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Abstract The use of space-based orbital reflectors to increase the total insolation of the
Earth has been considered with potential applications in night-side illumination, electric
power generation and climate engineering. Previous studies have demonstrated that families
of displaced Earth-centered and artificial halo orbits may be generated using continuous
propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the
circular restricted three body problem, such that, the space mirror attitude reflects sunlight in
the direction of Earth’s center, increasing the total insolation. Using the Lindstedt–Poincaré
and differential corrector methods, a family of halo orbits at artificial Sun–Earth L2 points
are found. It is shown that the third order approximation does not yield real solutions after the
reflector acceleration exceeds 0.245 mm s−2, i.e. the analytical expressions for the in- and
out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is
required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and
applying the differential corrector method, a family of displaced periodic orbits close to the
Earth are therefore found, with a solar reflector acceleration of 2.686 mm s−2.
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96 F. J. T. Salazar et al.

1 Introduction

The global mean Earth’s surface temperature depends mainly on the net amount of radiation
arriving on the Earth’s surface (McGuffie and Henderson-Sellers 2005). Space-based geo-
engineering schemes propose to alter the amount of incoming sunlight at the Earth’s surface,
changing the average global temperature with minimal consequences for the ecosystem and
expected favorable results (McInnes 2010a). Supposing that a period of cooling similar to
the ‘little ice ace’ occurred from the sixteenth and nineteenth centuries (Le Roy Ladurie
1971; Free and Robock 1999) was coming, or future supervolcanic eruption took place, e.g.
Toba mega-eruption (Zielinski et al. 1996), which would alter the reflectivity of the Earth
and cool the climate. Then, in the twenty-first century, a colder weather would greatly impact
agriculture, economics, and energy demand. Therefore, it is interesting to speculate on future
engineering plans to avoid such climate cooling.

The use of orbiting mirrors to reflect sunlight to the Earth has been the field of study for
different applications, e.g. increasing the length of daylights for electric power generation or
lighting up the darks days in thewinter (Glaser 1968; Oberth 1972; Ehricke 1979; Canady and
Allen 1982; Leary 1993; Frass et al. 2013), or the so-called Mars climate engineering (Oberg
1981; McKay et al. 1991; Fogg 1995; Zubrin and McKay 1997; McInnes 2002, 2010b), due
to the great quantity of energy leverage delivered rapidly by the mirrors (Maunter and Parks
1990). Thus, large-scale solar reflectors seem to be a fascinating instrument to prevent the
occurrence of cooling events that have taken place in the past.

In thiswork, in order to redirect solar radiation to increase the amount of sunlight onEarth’s
surface, two suitable locations have been considered in the circular restricted three body
problem (CRTBP) to deploy a solar reflector. The first location is at an artificial Sun–Earth
L2 point, which can be generated from a continuous acceleration, e.g. solar sail or electric
low thrust propulsion system (McInnes et al. 1994; McInnes 1999; Baig and McInnes 2009;
Morimoto et al. 2007). By considering the solar radiation pressure on a perfectly flat reflecting
spacemirror, it is shown that the required equilibrium condition, so that sunlight is reflected in
the direction of the Earth’s center, generates artificial L2 points everywhere on the x-axis from
the natural L2 point towards the Earth’s center. The first goal of this work is to find periodic
orbits about an artificial L2 point, such that the mirror attitude is oriented to guarantee that
the sunlight is reflected in the direction of Earth’s center. Analytical and numerical L2 halo
orbits for a solar reflector are obtained using the Lindstedt–Poincaré and differential corrector
methods (Thurman and Worfolk 1996), respectively. Analytical solutions are derived from a
third order Taylor series expansion about artificial L2 point, while the differential corrector
method uses as first guess the third order solution (Szebehely 1967; McInnes 1999; Baoyin
andMcInnes 2006; Baig andMcInnes 2009; Salazar andWinter 2016). The analytical results
yield imaginary solutions after the reflector acceleration exceeds 0.245 mm s−2, i.e. close
to the natural L2 equilibrium point. Thus, a larger solar reflector acceleration is required to
obtain periodic orbits closer to the Earth.

Displaced Earth-centered orbits are an attractive option to deploy space reflectors and
increase the reflector acceleration. Since solar radiation force greatly affects the reflector
orbits about Earth (Salazar et al. 2016), a family of non-Keplerian polar orbits for solar
reflectors can be generated managing the reflector orientation, so that the solar radiation
pressure applies a force on the mirror surface, dislocating the polar orbit from the Earth’s
center to behind it along the Sun–Earth line (McInnes and Simmons 1992). A two-body
analysis, i.e. Earth-reflector approximation, generates periodic orbits relative to an inertial
frame, which can be introduced as initial guesses in the differential corrector method, so that
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Periodic orbits for space-based reflectors 97

displaced Earth-centered orbits can then be obtained for the Sun–Earth-reflector three-body
problem.

