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Abstract We provide a detailed derivation of the analytical expansion of the lunar and solar
disturbing functions. Although there exist several papers on this topic, many derivations
contain mistakes in the final expansion or rather (just) in the proof, thereby necessitating a
recasting and correction of the original derivation. In this work, we provide a self-consistent
and definite form of the lunisolar expansion.We start withKaula’s expansion of the disturbing
function in terms of the equatorial elements of both the perturbed and perturbing bodies.
Then we give a detailed proof of Lane’s expansion, in which the elements of the Moon are
referred to the ecliptic plane. Using this approach the inclination of theMoon becomes nearly
constant, while the argument of perihelion, the longitude of the ascending node, and themean
anomaly vary linearly with time. We make a comparison between the different expansions
andwe profit from such discussion to point out somemistakes in the existing literature, which
might compromise the correctness of the results. As an application, we analyze the long-term
motion of the highly elliptical and critically-inclined Molniya orbits subject to quadrupolar
gravitational interactions. The analytical expansions presented herein are very powerful with
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respect to dynamical studies based on Cartesian equations, because they quickly allow for a
more holistic and intuitively understandable picture of the dynamics.

Keywords Lunisolar perturbations · Disturbing function expansion · Artificial satellites ·
Space debris · Critical inclination · Secular resonance · Molniya orbits

1 Introduction

Themost interesting and long-standing problem of CelestialMechanics is that of determining
the perturbing effects due to the gravitational force of bodies other than the centralmass;more
formally known as third-body perturbations. TheMoon, itsmotion around the Earth disturbed
by the gravitational attraction of the exceedingly large and relatively near Sun, presented one
of the most complex problems within the Solar System. The third-body perturbation problem
has also occupied a prominent place in modern Celestial Mechanics, from the study of the
dynamical evolution of stellar and planetary systems to the orbital motions of small bodies
and artificial satellites. The analytic methodology for computing and describing these pertur-
bations almost invariably employs a theoretical development of the disturbing function—the
negative potential function of the disturbing acceleration (Ellis and Murray 2000; Mardling
2013). The disturbing function plays a fundamental role in Celestial Mechanics, giving rise
to the notion of separation of perturbing effects into periodic and secular variations and the
distinction between fast and slow time variables (Murray and Dermott 1999).

The mathematical development of the lunar and solar effects on the motion of artificial
Earth satellites was originally made by Kozai (1959) and Upton et al. (1959), who expanded
the disturbing function into a series of Legendre polynomials in the ratio of the radial distances
(a small quantity for close satellite orbits). Amore general and convenient series development
was made by Kaula (1962), whereby the Legendre polynomial is expanded using the addition
theorem for spherical harmonics in terms of tesseral harmonics involving polar coordinates
referred to the Earth’s axis, and further expanded in terms of orbital elements relative to
the celestial equator. This harmonic analysis of the perturbations involves a complicated
coupling of the motion of the third body (Moon and Sun) with that of the satellite (Cook
1962). Kozai (1966) noted that the results of these calculations are expressed most simply,
in their dependence on the orbital elements of the Moon, when the latter are defined with
respect to the plane of the ecliptic. Such a choice of reference planes permits us to consider
the lunar inclination as a constant and the lunar argument of perigee and longitude of the
ascending node as linear functions of time, provided that we are interested in determining
perturbations of the first order only.

The mixed-reference-frame formalism requires a rotation of the harmonic functions
depending on the lunar position (Jeffreys 1965), which, while being straightforward and
formal in nature, is quite laborious and error-prone. The first such attempt was made by
Giacaglia (1974) (see also Giacaglia 1980). Hughes (1980), following this line of thought,
presents a similar expansion, but replaces the Kaula inclination functions with those of Allan
(1965, 1973) and Izsak (1964). As first noted by Lane (1989), however, several algebraic
errors appear in the reckoning work of Giacaglia (1974), so that the form of the lunar series
expansion presented therein is incorrect. Accordingly, Lane (1989) gives the complete devel-
opment showing the tedious and cumbersome nature of the calculations, but omitting some
of the more evident mathematical details. Despite such a careful and detailed treatment,
we recently discovered some errors in the proof given by Lane—which we correct here—
although the final lunar series expansion given in Lane (1989) is indeed correct.
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Analytical development of the lunisolar disturbing function 261

Of course, other series expansion formulations exist, the validity of which have not been
questioned, such as those of Estes (1974) and Cok (1978), based instead on the Hill–Brown
lunar theory. Nevertheless, the use of Giacaglia’s formalism offers in many respects decided
advantages. The form of the lunar series expansion is mathematically pleasing since it dis-
plays the influence of all harmonics compactly and elegantly, so that the dissection of the
perturbations into short-periodic, long-periodic, and secular parts can be readily made and
studied (Lane 1989). The knowledge of these effects is essential for the determination of
the stability of the orbits and the lifetimes of satellites. Of recent practical significance is
the investigation of resonant effects on the inclined, nearly circular orbits of the navigation
satellites for themanagement of the global navigation satellite systems (qq.v. Rosengren et al.
2015; Daquin et al. 2016). Moreover, for the investigation of the geosphere and the inter-
planetary and interstellar space outside of it, highly-eccentric orbits (HEOs) with multi-day
periods are being increasingly considered (Érdi 1999; Dichmann et al. 2013); such orbits are
highly susceptible to the effects of lunar and solar perturbations. In order to understand the
phase-space structure of MEOs and HEOs and to identify long-term stable regions as well as
dynamical pathways that lead to slow, likely chaotic, variations in orbital elements, we must
have an accurate representation of the lunar and solar disturbing function expansions.

The aimof this paperwill be to discuss the problemanewand give the definitive expansions
in the form of Kaula (1962) as in Sect. 2 and Lane (1989) as in Sect. 3. Auxiliary formulae,
as well as a considerable part of reckoning work for intermediate calculations, are presented
in order to highlight and amend previous mistakes in the literature. An example in satellite
dynamics is given in Sect. 4 to illustrate the utility of the results. We consider, in particular,
orbits near the critical inclination 63.4◦ in the region of semi-major axes where lunisolar
(secular) perturbations generally become more significant than those of higher-order Earth
gravity field distributions. Our analysis complements earlier investigations by Hough (1981)
and Delhaise and Morbidelli (1993), and clarifies the essential role played by the regression
of the lunar node in generating orbital chaos, as it was emphasized by Rosengren et al. (2015)
and demonstrated in Daquin et al. (2016). Some conclusions are drawn in Sect. 5.

2 Kaula’s development of the disturbing function

The purpose of this section is to recall the expansions of the solar and lunar disturbing
functions for an artificial satellite (or a space debris) in terms of the equatorial elements of
both the perturbed and perturbing bodies. Such development of the gravitational effects of
the Sun and Moon on a close-Earth object was derived by Kaula (1962) with the intention
of including the lunisolar perturbations as well as the perturbations due to the geopotential
(see Kaula 1966) in the equations of variation of the orbital elements. Furthermore, due to
its compact expression, the expansion also proves to be easy to implement in an algebraic
manipulator and useful in evaluating various dynamical effects (e.g., secular resonances, the
increase of eccentricity of satellite orbits, etc.)

Following Kaula (1962), the gravitational potential due to a third-body perturber (either
Sun or Moon), expanded as a function of all orbital elements relative to the celestial equator,
has the expression:

R∗ = Gm∗
∞∑

l=2

l∑

m=0

l∑

p=0

l∑

h=0

∞∑

q=−∞

∞∑

j=−∞

al

(a∗)l+1 εm
(l − m)!
(l + m)!

