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Abstract The paper offers the fully analytic solution to the motion of a satellite orbiting
under the influence of the two major perturbations, due to the oblateness and the atmospheric
drag. The solution is presented in a time-explicit form, and takes into account an exponential
distribution of the atmospheric density, an assumption that is reasonably close to reality. The
approach involves two essential steps. The first one concerns a new approximate mathemat-
ical model that admits a closed-form solution with respect to a set of new variables. The
second step is the determination of an infinitesimal contact transformation that allows to
navigate between the new and the original variables. This contact transformation is obtained
in exact form, and afterwards a Taylor series approximation is proposed in order to make
all the computations explicit. The aforementioned transformation accommodates both per-
turbations, improving the accuracy of the orbit predictions by one order of magnitude with
respect to the case when the atmospheric drag is absent from the transformation. Numerical
simulations are performed for a low Earth orbit starting at an altitude of 350km, and they
show that the incorporation of drag terms into the contact transformation generates an error
reduction by a factor of 7 in the position vector. The proposed method aims at improving
the accuracy of analytic orbit propagation and transforming it into a viable alternative to the
computationally intensive numerical methods.
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1 Introduction

The accurate orbit prediction for satellites in lowEarth orbit (LEO) is vital for spacemissions,
from the design phase until the satellite decommissioning and beyond. The growing number
of space debris catalogued objects (expected to increase tenfold in the near future, reaching
about 200,000 tracked objects1) poses a real threat to LEO satellites, and therefore the ability
to simultaneously propagate a large number of orbits becomes essential to mission safety.
Today, there are threemain paradigmsof realistic orbit prediction: analytic, numeric and semi-
analytic.Analytic approaches involve the replacement of the original equations ofmotionwith
a new set, that is integrable and captures the essential character of themotion. Their prediction
accuracy decreases with time, but they offer a fast and computationally light method to
evaluate the position and the velocity on short time scales, that is enough for low Earth orbit
(LEO) satellites.2 We propose the convention to address an orbit propagation technique by
“analytic” if it involves no iterative methods, but only algebraic explicit equations. Some
authors address the aforementioned paradigm with the term “entirely analytic” (Vallado
2001). If a propagator is based solely on numerical integration schemes, it is addressed with
the term “numeric”, and any combination of the two aforementioned paradigms is called
semi-analytic.

The main drawback of numerical methods is that they are very slow and require consider-
able computational capabilities. In addition, onboard propagation needs to accommodate very
low computational resources, that are shared between several mission control algorithms. In
this context, the replacement of numerical methods by analytic propagators represents an
interesting alternative. On the other hand, although there are several analytic propagation
methods available in the literature, very few come with a full documentation package and
only a small part of them exhibit ellasticity with regard to the perturbing forces. For example,
the widely used Simplified General Perturbations (SGP) propagator family, initially intro-
duced by Hilton and Kuhlman (1966), improved by Lane et al. (1969) and available today
as SGP4/8 (LEO) and SDP4/8 (deep space) (full documentation available in Vallado et al.
2006), uses an atmospheric model based on power density functions and it is not adaptable
for other atmospheric models.

The main challenge for the analytic propagation of space orbits is brought by the pertur-
bations that act upon satellites. The two dominant perturbations for LEO satellites are the
Earth oblateness (modeled by the J2 zonal harmonic coefficient) and the atmospheric drag.
A smaller contribution is made by the solar radiation pressure, but its effect for short-term
propagation (up to a few days) is negligible. Long-term accurate propagation for LEO satel-
lites is non-realistic, given the presence of large amounts of uncertainties (see Dell’Elce and
Kerschen 2014).

The Main Problem in Artificial Satellite Theory deals with the realistic analytic or
semi-analytic propagation of satellites under the combined effect of the aforementioned
perturbations, which are of different nature. The oblateness perturbation is conservative
(although it exhibits a weakly-chaotic behaviour, see Irigoyen and Simo 1993; Celletti
and Negrini 1995), and may be approached (if considered separately) by classic canoni-
cal perturbation methods, as in Brouwer (1959), Deprit (1981), Cid and Lahulla (1969).

1 http://www.lockheedmartin.com/us/products/space-fence.html.
2 Due to the presence of significant uncertainties in the atmosphere (influence of the solar activity, day/night
density variations, the atmospheric bulge, winds), realistic long-term propagations in the presence of drag
cannot be addressed with deterministic tools (see Dell’Elce and Kerschen 2014).
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The atmospheric drag is a dissipative perturbation, and therefore it cannot be tackled by the
aforementioned methods.

Thefirst and perhapsmostwidely used analytic solution to the J2 problemwas proposed by
Brouwer (1959), although several other methods were previously proposed by Sterne (1958)
and Garfinkel (1959). Brouwer’s original solution is obtained through the Poincaré–von
Zeipel approach (see Zeipel 1916) and contains several singularities (for circular, equatorial
and critically inclined orbits). The first two were removed by Lyddane (1963), while the
singularity at the critical inclination was avoided (but not removed3), under very restrictive
assumptions, byVinti (1960). Onemajor drawback of the vonZeipelmethod is that it involves
non-explicit canonical transformations (a feature exhibited by all conventional approaches,
see Goldtsein et al. 2002). This inconvenient was overcome by Deprit (1969), who proposed
a method based on Lie transforms,4 that are fundamentally involved in his orbit propagation
approach through the natural intermediaries paradigm introduced in Deprit (1981). In the
quest for orbit propagators thatmay be implemented onboard small satellites,Deprit’smethod
saw a recent revival, as in Lara and Gurfil (2012), Gurfil and Lara (2014).

The combined effect of oblateness and atmospheric drag complicates the development
of an analytic solution. Brouwer and Hori (1961) proposed the same Poincaré–von Zeipel
method for the treatment of both perturbations, but their solution is not fully analytic since it
requires numerical manipulations. Barrio and Palacián (2003) propose an analytic approach
to the combined effect of oblateness and the drag produced by an exponentially distributed
atmospheric density on very eccentric orbits (like the geostationary transfer ones), butwithout
reaching explicit equations of motion.

A recent successful attempt to provide an approximate time-explicit solution for the
combined effect of the Earth’s oblateness and atmospheric drag was recently published in
Martinusi et al. (2015). However, these developments were carried out under the relatively
strong assumption of constant atmospheric density, and therefore the model’s validity is
limited to orbits with very low eccentricities (O

(
e2
) � 0).

The present paper considers the motion of a LEO satellite under the influence of the J2
perturbation and of an exponential atmosphere. It follows a similar propagation paradigm as
the one proposed by Deprit. The original mathematical model—a non-integrable system of
nonlinear ordinary differential equations (ODE)—is transformed into an integrable one, that
admits a time-explicit solution. This time-explicit solution represents the first contribution
of the paper. This solution is then expressed with respect to a new set of variables, that are
linked to the original variables by a so-called contact transformation. Unlike the Brouwer–
Hori approach from Brouwer and Hori (1961) and adopting the method proposed by Barrio
and Palácian (1997), we propose to include the drag terms in the contact transformation,
which is the second contribution of this research. The major improvement with respect to the
work of Barrio and Palacián (2003) is that both the solution to the approximate equations of
motion and the infinitesimal contact transformation are first given in closed-form and then
they are made explicit by using standard numerical approximations techniques.

