at v = v1,2 and v = v3.

3 Laplace series for the spherical sector

3.1 Laplace series for the spherical sector in the frame O

In this frame, z = r . The Laplace series for the body T can be more easily found from (13)
than from (14). Using expansion (61) from the “Appendix 2” we represent g(w, z) by a series

g(w, z) = r

[
1 + cw

r
−

∞∑

n=1

Pn1(−c)
wn+1

rn+1

]
. (21)
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On the Laplace series of irregularly structured bodies 81

Polynomials Pn1(x) are introduced in the “Appendix 2”, p. 18. The integral (13) can be
calculated easily:

V (r) = 2π

r

[
1

3
a3(1 − c) −

∞∑

n=1

(−1)nan+3

(n + 3)rn
Pn1(c)

]
,

where the rule of parity Pn1(−x) = (−1)n+1Pn1(x) is used. Taking into account (9) we have

V (r) = M

r

[
1 −

∞∑

n=1

3(−1)nan

(n + 3)(1 − c)rn
Pn1(c)

]
.

The section of the enveloping sphere S = S passes through the arc A1A2A3 in the frame
O, its radius R = a, see Fig. 1. We obtain an exact expression for harmonic coefficients:

cn = 3(−1)n+1

(n + 3)(1 − c)
Pn1(c). (22)

It remains to use the asymptotics (62) of the polynomial Pn1 under great n. As the remainder
depends on α singularly, we should examine several cases.

1. α = 0. The sector is changed into a rod of zero-mass, and V = 0. For a non-trivial
result we send the density to infinity in such a way that the mass M remains finite and
positive. At the limit we see a heterogeneous rod −a � z � 0 with a linear density
�̃(z) = (3M/a3)z2. The zonal coefficient arises from (22) by the passage to the limit.
By L’Hospital rule we find

lim
α→0

Pn1(c)

1 − c
= lim

α→0

− sin αPn(cosα)

sin α
= −Pn(1) = −1.

Hence,

cn = 3(−1)n

(n + 3)
. (23)

It is at first disturbing that we reach an estimate (2) with exact exponent σ = 1 instead of
σ = 5/2. However, the Newtonian potential of one-dimensional bodies possesses worse
differential properties.

2. α = π . As Pn1(−1) = 0, then cn = 0. It is not surprising: if α = π the sector becomes
a ball.

3. 0 < α < π . According to (22), (62)

cn ∼ (−1)n+1B

n5/2
cos

[(
n + 1

2

)
α + π

4

]
, B = 3

1 − c

√
2s

π
. (24)

The sequence of cosines contains a subsequence bounded away from zero. Hence, rela-
tions (2), (5) are valid with the exponent σ = 5/2.

4. α = π/2. Though this case is contained in the previous one, it is worth emphasizing due
to its exclusive simplicity. The body T represents a semi-ball. According to (22)

cn = 3(−1)n+1

n + 3
Pn1(0). (25)

Values Pn1(0) vanish for even n > 0. For odd n a simple asymptotics (63) is valid.
Finally, for the odd n

cn ∼ 3(−1)
n+1
2

√
2/π

n5/2
. (26)
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z

O

O1

A1 A2
A3

S

S

x

z

O

O1

A1

A2

A3

Fig. 2 Sectionof a spherical sectorT by the plane in the frameO(b),b > 0;a−2bc > 0, R = O1A1 = η > b;
left c > 0, right c < 0. Enveloping sphere S passes through the points A1, A3

Fig. 3 Section of a spherical
sector T by the plane in the frame
O(b), b > 0; a − 2bc = 0,
R = O1O = O1A1 = O1A3 =
η = b. Enveloping sphere S
passes through the points
A1, A3, O

S

S

x

z

O

O1

A1 A3

Below we suppose 0 < α < π eliminating degenerate cases.

3.2 Laplace series for the spherical sector in the frame O(b), b > 0

Let us pass to the frame O(b) while shifting down, b > 0. We ought to consider three cases.