×Flmph
(
I, I ∗) Hlpq(e) Glhj

(
e∗) cos(ϕlmphq j ), (2.1)
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where

Flmph
(
I, I ∗) ≡ Flmp(I ) Flmh

(
I ∗) ,

ϕlmphq j ≡ (l − 2p)ω + (l − 2p + q)M

− (l − 2h)ω∗ − (l − 2h + j) M∗ + m
(
� − �∗)

with G the gravitational constant; m∗ the mass of the disturbing body; a, e, I, ω,� and M
the satellite’s orbital elements1; a∗, e∗, I ∗, ω∗,�∗ and M∗ the corresponding elements of
the third-body perturber; the quantity εm is defined by

εm =
{
1 if m = 0,
2 if m ∈ Z\{0} (2.2)

the functions Hlpq(e) andGlhj (e∗) are theHansen coefficients Xl,l−2p
l−2p+q(e), X−(l+1),l−2h

l−2h+ j (e∗)
(see “Hansen’s coefficients” in appendix); the terms Flmp(I ) and Flmh (I ∗) are the Kaula’s
inclination functions (see “Kaula’s inclination functions” in appendix).

Expression (2.1) for the disturbing function may be compared with that given by Murray
and Dermott (1999). In this standard text on Solar system dynamics, the disturbing function
for an inner secondary, which arises from the outer secondary mass perturbation potential, is
similarly expanded in an infinite series in the osculating elements referred to the equator of
the primary with R∗ as in (2.1), where

Flmph
(
I, I ∗) ≡ F̄lmp(I ) F̄lmh

(
I ∗) ,

ϕlmphq j ≡ (l − 2p + q) λ − q� + (m − l + 2p)� − (l − 2h + j) λ∗

+ j� ∗ − (m − l + 2h)�∗, (2.3)

where λ and λ∗ are the mean longitudes, � and � ∗ are the longitudes of pericenter, but
in this case the quantities F̄lmp(I ) and F̄lmh (I ∗) represent the modified Allan inclination
functions, related to the corresponding quantities used by Kaula according to2

F̄lmp(I ) =
{

Flmp(I ), (l − m) even,
−i Flmp(I ), (l − m) odd.

Thus, Allan’s differ from Kaula’s functions by a factor of i = √−1 when l − m is odd. Ellis
and Murray (2000) give the disturbing function in a similar form as (2.3), again using the
mean longitudes and longitude of pericenters as the angular quantities over the argument of
pericenters and mean anomalies, but instead using the Kaula inclination functions.

The variation of the Sun’s orbital elements with respect to the celestial equator are well
approximated by linear functions of time, therefore the expansion (2.1) can be successfully
applied in modeling the solar perturbations. However, as far as the lunar disturbing function
is concerned, as noted in various works (see Cook 1962; Kozai 1966), theMoon’s inclination,
node, and argument of perigee are not simple functions of time. In fact, given that the main
perturbing effect is due to the Sun, the variation of the above mentioned lunar elements
with respect to the celestial equator is nonlinear. In particular, the longitude of the ascending
node varies between −13◦ and 13◦ with a period of 18.6years. Within the same interval, the
inclination of the lunar orbit with respect to the celestial equator oscillates between 18.4◦
and 28.6◦. The change in the argument of perigee is also nonlinear.

1 Using standard notation, a denotes the semi-major axis, e the eccentricity, I the inclination, ω the argument
of the perigee, � the longitude of the ascending node, and M the mean anomaly.
2 The history of the inclination functions and a discussion of the vexing issues of notation are given byGooding
and Wagner (2008).
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Analytical development of the lunisolar disturbing function 263

On the contrary, if we consider the elements of theMoon with respect to the ecliptic plane,
then the inclination is approximately constant, while the variations of the argument of perigee
and the longitude of the ascending node are approximately linear. This remark motivates the
introduction of a different approach. Precisely, following Giacaglia (1974), Hughes (1980),
and Lane (1989), it is convenient to introduce a rotation of the spherical harmonics for the
Moon, so that its orbital elements are referred to the ecliptic plane, while the orbital elements
of the satellite (or space debris) remain unchanged, that is, they are referred to the equatorial
plane. This alternative approach is the content of Sect. 3.

3 Giacaglia’s and Lane’s lunar disturbing function expansions

Let us consider a reference frame centered in the Earth and a material point (e.g., a satellite
or space debris) orbiting around the Earth. The gravitational action of a third body (e.g., the
Moon or the Sun) provokes a potential given by the disturbing function

Rk = Gmk

ρk
− Gmk (rk · r)

r3k
, (3.1)

where mk is the mass of the third body, r is the position vector of the point mass, rk is the
position vector of the third body, andρk = |r−rk |. Expanding (3.1) in Legendre polynomials,
one obtains

Rk = Gmk

rk

∑

l≥2

(
r

rk

)l

Pl (cosψk) ,

where ψk is the “geocentric elongation” of the point mass from the third body, i.e.,
rk r cosψk = rk · r .

Assuming that the Moon is the third body, as mentioned before, it is convenient to express
the position of the Moon in the ecliptic frame, so that the inclination Ik becomes nearly
constant, while the argument of perihelion ωk , the longitude of the ascending node �k ,
and the mean anomaly Mk vary almost linearly with time, with rates respectively equal to
0.164◦/day, −0.053◦/day, and 13.06◦/day. This remark suggests that it is convenient to
express the elements of the point mass with respect to the celestial equator and the elements
of the Moon with respect to the ecliptic plane (compare with (Kozai 1966; Giacaglia 1974;
Lane 1989; Hughes 1980)).

The aim of this section is to prove that the disturbing functionRk in (3.1) can be expanded
as in Proposition 1 below, where the elements Ik, Mk, ωk,�k of the Moon are referred to
the ecliptic frame. The following expansion of the potential induced by the Moon follows
closely (Lane 1989).

To this end, we premise the following result. Let Pm
l (·) be the associated Legendre func-

tions of degree l and order m; let a, ak be the semi-major axes of the point mass and the
Moon, respectively; let (α, δ), (α′, δ′) be the right ascension and declination with respect to
the equator of the point mass and the Moon, respectively. Then, using the spherical harmonic
addition theorem, the expansion (3.1) can be written as

Rk = Gmk

ak

∑

l≥2

l∑

m=0

εm(l − m)!
(l + m)!

(
a

ak

)l ( r

a

)l
(

ak

rk

)l+1

Pm
l (sin δ)

× Pm
l

(
sin δ′) cos

(
m(α − α′)

)
, (3.2)

where the quantity εm is defined by the relation (2.2).
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Proposition 1 Let Flmp(I ) and Flsq(Ik) be the Kaula’s inclination functions (see “Kaula’s
inclination functions” in appendix) with the inclination I referred to the celestial equator
and the inclination Ik referred to the ecliptic, and let Xn,m

r (e) denote the Hansen coefficients
(see “Hansen’s coefficients” in appendix). Let the quantities εm be defined as in (2.2).

Let us introduce the quantities θ̄lmpj , θ̄
′
lsqr as

θ̄lmpj = (l − 2p)ω + (l − 2p + j)M + m�,

θ̄ ′
lsqr = (l − 2q)ωk + (l − 2q + r)Mk + s(�k − π/2) (3.3)

and let the functions U m,s
l be defined as

U m,s
l =

min(l−s,l−m)∑

r=max(0,−(m+s))

(−1)l−m−r
(

l + m
m + s + r

) (
l − m

r

)

× cosm+s+2r
( ε

2

)
sin−m−s+2(l−r)

( ε

2

)
, (3.4)

where ε is the ecliptic inclination.
Then, we have that the potential Rk in (3.1) can be expanded as

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

+∞∑

j=−∞

+∞∑

r=−∞
(−1)m+s (−1)k1 Gmkεmεs

2ak

(l − s)!
(l + m)!

