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Abstract The gravitational influence of a second satellite on the rotation of an oblate moon
is numerically examined. A simplified model, assuming the axis of rotation perpendicular to
the (Keplerian) orbit plane, is derived. The differences between the two models, i.e. in the
absence and presence of the second satellite, are investigated via bifurcation diagrams and by
evolving compact sets of initial conditions in the phase space. It turns out that the presence of
another satellite causes some trajectories, that were regular in its absence, to become chaotic.
Moreover, the highly structured picture revealed by the bifurcation diagrams in dependence
on the eccentricity of the oblate body’s orbit is destroyed when the gravitational influence is
included, and the periodicities and critical curves are destroyed as well. For demonstrative
purposes, focus is laid on parameters of the Saturn–Titan–Hyperion system, and on oblate
satellites on low-eccentric orbits, i.e. e ≈ 0.005.

Keywords Chaos · Planets and satellites · Rotation · Bifurcation diagrams

1 Introduction

Saturn’s seventh moon, Hyperion (also known as Saturn VII), was discovered in the XIX
century by Bond (1848) and Lassel (1848), but only due to Voyager 2 (Smith et al. 1982)
and Cassini (Thomas 2010) missions it became apparent that it is the biggest known highly
aspherical celestial body in the Solar System, with a highly elongated shape and dimensions
360 × 266 × 205km. Since the rotational state of Hyperion was predicted to remain in the
chaotic zone (Wisdom et al. 1984) based on the spin-orbit coupling theory (Goldreich and
Peale 1966), further analyses and observations, regarding Hyperion as well as other Solar
System satellites, were conducted on a regular basis.
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Hyperion’s long-term observations were carried out twice in the post Voyager 2 era. In
1987, Klavetter (1989a, b) performed photometric R band observations over a timespan of
more than 50days, resulting in 38 high-quality data points. In 1999 and 2000, Devyatkin
et al. (2002) conducted C (integral), B, V and R band observations. The objective of both
analyses was to determine whether Hyperion’s rotation is chaotic and to fit a solution of the
equation of motion to the observations. To the best of the author’s knowledge (Melnikov, priv.
comm.) there were no other long-term observations that resulted in a lightcurve allowing the
determination of Hyperion’s rotational state (see also Strugnell and Taylor 1990; Dourneau
1993 for a list of earlier observations). Although, shortly after the Cassini 2005 passage a
ground-based BV R photometry was conducted (Hicks et al. 2008), resulting in 6 nights of
measurements (and additional 3 nights of R photometry alone) over a month-long period.
Unfortunately, this data was greatly undersampled and period fitting procedures yielded
several plausible solutions.

The theoretical and numerical treatment of the rotational dynamics of an oblate satellite
have been performed widely. After the seminal paper of Wisdom et al. (1984), Boyd et al.
(1994) applied the method of close returns to a sparse and short-term simulated observations
of Hyperion’s lightcurve. Black et al. (1995) performed numerical experiments using the
full set of Euler equations to model long-term dynamical evolution. Beletskii et al. (1996)
considered a number of models, including the gravitational, magnetic and tidal moments
as well as rotation in gravitational field of two centers. A model with a tidal torque was
examined analytically using Melnikov’s integrals and assymptotic methods (Khan et al.
1998). The stability of resonances with application to the Solar System satellites was inferred
based on a series expansion of the terms in the equation of rotational motion (Celletti and
Chierchia 1998, 2000). The Lyapunov exponents and spectra were exhaustively examined for
a number of satellites1 (Shevchenko 2002; Shevchenko and Kouprianov 2002; Kouprianov
and Shevchenko 2003, 2005). A model of an oblate satellite with dissipation was used to
examine the basins of attraction in case of low eccentricities, especially with application to
theMoon (Celletti and Chierchia 2008). The dynamical stability was examined for all known
satellites by Melnikov and Shevchenko (2010). Again the dynamical modeling using the full
Euler equations was conducted by Harbison et al. (2011), who also analyzed the moments of
inertia in light of the precessional period. Finally, Tarnopolski (2015a) argued that in order to
extract a maximal Lyapunov exponent from the photometric lightcurve of Hyperion, at least
one year of dense data is required.