1. a − 2bc > 0, which always takes place in a right or obtuse angle α; R = η > b,
0 < β < 1, see Fig. 2.

2. a − 2bc = 0, which is possible in case of an acute angle α only; R = η = b, β = 1, see
Fig. 3.

3. a − 2bc < 0, which is possible in case of an acute angle α only; R = b > η, β > 1, see
Fig. 4.
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On the Laplace series of irregularly structured bodies 83

Fig. 4 Section of a spherical
sector T by the plane in the frame
O(b), b > 0; a − 2bc < 0,
R = O1O = b > η. Enveloping
sphere S passes through the point
O

S

S

x

z

O

O1

A1 A3

Combersome calculations have allowed us to prove relations (2) with σ = 5/2 in cases
1, 2, but we did not succed to prove (5). We have omitted these computations as the validity
of (2) is ascertained in the general case.

Let us turn to the case 3. We examine the behaviour of entering in (14) functions gs in the
neighborhood of singular points which are nearest to the origin, see Sect. 2.1. The formulae
(15) represent gs via functions of v. The singularities nearest to the origin are situated on
the circumference |v| = �1 = 1/β < 1 = �0. So the quantities g1, g2, and g3 in (14) can
be disregarded because they do not influence the asymptotics of cn . Further, let us use an
expansion of 1/g0(v) in Legendre polynomials

1

g0(v)
= 1 +

∞∑

n=0

anv
n+1, an = Pn+1(ξ).

According to the “Appendix 1d”

1

(1 − βv)g0(v)
= 1 +

∞∑

n=0

bnv
n+1, bn = βn Bn , Bn = β +

n∑

k=0

ak
βk

.

After integration
∫ v

0

dv′

(1 − βv′)g0(v′)
= v +

∞∑

n=0

bn
n + 2

vn+2.

As suggested by (20)

g4(v) = 3acs2η

v2

[
(
v − 2βv2 + β2v3

) +
∞∑

n=−1

enβ
n+1vn+3

]
. (27)

Here

en = Bn+1

n + 3
− 2Bn

n + 2
+ Bn−1

n + 1
= α0 + α1n + α2n2

(n + 1)(n + 2)(n + 3)
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84 K. V. Kholshevnikov, V. Sh. Shaidulin

with

α0 = 2Bn+1 − 6Bn + 6Bn−1 = 2β + 2
an+1

βn+1 − 4
an
βn

+ 2
n−1∑

k=0

ak
βk

,

α1 = 3Bn+1 − 8Bn + 5Bn−1 = 3
an+1

βn+1 − 5
an
βn

,

α2 = Bn+1 − 2Bn + Bn−1 = an+1

βn+1 − an
βn

.

Let us calculate the limits

lim
n→∞ α0 = 2β + 2

∞∑

k=0

Pk+1(ξ)

βk
= 2β + 2β

[
−1 + 1 +

∞∑

k=0

Pk+1(ξ)

βk+1

]

= 2β√
1 − 2ξ/β + 1/β2

= 2b2

aη
,

lim
n→∞ nα1 = lim

n→∞ n2α2 = 0.

As a result

en ∼ 2b2

aηn3
. (28)

Passing in (27) from v to u in agreement with (16), and using relations (11), (14), (27), (28),
we obtain

Mbncn ∼ 2πcs2bn+3n−3.

Taking into account (9) we reach

cn ∼ 3cs2b3

(1 − c)a3nσ
, σ = 3. (29)

Asymptotics (29) demonstrate the exactness of the estimate (2) with σ = 3 for bodies from
the family T5.

