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Abstract Two fully regular and universal solutions to the problem of spacecraft relative
motion are derived from the Sperling–Burdet (SB) and the Kustaanheimo–Stiefel (KS) regu-
larizations. There are no singularities in the resulting solutions, and their form is not affected
by the type of reference orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the
solutions to the problem are given in compact tensorial expressions and directly referred
to the initial state vector of the leader spacecraft. The SB and KS formulations introduce
a fictitious time by means of the Sundman transformation. Because of using an alternative
independent variable, the solutions are built based on the theory of asynchronous relative
motion. This technique simplifies the required derivations. Closed-form expressions of the
partial derivatives of orbital motion with respect to the initial state are provided explicitly.
Numerical experiments show that the performance of a given representation of the dynam-
ics depends strongly on the time transformation, whereas it is virtually independent from
the choice of variables to parameterize orbital motion. In the circular and elliptic cases, the
linear solutions coincide exactly with the results obtained with the Clohessy–Wiltshire and
Yamanaka–Ankersen state-transition matrices. Examples of relative orbits about parabolic
and hyperbolic reference orbits are also presented. Finally, the theory of asynchronous relative
motion provides a simple mechanism to introduce nonlinearities in the solution, improving
its accuracy.
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344 J. Roa, J. Peláez

1 Introduction

Bydefinition, the relativemotion between two particles is the difference between their respec-
tive absolute motions.When their relative separation is small, this difference is linearized and
the relative state vector is computed directly without the need for solving the dynamics of
the two particles independently. Although this simplification may depreciate the accuracy of
the solution as the separation grows, it is preferred in most navigation and control strategies
due to its simplicity. The linear approach provides a good insight into the dynamics of the
problem. For example, it is easy to find the conditions for coorbital motion, or to design quasi-
resonant configurations. Conversely, the direct subtraction of the absolute state vectors does
not provide an intuitive interpretation of relative motion. In addition, if the relative separation
is small enough the relative difference between the vectors to be subtracted may be close to
the machine zero, leading to the loss of accuracy due to round-off errors. When dealing with
multiple spacecraft each of them needs to be propagated separately. In the linear approach,
however, one single propagation maps the entire neighborhood of the reference trajectory.
Generally, the outcome of the linearization process depends on the parameterization of the
dynamics, i.e. on the variables used to write the analytic solution to the problem.

Using Cartesian variables is possibly the most intuitive parameterization. This form of
the equations of relative motion dates back to Laplace (1843, book II, Chap. II, §14). The
same system was recovered and solved by Hill (1878) when deriving his analytic theory for
the motion of the Moon. Almost a century later, with the rise of space exploration, Clohessy
and Wiltshire (1960) posed a compact solution to the problem of spacecraft rendezvous for
circular reference orbits. But the problem can be formulated using any set of variables or
elements different from the Cartesian ones. Finding the most adequate form of the equations
ofmotion for a given applicationmay provide a deep insight into the dynamics of the problem,
simplify its analysis, and even allow to obtain solutions that would be intractable otherwise.
We refer the reader to the first part of this series of papers, Roa and Peláez (2017) (hereafter
Paper I), for a more detailed overview of available methods.Many other reviews can be found
in the literature, like for example in Alfriend et al. (2009, Chap. 5).

Carter (1990) found the connection between the equations in Lawden’s primer vector the-
ory and the linearization of the relative dynamics by de Vries (1963). He recovered Lawden’s
integral

I (θ) =
∫ θ

θ0

dχ

(1 + e cosχ)2 sin2 χ

and succeeded in solving it in closed form by replacing the true anomaly with the eccentric
anomaly (here θ is the true anomaly). Yamanaka and Ankersen (2002) advanced on Carter’s
work and arrived to a simplified state-transition matrix for solving the elliptic rendezvous
problem. The resulting state-transition matrix is explicit both in time and true anomaly.
Because of how compact the solution is and the fact that it is valid for moderate eccentrici-
ties, this method has been applied in many practical scenarios. Casotto (2014) presented an
enlightening discussion about the classification of state-transition matrices.

Most formulations become singular as the eccentricity of the reference orbit approaches
unity. There are intrinsic assumptions that make the solution only valid for elliptic orbits,
typically related to using the eccentric anomaly when dealing with Kepler’s equation. The
accuracy of the propagation might be affected when the elliptic orbit is quasi-parabolic.
Motivated by these facts, Carter (1990) examined the parabolic and hyperbolic cases and
tried to unify them. He introduced the eccentric anomaly for solving Lawden’s integral in the
elliptic case, and the hyperbolic anomaly in the hyperbolic case. The result is a solutionwritten

123



The theory of asynchronous relative motion II 345

in terms of I (θ), which takes different forms depending on the type of reference orbit. There
has been a renewed interest in relativemotion about hyperbolic orbits.Missions designed tofly
by a certain asteroid, comet, or planet and to deploy a landing probe may fall in this category.
The concept of theAldrin cycler (Byrnes et al. 1993) is a good example. Landau andLonguski
(2007) proposed a solution to hyperbolic rendezvous based on impulsive maneuvers and
geometric constructions. Carter (1996) analyzed optimal impulsive strategies to rendezvous
with highly eccentric orbits.

Regularization first appeared in Celestial Mechanics to overcome the singularity related
to the collision between particles, i.e. r → 0. Sundman (1913, Eq. 71) introduced a time
transformation that removes the divisor r3 from the equations of orbitalmotion by considering
the definitions of the derivatives with respect to fictitious time. As a result, the governing
equations of motion become regular. Levi-Civita (1920) proposed a transformation in the
complex plane to solve the planar orbital problem. Kustaanheimo and Stiefel (1965) extended
the Levi-Civita transformation to the three-dimensional space. The so called Kustaanheimo–
Stiefel (KS) transformation provides a regular description of the dynamics. It was written in
quaternionic form byVivarelli (1983) andWaldvogel (2006). Following a different approach,
Sperling (1961) published anewmethod for describing conic sections introducing theStumpff
functions. Based on Sperling’s work, Burdet (1968) derived a perturbation method as part of
his Ph.D. thesis that was to become the Sperling–Burdet (SB) regularization. In this method,
the eccentricity vector and the energy are introduced naturally in the equations of motion.
When neglecting external perturbations, the KS transformation and the SB regularization
reduce to an oscillator (the later including a forcing term). Both systems of equations admit
an analytic solution in terms of the Stumpff functions (equivalent to the universal functions).
Everhart and Pitkin (1983) explained in detail how introducing the universal functions leads to
universal solutions to the two-body problem, no matter the eccentricity of the reference orbit.
Danby (1987) discussed exhaustively the role of the Stumpff functions in solving Kepler’s
equation. Universal variables in the context of spacecraft relative motion were recovered
by Folta and Quinn (1998) and Condurache and Martinuşi (2012), the latter dealing with
the fully nonlinear solution. Details on their formulation can be found in Condurache and
Martinuşi (2010).

Peláez et al. (2007) created the Dromo propagator, a regularization scheme based on the
Hansen ideal reference frames (Hansen 1857, p. 66). We refer to Urrutxua et al. (2016) for
an updated version of the formulation. Advances on Dromo have also been presented by
Baù et al. (2015). Roa and Peláez (2015) extended the Dromo formulation to the problem
of linear relative motion. Dromo incorporates a second-order Sundman transformation and
the physical time is replaced by an angle-like fictitious time. The Dromo-based solution to
relativemotion relied in part on the theory of asynchronous relativemotion presented in Paper
I. This theory consists in computing the state-transition matrix with constant fictitious time,
true anomaly, eccentric anomaly, etc. and then correcting the intrinsic time delay a posteriori
to recover the true linear solution. Once the linear solution is known, the theory shows how
nonlinear terms can be introduced to define an improved solution, which is more accurate
than the linear one.