(
a

ak

)l

× Flmp(I )Flsq(Ik)Hlpj (e)Glqr (ek)

×
{
(−1)k2U m,−s

l cos
(
θ̄lmpj + θ̄ ′

lsqr − ysπ
)

+ (−1)k3 U m,s
l cos

(
θ̄lmpj − θ̄ ′

lsqr − ysπ
)}

, (3.5)

where ys = 0 for s even and ys = 1/2when s is odd, k1 = [m/2], k2 = t (m+s−1)+1, k3 =
t (m + s) with t = (l − 1) mod 2.

The proof of Proposition 1 will be given at the end of this section; we need first some
auxiliary results.

Remark 2 (i) Notice that an alternative expression of the functions U m,s
l defined in (3.4) is

the following (compare with Giacaglia 1974):

U m,s
l = (−1)l−m

(
l + m
l − s

) (
cos

ε

2

)m+s (
sin

ε

2

)s−m

× F
(
−l + s, l + s + 1, m + s + 1; cos2 ε

2

)
(3.6)

for m + s ≥ 0, and

U m,s
l = (−1)l−s

(
l − m
l + s

) (
cos

ε

2

)−m−s (
sin

ε

2

)m−s

× F
(
−l − s, l − s + 1,−m − s + 1; cos2 ε

2

)
(3.7)

for m + s < 0, where the hypergeometric series F = 2F1 is defined by

F(a, b, c; x) =
+∞∑

n=0

(a)n(b)n

(c)n

xn

n! ,
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Analytical development of the lunisolar disturbing function 265

in which we used the Pochhammer symbol (a)0 = 1, (a)n = a(a + 1) . . . (a + n −
1). We observe that the expressions (3.6), (3.7) of the functions U m,s

l in terms of the
hypergeometric series are attributed to Jacobi in (Courant and Hilbert 1937).

(ii) The final expansion for Rk in (3.5) coincides with that given by Lane (1989), although
the proof in Lane (1989) is not completely correct. To mention one point, the relation
(3.11) of Lemma 3 below appears at p. 290 of Lane (1989); however, the functions �

m,s
l

appearing in (3.10) below are not properly defined in Lane (1989), unless one takes the
definition (3.4) for the functions U m,s

l , which in Lane (1989) are multiplied by the factor
(−1)m−s .

We introduce the quantities Cm
l , Sm

l defined as

Cm
l ≡ Am

l cosmα′, Sm
l ≡ Am

l sinmα′,

where Am
l is given by

Am
l ≡ Gmkεm(l − m)!

ak(l + m)!
(

a

ak

)l ( r

a

)l
(

ak

rk

)l+1

Pm
l

(
sin δ′) .

With this setting we can write (3.2) as

Rk =
∑

l≥2

l∑

m=0

Pm
l (sin δ)

(
Cm

l cosmα + Sm
l sinmα

)
. (3.8)

According to (Kaula 1966 p. 31, Eq. (3.53) with Plm replaced by Pm
l and p. 34, Eq. (3.61)),3

one can rewrite (3.8) as

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

(−1)m Flmp(I )

{[
Cm

l−Sm
l

]l−m even

l−m odd
cos ((l − 2p)(ω + f ) + m�)

+
[

Sm
l

Cm
l

]l−m even

l−m odd
sin ((l − 2p)(ω + f ) + m�)

}
, (3.9)

where f, ω,� are, respectively, the true anomaly, the argument of perigee, the longitude of
the ascending node of the point mass, while the function Flmp(I ) is the Kaula’s inclination
function defined in “Kaula’s inclination functions” in appendix.

For short, we denote by

θlmp ≡ (l − 2p)(ω + f ) + m�.

Since we aim to have the elements of the Moon with respect to the ecliptic plane, we need to
transform the spherical harmonics through a rotation. To this end, we recall a result due to
Jeffreys (1965), which is of crucial importance for the proof of the main result, Proposition 1.

Lemma 3 Let (δk, αk) be the ecliptic latitude and longitude4 of the Moon. Let us introduce
the quantities �

m,s
l defined as

�
m,s
l = (l − s)!

(l − m)!ei(m−s)π/2U m,s
l . (3.10)

3 Notice that Pm
l (sin δ) = (−1)m Plm (sin δ).

4 In Lane (1989) δk , αk denote the ecliptic declination and right ascension of the Moon.
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Then, we have the following relation:

Pm
l

(
sin δ′) eimα′ =

l∑

s=−l

�
m,s
l Ps

l (sin δk)e
isαk . (3.11)

Proof We want to express Pm
l (sin δ′)eimα′

in terms of (δk, αk) by using the relations

cos δ′eiα′ = cos δk cosαk + i (cos δk sin αk cos ε − sin δk sin ε)

sin δ′ = cos δk sin αk sin ε + sin δk cos ε. (3.12)

Using the properties of spherical harmonics under a rotation, let us write the quantity
Pm

l

(
sin δ′) eimα′

as

Pm
l

(
sin δ′) eimα′ =

l∑

s=−l

�
m,s
l Ps

l (sin δk)e
isαk ,

where �
m,s
l = �

m,s
l (ε) are suitable functions that depend on the ecliptic inclination ε.

According to Giacaglia (1974), the expression of �
m,s
l is obtained as follows. From the

previous expression and using the orthogonality condition of the functions Pm
l , one finds

that

�
m,s
l = εs(2l + 1)

4π

(l − s)!
(l + s)!

π/2∫

−π/2

cos δk dδk

2π∫

0

Pm
l (sin δ′)eimα′

Ps
l (sin δk)e

isαk dαk . (3.13)

Inserting (3.12) in (3.13) and making the integral one obtains that the functions �
m,s
l are

given as in (3.10). 
�
We now need another auxiliary result to transform the term Cm

l cosmα + Sm
l sinmα in

(3.8).

Lemma 4 (Lane 1989, p. 290) Define the quantities Cm,s
l , Sm,s

l , Am,s
l as

Cm,s
l ≡ 1

2

(
U m,s

l + (−1)sU m,−s
l

)
,

Sm,s
l ≡ 1

2

(
U m,s

l − (−1)sU m,−s
l

)
,

Am,s
l ≡ Gmkεmεs

ak

1

(l + m)!
(

a

ak

)l ( r

a

)l
(

ak

rk

)l+1

; (3.14)

then, we have:

Cm
l + i Sm

l = im
l∑

s=0

Am,s
l Ps

l (sin δk)(l − s)! {Cm,s
l cos (s(αk − π/2))

+ i Sm,s
l sin (s(αk − π/2))

}
. (3.15)

The proof of Lemma 4 is detailed in “Proof of Lemma 4” appendix.

Remark 5 Asfirst noted byLane (1989), inGiacaglia (1974) therewas an incorrect derivation
of the above formula for Cm

l + i Sm
l , which propagated over the paper.
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Analytical development of the lunisolar disturbing function 267

As in Lane (1989), we use Lemma 4 to transform the expansion (3.9). However, we remark
that the expression (3.16) below differs from formula (6) in Lane (1989, p. 291) by a factor
(−1)m+s . However, although the formulation of Lemma 3 in Lane (1989) is not correct,
the functions U m,s

l in Lane (1989) contain a factor (−1)m−s , which compensates the factor
(−1)m+s in the expansion (3.16).

Lemma 6 (Lane 1989, p. 291–292) Let Ik be the inclination of the Moon, referred to the
ecliptic plane. Let

θ ′
lsq ≡ (l − 2q)(ωk + fk) + s

(
� − π

2

)
,

where fk is the true anomaly of the Moon referred to the ecliptic.
Then, we have the following expansion:

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)�lmpsq , (3.16)

where, if m is even, l − m is even:

�lmpsq =
⎧
⎨

⎩

1
2

[
(−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)
+ U m,s

l cos
(
θlmp − θ ′

lsq

)]
l − s even

1
2

[
(−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)
− U m,s

l sin
(
θlmp − θ ′

lsq

)]
l − s odd;

(3.17)

if m is even, l − m is odd; or m is odd, l − m is even:

�lmpsq =
⎧
⎨

⎩

1
2

[
(−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)
+ U m,s

l sin
(
θlmp − θ ′

lsq

)]
l − s even

1
2

[
−(−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)
+ U m,s

l cos
(
θlmp − θ ′

lsq

)]
l − s odd;

(3.18)

if m is odd, l − m is odd:

�lmpsq =
⎧
⎨

⎩

1
2

[
−(−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)
− U m,s

l cos
(
θlmp − θ ′

lsq

)]
l − s even

1
2

[
−(−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)
+ U m,s

l sin
(
θlmp − θ ′

lsq

)]
l − s odd.