3.3 Laplace series for the spherical sector in the frame O(b), b < 0

Let us pass to the frame O(b) while shifting up, b < 0. Now R = a + |b| = a − b. Let us
use the integral representation of the potential as in the Sect. 3.1 and put

R = a − b, u = 1

r
, z = 1 − bu

u
, η̃(w) =

√
w2 − 2bcw + b2 ,

ξ̃ (w) = b − cw

η̃(w)
, ṽ(w) = η̃u, g(w, z) = 1

u

√
1 − 2ξ̃ ṽ + ṽ2. (30)

When examining the behaviour of η̃, ξ̃ we calculate derivatives

d(η̃2)

dw
= 2(w − bc),

d ξ̃

dw
= −bs2w

η̃3
> 0. (31)

Evidently, η̃ takes on the greatest value at one of the endpoints of the segment [0, a]. Simple
algebra leads to

η̃(0) = |b|, η̃(a) = η, (32)
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On the Laplace series of irregularly structured bodies 85

whereas ξ̃ increases from ξ̃ (0) = −1 to ξ̃ (a) = ξ , |ξ | < 1. Substituting (30) in (13) with
due regard to (9) we obtain

V = 3M

a3(1 − c)
g8(u), g8(u) = g9(u)

1 − bu
, g9(u) =

∫ a

0
wg10(w, u) dw,

g10(w, u) = 1 + (w − b)u −
√
1 − 2ξ̃ ṽ + ṽ2. (33)

Using (61) we can represent g10 by a series

g10 =
∞∑

n=0

hnu
n+1, (34)

h0 = w(1 − c), hn = Pn1(ξ̃ )η̃n+1, n � 1. (35)

After integrating wg10 term by term we obtain

g9(u) =
∞∑

n=0

hn1u
n+1. (36)

Here

h01 = a3(1 − c)

3
, hn1 =

∫ a

0
Pn1(ξ̃ )η̃n+1w dw. (37)

Further we ought to investigate 3 cases as in Sect. 3.2.

1. a − 2bc > 0 which takes place always under an acute angle α; R = a + |b| = a − b >

η > |b|, see Fig. 5.

From the mean value theorem it follows from (37) that

hn1 = Pn1(ξ̄n)
∫ a

0
η̃n+1w dw, −1 < ξ̄n < ξ < 1. (38)

An estimate of factors in the right hand side of (38) is given by the formulae (62) and
(68):

|hn1| <
H1

n5/2
ηn+1, H1 = aη2

√
2/π

a − bc
. (39)

As |b| < η, the formula (49) holds true, hence

g8(u) =
∞∑

n=0

hn2u
n+1, |hn2| <

H2

n5/2
ηn+1 (40)

with

H2 = H1

1 − δ

{
25/2 + 1 − δ

2
√

δ

[
7

e ln(1/δ)

]7/2}
, δ = |b|

η
< 1.

Finally, we obtain the estimate (7) with

p = η

R
=

√
a2 − 2abc + b2

a + |b| < 1, σ = 5

2
, C = 3H2η

a3(1 − c)
. (41)
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S
S

S
∗

x

z

O

O1

A1

A2

A3

S S

S
∗

x

z

O

O1
A1

A2

A3

Fig. 5 Section of a spherical sector T by the plane in the frame O(b), b < 0; a−2bc > 0, enveloping sphere
S touches S at the point A2, R = O1A2 = a + |b| > η > |b|; convergence sphere S∗ passes through points
A1, A3; left c > 0, right c < 0

Fig. 6 Section of a spherical
sector T by the plane in the frame
O(b), b < 0; a − 2bc = 0,
enveloping sphere S touches S at
the point A2,
R = O1A2 = a + |b| > η = |b|;
convergence sphere S∗ passes
through points A1, A3, O

S

S
∗

S

x

z

O

O1

A1

A2

A3

It will be observed that pR = η = O1A1, see Fig. 5. Note that 2-dimensional sec-
tions of the sectors and spheres are pictured on the figures. In the 3-dimensional space
an angular point O corresponds to a conic point of the sector, whereas angular points
A1, A3 correspond to an edge of the sector; so the sector and the sphere have a common
circumference.