In this work we derive the solution to Keplerian relative motion using the SB and the KS
regularizations (see Paper I for a generic method accounting for any perturbation). These
formulations provide a universal description of the relative dynamics coming from the use of
the Stumpff functions. As a result, there is no need to distinguish the type of reference orbit
when implementing the method. The regular nature of the SB and KS schemes is inherited
by the solution: it is completely free of singularities. The solutions are obtained based on
the theory presented in Paper I. Once the linear solution is known, nonlinear terms can be
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346 J. Roa, J. Peláez

introduced to improve the accuracy significantly. Preliminary results following this reasoning
can be found in Roa (2016).

The present paper is organized as follows. First, in Sect. 2 the equations of motion and the
required concepts from the theory of asynchronous relative motion are presented so the paper
is self-contained. The detailed derivation can be found in Paper I. Section 3 introduces the
Sperling–Burdet regularization. The variational SB equations are derived and the solution to
relative motion is built upon them. The Kustaanheimo–Stiefel transformation is discussed in
Sect. 4, including its variational form and the solution to relative motion. At the end of each
section there is a short summary explaining how the formulation should be implemented. In
Sect. 5 useful relations between the fictitious time, the physical time, and the true anomaly
are provided. Finally, the solutions are compared through a set of numerical examples in
Sect. 6. The Appendices revisit the properties of the Stumpff functions and the inverse KS
transformation.

2 Relative dynamics and the theory of asynchronous relative motion

Let r ∈ R
3 be the position vector of a particle in an inertial reference I . The motion of the

particle in a central gravity field is governed by:

d2r
dt2

= − μ

r3
r, with r = ||r||. (1)

The gravitational parameter is denoted byμ. Inwhat follows the problem is normalized so that
μ = 1. The position and velocity vectors define the state vector x ∈ R

6, with x� = [r�, v�].
External perturbations are not taken into account. The solution to the two-body problem,

x = f(t; œ), (2)

is written in terms of a set of integration constants (or elements) œ. Given a leader (�) and a
follower ( f ) spacecraft, their states at t are defined in terms of their corresponding elements:

x� = f(t; œ�) and x f = f(t; œ f ).

Awell-known technique for modeling the relative motion of the follower spacecraft is to use
the differences between their elements,

δœ = œ f − œ�.

Assuming that the differential elements are small the difference x f (t)−x�(t) can be expanded
in series to provide the relative state vector δx:

δx = x f (t) − x�(t) = f(t; œ� + δœ) − f(t; œ�) = ∂f
∂œ

∣∣∣∣
t
δœ + . . .

The first-order solution is given by the Jacobian matrix

Jt = ∂f
∂œ

∣∣∣∣
t
, (3)

defined by the partial derivatives of the state vector with respect to the set of elements, which
are computed with constant time. The linear solution reduces to

δx = Jt δœ. (4)
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The theory of asynchronous relative motion II 347

Even if in practice the solution in Eq. (2) cannot be referred directly to time because this
will require inverting Kepler’s equation, this expression captures the physical meaning of the
solution. Indeed, keeping constant the time in the derivatives in Eq. (3) requires differentiating
Kepler’s equation.

The physical time t can be replaced by a different angle-like variable, ϑ , (usually called
fictitious time) by introducing a certain time transformation. The solution to Kepler’s problem
reads

x = g(ϑ; œ) (5)

t = T (ϑ; œ) (6)

The physical time becomes a dependent variable, defined by Eq. (6). Reproducing the above
steps yields the asynchronous solution to relative motion,

δxasyn = x f (ϑ) − x�(ϑ) = g(ϑ; œ� + δœ) − g(ϑ; œ�) = ∂g
∂œ

∣∣∣∣
ϑ

δœ + . . .

which connects the states of the leader and follower spacecraft at ϑ , and not t . The solution

δxasyn = Jϑ δœ

now involves the asynchronous Jacobian

Jϑ = ∂g
∂œ

∣∣∣∣
ϑ

. (7)

The derivatives are computedwith constantϑ . Thismotivates the nameasynchronous solution
(or ϑ-synchronous), because a certain time delay δt appears in the solution. The time delay
stems from the variational form of Eq. (6):

δt = t f − t� = T (ϑ; œ f ) − T (ϑ; œ�) ≈ ∂T

∂œ

∣∣∣∣
ϑ

δœ. (8)

In Paper I we proved that the time delay can be easily corrected by means of

δx = δxasyn − ∂f�
∂t

δt. (9)

Under this formalism Eqs. (4) and (9) turn out to be completely equivalent. Equation (9)
decomposes in:

δr = δrasyn − v�δt (10)

δv = δvasyn + r�

r3�
δt (11)

in which δv is the relative velocity defined from the perspective of the inertial frame, and r�

and v� are the absolute position and velocity vectors of the leader spacecraft.
Given the time delay, it is possible not only to correct the solution to first order, but also

to introduce nonlinear terms given by the second-order expansion:

δx = δxasyn − ∂f f
∂t

∣∣∣∣
asyn

δt + 1

2

∂2f f
∂t2

∣∣∣∣
asyn

δt2. (12)
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348 J. Roa, J. Peláez

Nonlinear terms improve the accuracy of the propagation when compared to the purely linear
one. Once the linear solution is known, it can be refined thanks to (see Paper I)

δr� = δr − δv δt + r�

2r3�
δt2 (13)

δv� = δv + δt

2r3�

[
U3 − 3(i ⊗ i)

]
(2δr + v�δt). (14)

Here U3 is the three-by-three identity matrix, and ⊗ is the dyadic product.1 The star ��

denotes the improved solution including nonlinearities. The unit vector i is parallel to the
leader’s radius vector, i = r�/r�. It is one of the vectors forming the basis that defines the
Euler–Hill frame L = {i, j, k}. The unit vector k follows the direction of the leader’s angular
momentum, k = h�/h�, and j = k × i.

These equations are valid for any independent variable ϑ different from time, and for
any set of constant of integration œ. The problem of relative motion reduces to finding the
asynchronous Jacobian matrix and the time delay. Then, the linear solution is obtained from
Eqs. (10–11). If more accuracy is needed, Eqs. (13–14) define an improved solution. In Paper
I, it is demonstrated that the linear solution improvedwith the theory of asynchronous relative
motion may be more accurate than the solution to the second and even third-order equations
of motion.

3 The Sperling–Burdet (SB) regularization

Consider the first-order Sundman transformation

dt

ds
= r (15)

defining the fictitious time s. The time derivatives of the state vector transform into

dr
dt

= 1

r

dr
ds

, and
d2r
dt2

= 1

r3

(
r
d2r
ds2

− dr

ds

dr
ds

)
. (16)

Inwhat remains of the paper derivativeswith respect to t will be denoted ṙ,whereas derivatives
with respect to s will be r′. The fictitious radial velocity r ′ is given by r ′ = (r ·r′)/r = (r ·v).
IntroducingEq. (16) in the governing equation of the two-body problem,Eq. (1), the dynamics
are referred to fictitious time,

r′′ − (r · r′)
r2

r′ + r
r

= 0, (17)

written in normalized variables and neglecting external perturbations.

1 By identifying vectors with rank-one tensors the dyadic product of two vectors a = [a1, . . . , an ]� and
b = [b1, . . . , bn ]� is computed explicitly as

a ⊗ b =
⎡
⎢⎣
a1b1 . . . a1bn
.
.
.