The paper is organized as follows. Section 2 offers the analytic solution to the new ODE
system (obtained through a classic averaging method) in Delaunay variables. The solution
involves the inverse of the complex error function erfi, and therefore a numeric implementa-
tion scheme by using series expansions is proposed in theAppendix. The final expressions are

3 The critical inclination is a resonance of the dynamical system (see Lara 2015b) and therefore cannot be
removed.
4 Deprit was not the first one to use this approach. Hori (1966) proposed a slightly different version a few
years before.
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given in the non-singular Poincaré canonical variables. Section 3 presents the contact trans-
formation, that is determined by using both Poincaré and polar-nodal variables, and exhibits
no singularities. The transformation is built in two stages, one for the conservative part (by
using the simplification proposed by Lara 2015a) and one for the non-conservative part.
Again, a numerical scheme for the explicit series approximation of the contact transforma-
tion is developed in the Appendix. In this way, the proposed model is fully reproducible and
easily implementable by using only elementary standard library functions. Section 4 provides
a comparison between themethod introduced herein and the drag-free contact transformation
approach (while keeping the analytic solution for the new system). Section 5 summarizes the
main findings of this paper.

2 The analytic solution

2.1 Problem formulation

Denote by fJ2and fdrag the perturbing accelerations due to the oblateness and the atmospheric
drag, respectively. The mathematical model for a satellite orbiting in the atmosphere of an
oblate planet is the initial value problem (IVP):

r̈ + μ

r3
r = fJ2 + fdrag, r (t0) = r0, ṙ (t0) = v0 (1)

where μ is Earth’s gravitational parameter, t0 ≥ 0 the initial moment of time. Consider the
Keplerian classical orbital elements OK = (a, e, i, ω,Ω, M) , let f be the true anomaly
and denote:

n =
√

μ

a3
, η =

√
1 − e2, κ = e cos f, σ = e sin f, p = aη2, c = cos i, s = sin i

Assume an exponential distribution of the atmospheric density, expressed at an altitude H
as:

ρ (H) = 1

2
CD

Sre f
m

ρ0 exp

(
−H − H0

α

)
(2)

where the constants involved in Eq. (2) are defined as follows: H0 is a reference altitude, ρ0
is the density associated at this altitude, α is a constant (the density scale factor), CD is the
drag coefficient,m the mass of the satellite and Sre f its cross-sectional area, orthogonal to the
velocity direction. Denote by iz the unit vector of Earth’s rotation axis, pointing North, and
let J2 be the second zonal harmonic coefficient. Denote by req the Earth’s mean equatorial
radius and by r̂ = r/ ‖r‖ the unit vector associated to r and by r = ‖r‖ its magnitude. Let
r0 be the magnitude of the initial position vector. Denote:

k2 = μJ2r2eq
4

; C0 = 1

2
CD

Sre f
m

ρ0; Cu = μC0

√

1 +
(

σ

1 + κ

)2

exp

(
−r − r0

α

)
(3)

In Eq. (3), the link between the satellite’s latitude and altitude, due to the Earth’s oblateness,
is ignored. The expressions of the peturbing accelerations, in an Earth-centerd inertial frame
(ECI), are:
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fJ2 = −3k2
2r4

{[

1 − 5

(
r · iz
r

)2
]

r̂ + 2

(
r · iz
r

)
iz

}

fdrag = −C0 exp

(
−r − r0

α

)
‖ṙ‖ ṙ

Let h = r × ṙ denote the instantaneous angular momentum vector. Introduce the Local–
Vertical–Local–Horizontal (LVLH) frame associated to the satellite, defined by its unit
vectors

i1 = r̂; i2 = ĥ × r̂; i3 = ĥ

In this frame, vectors r, v and iz have the Cartesian components:

r =
⎡

⎣
r
0
0

⎤

⎦ ; v =
⎡

⎣
ṙ

G/r
0

⎤

⎦ ; iz = R (i3,Ω) R (i1, i) R (i3, θ)

⎡

⎣
0
0
1

⎤

⎦ ,

where the rotation matrices R
(
i1,3, β

)
are defined as:

R (i1, β) =
⎡

⎣
1 0 0
0 cosβ − sin β

0 sin β cosβ

⎤

⎦ ; R (i3, β) =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦ , β ∈ R

With respect to the LVLH frame, the perturbing accelerations have the expressions:

f LV LH
J2 = −3k2

r4

⎡

⎣
1 − 3 sin2 i sin2 θ

sin2 i sin 2θ
sin 2i sin θ

⎤

⎦ ; f LV LH
drag = −Cu

r

⎡

⎣
σ

1 + κ

0

⎤

⎦

Denote:
f = f LV LH

J2 + f LV LH
drag , fr = f · i1, fθ = f · i2, fh = f · i3

Equation (1) is now transformed into classical orbital elements and expressed with respect
to fr,θ,h, leading to Gauss’ variational equations (GVE) Battin (1999):

da

dt
= 2p2

η4G
[σ fr + (1 + κ) fθ ] (4a)

de

dt
= p

G

[
fr sin f + (2 + κ) cos f + e

1 + κ
fθ

]
(4b)

di

dt
= r cos θ

G
fh (4c)

dω

dt
= p

Ge2

[
−κ fr + σ

2 + κ

1 + κ
fθ

]
− cr sin θ

sG
fh (4d)

dΩ

dt
= r sin θ

sG
fh (4e)

dM

dt
= η3G

p2
+ pη

Ge2

[
κ − κ2 − 2σ 2

1 + κ
fr − σ

2 + κ

1 + κ
fθ

]
(4f)

a (t0) = a0; e (t0) = e0; i (t0) = i0; ω (t0) = ω0; Ω (t0) = Ω0; M (t0) = M0
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In order to apply the proposed perturbation method, Eq. (4) are transformed in action-angle
variables. To this end, the Delaunay variables (l, g, h, L ,G, H) are defined as:

l = M, g = ω, h = Ω, L = √
μa, G = η

√
μa, H = η

√
μa cos i

The counterparts of Eq. (4) in Delaunay variables are:

dl

dt
= n + ηp

Ge2

[
κ − κ2 − 2σ 2

1 + κ
fr − σ

2 + κ

1 + κ
fθ

]
(5a)

dg

dt
= p

Ge2

[
−κ fr + σ

2 + κ

1 + κ
fθ − e2c sin θ

s (1 + κ)
fh

]
(5b)

dh

dt
= r sin θ

Gs
fh (5c)

dL

dt
= p

η3
[σ fr + (1 + κ) fθ ] (5d)

dG

dt
= r fθ (5e)

dH

dt
= r [c fθ − s (cos θ) fh] (5f)

with the initial conditions:

l (t0) = l0; g (t0) = g0; h (t0) = h0; L (t0) = L0; G (t0) = G0; H (t0) = H0

2.2 Averaging and explicit solution

Since on average the atmospheric drag has no effect on the angle variables l, g, h, their
averaged equations will be identical to those from the J2-only model. On the other hand, the
averaged variation of the action variables L ,G, H depends only on the atmospheric drag,
and their Taylor series expansions are:

dL

dt
= − 1

2πα
C0

(
κL2 + μα

)
exp

(

− L
2 − μr0
μα

)

+ O
(
e2
)

(6a)

dG

dt
= − 1

2πα
C0

[
κ
(
L2 − 2μα

) + μα
]
exp

(

− L
2 − μr0
μα

)

+ O
(
e2
)

(6b)

dH

dt
= − c

2πα
C0

[
κ
(
L2 − 2μα

) + μα
]
exp

(

− L
2 − μr0
μα

)

+ O
(
e2
)

(6c)