(3.19)

As mentioned in Lane (1989), the proof of Lemma 6 requires “a considerable amount of
tedious algebra”. Although Lemma 6 is essential to get the correct expression forRk , for the
readability of this paper we postpone its proof to “Proof of Lemma 6” appendix.

Using the relation cos(x − π
2 ) = sin x , we can write (3.17)–(3.19) in a single case as

follows.

Lemma 7 (Lane 1989, p. 292) Let the quantity ys be defined as ys = s/2− [s/2]. Then, we
can write:

�lmpsq = 1

2

[
(−1)k2U m,−s

l cos
(
θlmp + θ ′

lsq − ysπ
)

+(−1)k3U m,s
l cos

(
θlmp − θ ′

lsq − ysπ
)]

, (3.20)

where k2 = t (m + s − 1) + 1, k3 = t (m + s), t = (l − 1) mod 2 (i.e., t = 0 if l − 1 is
even, t = 1, if l − 1 is odd).
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The proof of Lemma 7 is a check of the different cases in which m is even or odd, l is
even or odd. The proof is detailed in “Proof of Lemma 7” appendix.

We are finally ready to give the proof of Proposition 1, which is based on Lemmas 4, 6,
and 7.

Proof of Proposition 1 We can writeRk in (3.16) with Am,s
l as in Lemma 4 (see (3.14)) and

�lmpsq as in Lemma 7 (see (3.20)). This leads to the

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Gmkεmεs

2ak

(l − s)!
(l + m)!

(
a

ak

)l ( r

a

)l
(

ak

rk

)l+1

Flmp(I )Flsq(Ik)

×
{
(−1)k2U m,−s

l cos
(
θlmp + θ ′

lsq − ysπ
)

+ (−1)k3U m,s
l cos

(
θlmp − θ ′

lsq − ysπ
)}

.

(3.21)

Next, we use the following expansion in terms of Hansen’s coefficients Xn,m
r (e) (Cherniack

1972; Giacaglia 1976):

( r

a

)l
eim f =

+∞∑

j=−∞
Xl,m

m+ j (e)e
i(m+ j)M . (3.22)

Using (3.22) and (3.3), we can write (3.21) as in (3.5), due to (3.22) with m = l − 2p and to

(
ak

rk

)l+1

eim fk =
+∞∑

r=−∞
X−(l+1),m

m+r (ek)e
i(m+r)Mk ,

with m = l − 2q . Recalling the relation between the Hansen’s coefficients and the functions
Hlpj , Glqr (see “Hansen’s coefficients” in appendix), one is led to the expansion (3.5). 
�

In “Numerical validation of the lunisolar expansions” Appendix, we validate the expan-
sions (2.1) and (3.5) by comparing some orbits propagated both by using a Cartesian model
and a model based on the above lunisolar expansions.

4 An application to lunisolar resonances: the critical inclination secular
resonance

The expansions (2.1) and (3.5) allowone to have very versatile formulas for the solar and lunar
potentials, which may be used in various investigations. As an example, we describe here an
application of these expansions to the study of lunisolar secular resonances. Truncating the
series (2.1) and (3.5) to second order in the ratio of semi-major axes and averaging over both
mean anomalies of the point mass and of the third body, we show how the solar and lunar
disturbing functions may be used to get a global picture of the long-term complex evolution
of resonant orbits. In particular, we present some results obtained for the so-called critical
inclination resonance, which arises when the orbital inclination of the point mass is equal to
63.4◦ (see Hughes 1980; Hough 1981; Delhaise and Morbidelli 1993; Ely and Howell 1997;
Rosengren et al. 2015). Three sample cases are considered, namely Molniya 1–81, Molniya
1–88 and Molniya 1–86, and their dynamics is investigated by evaluating the fast Lyapunov
indicators (hereafter FLIs), introduced in Froeschlé et al. (1997) and used in similar contexts
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in Celletti and Galeş (2014), Celletti and Galeş (2015a), Celletti and Galeş (2015b), and
Daquin et al. (2016).

Being interested in the long-term dynamics of resonant orbits, the short-periodic terms
that depend on the mean anomaly of the satellite or the mean anomaly of the perturbing body
can be averaged over from the disturbing functions. Thus, we consider a Hamiltonian of the
form

H = HK ep + HGeo + HMoon + HSun, (4.1)

whereHK ep represents the Kepler Hamiltonian, while the functionsHGeo,HMoon andHSun

describe the perturbations due to Earth, Moon and Sun, respectively, averaged over the mean
anomalies of the satellite and the perturbing body.

Using the Delaunay action-angle variables (L , G, H, M, ω,�), where the actions are
defined by

L = √
μE a, G = L

√
1 − e2, H = G cos I (4.2)

with μE = Gm E the product of the gravitational constant G and the Earth’s mass m E , then
the Keplerian part is given by

HK ep(L) = − μ2
E

2L2 .

Concerning the disturbing function due to the Earth, we consider only the most important
contribution, corresponding to the J2 gravity coefficient of the secular part (see Celletti and
Galeş 2014), precisely

Hgeo(L , G, H) = R2
E J2μ4

E

4

1

L3G3

(
1 − 3

H2

G2

)
,

where RE is the mean equatorial radius of the Earth. For the effects of the second power
of J2 and of the higher-order harmonics we refer to Coffey et al. (1994). Our neglect of the
second-order J2 contribution means that our quantitative results at lower semi-major axes,
where these effects become more important, should be taken with a grain of salt.

The perturbations due to Moon and Sun are given by

HMoon = −RMoon, HSun = −RSun,

where RMoon and RSun are obtained from (3.5) and (2.1), respectively, by setting l = 2 in
the two expansions, so that the lunar and solar potentials are approximated by quadrupole
fields, and by taking the average over the mean anomalies of both the point mass and the
perturbing body. Of course, in the resulting expansions, the orbital elements are expressed
in terms of the Delaunay variables.

Since M is an ignorable variable, its conjugated action L (or equivalently the semi-major
axis a) is a constant. Thus, the Hamiltonian system described by (4.1) is non-autonomous
with two degrees of freedom. Analytical studies dating back to the ’60s, see, for instance
Musen (1961) and Harrington (1969), have shown that the expansion up to the order l = 2 of
the gravitational potential due to a third-body perturber in the secular problem is independent
of the perturber’s argument of periapsis. And, in fact, the existence of the fundamental Lidov–
Kozai cycles hinges on this fact (q.v., Lithwick and Naoz 2011). The following Proposition 8
confirms this result and shows rigorously that the Hamiltonian H depends periodically on
time just through the longitude of the lunar ascending node �k .

Proposition 8 The functions RMoon and RSun do not depend on the argument of perigee of
the third body.
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Proof It is enough to prove the above statement just for one expansion, let us say forRMoon .
In the other case the argument is the same.

SinceRMoon is obtained from (3.5) by taking l = 2 and averaging over themean anomalies
M and Mk , it contains just terms for which 2 − 2p + j = 0 and 2 − 2q + r = 0, where p
and q take the values 0, 1, 2 and r, j ∈ Z. Thus, to prove the statement we have to show that
these terms do not depend on ωk .