. . .
.
.
.

anb1 . . . anbb

⎤
⎥⎦

and defines a rank-two tensor represented by an n × n matrix. This product is often written in matrix form as
a b�, with a and b column vectors.
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The theory of asynchronous relative motion II 349

Let e ∈ R
3 be the eccentricity vector, and h = r×v the angular momentum of the particle.

From the definition of e it follows that:

e = v × h − r
r

= 1

r2

[
(r′ · r′) r − (r′ · r) r′] − r

r
. (18)

Subtracting Eqs. (18) to (17) embeds the eccentricity vector in the equations of motion:

r′′ +
[
2

r
− (r′ · r′)

r2

]
r = −e.

The term in brackets is none other than the energy referred to the fictitious velocity,

2E = (r′ · r′)
r2

− 2

r
,

where E denotes the Keplerian energy of the particle.
It follows:

r′′ + ω2 r = −e, with ω2 = −2E . (19)

The two-body problem transforms into a forced oscillator under the Sperling–Burdet reg-
ularization. It needs to be integrated from the initial conditions at s = 0, r(0) = r0 and
r′(0) = r′

0, together with the Sundman transformation in Eq. (15). An explicit solution to
Eq. (19) can be found in terms of the Stumpff functions Ck(z) (Bond and Allman 1996,
§9.3.3),

r(s) = r0 + s r0C1(z)v0 + s2C2(z) d, (20)

with d = −(ω2r0 + e) and z = ω2s2. The Stumpff functions are introduced formally in
Appendix 1. The fictitious velocity is obtained by deriving Eq. (20):

r′(s) = r0C0(z)v0 + sC1(z) d. (21)

The radial distance admits a similar regularization. The expression r ′ = (r · v) is derived
with respect to fictitious time and, considering the definition of the eccentricity vector, sim-
plifies to

r ′′ + ω2r = 1, s = 0 : r(0) = r0, r ′(0) = (r0 · v0).

The solution to this equation is

r(s) = r0C0(z) + r ′
0s C1(z) + s2C2(z). (22)

The universal form of Kepler’s equation defines the physical time as a function of the
fictitious time:

t = T (s; r0, v0) ≡ t0 + sr0C1(z) + s2r ′
0C2(z) + s3C3(z). (23)

The regularization of the motion provides a universal solution to Kepler’s problem, inde-
pendent from the type of reference orbit. This is achieved by generalizing the trigonometric
functions with the Stumpff functions, and replacing the eccentric/hyperbolic anomaly with
the fictitious time s.
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350 J. Roa, J. Peláez

3.1 Variational form of the Sperling–Burdet solution

The solution to Kepler’s problem under the SB regularization is given in Eqs. (20) and
(21), and Eq. (23) relates the physical time with the fictitious time. Recovering the notation
from Sect. 2, the fictitious time is the independent variable s ≡ ϑ and the initial conditions
define the constants of integration, œ� = [r�

0 , v�
0 ]. As discussed in the referred section the

solution to the relative dynamics requires the asynchronous Jacobian matrix and the time
delay, defined respectively in Eqs. (7) and (8). These derivations are equivalent to computing
how vectors r� and v� change given a set of differences in the initial conditions δr0 and δv0.
The relative velocity will be solved from the fictitious velocity r′

�. In what remains of the
paper all variables are referred to the leader spacecraft; to alleviate the notation the subscript
� will be omitted. The asynchronous solution reads

δxasyn = Js(s) δx0.

Because of using the initial state vector to parameterize the problem, Js is equivalent to the
asynchronous state-transition matrix, �asyn ≡ Js . It can be written in blocks as:

Js(s) =
[∇r0

∣∣
s r, ∇v0

∣∣
s r

∇r0

∣∣
s v, ∇v0

∣∣
s v

]
(24)

The blocks correspond to the partial derivatives of the position and velocity vectors with
respect to the initial conditions, computed with constant fictitious time s.

Each block is computed as the gradient of the corresponding vector field. The resulting
rank-two tensors (represented by 3 × 3 matrices) are

∇r0

∣∣
sr = U3 + sr0

(
v0 ⊗ ∇r0

∣∣
sC1

) + s2
[(

d ⊗ ∇r0

∣∣
sC2

) + C2∇r0

∣∣
sd

]
(25)

∇v0

∣∣
sr = sr0

[
C1U3 + (

v0 ⊗ ∇v0

∣∣
sC1

)] + s2
[(

d ⊗ ∇v0

∣∣
sC2

) + C2∇v0

∣∣
sd

]
(26)

∇r0

∣∣
sv = 1

r2
[
r ∇r0

∣∣
sr

′ − (r′ ⊗ ∇r0

∣∣
sr)

]
(27)

∇v0

∣∣
sv = 1

r2
[
r ∇v0

∣∣
sr

′ − (r′ ⊗ ∇v0

∣∣
sr)

]
(28)

The gradients of the Stumpff functions Ck(z) ≡ Ck are obtained attending to the derivation
rules (55–56) established in Appendix 1:

∇r0

∣∣
sCk = ∂Ck

∂ω
∇r0

∣∣
sω = s2

r30
C ∗
k+2r0,

∇v0

∣∣
sCk = ∂Ck

∂ω
∇v0

∣∣
sω = s2C ∗

k+2v0.

Equations (25–26) then become:

∇r0

∣∣
sr = U3 + s3

r20
C ∗
3 (v0 ⊗ r0) + s4

r30
C ∗
4 (d ⊗ r0) + s2C2∇r0

∣∣
sd (29)

∇v0

∣∣
sr = sr0C1U3 + s3r0C

∗
3 (v0 ⊗ v0) + s4C ∗

4 (d ⊗ v0) + s2C2∇v0

∣∣
sd (30)

The gradients of vector d are required. From the definition d = −(ω2r0 + e) it follows:

∇r0

∣∣
sd = −ω2U3 + 2

r30
(r0 ⊗ r0) − ∇r0

∣∣
se, ∇v0

∣∣
sd = 2(r0 ⊗ v0) − ∇v0

∣∣
se.
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The gradients of the eccentricity vector are obtained directly from Eq. (18),

∇r0

∣∣
se =

(
v20 − 1

r0

)
U3 + 1

r30
(r0 ⊗ r0) − v0 ⊗ v0,

∇v0

∣∣
se = 2(r0 ⊗ v0) − v0 ⊗ r0 − r ′

0U3.

Recall that r ′
0 = (r0 · v0). At this point, the solution is completely referred to the initial

conditions r0 and v0. The gradients of vector d reduce to

∇r0

∣∣
sd = − 1

r30

[
r20U3 − (r0 ⊗ r0)

] + v0 ⊗ v0, and ∇v0

∣∣
sd = r ′

0U3 + v0 ⊗ r0.

Considering the dyadic products

d ⊗ r0 =
(
r ′
0v0 − r0

r0

)
⊗ r0, and d ⊗ v0 =

(
r ′
0v0 − r0

r0

)
⊗ v0,

Equations (29–30) transform into:

∇r0

∣∣
sr = U3 + s

r40

[
r20 (r0C1 + s2C ∗

3 )v0 + r0sC2r0 + s3C ∗
4 (r0r

′
0v0 − r0)

] ⊗ r0

−C2
s2

r0
[U3 − r0(v0 ⊗ v0)]

∇v0

∣∣
sr = sr0C1U3 + s2C2

[
r ′
0U3 + (v0 ⊗ r0)

]

− s4

r0
C ∗
4 (r0 − r0r

′
0v0) ⊗ v0 + s3r0C

∗
3 (v0 ⊗ v0)

These expressions are the first two blocks of the Jacobian matrix Js(s), which are given in
terms of the initial conditions and the fictitious time.