Introduce the new variables X = [
l, g, h, L,G, H

]T
, satisfying the IVP:

dX
dt

= 1

T

∫ T

0

dX
dt

dt, X (t0) = X0 (7)
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Denote c = H/G, η = G/L. Equation (7) yields:

dl

dt
= μ2

L
3 + 3k2μ3

η3L
7

(−1 + 3c2
)

(8a)

dg

dt
= 3k2μ3

η4L
7

(−1 + 5c2
)

(8b)

dh

dt
= −6k2μ3

η4L
7 c (8c)

dL

dt
= −μC0 exp

(

− L
2 − μr0
μα

)

(8d)

dG

dt
= −μC0 exp

(

− L
2 − μr0
μα

)

(8e)

dH

dt
= −cμC0 exp

(

− L
2 − μr0
μα

)

(8f)

l (t0) = l0; g (t0) = g0; h (t0) = h0; L (t0) = L0; G (t0) = G0; H (t0) = H0

An essential remark needs to be made at this point. Conceptually, regardless the method by
which Eqs. (8d–8f) were obtained, we choose these equations to be the analytic approxi-
mation of the original equations of motion, and the contribution of higher-order eccentricity
terms will display in the contact transformation (presented further in the paper). Because of
the Taylor series truncation, Eqs. (8d–8f) do not obey the “optimality” condition to be the
exact average of the equations of motion, since they differ from this value by terms of order
O

(
e2
)
. This choice has been made in order to make the determination of a closed-form

solution possible. Obviously, this choice introduces a trade between accuracy and speed, but
the comprehensive analysis of the error injection due to this manipulation is beyond the scope
of this paper.
Note that c = cos i remains constant. This will significantly simplify the path towards the
closed-form solution to Eqs. (8a)–(8c). These equations are decoupled from the full system
and solved first. Eq. (8d) is straightforwardly integrated, yielding:

1

2

√
π

√
μα exp

(
−r0

α

)[

erfi

(
L√
μα

)

− erfi

(
L0√
μα

)]

= −μC0 (t − t0) , (9)

where erfi (·) is the complex error function, defined as:

erfi (x) = 2√
π

x∫

0

exp
(
u2

)
du, (∀) x ∈ R

The explicit expression of L is obtained from Eq. (9), yielding the explicit solution for
Eqs. (8e, 8f):

L (t) = √
μα erfi−1

[

erfi

(
L0√
μα

)

− 2√
π

√
μ

α
C0 (t − t0) exp

(r0
α

)]

(10a)

G (t) = L (t) + G0 − L0 (10b)

H (t) = cG (t) (10c)
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To obtain the solution to Eqs. (8a)–(8c), a change of variable is performed. From Eq. (8d)
it follows that dL/dt < 0, making L a good candidate for the new independent variable.
Equations (8a)–(8c) are recast into:

dl

dL
= −C0

[
μ3

L
3 + 3k2μ4

η3L
7

(−1 + 3c2
)
]

exp

(
L
2 − μr0
μα

)

(11a)

dg

dL
= −C0

3k2μ4

η4L
7

(−1 + 5c2
)
exp

(
L
2 − μr0
μα

)

(11b)

dh

dL
= C0

6k2μ4

η4L
7 c exp

(
L
2 − μr0
μα

)

(11c)

The integration of Eq. (11) yields:

l
(
L
) = l0 − μ3C0 I1 − 3μ4k2C0

(−1 + 3c2
)
I2 (12a)

g
(
L
) = g0 − 3μ4k2C0

(−1 + 5c2
)
I3 (12b)

h
(
L
) = h0 + 6μ4k2C0 I3c (12c)

with I1,2,3 defined as:

I1 =
L∫

L0

1

u3
exp

(
u2 − μr0

μα

)
du (13a)

I2 =
L∫

L0

1
(
u + G0 − L0

)3
u4

exp

(
u2 − μr0

μα

)
du (13b)

I3 =
L∫

L0

1
(
u + G0 − L0

)4
u3

exp

(
u2 − μr0

μα

)
du (13c)

Equations (10) and (12) represent the closed-form solution for the truncated averaged equa-
tions of motion (8) of a LEO satellite under the combined influence of the J2 perturbation
and of an exponential atmosphere.

Although the solution to the approximate model was determined in closed-form, owing
to the presence of the inverse of the complex error function, its practical usage is bounded to
numerical errors, because small differences between very large numbers have to be evaluated.
In addition, only I1 can be explicitly expressed with the help of elementary functions:

I1 = −1

2

[
1

u2
exp

(
u2

μα

)
+ 1

μα
Ei

(
1,− u2

μα

)]
exp

(
−r0

α

)∣∣∣∣

u=L

u=L0

(14)

where Ei (·) denotes the exponential integral:

Ei (m, z) =
∞∫

1

u−m exp (−zu) du, (∀) (m, z) ∈ R × C

The presence of the exponential integral function adds more complexity to the practical
implementation of the equations of motion. For these reasons, the solution through Lie series
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expansion of Eq. (8d) will be used instead of Eq. (10a), while integrals I1,2,3 are evalu-
ated through regular Taylor series expansions of the exponential function. The approximate
expressions of L (t) and I1,2,3 are derived in “Lie series approximation for L” and “Evalua-
tion of I1,2,3 integrals” sections in Appendix, respectively, and are validated by comparison
with the numerical integration of IVP (8).

Although singular for equatorial or circular orbits, the explicit expressions of the averaged
classical orbital elements are displayed here for the sake of tradition:

ā (t) = α

{

erfi−1

[

erfi

(√
a0
α

)

− 2K0√
π

√
μ

α
(t − t0)

]}2

(15a)

ē (t) =
{
ā (t)

ā0

(
1 − η0

)
[

2

√
ā (t)

ā0
− 1 + η0

]} 1
2

(15b)

i (t) = i0 (15c)

ω (t) = ω0 − 3μ4k2C0
(−1 + 5 cos2 i

)
I3 (15d)

Ω (t) = Ω0 + 6μ4k2C0 I3 cos i (15e)

M (t) = M0 − μ3C0 I1 − 3μ4k2C0
(−1 + 3 cos2 i

)
I2 (15f)

where η0, K0 are defined as:

η0 =
√
1 − e20, K0 = C0 exp

(r0
α

)

2.3 Singularity removal

Delaunay variables were the simplest choice for determining the equations of motion in
closed-form. However, they are singular for zero eccentricity and for equatorial orbits. Intro-
duce the Poincaré canonical coordinates (Q1, Q2, Q3, P1, P2, P3):

Q1 = l + g + h, Q2 = −√
2 (L − G) sin (g + h) , Q3 = −√

2 (G − H) sin h

P1 = L , P2 = √
2 (L − G) cos (g + h) , P3 = √

2 (G − H) cos h
(16)

By using the Jacobian of the transformation from Delaunay to Poincaré variables (developed
in “Jacobian for coordinate transformations” section in Appendix), as well as the equations
of motion (10) and (12), the solution is expressed as:

Q1 = Q1 (t0) + C0μ
3 {−I1 + 3μk2

[(
1 − 3c2

)
I2 + (

5c2 − 2c − 1
)
I3
]}

(17a)

Q2 =
√
Q

2
2 (t0) + P

2
2 (t0) sin

[
g0 + h0 + 3μ4C0k2

(
5c2 − 2c − 1

)
I3
]

(17b)

Q3 = −
√[

2L + Q
2
2 (t0) + P

2
2 (t0)

]
(1 − c0) sin

(
h0 + 6cμ4C0k2 I3

)
(17c)

P1 = L (17d)