2 Equations of motion

The motion of a solar space reflector in the Sun–Earth system can be approximated by
the equations of the CRTBP (Szebehely 1967). In this approach, there exist five natural
equilibrium points, known as Lagrangian points. However, for the Sun–Earth-reflector three-
body problem, the solar reflector attitude may be oriented so that new artificial equilibrium
solutions may be generated (McInnes et al. 1994).

Assuming the distance between the Sun and Earth, the sum of the masses of them and
gravitational constant equal to unity, the vector equation of motion for an idealised, perfectly
reflecting solar reflector can then be written with respect to a synodic rotating frame of
reference (x, y, z) with unit angular velocity vector ω and origin at their common center-of-
mass, as (McInnes et al. 1994)

r̈ + 2ω × ṙ = ∇V + a, (1)

where r = [x y z]T denotes the position vector of the solar reflector with respect to the
center of mass, as shown in Fig. 1, and the solar radiation acceleration a and the effective
potential function V are defined by

a = β
1 − μ

r21

(
r̂1 · n

)2 n, (2)

V =
(
1 − μ

r1
+ μ

r2

)
+ 1

2
(ω × r) · (ω × r) , (3)

where the mass ratio μ = 3.04036 × 10−6 (Richardson 1980), r1 = [x + μ y z]T and
r2 = [x − (1 − μ) y z]T denote the position vectors of the space reflector with respect to
the Sun and Earth, respectively. In addition, r̂1 is directed along the Sun-line, n is the reflector
attitude unit normal vector, and β is the reflector lightness number.

Equilibrium solutions require that r̈ = ṙ = 0. It then can be shown that the equilibrium
condition implies that the required reflector attitude in the synodic rotating frame for new
artificial equilibrium points is given by (McInnes et al. 1994)

Fig. 1 Earth–Sun-reflector
circular restricted three-body
problem, in order that sunlight is
reflected in the direction of the
Earth’s center. L1 and L2
represent the natural collinear
equilibrium solutions and the
reflector attitude angle is denoted
by α (not to scale)

123



98 F. J. T. Salazar et al.

n = − ∇V

|∇V | . (4)

Denoting by α the angle between the incident sunlight vector r̂1 and the normal vector n,
we know that, according to the law of reflection, the angle of incidence must be equal to the
angle of reflection. Therefore, if the mirror is reflecting sunlight towards the Earth’s center,
then the law of reflection requires

n = r̂1 + r̂2∣
∣r̂1 + r̂2

∣
∣ , (5)

where r̂2 is directed along the Earth-line, as shown in Fig. 1. Since we need to guarantee that
the sunlight is reflected in the direction of Earth’s center, we will only focus on equilibrium
solutions that satisfy simultaneously Eqs. (4) and (5). These regions can be easily found by

taking the scalar product n1 · n2 = ∇V ·(r̂1+r̂2)
|∇V ||r̂1+r̂2| , where n1 = − ∇V

|∇V | and n2 = (r̂1+r̂2)
|r̂1+r̂2| . From

the scalar product, we can define the angle θ = cos−1 (n1 · n2). Thus, the surfaces defined
by θ = 0◦ where n1 = n2, correspond to equilibrium solutions where the required reflector
attitude is satisfied.

Evaluating this constraint, it is found that the family of equilibrium points, that redirect
sunlight in the direction of the Earth’s center, lies on x-axis from the Lagrangian point
L2 to the Earth’s center as shown in Fig. 2. Additionally, the definition of solar radiation
acceleration, Eq. (2), and the orientation of artificial equilibrium points, Eq. (4), imply that
the x-coordinate of the artificial L2 points depends explicitly on the lightness number β. In
the next sections, analytical and numerical periodic orbits (i.e. halo orbits) about these new
L2 points will be obtained.

3 Reflector Sun–Earth L2 point halo orbits

3.1 Third-order expansion

To find periodic orbits about the new collinear equilibrium points, the equations of motion
near an equilibrium position r0 = [x 0 0]T , with 1 − μ < x < 1.0101 (natural L2 point
location), will be approximated as shown in Fig. 2. Although shadows effects are important
considerations (McInnes 1999; Pavlak 2011), the eclipses will not be included in this inves-
tigation. The scope of this analysis is restricted to understanding the existence of periodic
orbits about new collinear points for solar reflectors in the Sun–Earth system. Thus, defining
the vector force F = ∇V + a, such that, the reflector normal vector n obeys the constraint
Eq. (5), the definition of solar radiation pressure yields an expression of the form

Fig. 2 Space reflector in a
periodic halo orbit about an
artificial equilibrium point
beyond L2, so that sunlight is
redirected towards the Earth. The
artificial point is denoted by L∗

2
(not to scale)
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Periodic orbits for space-based reflectors 99

a = β
1 − μ

r21

(

r̂1 ·
(

r̂1 + r̂2∣
∣r̂1 + r̂2

∣
∣

))2
r̂1 + r̂2∣
∣r̂1 + r̂2

∣
∣ , (6)

= β
1 − μ

r21

(
1 + r̂1 · r̂2∣
∣r̂1 + r̂2

∣
∣

)2
r̂1 + r̂2∣
∣r̂1 + r̂2

∣
∣ .