The gradients of the velocity vector require the gradients of both the fictitious velocity
vector r′ and the radial distance r . From the solution to the radial distance r(s)—Eq. (22),—it
follows:

∇r0

∣∣
sr = sC1v0 + 1

r30

(
r20C0 + s2r0C1 + s3r ′

0C
∗
3 + s4C ∗

4

)
r0

∇v0

∣∣
sr = sC1r0 + s2

(
r0C1 + r ′

0sC
∗
3 + s2C ∗

4

)
v0

No further derivation is required since these equations are already referred to r0 and v0.
Taking the partial derivatives of Eq. (21) renders

∇r0

∣∣
sr

′ = 1

r40

[
sr0C1r0 + r20 (r0C0 + s2C1)v0 − s3C ∗

3 (r0 − r0r
′
0v0)

]
⊗ r0

+ s

r0
C1

[
r0(v0 ⊗ v0) − U3

]

∇v0

∣∣
sr

′ = r0C0U3 + sC1
[
r ′
0U3 + v0 ⊗ (r0 + r0sv0)

] − s3

r0
C ∗
3 (r0 − r0r

′
0v0) ⊗ v0

These results complete the gradients of the velocity. The four blocks of matrix Js , given in
Eqs. (25–28), take the form:

∇r0
∣∣
sr = U3 + s

r40

[
r0(r0a

+
13 + s3r ′

0C
∗
4 )v0 + sa−

24r0
] ⊗ r0 − C2

s2

r0
[U3 − r0(v0 ⊗ v0)] (31)
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∇v0
∣∣
sr = sb+

12U3 + s2C2(v0 ⊗ r0) − s4

r0
C ∗
4 (r0 − r0r

′
0v0) ⊗ v0 + s3r0C

∗
3 (v0 ⊗ v0) (32)

r2∇r0
∣∣
sv = s

r40

{[
r0b

+
01C1 + s2a+

14C1 + a+
02a

−
13

]
r0 + r0s

[
r20C0C2 + s2(b+

13C2 − b+
01C

∗
4 )

]
v0

}
⊗ r0

− sr

r0
C1U3 + s2

r0

(
C 2
1 r0 + r0sC1C2v0

) ⊗ v0 (33)

r2∇v0
∣∣
sv = s3

r0

[
(a+

14C1 − a+
02C

∗
3 )r0 + r0s(b

+
13C2 − b+

01C
∗
4 )v0

] ⊗ v0

+rb+
01U3 + s2

r0
(C 2

1 r0 + r0sC1C2v0) ⊗ r0 (34)

having introduced the auxiliary terms:

a±
i j = r0Ci ± s2C ∗

j and b±
i j = r0Ci ± sr ′

0C
∗
j .

The physical time is given explicitly byEq. (23), the generalized formofKepler’s equation,
t = T (s; r0, v0). The gradients of time with respect to the initial state vector are obtained by
differentiating this equation, and result in

∇r0

∣∣
sT = s

r30

(
r0a

+
13 + s3r ′

0C
∗
4 + s4C ∗

5

)
r0 + s2C2v0,

∇v0

∣∣
sT = s2C2r0 + s3

(
r0C

∗
3 + sC ∗

4 r
′
0 + s2C ∗

5

)
v0.

The time delay δt is then defined as

δt = (∇r0

∣∣
sT · δr0) + (∇v0

∣∣
sT · δv0). (35)

Having derived the asynchronous state-transition matrix and the time delay, the solution is
now complete.

3.2 Summary

An efficient way to implement the algorithm and to reduce the overall length of the code is
to follow the sequence:

1. Given the initial position and velocity of the leader spacecraft, r0 and v0, compute the
gradients of the state vector defined in Eqs. (31–34). Recall that all variables are referred
to the leader spacecraft although the subscript � has been obviated.

2. Build the asynchronous state-transition matrix Js(s) following Eq. (24), and find the
asynchronous relative state vector, δxasyn = Js(s)δx0.

3. Solve the time delay from Eq. (35).
4. Recover the solution to the linear dynamics using the first-order correction defined in

Eqs. (10–11).
5. (Optional) The accuracy of the linear solution can be increased by computing the

improved nonlinear solution, given in Eqs. (13–14).

4 The Kustaanheimo–Stiefel (KS) transformation

Kustaanheimo and Stiefel (1965) introduced a special transformation to regularize the
two-body problem. The position of the particle is represented by a four-vector u =
[u1, u2, u3, u4]� in KS space. Denoting [x, y, z, 0]� the components of the position vector
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r in the inertial frame and extended to R4, the KS regularization establishes a transformation
between u and r of the form:

r = L(u) u, (36)

where L(u) is referred to as the KS matrix:

L(u) =

⎡
⎢⎢⎣
u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

⎤
⎥⎥⎦

The KS matrix is r -orthogonal, i.e. L−1(u) = (1/r)L�(u). The radial distance r is given
by r = (u · u). When dealing with the derivatives of the KS matrix it is worth noticing that
L′(u) = L(u′). The arguments in the product L(u) v are interchangeable if, and only if, the
bilinear relation ρ(u, v) = 0 holds;

L(u) v = L(v) u ⇐⇒ ρ(u, v) ≡ u1v4 − u2v3 + u3v2 − u4v1 = 0. (37)

Note that ρ(v, u) = −ρ(u, v). Stiefel and Scheifele (1971, p. 29) proved the existence of an
integral of motion related to the bilinear relation, namely ρ(u, u′) = 0. When deriving the
extended position vector r with respect to fictitious time, as defined in Eq. (15), it is

r′ = L′(u) u + L(u) u′,

and the fact that u and u′ satisfy the bilinear relation ρ(u, u′) = 0 gives

r′ = 2L(u) u′. (38)

The second derivative with respect to s becomes

r′′ = 2
[
L(u′) u′ + L(u) u′′]. (39)

Equations (17) and (39) and taking into account the properties of the KS matrix renders

u′′ +
[
1 − 2(u′ · u′)

2(u · u)

]
u = 0. (40)

The orbital energy of the particle is written in KS language as

E = v2

2
− 1

r
= 1

(u · u)

[
2(u′ · u′) − 1

]
,

meaning that the term between brackets in Eq. (40) is simply −E/2. The governing equation
of motion then reduces to

u′′ + ψ2 u = 0, with ψ2 = −E
2

= ω2

4
. (41)

This equation needs to be integrated from the initial conditions at s = 0, u(0) = u0 and
u′(0) = u′

0. The problem has been reduced to a harmonic oscillator of natural frequency
ψ , which remains constant when no perturbations are considered. An exhaustive analysis of
the linearization achieved by the KS transformation can be found in the works by Ferrándiz
(1987) and Deprit et al. (1994). This equation admits an analytic solution in terms of the
Stumpff functions:

u(s) = u0 C0(z/4) + s u′
0C1(z/4) (42)

u′(s) = u′
0 C0(z/4) − ψ2s u0C1(z/4) (43)
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To simplify the notation, in the following the Stumpff functions will be written

Ck(z/4) = Dk(z) ≡ Dk .

Note that theCk andDk functions relate through the half-angle formulas, given inAppendix 1.
The inverse KS map transforms the initial conditions in Cartesian space (r0 and v0) to the

initial conditions in KS space (u0 and u′
0). Details about the inverse map, based on the Hopf

fibration, can be found in Appendix 2. Recently, Roa et al. (2016) exploited the connection
between the stability properties of theKS transformation and the topology of this fiber bundle.

The universal Kepler equation is written in terms of vectors u0 and u′
0 as

t = T (s; u0, u′
0) ≡ s

2
r0[1 + D1(4z)] + 2s2 (u0 · u′

0)D2(4z) + 2s3(u′
0 · u′

0)D3(4z). (44)

Notice that Dk(4z) = Ck(z).