2. a − 2bc = 0, which is only possible under an obtuse angle α; R = a + |b| = a − b >

η = |b|, see Fig. 6.
3. a − 2bc < 0, which is only possible under an obtuse angle α; R = O1A2 = a + |b| =

a − b > |b| > η, see Fig. 7.

Combining the last two cases, we suppose a − 2bc � 0.
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Fig. 7 Section of a spherical
sector T by the plane in the frame
O(b), b < 0; a − 2bc < 0,
enveloping sphere S touches S at
the point A2,
R = O1A2 = a + |b| > |b| > η;
convergence sphere S∗ passes
through the point O

S

S

S
∗

x

z

O

O1

A1

A2

A3

Direct calculations show
√
1 − 2ξ̃ ṽ + ṽ2

∣∣∣∣
u=1/b

= w

|b| , g10

(
w,

1

b

)
= 2w

b
, D := g9

(
1

b

)
= 2a3

3b
.

The general term of the series (36) under summation in powers of u equals hn−1,1un and can
be evaluated easily

|hn−1,1| <
a2

√
2/π

2(n − 1)3/2
|b|n, n � 2.

Hence, the series (36) converges absolutely if |u| � 1/|b|. Conditions of the “Appendix 1b”
are fulfilled, and

g9(u) − D

1 − bu
=

∞∑

n=0

hn−1,3u
n, (42)

where

hn−1,3

bn
= −

∞∑

m=n+1

hm−1,1

bm
= −

∞∑

m=n

hm1

bm+1 ,

hn3
bn

= −
∞∑

m=n+1

hm1

bm
,

or

hn3
bn

= −
∫ a

0
η̃w dw

∞∑

m=n+1

Pm1(ξ̃ )

(
η̃

|b|
)m

. (43)
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Using inequalities η̃ � |b| and (62) we obtain
∣∣∣∣
hn3
bn

∣∣∣∣ < |b|
∫ a

0
w dw

∞∑

m=n+1

√
2/π

m3/2 <
C√
n

(44)

with a certain constant C .
On the other hand,

D

1 − bu
= D +

∞∑

n=0

Dbn+1un+1.

A comparison with (42), (43) shows that

hn2 ∼ Dbn+1. (45)

Finally, we arrive at a more informative estimate than the one given in (7):

cn ∼ 2(−1)n pn

(1 − c)nσ
, p = |b|

R
< 1, σ = 0. (46)

Remark If a − 2bc = 0 (see Fig. 6), then pR = η = |b| = O1A1 = O1A3 = O1O . If
a − 2bc < 0 (see Fig. 7), then pR = |b| = O1O .

4 Conclusion

We have examined the convergence rate of the Laplace series (1) for a certain body (spherical
sector) in diverse reference frames, distinguished by a variety of origins. The compiled results
can be found in the table below. Different variants we have described above are given in the
first column. The class of the body’s structure is given in the second column. Parameters p
and σ are given in the third column. Comments are given in the last column.

We have settled on the following properties.
Let ∂T be the surface of a compact body T , and S be the intersection of ∂T with the

enveloping sphere S.

– Let S consist of a single point, and ∂T be analytic in its neighbourhood. Then 〈Yn〉
decreases in a geometrical progression according to (7), and pR equals the distance
between the origin O and the nearest angular point of ∂T . However, the exponent σ can
vary from 0 to 5/2.
In the general case the presence of an angular point is not necessary. The homogeneous
ellipsoid of revolution (unimportant oblate or prolate) serves as an example. It was found
by Laplace that p is equal to the eccentricity of the meridional section, whereas σ = 2
(Antonov et al. 1988, section 4.10).Another example represents an equipotential ellipsoid
of revolution with the same p and σ = 1 (Caputo 1967, section 14).

– LetS consist of a part of the sphere S with a positive area, and its boundary represent an
edge of the surface ∂T . Then 〈Yn〉 decreases in a power law (2) with the exact exponent
σ = 5/2.