P2 =
√
Q

2
2 (t0) + P

2
2 (t0) cos

[
g0 + h0 + 3μ4C0k2

(
5c2 − 2c − 1

)
I3
]

(17e)

P3 =
√
2
(
L + G0 − L0

)
(1 − c0) cos

(
h0 + 6cμ4C0k2 I3

)
(17f)

where L = L (t) is expressed in Eq. (10a). The quantities h0 and g0+h0 might pose problems
for equatorial or circular orbits. Assuming that the approach was made from the beginning
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in Poincaré variables, these potential singularities are removed as follows. Consider Q
0
k , P

0
k

the initial values of the variables at t = t0, k = 1, 2, 3, assumed to be known. The quantities
h0 and g0 + h0 may be defined, in any situation, 5 as follows:

If
(
Q

0
3

)2 +
(
P
0
3

)2 	= 0, then:

cos h0 = P
0
3√(

Q
0
3

)2 +
(
P
0
3

)2
, sin h0 = −Q

0
3√(

Q
0
3

)2 +
(
P
0
3

)2

and h0 = 0 if
(
Q

0
3

)2 +
(
P
0
3

)2 = 0. Similarly, if
(
Q

0
2

)2 +
(
P
0
2

)2 	= 0 then:

cos
(
g0 + h0

) = P
0
2√(

Q
0
2

)2 +
(
P
0
2

)2
, sin

(
g0 + h0

) = −Q
0
2√(

Q
0
2

)2 +
(
P
0
2

)2

and g0 + h0 = 0 if
(
Q

0
2

)2 +
(
P
0
2

)2 = 0.

The transformation from Poincaré to Cartesian variables is given in “Transformation from
Poincaré to Cartesian coordinates” section in Appendix.

3 The infinitesimal contact transformation

3.1 Quasi-Hamiltonian formalism for nonconservative systems

Although canonical coordinates are used for conservative systems only, or for systems where
a (non-constant) Hamiltonian may still exist, it is possible to express the mathematical model
of a single particle perturbed by nonconservative forces (even if they are not derived from a
potential function) by making use of the (modified) Hamilton’s equations.

In what follows, the entire set of canonical variables, generally denoted by (q, p) , with
q being the generalized coordinates and p their conjugate momenta, will be denoted by a

6-dimensional vector X = [
qT , pT

]T
, and the convention that the generalized coordinates

are on the first three places is made. Consider O3 and I3 the zero and the identity matrices,
respectively. Denote by I the 6 × 6 symplectic matrix:

I =
[

O3 I3
−I3 O3

]

Consider a single-particle dynamical system such that there exists a scalar function H =
H (X) and a vector function fNH = fNH (X, t) such that the motion is modeled by the initial
value problem (IVP):

dX
dt

= I
∂H
∂X

+ δfNH (X, t) , X (t0) = X0 (18)

where δ > 0 is a small parameter. If fNH ≡ 0, then the system is Hamiltonian and Eq. (18)
gives the canonical equations of Hamilton. When fNH 	≡ 0, Eq. (18) models a conservative
system perturbed by a nonconservative force, expressed in canonical variables X.

5 They are uniquely defined up to a translation on the real numbers axis that is an integer multiple of 2π . But
since only their trigonometric functions sin and cos are involved in computations, no restrictions need to be
imposed.
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Achange of variablesX → Y is said to be canonical if it preservesHamilton’s equations (if
dissipative terms like fNH are neglected). In our case, it is more useful to use its mathematical
equivalent, that is independent of the Hamiltonian formulation, namely:6

∂Y
∂X

I = I
[

∂X
∂Y

]T
, (19)

where ∂Y/∂X denotes the Jacobian of the transformation, while ∂X/∂Y is its inverse. Such
change of variable will act upon Eq. (18) as follows:

dY
dt

= ∂Y
∂X

dX
dt

= ∂Y
∂X

[
I

∂H
∂X

+ δfNH (X, t)

]

= I
[

∂X
∂Y

]T
∂H
∂X

+ δ
∂Y
∂X

fNH (X, t)

= I
∂K
∂Y

+ δgNH (Y, t)

where the new Hamiltonian K is the old one H expressed with respect to the new variables
Y, while gNH (Y, t) = [∂Y/∂X] fNH (X (Y) , t) .

3.2 Choosing the best variables

Although there is no ideal set of canonical coordinates, since each set has its own singularities,
each situation requires the use of one particular set, and usually it is the one that leads to the
least amount of symbolic computations. In the present case, there are several challenges that
need to be overcome: (i) the derivation of the conservative part WI of the transformation is
nonsingular only forWhittaker7 (see Lara 2015a) and Poincaré (see Lyddane 1963) variables;
if Delaunay’s variables are used, singularities for zero eccentricity and zero inclinations are
injected; (ii) in order to obtain the non-conservative part of the transformation WII, it would
be ideal to choose a set of coordinates X where the gradient ∂H0/∂X has most coordinates 0;
a good candidate are the Delaunay set of canonical variables, but they interfere with the first
part of the transformation; the other choice is the Poincaré variables; (iii) indeed the same set
of coordinates should be used for both parts of the transformation; (iv) written in Poincaré
variables, the conservative part of the transformation (that is the equivalent of the Lyddane
transformation) yields quite intricate expressions.

The non-singular Poincaré variables are chosen for the non-conservative part of the trans-
formation, since the Hamiltonian of the unperturbed Keplerian motion is cyclic in 5 variables
(i.e. only one component of the gradient ∂H0/∂X is different from 0 ), simplifying the
approach to Eq. (28). The conservative part of the transformation is solved in two steps: (i)
determine the generating functionWI by using Delaunay variables in Eq. (25); (ii) compute
the gradient

(
∂WI/∂X

)
by using Whittaker variables, and multiply this gradient with the

jacobian of the transformation between the Poincar é and Whittaker coordinates, deducible
based on the considerations made in “Jacobian for coordinate transformations” section in
Appendix; the resulting conservative part of contact transformation will be expressed in
Poincaré variables, in order to match the variables used for the non-conservative part.

6 A transformation is said to be canonical if its Jacobian is a symplectic matrix, i.e. it obeys the condition in
Eq. (19).
7 Whittaker variables are singular for equatorial orbits, but this does not pose a problem for the case where
only even zonal harmonics are taken into consideration, which is the case of the present paper.
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3.3 Lie-deprit approach to non-conservative perturbations

The perturbation method used by Deprit enables the possibility to include nonconservative
perturbations. An approach where the Hamiltonian part of the perturbation is used in order
to simplify the computations was described by Barrio and Palácian (1997), and will be used
in the current work. For the sake of clarity and self-consistency, a brief description of the
transformation algorithm is presented below. Since the aim of the current approach is a
first-order solution, the approach to higher-order terms is ommitted.