4.1 Variational form of the Kustaanheimo–Stiefel transformation

Equations (36) and (38) define the transformation from u and u′ to the (extended) state vector.
Grouping u and u′ under vector y� = [u�, u′�], the state vector x takes the form

x = g(s; y),

and Eqs. (42–43) define the functional relation

y = gu(s; u0, u′
0).

The asynchronous Jacobian Js is obtained by computing the partials with respect to the initial
conditions in KS space,

Js(s) = ∂g
∂y0

= ∂g
∂y

∂gu
∂y0

= P(s)Q(s).

The Jacobian matrix is decomposed naturally in two terms to simplify its derivation, namely

P(s) = ∂g
∂y

and Q(s) = ∂gu
∂y0

,

which are 4 × 4 matrices. Like in the preceding section, all variables relate to the leader
spacecraft.

In practical applications the set of differences δy0 needs to be referred to the state vector
in Cartesian coordinates δx0. The inverse KS transformation discussed in Appendix 2 can
be linearized assuming that δy0 is small compared to the nominal values of u0 and u′

0. It
provides:

δy0 = T(x0) δx0.

The linear operator T(x0) is defined explicitly in Appendix 3. With this, the asynchronous
solution is obtained from

δxasyn = P(s)Q(s)T(x0) δx0 = Js(s)T(x0) δx0 = �asyn(s) δx0,

which means that the asynchronous state-transition matrix is

�asyn(s) = P(s)Q(s)T(x0).

The relative position vector is obtained by differentiating Eq. (36), which provides:

δr = δL(u) u + L(u) δu = L(δu) u + L(u) δu = 2L(u) δu. (45)
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Note that the bilinear relation ρ(u, δu) = 0 from Eq. (37) holds. Similarly, the relative
velocity results in

δv = 2

r

[
L(u′) δu + L(u) δu′] − 4

r2
(u · δu)L(u) u′. (46)

Equations (45) and (46) can be written in matrix form to provide

δx = P(s) δy.

Consequently, the matrix P(s) reads

P(s) =
[

2L(u), 04
2

r
L(u′), 2

r2
{
rL(u) − 2

[{L(u) u′} ⊗ u
]}

]
(47)

The second matrix defining the Jacobian, matrix Q, decomposes in four blocks:

Q(s) =
[

∇u0

∣∣
su, ∇u′

0

∣∣
su

∇u0

∣∣
su

′, ∇u′
0

∣∣
su

′

]

and provides

δy = Q(s) δy0.

What remains of the present section is devoted to computing the gradients that form matrix
Q, as well as the time delay. Kriz (1978) also studied the partial derivatives of u and u′ with
respect to u0 and u′

0 when solving the perturbed two-point boundary value problem using
the KS transformation. See Shefer (2007) and the references therein for an overview of some
works on this topic that appeared in the Russian literature.

Applying the gradients ∇u0 ,∇u′
0

: R4 → R
4 × R

4 to Eqs. (42–43) yields:

∇u0

∣∣
su = D0 U4 + u0 ⊗ ∇u0D0+ s(u′

0 ⊗ ∇u0D1)

∇u′
0

∣∣
su = s D1 U4 + u0 ⊗ ∇u′

0
D0+ s(u′

0 ⊗ ∇u′
0
D1)

∇u0

∣∣
su

′ = −ψ2 s D1 U4 + u′
0 ⊗ ∇u0D0 − ψ2 s(u0 ⊗ ∇u0D1)

∇u′
0

∣∣
su

′ = D0 U4 + u′
0 ⊗ ∇u′

0
D0 − ψ2 s(u0 ⊗ ∇u′

0
D1)

From the properties of the Stumpff functions it follows:

∇u0

∣∣
sD0 = ∂D0

∂ψ
∇u0

∣∣
sψ = s2

ψ

r0
D1 u0, ∇u0

∣∣
sD1 = s3

ψ

r0
D∗
3 u0

∇u′
0

∣∣
sD0 = ∂D0

∂ψ
∇u′

0

∣∣
sψ = s2

r0
D1 u′

0, ∇u′
0

∣∣
sD1 = s3

r0
D∗
3 u′

0

The gradients of vectors u and u′ then become

∇u0

∣∣
su = D0 U4 + ψ2 s

2

r0

(
D1u0 + sD∗

3u′
0

) ⊗ u0 (48)

∇u′
0

∣∣
su = sD1 U4 + s2

r0

(
D1u0 + sD∗

3u′
0

) ⊗ u′
0 (49)

∇u0

∣∣
su

′ = −ψ2sD1 U4 + ψ2 s

r0

[(
2D1 − ψ2s2D∗

3

)
u0 + sD1u′

0

]
⊗ u0 (50)

∇u′
0

∣∣
su

′ = D0 U4 + s

r0

[(
2D1 − ψ2s2D∗

3

)
u0 + sD1u′

0

]
⊗ u′

0 (51)
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completing matrix Q(s).
The time delay is determined by differentiating Eq. (44),

δt = ∇u0

∣∣
sT · δu0 + ∇u′

0

∣∣
sT · δu′

0, (52)

where the gradients of t = T (s; u0, u′
0) are

∇u0

∣∣
sT = s

(
1 + C1

)
u0 + 2s2C2 u′

0 + 8

r0
s3ψ2

[
s(u0 · u′

0)C
∗
4 + s2(u′

0 · u′
0)C

∗
5 + r0

4
C ∗
3

]
u0

∇u′
0

∣∣
sT = 2s2

r0

{
4s2

[
(u′

0 · u′
0)sC

∗
5 + (u0 · u′

0)C
∗
4

]
u′
0 + r0

[
u′
0(C2 + C ∗

3 )s + u0C2
]}

and complete the definition of the time delay.

4.2 Summary

The following steps summarize the algorithm for computing the relative state vector using
the KS transformation.

1. Transform the initial state of the leader spacecraft, x�
0 = [r�

0 , v�
0 ], to KS variables

y�
0 = [u�

0 , u′
0
�] following Appendix 2.

2. Transform the initial separation δx0 to δy0 using matrix T(x0) (see Appendix 3).
3. Use Eqs. (48–51) to compute matrix Q(s).
4. Get matrix P(s) from Eq. (47) and considering the state of the leader spacecraft.
5. Use the previous results to find the asynchronous solution to the problem:

δxasyn = Jasyn(s) δy0 = P(s)Q(s)T(x0) δx0 = �asyn(s) δx0

6. Compute the time delay δt from Eq. (52).
7. Recover the solution to the linear dynamics using the first-order correction defined in

Eqs. (10–11).
8. (Optional) The accuracy of the linear solution can be increased by computing the

improved nonlinear solution, given in Eqs. (13–14).

5 On the fictitious time

In practice, the solution is propagated across a certain time interval, t ∈ [t1, t2]. The fictitious
time spans across s ∈ [s1, s2], and it is initially zero (s1 = 0). The final value of the fictitious
time, s2, is solved from the universal Kepler equation:

t2 − t1 = s2r1C1(z2) + s22r
′
1C2(z2) + s32C3(z2). (53)

Battin (1999,§4.5) wrote this equation in terms of the universal functionsUk(z), which relate
to the Stumpff functions by means of Uk(z) = skCk(z). The universal functions are also
referred to as generalized conic functions (Everhart and Pitkin 1983). Special attention has
been paid to the numerical resolution of this equation (Burkardt and Danby 1983; Danby
1987).

Battin (1999, p. 179) credited Charles M. Newman with deriving an explicit expression
for the final value of s in terms of

s2 = ω2(t2 − t1) + r ′
2 − r ′

1, with r ′ = (r · v).
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This expression is useful when the relative state vector is to be computed given a specific
position and velocity of the leader spacecraft. None of these equations changes its formwhen
the Keplerian energy changes its sign.