A Taylor series expansion of F to third-order about r0 is then found by substituting the
vector position r = r0 + δr into Eq. (1) (Edwards 1973):

δr̈ + 2ω × δṙ =
[
dF
dr

]

r0

δr + 1

2!
[
d2F
dr2

]

r0

δr2 + 1

3!
[
d3F
dr3

]

r0

δr3 + O
(
δr4

)
, (7)

where δr = [δx δy δz]T , and
[
dF
dr

]

r0
,
[
d2F
dr2

]

r0
,
[
d3F
dr3

]

r0
are the first, second and third deriv-

ative matrices of vector force F = [
Fx F y Fz

]T about r0, respectively. Additionally, the
second and third order terms for δx, δy, δz are included in δr2 and δr3, respectively.

The scalar form of Eq. (7) is given by

δẍ − 2δ ẏ = Aδx + Cδx2 + D
(
δy2 + δz2

) + Fδx3 + Gδx
(
δy2 + δz2

)
,

δ ÿ + 2δẋ = (1 + B)δy + Eδxδy + Hδy3 + I δy
(
δx2 + δz2

)
, (8)

δz̈ = Bδz + Eδxδz + Hδz3 + δz
(
I δx2 + Jδy2

)
,

where A = Fx
x

∣∣
r0

, B = Fz
z

∣∣
r0
, C = Fx

xx |r0
2 , D =

Fx
yy

∣
∣∣
r0

2 , E = Fy
xy

∣∣
r0
, F = Fx

xxx |r0
6 ,

G =
Fx
xyz

∣
∣∣
r0

2 , H = Fy
yyy

∣∣
r0

6 , I = Fy
xxy

∣∣
r0

2 , and J = Fy
xzz

∣∣
r0

2 . Thus, the constant terms in Eq. (8)
depends explicitly on the x−coordinate of artificial L2 point.

3.2 Third-order solution

In this section, in order to to obtain periodic solutions to the equations of motion, Eq. (8), the
Lindstedt–Poincaré method will be used. Firstly, we will remove the nonlinear terms in Eq.
(8), so that the problem is reduced to a linear analysis about r0. It is then found that the linear
equations of motion can be written as δẊ = MδX, where δX = [δr δṙ]T and the matrix M
is given by

M =
[
0 I
U �

]
, (9)

where I is the identity matrix, and the components of the matrices U and � are given by

U =
⎡

⎣
A 0 0
0 1 + B 0
0 0 B

⎤

⎦ , � =
⎡

⎣
0 2 0

−2 0 0
0 0 0

⎤

⎦ . (10)

Note that the z-component is decoupled from x, y, and that the out-of-plane motion
corresponds to a periodic oscillation with angular frequency

√−B. On the other hand, it can
be shown that the characteristic polynomial for the x, y linearized dynamics has two pairs
of purely imaginary eigenvalues ±iλ and one pair of real eigenvalues ±s, corresponding to
a center and saddle points, respectively (Farquhar et al. 1977; Richardson 1980; Morimoto
et al. 2007; Baig and McInnes 2009). Since we are only interested in bounded solutions for
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100 F. J. T. Salazar et al.

δx and δy, it is easy to show that the linear problem defined by Eq. (9) possesses a bounded
solution

δx = X cos λt,

δy = κX sin λt, (11)

δz = ηX cos
√−Bt,

where the in-plane frequency and the ratio of y- and x-axis amplitude are given by

λ =

√√
√
√− A + B − 3

2
+

√(
A + B − 3

2

)2

− A (1 + B), (12)

κ = −λ2 + A

2λ
, (13)

and η = Z
X is an free parameter.

Since the linear solution is not, in general, periodic, then nonlinearities should be included
to find periodic solutions about r0 (Farquhar et al. 1977; Richardson 1980; Farquhar et al.
1980).