Consider themathematical model of themotion of a particle subject to amain conservative
force (with the associated unperturbed Hamiltonian denoted by H0) and two different per-
turbations, one conservative—potential denoted by εH1—and one non-conservative—force
denoted by δfNH (X, t) , where ε, δ > 0 are small constant parameters:

dX
dt

= I
∂ [H0 (X) + εH1 (X)]

∂X
+ δfNH (X, t) , X (t0) = X0 (20)

Assume that by means of some perturbation method (in the present case, averaging), the
original system (20) is transformed into:

dX∗

dt
= I

∂
[
H0 (X∗) + εH∗

1 (X∗)
]

∂X∗ + δf∗
NH

(
X∗, t

)
, X∗ (t0) = X∗

0 (21)

Then the connection between the new variables X∗ and the old variables X is made via a
transformation that is a Lie series, and at first order it has a simple expression:

X = WI (X∗, ε
) + δWII (X∗) (22)

One key feature in Eq. (22) is that WI (X∗, ε) emanates exclusively from the conservative
parts of the perturbations in Eqs. (20) and (21), and it is a (truncated) infinitesimal canonical
transformation that is derived from a generating function WI = WI (X∗) as follows:

WI (X∗, ε
) = X∗ + εI

∂WI (X∗)
∂X∗ (23)

Consider X an arbitrary set of canonical coordinates. Denote by {·, ·} the Lie bracket of two
scalar functions, defined as:

{U, V } = ∂U

∂X
·
[
I

∂V

∂X

]
(24)

The generating function WI is determined with the help of the Lie triangle (Barrio and
Palácian 1997; Deprit 1981) as follows:

{
H0;WI

}
= H∗

1 − H1 (25)

Denote by LWs the action of the Lie differential operator over the vector field s (evaluated
with respect to the flow generated by W). Its expression is:

LWs = ∂s
∂X

W − ∂W
∂X

s (26)

Then the second term of the right-hand side of Eq. (22) is evaluated based on the extended
Lie triangle (Barrio and Palácian 1997) starting from:

LWII

(
∂H0

∂X

)
= f∗

NH − fNH, (27)
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By taking Eq. (26) into account, Eq. (27) becomes:

∂2H0

∂X2 WII − ∂WII

∂X
∂H0

∂X
= f∗

NH − fNH (28)

Remark 1 The Lie bracket of two scalar fields defined in Eq. (24) is independent of the choice
of the canonical coordinates X; the proof is straightforward and is based on the symplectic
nature of the Jacobian of a canonical transformation, expressed in Eq. (19). Unlike the scalar
field case, when the Lie bracket produces a scalar output, care should be taken regarding the
second part of the transformation WII, since the same variables should be used in both sides
of Eq. (28).

The construction of the transformation between the coordinates explicitly expressed in
Eq. (17) and the ones associated to the original mathematical model is made by following
the approach in Barrio and Palácian (1997). To this end, the osculating state vector will be
denoted by XD,W,P , and its averaged counterpart by X∗

D,W,P , where subscripts D,W,P
depict the set of canonical variables that is used, namely Delaunay, Whittaker and Poincaré,
respectively. As stated before, the transformation is determined by a two-step procedure,
each step concerning the conservative and non-conservative parts of the perturbation, taken
in this precise order.

In order to comply with the desired features of the transformation (explicit & singularity-
free), all three sets of the aforementioned variables are used.

Start with the original model for the motion of a satellite in the atmosphere of an oblate
planet, expressed in Delaunay canonical variables, that is:

dXD
dt

= I
∂
[
HD,0 (XD) + εHD,1 (XD)

]

∂XD
+ δfNHD (XD, t) , XD (t0) = XD,0 (29)

HD,0 (XD) = − μ2

2L2 (30a)

εHD,1 (XD) = −k2
r3

[
−

(
1 − 3H2

G2

)
+ 3

(
1 − H2

G2

)
cos (2 f + 2g)

]
(30b)

δfNHD (XD, t) = (1 + κ)Cu

[
−2ησ

Ge2
e2 + κ + 1

1 + κ
; − 2σ

Ge2
; 0; −e2 + 2κ + 1

η3
; −1; −c

]T

(31)
Equation (29) is just a reformulation of Eq. (5), aimed at separating the conservative and

non-conservative parts. The averaged model described by Eq. (8) is recast into:

dX∗
D

dt
= I

∂
[
HD,0

(
X∗
D
) + εH∗

D,1

(
X∗
D
)]

∂X∗
D

+ δf∗
NHD

(
X∗
D, t

)
, X∗

D (t0) = X∗
D,0 (32)

HD,0
(
X∗
D
) = − μ2

2L
2 (33a)

εH∗
D,1

(
X∗
D
) = μ3k2

L
3
G3

(

1 − 3
H

2

G
2

)

(33b)

δfNHD (XD, t) = −μC0 exp

(

− L
2 − μr0
μα

)[

0 0 0 1 1
H

G

]T
(34)
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3.3.1 The conservative part

The generating function WI associated to the canonical conservative part of the transfor-
mation is determined from the homological equation (25), written in this particular case
as: {

HD,0;WI
}

= H∗
D,1 − HD,1 (35)

Eq. (35) leads to:

−μ2

L3

∂WI

∂l
= μ3k2

L3G3

(
1 − 3

H2

G2

)
+ k2

r3

[
−

(
1 − 3H2

G2

)
+ 3

(
1 − H2

G2

)
cos (2 f + 2g)

]
,

that is solved through the quadrature:

WI = −k2
L3

μ2

∫ {
μ3

L
3
G3

(
1 − 3c2

) + 1

r3
[− (

1 − 3c2
) + 3s2 cos (2 f + 2g)

]
}
dl

Take into account:

r = p

1 + e cos f
,

L3

μ2 dl = r2

G
d f

The generating function is determined as:

WI = μk2
G3

[(
2 − 3s2

)
( f − l + σ) + s2

(
−σ cos 2θ + 4κ + 3

2
sin 2θ

)]
(36)

Since the computations need to be performed in Poincaré canonical variables (the reason
why is presented in the next paragraph), and the partial derivatives of WI with respect to
these variables involve intricate expressions, the following simplifying approach is chosen.
Introduce the polar-nodal canonical variables (r, θ, ν, R,Θ, N ):

r = p

1 + κ
, θ = ω + f, ν = Ω, R =

√
μ

a

σ

η
, Θ = G, N = H

The partial derivatives of WI with respect to the Whittaker variables are (see Lara 2015a):

∂WI

∂r
= k2

Θp2

{

−2s2 (1 + κ) sin 2θ + σ
(
2 − 3s2

)
[

η + (1 + κ)2

1 + η

]}

(37a)

∂WI

∂θ
= − k2

Θp
s2 [(3 + 4κ) cos 2θ + 2σ sin 2θ ] (37b)

∂WI

∂ν
= 0 (37c)

∂WI

∂R
= k2

Θ2

[(
2 − 3s2

) ( κ

1 + η
+ 2η

1 + κ
+ 1

)
− s2 cos 2θ

]
(37d)

∂WI

∂Θ
= k2

Θp2

{
−3

(
4 − 5s2

)
( f − l) + 1

6

[
(12κ + 7)

(
2 − 3s2

) + 4
]
sin 2θ

+2σ

[
1 + 2 − 3s2

2
u + (

1 − 2s2
)
cos 2θ

]}
(37e)

∂WI

∂N
= k2c

Θp2
[6 ( f − l) − (4κ + 3) sin 2θ + 2σ sin 2θ ] (37f)
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The partial derivatives of WI with respect to the Poincaré variables may now be expressed
as:

∂WI

∂ (Q1, Q2, Q3, P1, P2, P3)
= JW

P
∂WI

∂ (r, θ, ν, R,Θ, N )
(38)

where the evaluation of JW
P is given in “Jacobian for coordinate transformations” section in

Appendix.