– Let S consists of a conic point of ∂T with no curve beginning at this point and lying on
∂T which touches the enveloping sphere. Then 〈Yn〉 decreases as a power law (2) with
the exact exponent σ = 3. That is the main result of the present paper.

One may note that a spherical sector is a poor resemblence of real celestial bodies. But
we can present bodies similar to real ones. Indeed, in Kholshevnikov and Shaidulin (2015a)
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we show that the class T5 contains smooth bodies with mountains. It is easy to choose a body
T ∈ T5 satisfying (4) with σ = 3 among them. It is sufficient to take a ball (or an ellipsoid)
with afinite number ofmountains. To exclude the possibility that inputs of differentmountains
in Yn annihilate, it is sufficient to choose one of them as a predominate one.

Variant Class p, σ Comments

b = 0 T3 p = 1, σ = 5/2 Spherical part of sector’s surface lies on the enveloping
sphere

b > 0 Sector’s vertex lies inside the enveloping sphere
a − 2bc > 0 T3 p = 1, σ = 5/2 Sector’s edge lies on the enveloping sphere

b > 0 Sector’s vertex lies on the enveloping sphere
a − 2bc = 0 T3 p = 1, σ = 5/2 Sector’s edge lies on the enveloping sphere

b > 0 Sector’s vertex lies on the enveloping sphere
a − 2bc < 0 T5, T3 p = 1, σ = 3 Sector’s edge lies inside the enveloping sphere

b < 0 Sector’s edge and vertex lie inside the enveloping sphere
a − 2bc > 0 T3 p < 1, σ = 5/2 The enveloping sphere is tangent to the sector

b < 0 Sector’s edge and vertex lie inside the enveloping sphere
a − 2bc � 0 T3 p < 1, σ = 0 The enveloping sphere is tangent to the sector
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Grant 8.1.54.2015.

Appendix 1: Connection between Maclaurin coefficients of two functions

1a. Let

f (z) =
∞∑

n=0

anz
n+1, an = An

(n + 1)σ
γ n, |An | � A,

g(z) = f (z)

1 − βz
=

∞∑

n=0

bnz
n+1, bn =

n∑

k=0

akβ
n−k := Bn

(n + 1)σ
γ n,

σ ∈ R, 0 < β < γ. (47)

Then

− ∞ < A∗ = lim An � lim An = A∗ < ∞, (48)

the sequence Bn is bounded

|Bn | <
A

1 − δ
×

{
1, if σ � 0,

2σ + 1−δ

2
√

δ

[
2(σ+1)
e ln(1/δ)

]σ+1
, if σ > 0,

(49)
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and relations

B∗ = lim Bn �
A∗

1 − δ
, B∗ = lim Bn �

A∗

1 − δ
with δ = β

γ
< 1 (50)

are fulfilled. In particular, if the limit lim An = A∗ exists, then the limit lim Bn = B∗
exists also, and

B∗ = A∗

1 − δ
. (51)

Proof Relations (48) represent a trivial corollary of the boundedness of An . It follows
from (47) that

Bn =
n∑

k=0

(
n + 1

k + 1

)σ

δn−k Ak ,
|Bn |
A

�
n∑

k=0

(
n + 1

k + 1

)σ

δn−k := un . (52)

If σ � 0, then |Bn | < A(1 − δ)−1. Let σ > 0. The last sum can be decomposed as

un = u1n + u2n

with

u1n :=

n/2�∑

k=0

(
n + 1

k + 1

)σ

δn−k < (n + 1)σ δ�n/2�u3n , u3n =

n/2�∑

k=0

1

(k + 1)σ
;

u2n :=
n∑

k=
n/2�+1

(
n + 1

k + 1

)σ

δn−k < 2σ
∞∑

m=0

δm = 2σ

1 − δ
.

If n is even and positive, then

u3n = 1 + 1

2σ
+ · · · + 1

(1 + n/2)σ
<

n + 1

2
.