The Lindstedt–Poincaré method assumes that if the nonlinear terms are small, then a
periodic solution of the nonlinear system Eq. (8) is essentially a perturbation of a periodic
solution of the linear system Eq. (9) (Drazin 1992), which can be determined introducing a
frequency correction, i.e. a new parameter τ = wt , where w = 1 + εw1 + ε2w2. Then the
original problem becomes

w2δx ′′ − 2wδy′ = Aδx + Cδx2 + D
(
δy2 + δz2

) + Fδx3 + Gδx
(
δy2 + δz2

)
,

w2δy′′ + 2wδx ′ = (1 + B)δy + Eδxδy + Hδy3 + I δy
(
δx2 + δz2

)
, (14)

w2δz′′ + λ2δz = Eδxδz + Hδz3 + δz
(
I δx2 + Jδy2

) + Δδz,

where Δ = λ2 + B, and δx ′, δx ′′ denote the first and second derivatives with respect to τ

(similarly for δy and δz coordinates).
To solve the nonlinear system Eq. (14), it will be supposed solutions of the form

δx = εδx1 + ε2δx2 + ε3δx3,

δy = εδy1 + ε2δy2 + ε3δy3, (15)

δz = εδz1 + ε2δz2 + ε3δz3,

and that Δ = O
(
ε2

)
(Thurman and Worfolk 1996). Substituting these expressions into the

equations ofmotion Eq. (14), and grouping components of the same order in ε, then system of
equations of first, second and third order, as well as their periodic solutions, can be obtained as
shown in Eqs. (28) through (33) (see “Appendix 1” section). The secular terms of the systems
of equations of second and third order, are cancelled through the following constraints

w1 = 0, (16)

w2 = s1X
2 + s2Z

2, (17)

l1X
2 + l2Z

2 + Δ = 0. (18)

The expressions for si , li are listed in “Appendix 3” section. The ε term is removed from all
the equations changing the scale of variables by the function X → X

ε
and Z → Z

ε
.
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Periodic orbits for space-based reflectors 101

Fig. 3 In-plane and out-of-plane
frequencies for the linear
approximation and x-coordinate
of artificial L2 point versus
lightness number

Combining the periodic solutions of the first, second and third order equations, the com-
plete periodic solution for the third-order approximation Eq. (7) is given by

δx (t) = X cos τ1 + P20 + P2 cos 2τ1 + P3 cos 3τ1,

δy (t) = κX sin τ1 + Q2 sin 2τ1 + Q3 sin 3τ1, (19)

δz (t) = ηX sin τ1 + M2 (3 − cos 2τ1) + M3 cos 3τ1,

where τ1 = λwt , and λ, κ , η come from the linear approximation, Eq. (11). The expression
for the coefficients Pi , Qi , Mi are given in “Appendix 2” section. This solution corresponds
to a halo orbit about the new artificial L2 point, whose period T is equal to 2π

λw
, where

w = 1 + s1X2 + s2Z2, and the minimum in-plane amplitude X can be computed from

Eq. (18) by setting Z = 0, i.e. X ≥
√

−Δ
l1
. Counterclockwise motion corresponds to positive

values of η.
Figure 3 shows the x-coordinate of the artificial L2 point, as well as the in-plane and out-

of-plane frequencies of the linearized system Eq. (9), as a function of the lightness number
β. The location of the natural L2 point corresponds to β = 0, and the difference between the
in-plane and out-of-plane frequencies is quite small, or approximately, a relative difference
of 3.7%. For β 	= 0, the relative difference decreases as the lightness number increases,
and it approaches zero when β = 0.042. This fact implies that the second order frequency
correction w2 is small when β = 0 and it approaches zero at β = 0.042, as shown below.

Figures 4 and 5 show the x-direction amplitude X and the period for the artificial halo
orbits, respectively, with the z-direction amplitude set as η = 0, 1, 2, 3. For β = 0 and η ≈ 1,
an amplitude X of approximately 200,000 km and an orbit period of 180 days correspond
to a classical halo orbit about L2 point. As can be seen in Figs. 4 and 5, the amplitude X
and orbit period are decreasing functions when 0 ≤ β ≤ 0.042, obtaining an amplitude of
approximately 1400 km (about one-quarter the Earth’s radius) and an orbit period of 140
days at β = 0.042. Note the amplitude X decreases much faster than orbit period does.
Therefore, the third order approximation and the reflectivity constraint, Eq. (5), produce
periodic solutions that converge quickly to the equilibrium points when β increases. For
β > 0.042 the expression Δ

l1+l2η2
in Eq. (18) is strictly positive for η = 0, 1, 2, 3. Therefore,

imaginary solutions are found for the third-order approximation given by Eq. (19) when
β > 0.042 and |η| ≤ 3.

Finally, Fig. 6 shows the second order frequency correction w2 and λ as functions of the
lightness number. As noted above, w2 is very small at β = 0 and it approaches zero quickly.
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102 F. J. T. Salazar et al.