In fact, we have to discuss three cases: q = 0, q = 1 and q = 2. If q = 0, then from the
equation 2−2q +r = 0, it follows that r = −2 and, as a consequence, the Hansen coefficient
Glqr (ek) associated to the terms for which l = 2, q = 0, r = −2 is X−(l+1),l−2q

l−2q+r (ek) =
X−3,2
0 (ek) = 0. Therefore, all the terms having l = 2, q = 0, r = −2 are zero. Similarly,

since X−3,−2
0 (ek) = 0, all terms of the expansions for which l = 2, q = 2, r = 2 vanish. It

remains to analyze the case q = 1. From (3.3) it follows that θ̄ ′
2s10 = s(�k − π/2) and thus,

the terms for which l = 2, q = 1, r = 0 do not depend on ωk . 
�
In view of the above result and of the fact that �̇∗ = 0, over timespans of interest, where

�∗ is the longitude of the solar ascending node, it follows that H depends on time just
through �k . Despite this simplification, the global dynamics of the system is quite complex.
Besides the fact that H is a non-autonomous, two degrees-of-freedom Hamiltonian, it also
depends parametrically on the semi-major axis a and the combined effects ofHGeo,HMoon

and HSun lead to an intricate dynamics. A major role in the long term evolution of orbital
elements is played by the lunisolar secular resonances, which occur when some specific
linear combinations of the secular precession frequencies vanish (see Hughes 1980; Ely and
Howell 1997; Rosengren et al. 2015; Daquin et al. 2016 and references therein, for a detailed
presentation of the subject).

Here we focus on the so-called critical inclination resonance, which occurs when the
commensurability relation ω̇ = 0 holds. FollowingHughes (1980) (see alsoCook1962;Rossi
2008), this resonance togetherwith other two types of secular resonances, characterized by the
commensurability conditions �̇ = 0 (polar resonance) andαω̇+β�̇ = 0, withα, β ∈ Z\{0},
form the class of resonances dependent only on the satellite’s orbital inclination, called
inclination-dependent-only lunisolar resonances. The name is justified as long as one can
approximate ω̇, �̇ by the following well known formulae, which take into account only the
effects of J2 (see Kaula 1966; Hughes 1980):

ω̇ � 4.98

(
RE

a

) 7
2 (

1 − e2
)−2 (

5 cos2 I − 1
)◦

/day,

�̇ � −9.97

(
RE

a

) 7
2 (

1 − e2
)−2

cos I ◦/day, (4.3)

and, moreover, the variation of �k is disregarded. Indeed, from the first in (4.3) the relation
ω̇ = 0 holds for I = 63.4◦ and for every value of a and e. However, to be precise, since �k

varies periodically, a cosine argument ofRMoon could depend also on �k , and thus, besides
ω̇ = 0, one also has the commensurability relations 2ω̇+s�̇k = 0with s = −2,−1, 1, 2.One
can say that each resonance of the above mentioned class, including the critical inclination
one, splits into a multiplet of resonances. This splitting phenomenon is responsible for the
existence of a very complex web-like background of resonances in the phase space, which
leads to a chaotic variation of the orbital elements. An analytical estimate of the location of
the resonance corresponding to each component of the multiplet, as a function of eccentricity
and inclination, can be obtained by using (4.3) (see, for example, Figure 2 in Ely and Howell
(1997) or Rosengren et al. (2015)). Here, since we are using the Delaunay variables, we
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represent in Fig. 1 the web structure of resonances in the space of the actions H–G. To
avoid confusions that might arise when we speak about a specific resonance, we will use the
syntagma exact resonance when we refer to the component of the multiplet characterized by
s = 0 in (3.3), while the expression whole resonance means that we refer to all components
of the multiplet.

We underline that the units of length and time are normalized so that the geostationary
distance is unity (it amounts to 42,164.17km) and that the period of Earth’s rotation is equal
to 2π . As a consequence, from Kepler’s third law it follows that μE = 1. Therefore, unless
the units are explicitly specified, the action variables L , G and H are expressed in the above
units.

Figure 1 shows the structure of resonances for a = 13,339.1 (top panels), a = 18,851.7
(bottom left) and a = 26,508.2km (bottom right). These values are not chosen by chance, but
represent the semi-major axes of the satellites: Molniya 1–86, Molniya 1–88 andMolniya 1–
81, respectively. The colored curves provide the location of the resonances, while the vertical
black dashed line is drawn to point out the values of H used in computing the FLI maps. In
order to depict graphically the splitting phenomenon, Fig. 1 top left panel shows the resonant
structure for G ∈ [0, Gmax ], where Gmax = √

μE a. This plot contains also the horizontal
black line G = Gmin , where Gmin is computed from the condition that the distance of the
perigee cannot be smaller than the radius of the Earth, that is

Gmin =
√

(2a − RE ) μE RE

a
.

Therefore, the interval of interest is [Gmin, Gmax ] and the top right panel of Fig. 1 magnifies
the region associated to the orbits that do not collide with the Earth. The bottom plots of
Fig. 1 are also obtained for G ∈ [Gmin, Gmax ].

By computing the fast Lyapunov indicators we investigate cartographically the dynamical
features of the critical inclination resonance, i.e., the whole resonance ω̇ = 0. We recall
that the FLI is an efficient tool to locate the equilibria, to evaluate the width of the resonant
islands and to study the stable and chaotic behavior of a dynamical system by comparing the
values of the FLIs as the initial conditions or parameters are varied. We present some results
in the (ω, G) plane, providing the value of the FLI through a color scale, where darker colors
denote regular dynamics, either periodic or quasiperiodic, while lighter colors denote chaotic
motions.

Given a and H , we compute a grid of 100×100 points of the ω–G plane, where the argu-
ment of perigee ranges in the interval [0◦, 360◦], while G spans the interval [Gmin, Gmax ].
However, instead of displaying G on the vertical axis, in each plot we show the eccentricity
values (on the left) and the inclination values (on the right), computed by using the relations
(4.2) for given values of a and H . In all plots that represent the FLI values, we use the ranges
corresponding to those used in the top left and bottom panels of Fig. 1 and the top panel of
Fig. 3. The relation among G, e and I is trivial; for instance, the values e = 0.46, I = 63.6◦
from the top panels of Fig. 2 correspond to the value G = 0.5 from the top right panel of
Fig. 1.

Although the initial conditions are set such that the initial orbits have the perigee larger
than RE , since we are interested in finding the equilibrium points and evaluating the area
of chaotic regions, during the total time of integration, we neglect the Earth’s dimensions.
Namely, we propagate each orbit up to 465years (equal to 25 × 18.6years), even if at some
intermediate time the perigee distance becomes smaller than the radius of the Earth.

Figure 2 shows the FLIs for increasing values of the semi-major axis, i.e., a = 13,339.1
(top panels), a = 18,851.7 (bottom left) and a = 26,508.2km (bottom right). A color scale
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Fig. 1 The web structure of resonances in the space of the actions for a = 13,339.1km (upper panels),
a = 18,851.7km (bottom left) and a = 26,508.2km (bottom right). The thick curves represent the location
of the following exact resonances (the multiplet component having s = 0): �̇ = 0 (pink color, I = 90◦),
ω̇ − �̇ = 0 (green color, I = 73.2◦), 2ω̇ − �̇ = 0 (grey color, I = 69.0◦), ω̇ = 0 (red color, I = 63.4◦),
2ω̇ + �̇ = 0 (blue color, I = 56.1◦) and ω̇ + �̇ = 0 (orange color, I = 46.4◦). The thin curves give the
position of the resonances (2 − 2p)ω̇ + m�̇ + s�̇k = 0 with p, m = 0, 1, 2 and s = −2, −1, 1, 2. The
vertical black dashed lines correspond to the values of H used in computing the FLI maps. Excluding the top
left panel, which is obtained for G ∈ [0, Gmax ], in the other plots G varies from Gmin to Gmax , as explained
in the text

provides an indication of the behavior of the dynamics: dark colors (i.e., low FLIs) denote a
regular dynamics, while light colors (i.e., high FLIs) correspond to chaotic motions.