3.3.2 The non-conservative part

Equation (28) provides the non-conservative part WII of the contact transformation. In order
to reduce the number of computations, the unperturbed Hamiltonian is expressed in one set
of variables where most elements in the Hessian matrix are 0. Although Delaunay variables
are a good candidate, they exhibit singularities, so the Poincaré canonical variables are used
instead. The unperturbed Hamiltonian H0 is cyclic with respect to 5 of these variables, its
expression being:

H0 = −μ2

2P2
1

Equation (28) becomes:

μ2

P3
1

[
− 3

P1

(
WII · e4

)
e1 − ∂WII

∂Q1

]
= δ

(
f∗
NHP − fNHP

)
(39)

where {ek}k=1,6 is a canonical base in R
6. The expressions in Poincaré variables for the non-

conservative terms of the perturbations are determined by left-multiplying Eq. (29) and (32)
with the Jacobian JD

P of the transformation from Delaunay to Poincaré. The components of
the right-hand side of Eq. (39) are evaluated as follows:

δ f (1)
NHP = Cu

2σ

G

(
η − 1 + κ

1 + η

)
(40a)

δ f (2)
NHP = Cu

(1 + κ)2

η2
√
2L (1 + η)

{4 sin E cos (g + h)

+
[
2 (1 + η) (cos E − e)

η2
+ e

(
2 + 2η + η2

)] sin (g + h)

η

}
(40b)

δ f (3)
NHP = Cu

(1 + κ)
√
1 − c√

2G
sin h (40c)

δ f (4)
NHP = −Cu

(1 + κ)
(
e2 + 2κ + 1

)

η3
(40d)

δ f (5)
NHP = Cu

(1 + κ)2

η2
√
2L (1 + η)

{
4 sin (g + h) sin E

1

1
(40e)

−
[
e
2 + 2η + η2

1 + κ
+ 2

1 + η

η2
(cos E − e)

]
cos (g + h)

η

}

δ f (6)
NHP = −Cu

(1 + κ)
√
1 − c√

2G
cos h (40f)

123



466 V. Martinusi et al.

δ f (1)∗
NHP = 0 (41a)

δ f (2)∗
NHP = 0 (41b)

δ f (3)∗
NHP = 1

4
C0 exp

(
−a − r0

α

)
(2G)3/2

p

√
1 − c sin h (41c)

δ f (4)∗
NHP = K0 (41d)

δ f (5)∗
NHP = 0 (41e)

δ f (6)∗
NHP = −1

4
C0 exp

(
−a − r0

α

)
(2G)3/2

p

√
1 − c cos h (41f)

Denote by W II
k , k = 1, 6, the components of the column matrix WII. Equation (39) leads

to:

− ∂W II
k

∂Q1
= P3

1

μ2

[
δ
(
f (k)∗
NHP − f (k)

NHP

)]
, k = 2, 6 (42a)

− 3

P1
W II

4 − ∂W II
1

∂Q1
= P3

1

μ2

[
δ
(
f (1)∗
NHP − f (1)

NHP

)]
(42b)

The component WII
1 is determined by straightforward integration, by taking into account

that W II
4 should be computed before:

W II
k = − P3

1

μ2

∫ (
f (k)∗
NHP − f (k)

NHP

)
dQ1, k = 2, 6 (43a)

W II
1 = − P3

1

μ2

∫ (
f (1)∗
NHP − f (1)

NHP

)
dQ1 + 3

P1

∫
W II

4 dQ1 (43b)

In this case, it is simpler to use the eccentric anomaly substitution, and this is made by
taking into account:

P3
1

μ2 dQ1 = p2

(1 + κ) ηP1
dE (44)

The evaluation of the integrals inEq. (43) is not possiblewith the help of elementary functions,
and therefore series expansions about e � 0 should be performed. Note that the truncation
of these series may be made such that O (en) � 0 for any natural n ≥ 1.

For the sake of simplicity, the expressions are given in classical orbital elements mixed
with Delaunay. Denote:

n =
√

μ2/P3
1 ; K0 = −μC0 exp

(
−a − r0

α

)
; q = a

α
; � = g + h

p1 = (1 + q) (3 + q)

p2 = q3 + 6q2 + 9q + 6

λ1 = 27 (3p1 + 2p2) η + 18
(
q2 − 2q − 5

)

λ2 = −3
(
q2 − 9

)
η − 4 (q − 1)

λ3 = 6 (1 + q) (q − 3) − (9p1 − 2p2) η

γ1 = 1

2

(
q2 + 2q − 4

)
cos (E + �) + 1

6
(1 + q)2 cos (3E + �) − (1 + q) (2 + q) sin E sin�

γ2 = 1

2

(
q2 + 2q − 4

)
sin (E + �) + 1

6
(1 + q)2 sin (3E + �) + (1 + q) (2 + q) sin E cos�
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The truncated series for O
(
e5
) � 0 of the non-conservative part of the transformation are

expressed as follows:

W II
1 = K0

e

nG

[(
3ηp1
1 + q

+ 1

)
cos E − e

2

(
12ηp1E

2 + 2λ2 cos 2E
)

+ e2

144
(108ηp1E sin E + λ1 cos E + λ3 cos 3E)

− e3

192
ηp2 (20 cos 2E + cos 4E)

]
(45a)

W II
2 = K0

1

2n
√
G

{
4 cos (E+�) −e [(2q + 3) E sin�− (q + 1) cos (2E + �)] + e2γ1

}

(45b)

W II
3 = −K0

e

4n
√
G

sin h sin
i

2

{
4 (1 + q) sin E + e

2

[
2
(
q2 − 3

)
E + (

q2 − 1
)
sin 2E

]

+ e2

18
q
[
9
(
q2 − 7

)
sin E + (

q2 − 3
)
sin 3E

]}
(45c)

W II
4 = K0

e

n

[
(q + 3) sin E + e

8
p1 (2E + sin 2E) + e2

72
p2 (9 sin E + sin 3E)

]
(45d)

W II
5 = K0

1

2n
√
G

{
4 sin (E + �) + e [(2q + 3) E cos� + (q + 1) sin (2E + �)] + e2γ2

}

(45e)

W II
6 = K0

e

4n
√
G

cos h sin
i

2

{
4 (1 + q) sin E + e

2

[
2
(
q2 − 3

)
E + (

q2 − 1
)
sin 2E

]

+ e2

18
q
[
9
(
q2 − 7

)
sin E + (

q2 − 3
)
sin 3E

]}
(45f)

3.3.3 Full direct and inverse transformations

The direct transformation follows the same rules as in the canonical case, and it provides
the expressions of the “old” variables with respect to the “new” ones, as follows (Barrio and
Palácian 1997):

XP = T
(
X∗
P
) = X∗

P + I
∂WI

(
X∗
P
)

X∗
P

+ WII (X∗
P
)

(46)

The gradient of WI is performed with respect to the Poincaré canonical variables, and it
is given in Eq. (38), while WII is expressed in Eq. (43). For the numerical implementation
of Eq. (46), a series expansion with respect to the powers of the eccentricity e should be
performed, and the terms up to O

(
e3
) � 0 are given in Eq. (45).

At first order, the inverse of the transformation from Eq. (46) is:

X∗
P = T −1 (XP ) = XP − I

∂WI (XP )

XP
− WII (XP ) (47)

and it can be simply put as the same as the direct transformation, but for J2 → −J2 and
ρ0 → −ρ0. The aforementioned inverting method injects uncertainties with respect to the
initial conditions (both expressions are truncations of infinite Lie series), in the sense that, in
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practice, T ◦ T −1 is not the identity transformation (but is acceptably close to it). The error
in the initial conditions will be of order 2 with respect to the small perturbation parameters,
namely:

d
(
T −1 (T

(
X∗)) − X∗) � ε2 + δ2

where ε is the small parameter of the conservative perturbation (J2 in our case), while δ is the
small parameter associated to the non-conservative term. Here d denotes some adequately
chosen metric in the associated phase space. It may be assumed that ε ∼ δ .