Fig. 4 x-direction amplitude X
for halo orbits at artificial L2 near
to the natural L2 point versus
lightness number, with various Z

Fig. 5 Orbit period of halo
orbits at artificial L2 near to
natural L2 point versus lightness
number, with various Z

Fig. 6 Second order frequency
correction w2 and λ versus
lightness number, with various Z

Thus, the z-frequency approaches λ as β increases. Figures 4, 5 and 6 also show that the
z-direction amplitude practically does not affect the x-direction amplitude, orbit period T
and w2 when X < 2Z .
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Periodic orbits for space-based reflectors 103

4 Numerical computation of artificial Halo orbits

As explained in Sect. 3.2, the pair of real eigenvalues ±s for the in-plane linear approxi-
mation implies that the new L2 points are unstable. Therefore, the initial conditions given
by the Lindstedt–Poincaré analysis are not enough to generate periodic solutions for the
CRTBP with solar perturbation. For the purpose of computing periodic orbits, the differen-
tial corrector method can be used, which is an iterative method that starts with the third order
approximation as an initial guess, and after successively better approximations, new initial
conditions converge to a desired final state (Koon et al. 2011).

Since halo orbits are symmetric about the xz-plane (y = 0) and that they intersect this
plane perpendicularly (ẋ = ż = 0), then let X0 = [x0 0 z0 0 ẏ0 0]T be an initial state given
by the Lindstedt–Poincaré approximation, Eq. (19), which intersects perpendicularly the xz-
plane. On the first return to the xy-plane at t = t f , its state is X f = [

x f 0 z f ẋ f ẏ f ż f
]T .

Thus, a periodic solution exists if ẋ f = ż f = 0. Since ẋ f , ż f may not be zero, the three
non-zero initial conditions (x0, z0, and ẏ0) can be altered slightly with the purpose of driving
these velocities to zero.

Let ΔX (t) denote a slight variation relative to the reference solution X (t) (known) cor-
responding to X0. Supposing that the initial and final displacements are small enough, they
are linearly related by the following expression (Thurman and Worfolk 1996)

ΔX
(
t f + Δt

) = �
(
t f , t0

)
ΔX (t0) + Ẋ

(
t f

)
Δt, (20)

where�
(
t f , t0

)
is the state transition matrix from time t0 to t f , evaluated along the reference

solution X (t) (Koon et al. 2011). If X0 + ΔX (t0) belongs to a halo orbit, then the variation
ΔX (t) when the trajectory crosses the xz-plane is given by

ΔX
(
t f + Δt

) =
[
x∗
f − x f 0 z∗f − z f − ẋ f ẏ∗

f − ẏ f − ż f
]T

, (21)

where X∗
f = [x∗

f 0 z∗f 0 ẏ∗
f 0]T denotes the halo orbit intersection with the xz-plane at

t = t f + Δt , as the desired final state (unknown). Thus, the correction terms (Δx0, Δz0,
Δẏ0, and Δt) can be determined from Eq. (20). For simplicity, it will be assumed Δz0 = 0,
so that the variations Δx0, Δẏ0 and Δt can be easily computed inverting a 3 × 3 matrix as
follows

⎡

⎣
Δx0
Δẏ0
Δt

⎤

⎦ =
⎡

⎣
φ21 φ25 ẏ f

φ41 φ45 ẍ f

φ61 φ65 z̈ f

⎤

⎦

−1 ⎡

⎣
0

−ẋ f

−ż f

⎤

⎦ , (22)

where φi j are elements of the matrix� (tt , t0). The new initial conditionsX0 +ΔX0 are then
used to begin a second iteration, until ẋ f = ż f = 0 (or within some acceptable tolerance).

Figures 7, 8 and 9 show a family of halo orbits obtained by the differential corrector
method for β = 0, 0.02, 0.042 and z-direction amplitude setting η = 0, 1, 2. Figure 7 shows
halo orbits around the natural L2 point. In Figs. 8 and 9, the solar reflector, placed on the
artificial halo orbit, redirects sunlight towards the Earth’s center.

The reflector areal density with β = 0.042 is given by σ = 1.53
β

= 36.42 g m−2 (McInnes

1999). This value corresponds to a space reflector acceleration of 0.245 mm s−2. Therefore,
the reflector acceleration cannot exceed 0.245 mm s−2 for the artificial halo orbits found in
this work. Similar results are obtained by Baoyin andMcInnes (2006) and Baig andMcInnes
(2009) for halo orbits about artificial L1 and L2 points in the Sun–Earth-spacecraft CRTBP
using solar sail and low-thrust propulsion, respectively, such that, the reflector normal vector
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104 F. J. T. Salazar et al.