The role of the variation of �k in generating the resonance structure, which is responsible
for chaotic motions on timescales of order of tens to hundreds of years, is illustrated graphi-
cally in the top panels of Fig. 2. These plots are obtained for the following parameters, which
have been chosen with the intention to apply our study to Molniya satellites (see Table 2):
a = 13,339.1km, � = 236.07◦ and H = 0.222;the difference between the two top plots
is related to the model used in computing the FLI values. Precisely, in Fig. 2 top left, �k is
considered constant, while Fig. 2 top right is obtained for the non-autonomous, two degrees-
of-freedom Hamiltonian (4.1). Clearly, the top left panel represents a pendulum-like plot:
the stable points are located at ω = 90◦ and ω = 270◦, whereas the unstable ones are placed
at ω = 0◦ and ω = 180◦. Responsible for the existence of the resonant island is, in fact,
a single term of the expansion, obtained by combining all resonant terms whose harmonic
angles are of the form 2ω ± s�k with s = 0, 1, 2.
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Fig. 2 FLIs for the critical inclination secular resonance.Upper panels a = 13,339.1km,� = 236.07◦, H =
0.222. Top left �̇k = 0. Top right full model. Bottom left (full model): a = 18,851.7km, � = 100.66◦, H =
0.236. Bottom right (full model): a = 26,508.2km, � = 270.26◦, H = 0.248. The green circles represent
Molniya 1–86 on the top right panel, Molniya 1–88 in the bottom left panel and Molniya 1–81 on the bottom
right panel

When the full model is considered, then the separatrix is filled by chaotic regions (Fig. 2,
top right panel), revealing thus the interaction between the resonant term having the harmonic
angle 2ω and other terms of the expansion. In fact, as it can be seen from Fig. 1 top right, for
H = 0.222 the exact resonance is located at about G = 0.498 (the intersection between the
thick red curve and the vertical dashed black line) and close to it there are just resonances
stemming from the same multiplet. A detailed inspection of the expansions of RMoon and
RSun reveals that the resonant terms, let us call them Tω̇=0

s , responsible for the whole reso-
nance ω̇ = 0 have the formTω̇=0

s = Csa2e2(1−cos2 I ) cos(2ω+s�k), s = −2,−1, 0, 1, 2,
where Cs depends on the lunar and solar elements. Moreover, it can be seen that |C0| is at
least 20 times greater than |C−1| and |C1|, and more than 200 times larger than |C−2| and
|C2|. As a result, the width of the resonant island associated to Tω̇=0

0 is much larger than the
width of the other islands. As it can be seen in Fig. 1 top right panel, the dashed black line
intersects (in order from bottom to top) three exact resonances: 2ω̇+�̇k = 0 at approximately
G = 0.485, ω̇ = 0 at G = 0.495 and 2ω̇ − �̇k = 0 at about G = 0.52. The structure shown
in Fig. 2 top right panel is the result of the overlapping of these three exact resonances.

Increasing the value of the semi-major axis, the resonant curves in Fig. 1 bottom panels
become increasingly scattered, their intersections suggesting a more intricate dynamics. In
the bottom plots of Fig. 1, the vertical dashed black line crosses more resonant curves than
in the top right panel of Fig. 1. In particular it also intersects the curves associated to the
exact resonances 2ω̇ − �̇ = 0 and 2ω̇ − �̇ + �̇k = 0. An estimation of the magnitude
of the resonant terms shows that the width of these two exact resonances is much larger
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Table 1 Two line element set (TLE 2015) for the following satellites: Molniya 1–81, Molniya 1–88, Molniya
1–86, during the middle of September 2015 (see columns 19–32 of the first line of the each set for the exact
epoch)

Data are taken from TLE (2015)

Table 2 The orbital elements and the corresponding action variables for the following satellites: Molniya
1–81, Molniya 1–88, Molniya 1–86

Satellite a (in km) e I � ω L G H

Molniya 1–81 26,508.2 0.7154 63.38 270.26 283.90 0.793 0.554 0.248

Molniya 1–88 18,851.7 0.6342 62.85 100.66 297.19 0.669 0.517 0.236

Molniya 1–86 13,339.1 0.4962 62.92 236.07 325.87 0.562 0.488 0.222

For each satellite, the values are determined at the corresponding epoch specified in Table 1. The angles I,�
and ω are expressed in degrees, while the units of length and time used to compute the actions L , G, H are
described in the text. Data are taken from TLE (2015)

than the width of any other resonance intersected by the dashed vertical line, excluding of
course the exact resonance ω̇ = 0. In the bottom right panel of Fig. 2, the exact resonances
ω̇ = 0, 2ω̇ − �̇ = 0 and 2ω̇− �̇+ �̇k = 0 overlap, whereas in Fig. 2 bottom left they do not
interact. The regular and chaotic regions in the bottom panels of Fig. 2 are the consequence
of the complex structure of these resonances.

The green circles in Fig. 2 represent the satellites: Molniya 1–81 (bottom right), Molniya
1–88 (bottom left) and Molniya 1–86 (top right). Table 1 contains the two line element
set for these satellites, while Table 2 gives their corresponding orbital elements and action
variables. From TLE (2015), during the middle of September 2015, the mean motion of
almost all Molniya satellites is around 2 revolutions/day (or equivalently the semi-major axis
is about 26,000km), excluding the satellites Molniya 1–88, Molniya 1–86, Molniya 1-S
(placed in a geosynchronous orbit whose inclination is I = 10◦) and Molniya 1–44 (located
at the edge of the LEO region). Moreover, the argument of perigee of these satellites is close
to 270◦; therefore, they are contained in a stable region that guarantees small excursions in
eccentricity and ω (Fig. 2 bottom right). Molniya 1–88 is also in a regular region (Fig. 2
bottom left), and although Molniya 1–86 is in a chaotic zone, it cannot collide with the Earth
since the resonant island is located above the line G = Gmin (Fig. 2 top right).

For larger semi-major axes, let us say for the GEO region, the problem increases in
complexity. First of all, we can no longer approximate ω̇, �̇ by the simple relations (4.3)
because the magnitude of the perturbing forces due to Moon and Sun becomes comparable
with that due to J2. Thus, in obtaining the network of resonances, one should include also
the effects induced by Moon and Sun. Moreover, a bifurcation phenomenon enters into the
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Fig. 3 The critical inclination resonance for a = 42,164.17km and H = 0.26. Top Phase portrait for the
integrable system obtained by averaging H over � and considering �k as a constant. Bottom FLI values
for the full model (4.1). In the bottom left panel the series expansion in a/ak from (3.5) is performed to the
quadrupole (l = 2) order, while in the bottom right plot, this series is taken to the octupole (l = 3) order. The
initial value of � is zero for the bottom panels

scene, showing that there are some cases when a specific resonance cannot be modeled by
a pendulum-type system, but one should use a so-called extended fundamental model, as
described in Breiter (2001).

Indeed, let us consider the integrableHamiltonian system, obtained by averaging (4.1) over
� and by considering �k as a constant. Roughly speaking, we have isolated the resonance
ω̇ = 0 from any other resonance. For such a reduced one degree-of-freedom Hamiltonian,
the phase portrait is given in Fig. 3 top panel. This plot, obtained for a = 42,164.17km
and H = 0.26, shows the existence of some additional elliptic equilibrium points at about
G = 0.82 for ω = 0◦, 180◦. We notice that these equilibrium points are not revealed in
the previous studies concerning the critical inclination resonance in the GEO region (see
Delhaise and Morbidelli 1993). The reason is related to the use of different values for the
energy level. For instance, if we draw the phase portrait for, let us say H = 0.3, then we
obtain just the equilibrium points of the primary resonance.