The fictitious time can be easily related to the eccentric (E) and hyperbolic (H ) anomalies
in the cases e < 1 and e > 1, respectively, in terms of

e < 1 : s2 = √
a(E2 − E1)

e > 1 : s2 = √|a|(H2 − H1)

In the limiting case e → 1 the fictitious time relates to the true anomaly thanks to

s2 = h

(
tan

θ2

2
− tan

θ1

2

)
.

6 Numerical examples

This section is devoted to testing the performance of the linear and the improved solutions
for the four different types of reference orbits: circular, elliptic, parabolic, and hyperbolic.
The accuracy of the proposed formulations is analyzed by comparing them with the exact
solution to the problem. The error at each step is measured as:

ε = ||δr − δrref ||, ε̇ = ||δṙ − δṙref ||,
where δrref and δṙref are the exact relative position and velocity vectors. The exact solution is
constructed by propagating the Keplerian two-body problem for the leader and the follower
separately, and then subtracting the absolute state vectors. Vector δṙ = [δẋ, δ ẏ, δż]� denotes
the relative velocity from the perspective of the Euler–Hill reference frame that rotates with
the leader spacecraft. The relative velocity referred to the rotating reference, δṙ, relates to
the absolute relative velocity δv through:

δṙ = δv − ωLI × δr

where ωLI = h�/r2� denotes the angular velocity of the Euler–Hill frame with respect to the
inertial reference, andh� is the angularmomentumof the leader spacecraft. In the circular case
the new solutions to relative motion with the Sperling–Burdet and the Kustaanheimo–Stiefel
transformations (denoted RelSB andRelKS, respectively) are also compared to the Clohessy-
Wiltshire (CW) solution, and to the Yamanaka–Ankersen (YA) state-transition matrix in the
elliptic case. Roa and Peláez (2015) arrived to the linear solution to relative motion using
a second-order Sundman transformation in terms of the Dromo elements. We recover this
solution (to be denotedRelDromo) to compare its performancewith the solutions presented in
the present paper, and then we will also improve the RelDromo solution following the theory
of asynchronous relative motion. The reason for considering this method is that RelKS and
RelSB involve a Sundman transformation of order one, dt/ds = r , whereas Dromo is based
on a time transformation of order two, namely

dt

ds
= r2

h
.

Since the theory of asynchronous relative motion depends strongly on the definition of the
time delay, and the time delay follows from the form of the time transformation, one would
expect that using different time transformations would lead to different performances of the
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Table 1 Definition of the reference orbits and relative initial conditions in the Euler–Hill frame

Case a [km] e i [◦] ω [◦] 
 [◦] θ0 [◦]

#1 7500 0.0 180 50 0 −45

#2 9000 0.7 90 100 50 10

#3 ∞ 1.0 20 250 10 −120

#4 −20,000 1.4 20 100 60 −130

δx0 [m] δy0 [m] δz0 [m] δ ẋ0 [m/s] δ ẏ0 [m/s] δż0 [m/s]

#1 −150 50 −200 −0.6 −0.1 −0.1

#2 0 −50 150 0.1 0.1 0.5

#3 −170 160 −20 −1.7 −1.0 0.5

#4 −60 50 100 −0.2 0.2 −0.5

The relative velocity is defined in the rotating frame
The reference orbit for Case 3 is defined through the angular momentum, which is h = 60,000 km2/s

improved solution including nonlinear terms. The linear solutions, on the other hand, will
coincide exactly.

Table 1 defines the four test cases by giving both the reference orbit and the initial relative
conditions. In the circular and elliptic cases the solution is propagated for 15 complete
revolutions. In the parabolic and hyperbolic cases the propagation spans from θ0 to −θ0,
where θ0 is the initial value of the true anomaly. Examples of equatorial-retrograde and polar
orbits are selected to show that the RelKS and RelSB solutions are not affected by typical
singularities such as i = 0 or e = 0. RelDromo is valid for any noncircular orbit, although it
is not universal (different expressions are required for the elliptic, parabolic, and hyperbolic
cases).

Figure 1 displays the relative orbit and the error in position and velocity for Case 1, an
equatorial-retrograde circular orbit. The solution is computed with the CW solution, RelKS,
and RelSB (RelDromo is singular in this case). In the linear regime, the three formulations
yield exactly the same results: this proves that the RelKS and RelSB solutions corrected to
first order (using Eqs. 10, 11) are indeed the exact solution to the linear equations of relative
motion, as predicted. To simplify the visualization only one line is plotted (“Linear”) instead
of three overlapping lines. Then, we can take advantage of the theory of asynchronous relative
motion to compute the improved solution, “RelKS-RelSB (�)” (using Eqs. 13, 14). In this way,
we are introducing nonlinear terms in the solution. As a result, we adequately capture the
nonlinear behavior of the dynamics, and the accuracy of the propagation is improved by one
order of magnitude both in position and velocity. The improved RelSB and RelKS methods
yield the same result. This means that the accuracy depends on the time transformation, and
not on the variables the problem is formulated with.

The results for Case 2 are presented in Fig. 2. This case is an example of a polar and highly
eccentric reference orbit. This case is propagated with the YA solution, RelSB, RelKS, and
RelDromo. The linear solution (with the first-order correction) coincides in practice for the
fourmethods andonly one line is plotted. The improved version of the formulations (including
second-order corrections of the time delay and marked with a star �) yields error reductions
of almost two orders of magnitude in position, and one in velocity. In this particular case,
the second-order correction in Dromo elements (“RelDromo (�)”) is slightly more accurate
than the equivalent solution using KS or SB variables (“RelKS-RelSB (�)”), which coincide
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Fig. 1 Relative orbit and propagation error for Case 1 (circular)

Fig. 2 Relative orbit and propagation error for Case 2 (elliptic)

exactly. This is due to the differences in the definition of the time delay, coming from the use
of different time transformations. The Dromo formulation relies on a second-order Sundman
transformation, whereas the time transformation for the KS and SB methods is of first order.
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Fig. 3 Relative orbit and propagation error for Case 3 (parabolic)

The discretization of the orbit is different: the former is equivalent to the true anomaly,
whereas the latter corresponds to the eccentric anomaly.

Figures 3 and 4 correspond to parabolic and hyperbolic reference orbits, respectively.
The results in both cases are qualitatively similar. RelKS and RelSB are compared only to
RelDromo. It is observed that the error in velocity is maximum around perigee no matter the
formulation. This is caused by the strong divergence of the dynamics around periapsis. The
improved solution with nonlinear terms partially mitigates this phenomenon in the parabolic
case, althoughno clear improvements are observed in the hyperbolic case. The linear solutions
coincide exactly. In the parabolic case the second-order Sundman transformation used by
RelDromo exhibits small advantages in the propagation of the velocity with the improved
method, whereas the propagation of the position is less accurate. RelDromo (�) seems to be
less accurate in the case of open orbits, possibly due to the faster growth of the fictitious
time along the asymptote: it grows as r2 instead of r . This makes the time delay to grow
rapidly and depreciates the accuracy of the correction. Roa et al. (2015) proved the existence
of a singularity in Dromo when approaching infinity along an asymptote. RelDromo is not
universal as the time delay takes different forms depending on the sign of the energy.