Fig. 7 Natural halo orbits around L2 point with β = 0 and η = 0, 1, 2

Fig. 8 Artificial halo orbits around new L2 point with β = 0.02 and η = 0, 1, 2
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Periodic orbits for space-based reflectors 105

Fig. 9 Artificial halo orbits around new L2 point with β = 0.042 and η = 0, 1, 2

is directed along the Sun-spacecraft line (reflector attitude angle α = 0◦) or along the Sun–
Earth line (reflector attitude vector n = [1 0 0]T ). However, in this paper, both the angle α

and vector n are changing about the orbit to satisfy the reflectivity constraint, Eq. (5).
Large scale space-based geo-engineering proposals require minimizing the mass per unit

area σ (McInnes 2010a), so that a larger reflector acceleration is required. The third order
approximation, used in this work, produces imaginary values for the x-direction amplitude
X when β > 0.042. It is therefore necessary to use another scheme that permits increasing
the lightness number (i.e. reflector acceleration).

5 Displaced Earth-centered orbits

Displaced polar orbits have been studied for different applications, e.g. solar sails, orbiting
reflectors to increase the amount of sunlight (McInnes and Simmons 1992; Dankowicz 1994;
McInnes 1999, 2010b; Bewick et al. 2011; Salazar et al. 2016). These are basically polar
circular orbits, displaced behind Earth along the Sun–Earth line due to the solar radiation
force exerted on the space mirror surface, as shown in Fig. 10 (McInnes and Simmons 1992).

Although the existence of this kind of orbits has been demonstrated in the two-body
problem, and more accurate models like Hill’s approximation have been studied (Bookless
and McInnes 2006), it is possible to consider them as an initial guess in the differential
corrector method described previously, such that bounded solutions can be obtained in the
Sun–Earth-reflector CRTBP.

In order to obtain an initial state, a perfect reflector placed at rp will be assumed. The
rotation of the reflector will be about the X -axis of an inertial coordinate system XY Z , with
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106 F. J. T. Salazar et al.

Fig. 10 Space mirror on an
Earth-centered displaced orbit

the origin of the frame at the Earth’s center, as shown in Fig. 10. Similarly, the angle between
the reflector normal unit vector n and the Sun-line will be defined by α, and the characteristic
reflector acceleration will be denoted by a. In this two-body approximation, it is assumed
that the Sun-line is given by the unit vector s = [1 0 0]T , i.e. the motion of the Sun around
the Earth is not accounted for.

In cylindrical polar coordinates (ρp , θp , z p) the equations of motion for a perfect space
mirror are (McInnes 2010b)

ρ̈p − ρp θ̇
2
p + ρp

rp

(
μE

r2p

)

− a cos2 α sin α = 0,

ρp θ̈p + 2ρ̇p θ̇p = 0, (23)

z̈ p + z p
rp

(
μE

r2p

)

− a cosα3 = 0,

where μE = 398600.440 km3 s−2 is the Earth gravitational constant and rp =
√

ρ2
p + z2p .

A circular displaced orbit must satisfy ρ̈p = θ̈p = z̈ p = 0 and ρ̇p = ż p = 0. On the other
hand, in order to guarantee that the space mirror reflects sunlight towards the Earth’s center,
the geometry of the incident ray (see Figs. 1 and 10) yields an expression for the attitude
angle α

tan α = tan

(
1

2
tan−1

(
ρp

z p

))
. (24)

Therefore, if this orientation is fixed previously, the required orbital angular velocity and
characteristic acceleration for an Earth-centered displaced orbit can be found from Eq. (23)
to be

wp = w̃p

(
1 −

(
z

p

)
tan α

)1/2

, (25)

a = z pw̃
2
p

(
1 + tan α2)3/2 , (26)

where wp = θ̇p and w̃2
p = μE

r3p
.

From Eq. (26), fixed values for a can be chosen, so that contour lines of constant accelera-
tion are produced in the ρp − z p plane, as shown in Fig. 11, where it can be seen that a larger
reflector acceleration is possible for orbits close to the Earth. Additionally, a linear stability
analysis has shown that the boundary ρp = 4z p (dashed line in Fig. 11) separates the ρp − z p
plane into stable (ρp > 4z p) and unstable regions (McInnes 2010b). Therefore, circular polar
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Fig. 11 Contour lines of
constant reflector acceleration a
(mm s−2), the dashed line
(ρp = 4z p) separates the
ρp − z p plane into stable
(ρp > 4z p) and unstable regions

orbits inside the stable region, will be defined as an initial state in the differential corrector
method.