It can be shown by induction. If n is odd, then the number of terms in the sum equals to
(n + 1)/2, and we arrive to the same inequality. Hence,

2u1n < (n + 1)σ+1δn/2.

The right hand side has a maximum at

n = 2(σ + 1)

ln(1/δ)
− 1.

So

2u1n <
1√
δ

[
2(σ + 1)

e ln(1/δ)

]σ+1

.

The validity of (49) is proved for n > 0. At n = 0 the inequality (49) is trivial.
Equalities

bn+1 = an+1 + βbn , Bn+1 = An+1 + δ

(
n + 2

n + 1

)σ

Bn (53)

follow from (47). The second formula (53) implies (Nikolsky 1977, section 3.7) that

B∗ � A∗ + δB∗ , B∗ � A∗ + δB∗. (54)

Relations (50) arise from (54). In case A∗ = A∗ the equality (51) follows from (50).
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1b. Let relations (47) be true except the last one, and now β < 0, |β| < γ .

Then inequalities (49) remain valid after replacing δ by |δ|. Relations (53) are valid too.
However, we get

B∗ �
A∗ − |δ|A∗

1 − δ2
, B∗ �

A∗ − |δ|A∗
1 − δ2

(55)

instead of (50). If the limit lim An = A∗ exists, then the limit lim Bn = B∗ exists also,
and the equality (51) holds true.

Inequality (55) only needs a proof. Negativeness of δ implies lim{δBn} = δ lim Bn ,
lim{δBn} = δ lim Bn , see (Nikolsky 1977, section 3.7). We have now

B∗ � A∗ − |δ|B∗ , B∗ � A∗ − |δ|B∗ , (56)

instead of (54). Inequalities (55) arise from (56).
1c. Let f (z) be holomorphic in the circle |z| < 1/|β|, β �= 0, and the series

f (z) =
∞∑

n=0

anβ
nzn

converge (perhaps conditionally) at z = 1/β.

Then Maclaurin coefficients of the function

g(z) = f (1/β) − f (z)

1 − βz
=

∞∑

n=0

bnβ
nzn

are equal to

bn = f (1/β) −
n∑

m=0

am =
∞∑

m=n+1

am . (57)

Proof Evidently,

g(z) =
∞∑

k=0

βk zk
[
f (1/β) −

∞∑

m=0

amβmzm
]

in the circle |z| < 1/|β|. The left equality (57) follows from it. The right equality (57)
arises from the left one taking into account the convergence of the last series.

1d. Let

f (z) =
∞∑

n=0

anz
n+1, an = Anγ

n, (58)

g(z) = f (z)

1 − βz
=

∞∑

n=0

bnz
n+1, bn =

n∑

k=0

akβ
n−k . (59)

Suppose

γ > 0, |β| > γ, |An | � A, A > 0.
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Then

bn = Bnβ
n, Bn =

n∑

k=0

Ak

(
γ

β

)k

, |Bn | < B = A

1 − γ /|β| . (60)

We omit an elementary proof.

Appendix 2: Representation of a certain standard function

The formula

√
1 − 2xz + z2 = 1 − xz −

∞∑

n=1

Pn1(x)z
n+1 (61)

is valid (Antonov et al. 2010; Kholshevnikov and Shaidulin 2014) on the product of a segment
−1 � x � 1 and a circle |z| � 1. Here

Pn1(x) =
∫ x

−1
Pn(y) dy,

Pn being Legendre polynomial with the standard normalization Pn(1) = 1.
Functions Pn1 have the following properties (Kholshevnikov and Shaidulin 2014, 2015b):

Pn1(cos θ) =
√
2 sin θ

πn3

{
cos

[(
n + 1

2

)
θ + π

4

]
+ r(n, θ)

n sin θ

}
,

|Pn1(cos θ)| <

√
2/π

n3/2
. (62)

Here r(n, θ) is bounded under n � 1, 0 � θ � π ; the exponent 3/2 in the estimate of |Pn1|
is exact. Moreover, Pn1(0) = 0 if n is even, and

Pn1(0) = (−1)(n+1)/2 (n − 2)!!
(n + 1)!! ∼ (−1)(n+1)/2

√
2/π

n3/2
(63)

if n is odd.