Equations (46) and (47) give the explicit transformation between the new and the original
variables, approximated at first order.

4 Numerical validation

4.1 Algorithm for orbit propagation

The position and the velocity of a satellite at each moment of time will be analytically
evaluated as follows. Consider r0 and v0 the initial (osculating) position and velocity vectors,
respectively, at t = t0. Since the equations of motion, as well as the transformation between
the new and the old variables, are in the phase space, before proceeding to the propagation
itself, the state vector [r0, v0]T is transformed into Poincaré variables XP,0 = [Q0, P0]T .

The three main steps of the orbit propagation are depicted below.8

1. Apply the inverse transformation T −1 from Eq. (47) to obtain the “new” state vector
X∗
P,0 = T −1

(
XP,0

)
.

2. Determine the “new” state vector X∗
P at any moment of time t ≥ t0 by using Eq. (17).

3. Apply the direct contact transformation T fromEq. (46) to obtain the original state vector
XP = T

(
X∗
P
)
.

The Cartesian position and velocity vectors are finally obtained by elementary geometric
transformations.

4.2 Numerical simulation

The previous developments are now validated for a LEO satellite with an initial altitude
h0 = 350 km and with a slightly eccentric orbit. The initial conditions are:

a0 = 6728.137 km; e0 = 0.015; i0 = 71◦; ω0 = 0◦; Ω0 = 0◦; M0 = 0◦ (48)

and they are given in classical orbital elements for purely geometrical reasons.
The following values for the various parameters involved are used:9

8 Elementary transformations between different sets of coordinates are also required at some steps of the
algorithm, but these coordinates are present in the analytic expressions, making this requirement obvious,.
9 These values were inspired by the prospective QARMAN satellite, a CubeSat mission developped by the
von Karman Institute of Fluid Dynamics in Brussels and the University of Liège.
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Mean equatorial radius re = 6378.137 km
Gravitational parameter μ = 3.986004418 × 1014 m3/s2

Second zonal harmonic J2 = 0.00108263
Drag coefficient CD = 2.2
Cross-sectional surface Sre f = 0.03m2

Satellite mass m = 3 kg
Atmospheric density at h0 ρ0 = 10−11 kg/m3

Density scale factor α = 50 km
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Fig. 1 Comparison between three different analytic propagations and the reference solution for a LEO satellite
(J2 + exponential atmosphere)

The simulation is performed for a time interval of 2 days.
Figure 1 represents the magnitude of the errors of the position vectors, calculated between

three different analytic propagations and the reference solution which is generated by the
direct numerical integration of the equations of motion using Runge Kutta 4–5. Our previous
analytic propagator Martinusi et al. (2015) which assumes constant atmospheric distribution
and the conservative Brouwer–Lyddane contact transformation exhibits a large error after
two days, i.e., 180km. For a propagation with an exponential atmosphere and the classic
Brouwer transformation, the error drops down to 50km. Finally, the propagation error can
be reduced down to 10km for an exponential atmosphere coupled with the proposed contact
transformation (Eqs. (46–47)).

Figure 2 depicts the drifts in four “slow” variables, namely a, e, i,Ω .10 It may be seen that
the use of the non-conservative CT reduces the error propagation amplitude for all elements,
but still exhibits the same average drift for the eccentricity.

Figure 2c depicts the errors in the argument of latitude θ . This is the main source of error
in Fig. 1, but the use of the drag-augmented CT is seen to reduce the errors in θ by a factor
of 7.

The use of the non-conservative CT also leads to a much simpler frequency content in the
error, as clearly shown in Fig. 2a–c. This can be explained by the presence of terms containing
sines and cosines of integer multiples of the eccentric anomaly in the non-conservative part
of the CT.

10 The argument of perigee drift was omitted, since it is incorporated in the argument of latitude, depicted in
Fig. 2c.
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Fig. 2 Absolute errors for semimajor axis, eccentricity and argument of latitude a errors in semimajor axis,
b errors in eccentricity, c errors in argument of latitude

5 Conclusions

This paper offers a first-order approximate time-explicit solution for the motion of a satellite
under the combined influence of the J2 perturbation and an exponential atmosphere. Targeting
increased accuracy, an infinitesimal contact transformation that allows to navigate between
the original and averaged variables is also proposed herein. The comparison against direct
numerical simulations for a satellite with an altitude of 350km shows an error on the order of
10km after two days of propagation. Part of this error is explained by the first-order truncation
of the near-identity transformation between the original and averaged variables, which leads
to an approximation of the actual initial conditions. Obviously, a second-order transformation
would reduce these errors, and this will be considered in our future investigations.

Our future researchwill also progress towardmore complex atmosphericmodels including
the atmospheric bulge and the day-night variations as well as the influence of other non-
conservative perturbations such as the solar radiation pressure.

Appendix

Lie series approximation for L

Although the variable L has an explicit expression, depicted in Eq. (10a), the numerical
implementation of the complex error function, as well as its inverse, rise the problem of
dealing with differences of very large numbers. It would be much more convenient to have
an accurate approximation for L , and this is obtained by writing the solution to Eq. (8d) with
the help of Lie series. For a complete description of the expansion mechanism, see Steinberg
(1984).
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Denote:

λ = √
μα; β = λ

L0

The IVP to solve is rewritten as:

L̇ = −μC0 exp

(
L0 − μr0

μα

)

exp

(

− L
2 − L

2
0

λ2

)

, L (t0) = L0

and the change of variable:

z = L
2 − L

2
0

λ2
(49)

is performed. Denote

ξ0 = L0
2μ

λ2
C0 exp

(
L0 − μr0

μα

)

The IVP in z is:

ż = −ξ0

√
zβ2 + 1 exp (−z) , z (t0) = 0 (50)

Consider D to be the differential operator, defined for any arbitrary function φ:

Dφ = −ξ0

√
zβ2 + 1 exp (−z)

∂φ

∂z
(51)

and define its formal powers as:

Dk+1φ = D
(
Dkφ

)
, k ≥ 1

Consider the formal exponential operator:

e(t−t0)Dφ = φ +
∞∑

k=1

(t − t0)k

k!
(
Dkφ

)
(52)

Then the solution to IVP (50) is expressed as:

z (t) = e(t−t0)Dz
∣∣∣
z=0

, (53)

and explicitely:

z (t) =
∞∑

k=1

(t − t0)k

k!
(
Dkz

∣∣∣
z=0

)
(54)

By taking into account the expression in Eq. (51) of the operator D, the formal powers
Dkz

∣∣
z=0 are expressed as:

D1z
∣∣
z=0 = −ξ0

D2z
∣∣
z=0 = ξ20

(
1

2
β2 − 1

)

D3z
∣∣
z=0 = ξ30

(
2β2 − 2

)

D4z
∣∣
z=0 = ξ40

(−β4 + 9β2 − 6
)

D5z
∣∣∣
z=0

= ξ50
(−13β4 + 48β2 − 24

)
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D6z
∣
∣
z=0 = ξ60

(
13

2
β6 − 137β4 + 300β2 − 120

)

D7z
∣
∣
z=0 = ξ70

(
176β6 − 1422β4 + 2160β2 − 720

)

D8z
∣
∣
z=0 = ξ80

(−88β8 + 3365β6 − 15354β4 + 17640β2 − 5040
)

D9z
∣
∣
z=0 = ξ90

(−4069β8 + 57628β6 − 175752β4 + 161280β2 − 40320
)

Then L = L (t) is evaluated based on Eq. ( 49):

L (t) = L0

√
β2z (t) + 1

Evaluation of I1,2,3 integrals

In the form they are written in Eq. (13), the integrals I1,2,3 are not suitable for an efficient
series expansion approximation, given the considerable length of the interval on which the
integration is performed (i.e., for a good approximation, a large number of terms are required
in the truncated series expansion). For a rapid convergence, and also to avoid differences
between very large numbers (since L = √

μα has the same order of magnitude of the
angular momentum). It would therefore be ideal to transform them to integrals from 0 to
some value z that has the smallest possible absolute value, so that the accuracy of the series
expansion is maximum.