Figure 3 bottom left is obtained for the Hamiltonian (4.1) (the lunar and solar expansions
are taken up to l = 2). Although the overlapping of resonances leads to chaotic motions, we
notice that some stable regions remain around each equilibrium stable point.

So far, we have restricted our analysis to the quadrupolar gravitational interactions, namely
we expanded the lunisolar disturbing function up to the second order (l = 2) in the ratio
of semi-major axes. For the Sun, the effect of the third harmonic (parallactic, or octupole)
term is negligible, while for the Moon the contribution of the third harmonic term becomes
more important as the orbital radius increases. Neglecting this term sets an upper limit to
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the radius of the satellite orbit for which the preceding theory is valid (Lidov 1963). In
considering the long-range stability at GEO (where a/ak ∼ 0.1), Musen (1961) advises to
take the parallactic term into consideration, and, in fact, Lithwick and Naoz (2011) found that
interesting dynamical behaviors can occur for theKozai–Lidov cycles in exoplanetary studies
under octupole-order secular interactions. While in the case including the octupole, the form
of the perturbations cannot be easily expressed analytically, because the terms depending
upon the position of the Moon’s perigee will appear, we can provide a numerical analysis.

Figure 3 bottom right shows the FLI values at the octupole level of approximation, which,
when compared to the bottom left panel of Fig. 3, lead us to conclude that the effects of
(a/ak)

3 terms, and the corresponding higher-order secular resonances stemming from the
lunar perigee, are indeed important at GEO, at least for large eccentricities.

5 Conclusions

As it often happens in Celestial Mechanics, analytical and numerical methods are comple-
mentary, and should both be used to get a detailed description of the dynamics. As far as
artificial satellite or space debris dynamics is concerned, the main gravitational effects are
due to the geopotential, the influence of the Moon and the attraction of the Sun. It is therefore
mandatory to have a correct expansion of the lunisolar potential in terms of the appropriate
elements. Such expansion is provided in Proposition 1, whose formula can be implemented
on an algebraic manipulator to compute a series expansion to a finite order in the parameters
of the model (typically, the eccentricity and the ratio of the semi-major axes).

The advantage of having an explicit analytical expansion of the lunisolar potential is
clarified by a concrete application concerning lunisolar secular resonances for the Molniya
satellites, which move on orbits with high eccentricity and inclination. As shown in Sect. 4,
the analytical expansion gives a powerful tool to investigate the dynamics, especially when
looking at the interaction between resonantmotions. In fact, the analytical expansion provides
a straightforward way to compute the resonance relations and, in particular, the interaction
between different resonances.

The explicit series development also allows us to highlight the role of each component of
the multiplet associated to a specific resonance. The analytical approach yields information
about the dynamics and, precisely, on the chaotic behavior generated by the overlapping of
resonances. The numerical results provided by the computation of the FLIs gives a global
viewof the dynamics,whose fine structurewas obtained by analyzing the lunisolar expansion.
We remark that this is just one of the many applications which can be obtained as a byproduct
of the analytical expansion of the lunisolar potential and it is given as a possible motivation
of the present work.
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Appendix

Hansen’s coefficients

The Hansen coefficients Hlpq(e) = Xl,l−2p
l−2p+q(e), Glhj (e∗) = X−(l+1),l−2h

l−2h+ j (e∗) may be com-
puted easily with an algebraic manipulator through the following formula (see Jarnagin 1965;
Giacaglia 1976):

Xn,m
k (e) =

(
1 +

(
e

1 + √
1 − e2

)2
)−n−1 s1∑

s=0

t1∑

t=0

(
n − m + 1

s

) (
n + m + 1

t

)

×
(

− e

1 + √
1 − e2

)s+t

Jk−m−s+t (ke),

where n, m, k are integers, Jb denotes the Bessel function of the first kind and s1, t1 are
defined by

s1 =
{

n − m + 1, if n − m + 1 ≥ 0
∞, if n − m + 1 < 0

, t1 =
{

n + m + 1, if n + m + 1 ≥ 0
∞, if n + m + 1 < 0

.

Kaula’s inclination functions

The Kaula’s inclination function, denoted by Flmp(I ), has the form (see Kaula 1962, 1966):

Flmp(I ) =
min {p,

[
l−m
2

]
}

∑

t=0

(2l − 2t)!
t !(l − t)!(l − m − 2t)!22l−2t

sinl−m−2t I
m∑

s=0

(
m
s

)
coss I

×
∑

c

(
l − m − 2t + s

c

) (
m − s

p − t − c

)
(−1)

c−
[

l−m
2

]

,

where [·] denotes the integer part and c is summed over all values for which the binomial
coefficients are not zero.

Proof of Lemma 4

We present the proof of Lemma 4.
Let us first notice that the following relation holds:

P−s
l (x) = (−1)s (l − s)!

(l + s)! Ps
l (x) (5.1)

and that Am,s
l = Am,−s

l . From the definitions Cm
l ≡ Am

l cosmα′, Sm
l ≡ Am

l sinmα′ and
from Lemma 3, one obtains:

Cm
l + i Sm

l = Am
l cosmα′ + i Am

l sinmα′ = Am
l eimα′

= Gmkεm(l − m)!
ak(l + m)!

(
a

ak

)l ( r

a

)l
(

ak

rk

)l+1

Pm
l

(
sin δ′) eimα′

= Gmkεm(l − m)!
ak(l + m)!

(
a

ak

)l ( r

a

)l
(

ak

rk

)l+1 l∑

s=−l

�
m,s
l Ps

l (sin δk)e
isαk
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= Gmkεm

ak(l + m)!
(

a

ak

)l ( r

a

)l
(

ak

rk

)l+1

×
l∑

s=−l

Ps
l (sin δk)(l − s)!U m,s

l eimπ/2eis(αk−π/2)

= (i)m
l∑

s=−l

(l − s)! Am,s
l

εs
Ps

l (sin δk)U
m,s
l eis(αk−π/2), (5.2)

where we used eimπ/2 = (i)m . Setting β ≡ αk − π/2, from (3.14) one has:

Cm,s
l cos(sβ) + i Sm,s

l sin(sβ) = 1

2

(
U m,s

l + (−1)sU m,−s
l

) eisβ + e−isβ

2

+ i

2

(
U m,s

l − (−1)sU m,−s
l

) eisβ − e−isβ

2i

= 1

2

(
U m,s

l eisβ + (−1)sU m,−s
l e−isβ

)
,

and, due to (5.1), we obtain (3.15); hence, we can split (3.15) as

Cm
l + i Sm

l = im
l∑

s=0

(l − s)! Am,s
l

2
Ps

l (sin δk)
(

U m,s
l eisβ + (−1)sU m,−s

l e−isβ
)

= im
l∑

s=−l

Am,s
l

εs
(l − s)!Ps

l (sin δk)U
m,s
l eisβ,

which coincides with (5.2) above.

Remark 9 Due to the fact that

im =
{

(−1)m/2 m even,
i(−1)(m−1)/2 m odd,

we obtain:

(−1)k1
l∑

s=0

(l − s)!Am,s
l Ps

l (sin δk)C
m,s
l cos(s(αk − π/2)) =

{
Cm

l m even,
Sm

l m odd,

(−1)k1
l∑

s=0

(l − s)!Am,s
l Ps

l (sin δk)Sm,s
l sin(s(αk − π/2)) =

{
Sm

l m even,
−Cm

l m odd

with k1 = [m/2].
Proof of Lemma 6

We present the proof of Lemma 6.
From Kaula (1966, p. 34, Eq. (3.61)), we have that

Ps
l (sin δk) cos(s(αk − π/2)) = (−1)s

l∑

q=o

Flsq(Ik) ×
{
cos θ ′

lsq l − s even,
sin θ ′

lsq l − s odd.
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Therefore, we obtain:

(−1)k1
l∑

s=0

(−1)s (l − s)!Am,s
l

l∑

q=0

Flsq (Ik) ×
{

Cm,s
l cos θ ′

lsq l − s even
Cm,s

l sin θ ′
lsq l − s odd

=
{

Cm
l m even,

Sm
l m odd,

(−1)k1
l∑

s=0

(−1)s (l − s)!Am,s
l

l∑

q=0

Flsq (Ik) ×
{

Sm,s
l sin θ ′

lsq l − s even
−Sm,s

l cos θ ′
lsq l − s odd

=
{

Sm
l m even,

−Cm
l m odd.