Appendix 3: Asymptotics of a certain integral

An asymptotic representation (under ν → ∞) with a remainder

∫
yν dx =

k∑

n=0

cn
yν+n+1

(x − bc)2n+1 + (2k + 1)ck

∫
yν+k+1 dx

(x − bc)2k+2 (64)

is true. Here

y = x2 − 2bcx + b2, cn = (2n − 1)!!
2n+1(ν + 1)n+1

,

the point x0 = bc must not belong to the segment of integration.
To prove (64) it is sufficient to differentiate it.
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Limiting ourselves to the first two terms in the right hand side of (64) we obtain

∫
yν dx � yν+1

2(ν + 1)(x − bc)
+ yν+2

4(ν + 1)(ν + 2)(x − bc)3
+ · · · (65)

As a consequence of (64) it is easy to establish, that

∫
xyν dx = xyν+1

2(ν + 1)(x − bc)
+ bc

k∑

n=1

cn
yν+n+1

(x − bc)2n+1 +

+(2k + 1)bcck

∫
yν+k+1 dx

(x − bc)2k+2 . (66)

Limiting ourselves to the first two terms in the right hand side we receive

∫
xyν dx � xyν+1

2(ν + 1)(x − bc)
+ bcyν+2

4(ν + 1)(ν + 2)(x − bc)3
+ · · · (67)

Let I be the integral (67) taken between 0 and a, a > 0. We assume the possibility that
x0 ∈ [0, a]. Let us prove the asymptotic representation:

I =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yν+2(0)
4(ν+1)(ν+2)(bc)2

+ · · · , if a − 2bc < 0,

yν+1(a)
ν+1 + 2yν+2(a)

(ν+1)(ν+2)a2
+ · · · , if a − 2bc = 0,

ayν+1(a)
2(ν+1)(a−bc) + bcyν+2(a)

4(ν+1)(ν+2)(a−bc)3
+ · · · , if a − 2bc > 0.

(68)

The variable y(x) is a downward-convex function, and takes the maximum at one of
the endpoints of the segment [0, a]. We consider three cases depending on the sign of the
difference y(a) − y(0) = a(a − 2bc).

(a) a − 2bc < 0, max y(x) = y(0) > y(a), bc > a/2.
If bc > a, then we may use (67) straightforwardly. If a/2 < bc � a we may restrict
ourselves to an integration over the segment [0, a/2]. Indeed,

∫ a/2

0
xyν dx ∼ bcyν+2(0)

4(ν + 1)(ν + 2)(bc)3
,

∫ a

a/2
xyν dx <

a2

2
ȳν, ȳ = max{y(a/2), y(a)} < y(0).

(b) a − 2bc = 0, max y(x) = y(a) = y(0).
The function y(x) is symmetric with respect to the point x0 = bc = a/2. After the
substitution x = x0 + z we have

I = a

2

∫ a/2

−a/2
yν dz +

∫ a/2

−a/2
zyν dz = a

∫ a/2

0
yν dz = a

∫ a

a/2
yν dx .

The last integral over the segment from a/2 to 3a/4 may be thrown off. For the integral
from 3a/4 to a we may use (65).

(c) a − 2bc > 0, max y(x) = y(a) > y(0).
If bc < 0, then x0 lies out of the segment of integration, and (68) follows from (67).
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Let bc � 0. Then bc < a/2, a − bc > a/2, so
∫ a/2

0
xyν dx <

a2

8
ȳν, ȳ = max{y(0), y(a/2)} < y(a).

For the integral between a/2 and a we may use the formula (67).
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