Fixing a radius ρp and a displacement z p , so that the space reflector intersects perpendic-
ularly the xz-plane (see Fig. 10), the corresponding coordinates with respect to the inertial
frame XY Z are given by

(
z p, 0,−ρp, 0,−ρpwp, 0

)
. Thus, the coordinates with respect to

the synodic rotating frame, corresponding to the initial state X0 = [x0 0 z0 0 ẏ0 0]T , are
obtained as

x0 = z p + 1 − μ,

z0 = −ρp, (27)

ẏ0 = − (
z p + ρpwp

)
,

where ρp, z p , and wp have been made nondimensional. Thus, the differential corrector is
applied by iterating from the initial guess X0.

Figure 12 shows a family of 1-year displaced orbits in the CRTBP, obtained by a numerical
integration of Eq. (1), and using as initial states circular polar orbits that belong to the linear
stable region shown in Fig. 11. The Earth is illustrated by an Earth-centered blue circle that
has the same radius of the Earth in normalized units. Figure 12 shows four displaced orbits
with initial radius ρp = (

4z p + 1
)
Earth radii, where the displacement z p = 2.5, 5, 7.5, 10

Earth radii, and the reflector acceleration a = 35.83, 10.1, 4.68, 2.69 mm s−2, respectively.
Thus, the differential corrector method permits to find a new set of displaced orbits in the
Sun–Earth-reflector CRTBP. Previous works have only obtained this kind of orbits in the two-
body problem, assuming fixed solar acceleration vector directed along the Sun-line, as was
described previously (Dankowicz 1994; McInnes 1999, 2010b; Bewick et al. 2011; Salazar
et al. 2016).

Although linear stable circular polar orbits could be generated with any displacement
z p in the two-body scenario, as shown in Fig. 11, in three-body scenario, orbits with large
displacements are found to be strongly perturbed by solar gravitational force. Additionally,
the characteristic acceleration a decreases as displacement z p increases for ρp > 4z p , as
shown in Fig. 11. Despite that the solar gravitational perturbations will affect the dynamics
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Fig. 12 Displaced orbits with ρ0 = (
4z p + 1

)
Earth radii, where the displacement z p = 2.5, 5, 7.5, 10 Earth

radii, and the reflector acceleration a = 35.83, 10.1, 4.68, 2.69 mm s−2, respectively. Earth is illustrated by
an Earth-centered blue circle that has the same radius of the Earth in normalized units

of the solar reflector, it is possible to increase the acceleration, even for large displace-
ments. The cost for that is the loss of stability. For example, Fig. 13 shows a classical
unbounded orbit for ρp < 4z p in the CRTBP, with initial radius ρp = 41 Earth radii, ini-
tial displacement z p = 40 Earth radii, and reflector acceleration a = 2.671 mm s−2. Note
that the value obtained for the acceleration is similar to the value computed for the dis-
placed orbit presented in Fig. 12. In this way, previous studies using the two-body problem
and Hill’s equations as an approximation to the CRTBP, have designed control techniques
to avoid escape from the nominal displaced orbit (McInnes 1999; Bookless and McInnes
2006).

A periodic behavior for space-based reflector orbits in the CRTBP exists then near the
Earth and near the natural L2 point. However, the linear analysis in the two-body problem and
the third order approximation are not enough to determine the existence of periodic orbits
between these two locations. Only unbounded displaced orbits far from the Earth are found
in this paper, as shown in Fig. 13.

6 Conclusions

Space-based solar reflectors have been considered to increase the amount of sunlight on the
Earth’s surface. New L2 equilibrium points were found in the Sun–Earth-reflector CRTBP,
so that the reflector attitude redirected the sunlight towards the Earth. In this manner, a
family of artificial halo orbits about new L2 points were obtained through a third order
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Fig. 13 Unbounded Earth-centered orbit with ρ0 = 41 Earth radii, z0 = 40 Earth radii, and a = 2.671 mm
s−2. Earth is illustrated by an Earth-centered blue circle that has the same radius of the Earth in normalized
units

approximation, such that the sunlight was reflected onto the Earth’s center by the reflectors
deployed at these locations. Due to the instability of the new equilibrium points, the third
order analytical solutions were used as an initial guess in the differential corrector method,
which was implemented to find numerical halo orbits. Artificial halo orbits were obtained
near the natural Sun–Earth L2 point, where the reflector acceleration did not exceed 0.245
mm s−2.