Table 2 summarizes the previous discussions on the accuracy of the methods. The final
errors in position and velocity are presented, showing both their absolute magnitude and the
value relative to the final relative separation and velocity. In this way, the real impact of the
error on the solution can be quantified, and the significance of the error reductions when
introducing nonlinearities is easier to appreciate. The improved solutions are denoted with a
star (�). This table clearly shows that the linear solutions coincide identically, as they are the
exact solution to the same system of equations. The nonlinear correction, conversely, depends
on the time transformation and therefore the accuracy of RelKS and RelSB coincides (both
use dt/ds = r ), but it is different from that of RelDromo (which uses dt/ds = r2/h).
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Fig. 4 Relative orbit and propagation error for Case 4 (hyperbolic)

Table 2 Final error in position and velocity for the proposed formulations

Case 1 Case 2 Case 3 Case 4

εf [m] ε̇f [mm/s] εf [m] ε̇f [mm/s] εf [m] ε̇f [mm/s] εf [m] ε̇f [mm/s]

CW 875.46 12.68 – – – – – –

YA 875.46 12.68 8.224.9 5309.0 – – – –

RelSB 875.46 12.68 8224.9 5309.0 5.22 0.07 231.6 5.28

RelSB (�) 103.78 4.29 221.7 1475.5 4.84 0.07 249.0 5.33

RelKS 875.46 12.68 8224.9 5309.0 5.22 0.07 231.6 5.28

RelKS (�) 103.78 4.29 221.7 1475.5 4.84 0.07 249.0 5.33

RelDr. – – 8224.9 5309.0 5.22 0.07 231.6 5.28

RelDr. (�) – – 188.9 1542.4 12.35 3.05 238.5 19.73

εf/||δrf || ε̇f/||δṙf || εf/||δrf || ε̇f/||δṙf || εf/||δrf || ε̇f/||δṙf || εf/||δrf || ε̇f/||δṙf ||

CW 7.68E−3 2.03E−2 – – – – – –

YA 7.68E−3 2.03E−2 2.99E−2 8.14E−3 – – – –

RelSB 7.68E−3 2.03E−2 2.99E−2 8.14E−3 3.43E−4 4.70E−4 9.93E−4 8.89E−4

RelSB (�) 9.11E−4 6.90E−3 8.05E−4 2.26E−3 3.18E−4 4.01E−4 1.07E−3 8.97E−4

RelKS 7.68E−3 2.03E−2 2.99E−2 8.14E−3 3.43E−4 4.70E−4 9.93E−4 8.89E−4

RelKS (�) 9.11E−4 6.90E−3 8.05E−4 2.26E−3 3.18E−4 4.01E−4 1.07E−3 8.97E−4

RelDr. – – 2.99E−2 8.14E−3 3.43E−4 4.70E−4 9.93E−4 8.89E−4

RelDr. (�) – – 6.86E−4 2.36E−3 8.11E−4 1.83E−3 6.17E−3 2.05E−3
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Table 3 CPU time (in s) for
500000 consecutive runs of a
single propagation

CW YA RelSB RelSB (�) RelKS RelKS (�)

Case 1 0.85 1.12 2.29 2.35 2.47 2.80

Case 2 – 1.25 2.43 2.49 2.59 2.64

Case 3 – – 2.41 2.49 2.39 2.59

Case 4 – – 2.48 2.57 2.60 2.86

Finally, Table 3 compares the computational time of the methods derived in this paper
with the CW and YA solutions. Simulations are run in Fortran using the Intel Fortran XE
15.0 compiler on a 2.8 GHz Intel Core i7 machine. In order to measure the runtime in a
reliable way, we propagate the relative dynamics 500,000 times, and measure the total time.
Thanks to this, unexpected overheads are averaged. The new universal solutions are slower
than the YA method because of using the Stumpff functions for propagating the dynamics.
But the evaluation is so fast (of the order of microseconds) that doubling the runtime is quite
affordable. It is interesting to note that the improved nonlinear solution (�) is practically as
fast as the linear solutions. This demonstrates that improving the accuracy of the formulations
using the theory of asynchronous relativemotion has little impact on the computational effort.

7 Conclusions

Based on the theory of asynchronous relative motion introduced in Paper I, two fully
regular and universal solutions to the problem are built from the Sperling–Burdet and
Kustaanheimo–Stiefel regularizations. The resulting formulations are regular because they
present no singularities. In addition, the solutions are said to be universal because they take
the exact same form no matter the type of orbit (circular, elliptic, parabolic, hyperbolic) and
there is no need to distinguish the different cases. They are valid for any eccentricity and
orbit geometry. This property may simplify the implementation in navigation and control
algorithms.

In this paper, two solutions have been presented using two different parameterizations of
the orbit. They yield exactly the same results. An important conclusion from this analysis is
the fact that the definition of the time transformation (i.e. the selection of the independent
variable) is more important than the selection of the variables the problem is formulated with.
The correction of the time delay depends strongly on the definition of δt , which is given by
the time transformation. If the new independent variable evolves in a slow time scale the
time delay will grow slowly and the linearization will hold for long. On the contrary, if the
time delay grows rapidly then the series expansion of the time delay is no longer valid. This
issue is particularly critical when applying the nonlinear correction to improve the accuracy:
in Paper I it was shown that this improved solution is not the exact solution to the second or
third-order equations of motion. Thus, the nonlinear correction changes its nature depending
on the time delay.

The regularized schemes considered in this paper transform Kepler’s problem into an
oscillator. Therefore, the solution is written in compact form and referred directly to the
initial conditions. Thanks to introducing theStumpff functions the sign of the energy no longer
affects the formulations. Differentiating the equations of the oscillators yields the solution to
relative motion in a compact tensorial form. The universal character of the formulations is
preserved, as the solutions still involve the Stumpff functions.
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The new solutions present three important advantages with respect to existing solutions.
First, thanks to having computed the time delay it is easy to introduce second-order terms in
the solution, improving the linear approach. Second, once the solution is implemented the
program needs no flags related to the eccentricity of the reference orbit. Third, the tensorial
form of the equations is compact and the solution is directly referred to the Cartesian initial
conditions.
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Appendix 1: The Stumpff functions

Stumpff (1947) introduced a family of functions defined in terms of the convergent series:

Ck(z) =
∞∑
i=0

(−z)i

(2i + k)! .

The Stumpff functions are intimately related to the universal variables (Everhart and Pitkin
1983; Battin 1999, Chap. 4). They allow the solution to Keplerian motion to be generalized,
so the formulation is unique no matter the eccentricity of the orbit. In the present work the
argument of the Stumpff functions is z = ω2s2, with ω2 = −2E .

When the orbital energy vanishes (in the parabolic case) it follows z = 0 and the Stumpff
functions reduce to

Ck(0) = 1

k! .

The first Stumpff functions admit simple closed-form expressions shown in Table 4.
Increasing the degree k of the Stumpff functions yields:

Ck+1(z) =
∞∑
i=0

(−z)i

(2i + k + 1)! , Ck+2(z) =
∞∑
i=0

(−z)i

(2i + k + 2)! .

From the later it follows that

Ck+2(z) =
∞∑
i=0

(−z)i(
2(i + 1) + k

)! = 1

z

∞∑
i=0

(−1)i zi+1(
2(i + 1) + k

)! = 1

z

[
1

k! − Ck(z)

]
,

Table 4 Explicit expressions for
the first Stumpff functions Ck (z),

with z = ω2s2

ω2 > 0 ω2 < 0 ω2 = 0

k = 0 cos
√
z cosh

√−z 1

k = 1 (sin
√
z)/

√
z (sinh

√−z)/
√−z 1

k = 2 (1 − cos
√
z)/z (1 − cosh

√−z)/z 1/2
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Fig. 5 Analysis of the growth-rate of the terms Sik (z)

which provides the recurrence formula

Ck(z) + z Ck+2(z) = 1

k! . (54)

Techniques for computing the derivatives of the Stumpff functions can be found, for
instance, in the book by Bond and Allman (1996, Appx. E). Some useful relations are:

s
∂Ck(z)

∂s
= Ck−1(z) − kCk(z),

∂Ck(z)

∂s
= −ω2sC ∗

k+2(z) (55)

ω
∂Ck(z)

∂ω
= Ck−1(z) − kCk(z),

∂Ck(z)

∂ω
= −s2ωC ∗

k+2(z) (56)

Note that Eqs. (55) and (56) are only valid for k > 0. The auxiliary termC ∗
k+2(z) corresponds

to:

C ∗
k+2(z) = Ck+1(z) − kCk+2(z).