We proceed to prove (3.17).
Case m even, l − m even, l − s even. From (3.9) we have

Rk =
∑

l≥2

l∑

m=0

(−1)m
l∑

p=0

Flmp(I )
(
Cm

l cos θlmp + Sm
l sin θlmp

)

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s
[
(−1)k1 Am,s

l (l − s)!Flmp(I )Flsq(Ik)

×
(

Cm,s
l cos θlmp cos θ ′

lsq + Sm,s
l sin θlmp sin θ ′

lsq

) ]

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s
[
(−1)k1 Am,s

l (l − s)!Flmp(I )Flsq(Ik)

×1

2

(
U m,s

l cos
(
θlmp − θ ′

lsq

)
+ (−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

))]
.

Case m even, l − m even, l − s odd:

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

(−1)m Flmp(I )
(
Cm

l cos θlmp + Sm
l sin θlmp

)

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s
[
(−1)k1 Am,s

l (l − s)!Flmp(I )Flsq(Ik)

×
(

Cm,s
l sin θ ′

lsq cos θlmp − Sm,s
l cos θ ′

lsq sin θlmp

)]

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s
[
(−1)k1 Am,s

l (l − s)!Flmp(I )Flsq(Ik)

×1

2

(
−U m,s

l sin
(
θlmp − θ ′

lsq

)
+ (−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

))]
.

The proof of (3.18) is given as follows.
Case m even, l − m odd:

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

(−1)m Flmp(I )
(−Sm

l cos θlmp + Cm
l sin θlmp

)

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
{−Sm,s

l cos θlmp sin θ ′
lsq + Cm,s

l sin θlmp cos θ ′
lsq l − s even

Sm,s
l cos θlmp cos θ ′

lsq + Cm,s
l sin θlmp sin θ ′

lsq l − s odd
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=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
⎧
⎨

⎩

1
2

[
U m,s

l sin
(
θlmp − θ ′

lsq

)
+ (−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)]
l − s even

1
2

[
U m,s

l cos
(
θlmp − θ ′

lsq

)
− (−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)]
l − s odd.

Case m odd, l − m even:

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

(−1)m Flmp(I )
(
Cm

l cos θlmp + Sm
l sin θlmp

)

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
{−Sm,s

l sin θ ′
lsq cos θlmp + Cm,s

l cos θ ′
lsq sin θlmp l − s even

Sm,s
l cos θ ′

lsq cos θlmp + Cm,s
l sin θ ′

lsq sin θlmp l − s odd

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
⎧
⎨

⎩

1
2

[
U m,s

l sin
(
θlmp − θ ′

lsq

)
+ (−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)]
l − s even

1
2

[
U m,s

l cos
(
θlmp − θ ′

lsq

)
− (−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)]
l − s odd

The proof of (3.19) is given by

Rk =
∑

l≥2

l∑

m=0

l∑

p=0

(−1)m Flmp(I )
(−Sm

l cos θlmp + Cm
l sin θlmp

)

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
{−Cm,s

l cos θ ′
lsq cos θlmp − Sm,s

l sin θ ′
lsq sin θlmp l − s even

−Cm,s
l sin θ ′

lsq cos θlmp + Sm,s
l cos θ ′

lsq sin θlmp l − s odd

=
∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

(−1)m+s (−1)k1 Am,s
l (l − s)!Flmp(I )Flsq(Ik)

×
⎧
⎨

⎩

1
2

[
−U m,s

l cos
(
θlmp − θ ′

lsq

)
+ (−1)sU m,−s

l cos
(
θlmp + θ ′

lsq

)]
l − s even

1
2

[
U m,s

l sin
(
θlmp − θ ′

lsq

)
− (−1)sU m,−s

l sin
(
θlmp + θ ′

lsq

)]
l − s odd.

This concludes the proof.

Proof of Lemma 7

We present the proof of Lemma 7.
The proof of (3.20) comes from a direct check of the following cases.
If m is even and l − m is even, then l is even and l − 1 is odd. Thus, t = 1 and:

(i) if l − s is even, then s is also even, so that k2 and k3 are even, and ys = 0;
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Fig. 4 Integration of an orbit within the libration region associated with the critical inclination resonance (top
panels) and an orbit inside the resonance 2ω̇ + �̇ = 0 (bottom plots). We provide the plots for the eccentricity
(left column), inclination (middle column) and resonant angle (right column) as a function of time (in years).
The initial data are the following: a = 24,293km, e(0) = 0.049, I (0) = 64◦, ω(0) = 175◦,�(0) = 150◦
for the top panels, and a = 25,271km, e(0) = 0.05, I = 55◦, ω(0) = 50◦, �(0) = 175◦ for the bottom
plots. The initial epoch for both orbits is J2000. The green color (thicker line) is used for the analytical model
described in Sect. 4; it includes the Earth’s gravity harmonic J2, the disturbing functions due to Sun andMoon,
averaged over both anomalies (of the satellite and the third body perturber) with the expansion of the Moon
taken up to degree l = 3. The black color (thinner line) corresponds to a Cartesian model, which includes the
Earth’s gravity harmonics up to degree and order 2, as well as the attraction of Sun and Moon (see Celletti
and Galeş (2014, 2015b)). The horizontal line in the left bottom plot indicates the eccentricity value leading
to re-entry

(ii) if l − s is odd, then s is also odd, so that k2 and k3 are odd, and ys = 1/2.

Therefore, we arrive at the expression (3.17) for �lmpsq , as required.
If m is even and l − m is odd or if m is odd and l − m is even, then it can easily be seen

that l − 1 is even so that t = 0. Consequently, k2 = 1 and k3 = 0, and:

(i) if l − s is even, then s is odd giving ys = 1/2;
(ii) if l − s is odd, then s is even giving ys = 0.

We then arrive at (3.18) for �lmpsq , as required.
If m is odd and l − m is odd, then l is even and l − 1 is odd. Thus, t = 1 and:

(i) if l − s is even, then s is also even, so that k2 and k3 are odd, and ys = 0;
(ii) if l − s is odd, then s is also odd, so that k2 and k3 are even, and ys = 1/2.

Therefore, we arrive at the expression (3.19) for �lmpsq , as required.
This concludes the proof.

Numerical validation of the lunisolar expansions

To validate the lunisolar expansions, we compare in Fig. 4 the results obtained by using a
Newtonian (Cartesian) model and an analytical model. The Newtonian model includes the
Earth’s gravity harmonics up to degree and order 2, as well as the attraction of the Sun
and Moon (see Celletti and Galeş (2014, 2015b) for further details); the analytical model
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is presented in Sect. 4, based on the expansions (2.1) and (3.5). Osculating elements have
been used for integrating the Newtonian model, while mean elements have been used for the
analytical model. Although we made several tests with different dynamical conditions and
different initial data, we present the results for two orbits: one located inside a libration region
corresponding to the critical inclination resonance and the other placed inside a resonant
island associated with the resonance 2ω̇ + �̇ = 0. The results show that for small and large
eccentricities, as well as for different resonances, the two approaches lead to similar results,
thus yielding a further validation of the lunisolar expansions presented in Sects. 2 and 3.
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