In order to increase the reflector acceleration, i.e. to reduce the areal density, a family of
displaced Earth-centered orbits has been obtained. Considering the Earth-reflector two-body
problem as an initial approximation, the required initial states have been derived as a function
of the radius and displacement of the orbit, and used in the differential corrector method to
obtain bounded solutions in the Sun–Earth CRTBP. Thus, displaced orbits relatively close to
the Earth were found. As a result, the reflector acceleration was greatly increased with respect
to the space mirrors placed on the artificial halo orbit. Additionally, unbounded displaced
orbits with larger displacements from the Earth were also found.
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Appendix 1: Lindstedt–Poincaré method

First order equations and their periodic solutions

δx ′′
1 − 2δy′

1 − Aδx1 = 0

δy′′
1 + 2δx ′

1 − (1 + B) δy1 = 0 (28)

δz′′1 + λ2δz1 = 0

δx1 (τ ) = X cos λτ

δy1 (τ ) = κX sin λτ (29)

δz1 (τ ) = ηX cos λτ

Second order equations and their periodic solutions

δx ′′
2 − 2δy′

2 − Aδx2 = −2w1δx
′′
1 + 2w1δy

′
1 + Cδx21 + D

(
δy21 + δz21

)

δy′′
2 + 2δx ′

2 − (1 + B) δy2 = −2w1δy
′′
1 − 2w1δx

′
1 + Eδx1δy1 (30)

δz′′2 + λ2δz2 = −2w1δz
′′
1 + Eδx1δz1

δx2 (τ ) = P20 + P2 cos 2λτ

δy2 (τ ) = Q2 sin 2λτ (31)

δz2 (τ ) = M2 (3 − cos 2λτ)

Third order equations and their periodic solutions

δx ′′
3 − 2δy′

3 − Aδx3 = −w2
1δx

′′
1 − 2w2δx

′′
1 − 2w1δx

′′
2 + 2w2δy

′
1 + 2w1δy

′
2

+ 2Cδx1δx2 + 2D (δy1δy2 + δz1δz2) + Fδx31
+Gδx1

(
δy21 + δz21

)

δy′′
3 + 2δx ′

3 − (1 + B) δy3 = −w2
1δy

′′
1 − 2w2δy

′′
1 − 2w1δy

′′
2 − 2w2δx

′
1 − 2w1δx

′
2 (32)

+ E (δx1δy2 + δx2δy1) + δy1
(
I δx21 + Hδy21 + Jδz21

)

δz′′3 + λ2δz3 = −w2
1δz

′′
1 − 2w2δz

′′
1 − 2w1δz

′′
2 + Δ

ε2
δz1

+ E (δx1δz2 + δx2δz1) + δz1
(
I δx21 + Jδy21 + Hδz21

)

δx3 (τ ) = P3 cos 3λτ

δy3 (τ ) = Q3 sin 3λτ (33)

δz3 (τ ) = M3 cos 3λτ

Appendix 2: Coefficients

First order coefficients

λ =

√√√√− A + B − 3

2
+

√(
A + B − 3

2

)2

− A (1 + B) (34)
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κ = −λ2 + A

2λ
(35)

Second order coefficients

P20 = p20X
2 (36)

P2 = p2X
2 (37)

Q2 = q2X
2 (38)

M2 = ηm2X
2 (39)

p20 = −
(
C + D

(
η2 + κ2

))

2A
(40)

p2 =
(
4λ2 + B + 1

) (
C + D

(
η2 − κ2

)) − 4λκE

2r2
(41)

q2 = κE
(
4λ2 + A

) − 4λ
(
C + D

(
η2 − κ2

))

2r2
(42)

r2 = 16λ2 − (
4λ2 + A

) (
4λ2 + B + 1

)
(43)

m2 = E

6λ2
(44)

Third order coefficients

P3 = 6λq33 − (
9λ2 + B + 1

)
p33

r3
(45)

Q3 = 6λp33 − (
9λ2 + A

)
q33

r3
(46)

M3 = m33

8λ2
(47)

p33 = (CP2 − ηDM2 − κDQ2) X + 1

4

(
F + G

(
η2 − κ2)) X3 (48)

q33 = E

2
(κP2 + Q2) X + κ

4

(
I + η2 J − κ2H

)
X3 (49)

r3 = (
9λ2 + A

) (
9λ2 + B + 1

) − 36λ2 (50)

m33 = E

2
(ηP2 − M2) X + κ

4

(
I + η2H − κ2 J

)
X3 (51)

Appendix 3: Coefficients for the nonsecular terms constraint

s1 = 1

s

[(
λ2 + 1 + B

) (
C (2p20 − p2) + κq2D + 1

4

(
3F + κ2G

))
(52)

− 2λ

(
E

(
κ

(
p20 − 1

2
p2

)
+ 1

2
q2

)
+ κ

4

(
I + 3κ2H

))]

s2 = 1

s

[(
λ2 + 1 + B

) (
7m2D + 3

4
G

)
− 1

2
λκ J

]
(53)

s = 4λ2 (1 + κλ) − 2λ (λ + κ)
(
λ2 + 1 + B

)
(54)
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l1 = E

2
(5m2 + 2p20 + p2) + 1

4

(
3I + κ2 J

) + 2s1λ
2 (55)

l2 = 3

4
H + 2s2λ

2 (56)
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