The orbital dynamics of Hyperion in the Saturn–Titan–Hyperion system (see Table 1
for some physical parameters) have been exhaustively examined due to the interesting 4:3
mean motion resonance between Hyperion and Titan (Peale 1976; Taylor 1992; Stellmacher
1999; Rein et al. 2012). While the impact of Titan’s gravitation on Hyperion’s orbit has been
established (Taylor et al. 1987) and the stability of the resonance has been considered in
great detail (Colombo et al. 1974; Bevilacqua et al. 1980), introduction of the gravitational
impact of a secondary body on the rotation of an oblate satellite has been done before for
nearly spherical bodies such as Venus (Beletskii and Levin 1981) or low-eccentric orbits
in the Pluto–Charon system (Correia et al. 2015). Herein, numerical integrations will be
performed within the chaotic zone of the Saturn–Titan–Hyperion system with parameters ω2

and e such that the perturbation techniques are not valid (Maciejewski 1995), which to the
best of the author’s knowlege has not yet been examined and hence is the aim of this work,
which is general enough to be applicable to moons other than Hyperion. To focus attention,

1 In particular, Lyapunov times for Hyperion ranged from 1.5 × T to 7 × T , where T = 21.3 d is the orbital
period.

123



Influence of a second satellite on the rotational dynamics 123

Table 1 Physical parameters of the Saturn–Titan–Hyperion system

Parameter Symbol Value References

Saturn’s mass M 5.68 × 1026 kg Jacobson et al. (2006)

Titan’s mass m1 1.35 × 1023 kg Jacobson et al. (2006)

m1/M 2.4 × 10−4

Hyperion’s major semi-axis a 1 429 600 km Seidelmann et al. (2007);
Thomas et al. (2007)

Titan’s major semi-axis a0 1 221 865 km http://ssd.jpl.nasa.gov/?
sat_elem

a0/a 0.855

Hyperion’s oblateness ω2 0.79 Wisdom et al. (1984)

Hyperion’s eccentricity e 0.1 Wisdom et al. (1984)

Hyperion’s orbital period T 21.3d Thomas et al. (2007)

throughout the analysis the parameters are set to those of the Saturn–Titan–Hyperion system
unless otherwise stated, but low-eccentricity and low-oblateness cases are also investigated
for comparison.

This paper is organized in the following manner. In Sect. 2 the rotational models in case of
the absence and presence of a second satellite’s gravitation are derived. In Sect. 3 the phase
space is briefly described. Section 4 presents the methods used: the correlation dimension
and its benchmark testing, and the bifurcation diagrams. The results are presented in Sect. 5,
which is followed by discussion and conclusions gathered in Sect. 6. The computer algebra
system mathematica® is applied throughout this paper.

2 Models

2.1 Rotational model of an oblate moon

The equation of rotationalmotion can be derived based on the following assumptions (Greiner
2010):

1. the orbit of the satellite around the planet is Keplerian with eccentricity e and major
semi-axis a:

r = a
(
1 − e2

)

1 + e cos fH
, (1)

where fH is the true anomaly given by

ḟH =
√
GM

[
a

(
1 − e2

)]3/2 (1 + e cos fH )2 , (2)

with M the mass of the planet and the overdot denotes differentation with respect to
time;

2. in general, the physical model of the satellite is a triaxial ellipsoid; however, to simplify
calculations, the satellite is simulated by a double dumbbell with four mass points 1–4
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Fig. 1 Left Rotational model of an oblate moon. RightGeometry of the model including the orbital motion of
a second satellite. S, T and H stand exemplary for Saturn, Titan and Hyperion (center of mass), respectively.
See text for explanation of the remaining symbols

(see Fig. 1) with equal mass m arranged in the orbital plane. The principal moments of
inertia are A > B > C ;

3. the satellite’s spin axis is fixed and perpendicular to the orbit plane; the spin axis is
aligned with the shortest physical axis, i.e. the one corresponding to the largest principal
moment of inertia.