First, note that I1,2,3 may be rewritten as:

Ik = exp

(
a0 − r0

α

) L∫

L0

qk (u) exp

(
u2 − L

2
0

μα

)

du, k = 1, 2, 3

where

q1 (u) = u−3, q2 (u) = (
u + G0 − L0

)−3
u−4, q3 (u) = (

u + G0 − L0
)−4

u−3

To this end, denote

λ = √
μα, z = L

2 − L
2
0

λ2
, wk (y) =

qk

(√
λ2y + L

2
0

)

√
λ2y + L

2
0

and perform the change of variable:

y = u2 − L
2
0

λ2
⇒ du = λ2

2

dy
√

λ2y + L
2
0

The integrals become:

Ik = λ2

2
exp

(
a0 − r0

α

) z∫

0

wk (y) exp (y) dy

123



First-order analytic propagation of satellites 473

By performing a Taylor series expansion for exp (y) , the integrals become:

Ik = λ2

2
exp

(
a0 − r0

α

) ∞∑

N=0

⎡

⎣ 1

N !
z∫

0

yNwk (y) dy

⎤

⎦

and written separately:

I1 = λ2

2
exp

(
a0 − r0

α

) ∞∑

N=0

⎡

⎢
⎣

1

N !
z∫

0

yN
(
λ2y + L

2
0

)2 dy

⎤

⎥
⎦

I2 = λ2

2
exp

(
a0 − r0

α

) ∞∑

N=0

⎡

⎢
⎢⎢
⎣

1

N !
z∫

0

yN
[√

λ2y + L
2
0 + G0 − L0

]3 (
λ2y + L

2
0

) 5
2

dy

⎤

⎥
⎥⎥
⎦

I3 = λ2

2
exp

(
a0 − r0

α

) ∞∑

N=0

⎡

⎢⎢⎢
⎣

1

N !
z∫

0

yN
[√

λ2y + L
2
0 + G0 − L0

]4 (
λ2y + L

2
0

)3
dy

⎤

⎥⎥⎥
⎦

The evaluation of I1,2,3 has been simplified to definite integrals that may be expressed explic-
itly through elementary functions.

Jacobian for coordinate transformations

The Jacobian of the transformation from Delaunay to Whittaker elements is:

JW
D = ∂ (r, θ, ν, R,Θ, N )

∂ (l, g, h, L ,G, H)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

pσ

η3
0 0

r
(
κ2 + κ − 2e2

)

Le2
ηpκ

Le2
0

(1 + κ)2

η3
1 0

σ (2 + κ)

Le2
−ησ (2 + κ)

Le2
0

0 0 1 0 0 0

Lκ (1 + κ)2

η2 p
0 0

ησ

pe2
[
1 + 2κ − σ 2

] −σ (1 + κ)2

pe2
0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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The Jacobian of the transformation from Poincaré to Delaunay variables is:

JD
P = ∂ (l, g, h, L ,G, H)

∂ (Q1, Q2, Q3, P1, P2, P3)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
P2

Q2
2 + P2

2

0 0 − Q2

Q2
2 + P2

2

0

0 − P2
Q2

2 + P2
2

P3
Q2

3 + P2
3

0
Q2

Q2
2 + P2

2

− Q3

Q2
3 + P2

3

0 0 − P3
Q2

3 + P2
3

0 0
Q3

Q2
3 + P2

3

0 0 0 1 0 0

0 −Q2 0 1 −P2 0

0 −Q2 −Q3 1 −P2 −P3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Jacobian of the transformation fromWhittaker to Poincaré elements may now be explic-
itly derived as:

JW
P = ∂ (r, θ, ν, R,Θ, N )

∂ (Q1, Q2, Q3, P1, P2, P3)
= JW

D JD
P

Since it involves only elementary computations, that are nevertheless leading to relatively
long expressions, the full matrix form ofJW

P will not be displayed. In any case, it is obtained
by the multiplication of two explicit matrices.

Transformation from Poincaré to Cartesian coordinates

The Poincaré canonical variables are mentioned and used in very few Astrodynamics/Orbital
Mechanics textbooks, but they lack a comprehensive approach, and to our knowledge, a
straightforward transformation from these variables to Cartesian is absent from the literature.
The closest approach is found in Battin (1999), but it is made for the equinoctial variables,
that are nonsingular but not canonical.

The transformation is determined here in the most direct way possible. It is known that
the inertial position and velocity vectors are expressed in the perifocal frame {P} as:

r{P} = r

⎡

⎣
cos f
sin f
0

⎤

⎦ ; v{P} = μ

G

⎡

⎣
− sin f
e + cos f

0

⎤

⎦

and their corresponding column matrices in the inertial frame originated in the attraction
center are:

r{I N } = R (i3, h) R (i1, i) R (i3, g) r{P}

v{I N } = R (i3, h) R (i1, i) R (i3, g) v{P}
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where the orthogonal matrices Rh, Ri , Rg are:

R (i3, h) =
⎡

⎣
cos h − sin h 0
sin h cos h 0
0 0 1

⎤

⎦ , R (i1, i) =
⎡

⎣
1 0 0
0 cos i − sin i
0 sin i cos i

⎤

⎦ ,

R (i3, g) =
⎡

⎣
cos g − sin g 0
sin g cos g 0
0 0 1

⎤

⎦

If a new fixed frame {P} is defined such that the position vector has the expression:

r{P} = r

⎡

⎣
cos ( f + g + h)

sin ( f + g + h)

0

⎤

⎦ = r

⎡

⎣
cos (Q1 + f − l)
sin (Q1 + f − l)

0

⎤

⎦ ,

it will follow (by elementary computations) that the velocity in the same frame {P} is:

v{P} = 2μ
√
4P1 − 2

(
Q2

2 + P2
2

)

⎡

⎢
⎢
⎢
⎣

Q2

2P1

√
4P1 − (

Q2
2 + P2

2

) − sin (Q1 + f − l)

P2
2P1

√
4P1 − (

Q2
2 + P2

2

) + cos (Q1 + f − l)

0

⎤

⎥
⎥
⎥
⎦

Consequently, the inertial counterparts of r{P}, v{P} are:

r{I N } = Ar{P}

v{I N } = Av{P}

The matrix A is found to be11:

A = R (i3, h) R (i1, i) R (i3,−h)

Define U such that:

U =
√
4P1 − 2

(
Q2

2 + P2
2

) − (
Q2

3 + P2
3

) = √
2G (1 + cos i)

Then the explicit expression of matrix A, in Poincaré variables, is:

A = 1

U 2 + Q2
3 + P2

3

⎡

⎣
U 2 − Q2

3 + P2
3 −2P3Q3 −2UQ3

−2P3Q3 U 2 + Q2
3 − P2

3 −2UP3

2UQ3 2UP3 U 2 − Q2
3 − P2

3

⎤

⎦
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