Danby (1992, p. 171) discussed in detail the computational aspects of handling the Stumpff
functions. It is more convenient to compute the highest-degree functions via the series, and
then to apply the recurrence formula—Eq. (54)—to obtain the remaining functions. If the
highest-degree functions were to be computed from the lower-degree ones, the recurrence
relation may become singular for z = 0. Usual applications of the Stumpff functions are
restricted to k ≤ 3, and do not consider higher-degree functions (Danby 1987; Sharaf and
Sharaf 1997). In this work, Stumpff functions up to k = 5 appear, and the required formulas
are given explicitly in the following lines.

The numerical stability of the convergent series deserves a dedicated analysis. Let Sik ∈ R

denote the i-th term of the series defining Ck(z):

Sik(z) = (−z)i

(2i + k)! .

Since the Stumpff functions converge absolutely the factorial term compensates the power
for i sufficiently large (Spivak 1994, p. 308) although Sik may suffer strong changes. Fig-
ure 5 shows the evolution of Si4(z) and Si5(z) for different values of the argument z, and
for increasing i . The terms Sik experience changes of several orders of magnitude. As the
argument grows, the amplitude of the this variation increases. This phenomenon may lead
to important losses of accuracy provided that the least significant digits of the series are lost
when added or subtracted from large quantities. Performing the computations in quadruple
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precision floating-point arithmetic delays the appearance of these problems since truncation
errors are reduced. However, as the computation advances the loss of accuracy will eventu-
ally appear. To fully overcome this issue the argument of the Stumpff functions is reduced
making use of the so called half-angle relations:

C0(4z) = [
C0(z)

]2 − 1, C1(4z) = C0(z)C1(z)

C2(4z) = 1

2

[
C1(z)

]2
, C3(4z) = 1

4

[
C2(z) + C0(z)C3(z)

]

C4(4z) = 1

8

{[
C2(z)

]2 + 2C4(z)
}
, C5(4z) = 1

32

{
C3(z) + 2C5(z) + 2C1(z)C4(z)

}

Note that these expressions do not require the computation of higher-order terms. They can
be applied repeatedly to reduce the value of z below a certain threshold zcrit . Danby (1992,
p. 173) summarized the algorithm even though he only provided half-angle formulas up to
k = 3.

There are two ways of computing the Stumpff functions by series. First, the series can
be truncated when a certain accuracy has been reached. In this case each term is computed
sequentially. A possible way to compute each term in the series is:

Sik = − z

(2i + k)(2i + k − 1)
Si−1
k , with S0k = 1

k! .

Convergence will have been reached when |Sik | < εtol, where εtol denotes the tolerance.
Second, the series can be truncated a priori and a nested expression for the Stumpff function
can be constructed. Different forms of nesting the terms in the Stumpff functions can be
found in the cited works.

Appendix 2: The inverse KS map

For the sake of brevity, we omit the properties of the inverse KS transformation and
simply present the expressions that transform the initial conditions x�

0 = [r�
0 , v�

0 ] into

y�
0 = [u�

0 , u′
0
�]. Depending on the sign of x0 one should use:

x0 ≥ 0 : u10 = 0, u20 = − z0
p

, u30 = y0
p

, u40 = − p

2

x0 < 0 : u10 = − z0
p

, u20 = 0, u30 = − p

2
, u40 = y0

p

where p = √
2q and q = r0 + |x0|. The initial value of u′ is obtained from:

u′
0 = 1

2
L�(u0) v0.

Here v0 = [ẋ0, ẏ0, ż0, 0]� is the extension of the velocity vector to R
4, defined by its

components in the inertial frame. It follows
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x0 ≥ 0 : u′
10 = y0 ż0 − z0 ẏ0

2p
, u′

20 = z0 ẋ0 − ż0q

2p
,

u′
30 = ẏ0q − y0 ẋ0

2p
, u′

40 = − ẋ0q + y0 ẏ0 + z0 ż0
2p

x0 < 0 : u′
10 = − ż0q + z0 ẋ0

2p
, u′

20 = y0 ż0 − z0 ẏ0
2p

,

u′
30 = ẋ0q − y0 ẏ0 − z0 ż0

2p
, u′

40 = y0 ẋ0 + ẏ0q

2p

The different definitions for the initial conditions in the KS space differ by the selection of
the reference frame.

Appendix 3: The transformation T(X0)

The transformation y0 �→ x0 (Appendix 2) has been defined in two different ways depending
on the sign of the component x0. This gives rise to two alternative definitions of the matrix
T(s)

δy0 =
{
T+(x0) δx0, if x0 ≥ 0

T−(x0) δx0, if x0 < 0

In the first case it is

T+(x0) = k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, 0, 0, 0, 0, 0

+2z0, +2
y0z0
q

, 2
z20
q

− 4r0, 0, 0, 0

−2y0, 4r0 − 2
y20
q

, −2
y0z0
q

, 0, 0, 0

−2q, −2y0 , −2z0, 0, 0, 0

− f , 2r0 ż0 − y0
f

q
, −2r0 ẏ0 − z0

f

q
, 0, −2r0z0, 2r0y0

−qż0 − z0 ẋ0, −y0
(
ż0 + z0 ẋ0

q

)
, 2ẋ0r0 − z0 ż0 − z20 ẋ0

q
, 2r0z0, 0, −2r0q

q ẏ0 + y0 ẋ0, y0 ẏ0 − 2ẋ0r0 + y20 ẋ0
q

, z0
(
ẏ0 + y0 ẋ0

q

)
, −2r0y0, 2r0q, 0

h − ẋ0q, y0
h

q
− y0 ẋ0 − 2 ẏ0r0, z0

h

q
− z0 ẋ0 − 2ż0r0, −2r0q, −2r0y0, −2r0z0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

having introduced the auxiliary variables:

f = y0 ż0 − z0 ẏ0, h = y0 ẏ0 + z0 ż0, q = r0 + |x0|, k =
√
2

8

1

r0
√
q

.
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For x0 < 0 it is more convenient to use

T−(x0) = k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2z0, 2
y0z0
q

, −4r0 + 2
z20
q

, 0, 0, 0

0, 0, 0, 0, 0, 0
2q, −2y0, −2z0, 0, 0, 0

2y0, 4r0 − 2
y20
q

, −2
y0z0
q

, 0, 0, 0

qż0 − z0 ẋ0, −y0
(
ż0 − z0 ẋ0

q

)
,

z20 ẋ0
q

− 2r0 ẋ0 − z0 ż0, −2r0z0, 0, −2r0q

f , 2ż0r0 − y0
f

q
, −2 ẏ0r0 − z0

f

q
, 0, −2r0z0, +2r0y0

−qẋ0 − h, y0 ẋ0 − 2 ẏ0r0 + y0
h

q
, z0 ẋ0 − 2ż0r0 + z0

h

q
, 2r0q, −2r0y0, −2r0z0

y0 ẋ0 − q ẏ0, y0 ẏ0 + 2ẋ0r0 − y20 ẋ0
q

, z0
(
ẏ0 − y0 ẋ0

q

)
, 2r0y0, 2r0q, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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