In case of Hyperion, the first assumption is not precisely valid, as it is well known that due
to gravitational interaction with Titan the eccentricity of Hyperion oscillates from ∼ 0.08
to ∼ 0.12 with an 18.8-year period (Taylor et al. 1987). However, as the analysis herein
is performed on a time span much shorter than this period (i.e., < 1 yr), the effect of this
interaction will be negligible and as such is omitted (Black et al. 1995; Shevchenko and
Kouprianov 2002). The second assumption, while might look like an oversimplification at
first, does not affect the final equation of motion, which is the same as the one obtained
directly from the Euler equations (Danby 1962; see also Appendix 1 for a remark on the
moments of inertia in both models). The third assumption is justified for most satellites as
the angular momentum is assumed to be constant with great accuracy. However, it should
be noted that Wisdom et al. (1984) showed that the chaotic state is attitude unstable, and
also the analysis of Voyager 2 images showed that the axis of rotation was far from being
perpendicular to the orbital plane. Therefore, the models derived herein are a first approxi-
mation that will be expected to give initial insight into the dynamics of the satellite, and the
parameters corresponding of the Saturn–Titan–Hyperion system are used for demonstrative
reasons.

Defining the oblateness as ω2 = 3(B−A)
C , and choosing the units so that the orbital period

T is equal to 2π and the major semi-axis a = 1 (which implies through Kepler’s third law
GM = 1, and that the orbital mean motion n = 1), eventually the equation of motion takes
the form

θ̈ + ω2

2r3
sin 2 (θ − fH ) = 0, (3)

where time is dimensionless and θ̇ is measured in units of n, with Eq. (1) for the orbit in the
form

r =
(
1 − e2

)

1 + e cos fH
, (4)
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and Eq. (2) for the true anomaly yields

ḟH = 1
(
1 − e2

)3/2 (1 + e cos fH )2 . (5)

Moreover, transforming Eq. (3) so that fH is the independent variable leads to the famous
Beletskii equation (Beletskii 1963), which was shown to be non-integrable (Maciejewski
1995).

2.2 Introducing a second satellite

Herein, a second satellite is assumed to revolve around the planet on a circular orbit, with
radius a0, in the same plane as the oblate moon. Based on Eq. (5), the true anomaly depends
linearly on time:

fT = 1

a3/20

t. (6)

From the triangle T SH (see Fig. 1) one obtains that the distance between the two satellites
is equal to

rT H = r

√

1 − 2a0
r

cos ( fT − fH ) +
(a0
r

)2
. (7)

The angle α1 is also required. Using again the triangle T SH one finds

α1 = x + fT − θ − π. (8)

The angle x can be found by applying the law of cosines to the same triangle T SH , what
gives

x = arccos

(
r2T H + a20 − r2

2rT Ha0

)

. (9)

Inserting Eq. (9) into (8) one arrives at the formula for α1.
Finally (see Appendix 2), one obtains the following equation of motion:

θ̈ = ω2

2

{
sin 2 ( fH − θ)

r3
− m1/M

r3T H

sin 2

[
arccos

(
a0 − r cos ( fT − fH )

rT H

)
+ fT − θ

]}

.

(10)

The initial conditions (ICs) for the true anomalies will be assumed throughout to be
fH (0) = fT (0) = 0. The backward differentiation formula (BDF) is employed for numerical
integrations (Ascher and Petzold 1998).

3 Phase space properties

In this Section the structure of the phase space of the dynamical system given by Eqs. (3)–(5)
is briefly described. This will allow an insight into how does the gravitational interaction
with the second satellite influence the oblate moon’s rotation.

The phase space is 3-dimensional: Ω = {(θ, θ̇ , fH ) : θ ∈ Rmod 2π, θ̇ ∈ R, fH ∈
Rmod 2π}. But fH is a regular, 2π -periodic function and does not carry much information.
Moreover, in dimensionless units the orbital period of the oblate moon is also equal to 2π .
Hence, a Poincaré surface of section, constructed by taking the values of (θ, θ̇)with a time step
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Fig. 2 Phase space in stroboscopic variables for a e = 0.1, ω2 = 0.79, b e = 0.005, ω2 = 0.79, c
e = 0.1, ω2 = 0.04. Different colours correspond to different trajectories (ICs). Equations (3)–(5) were
integrated for 2000 dimensionless time units, resulting in 319 points for each trajectory. The initial conditions
were (0, θ̇0) and (π/2, θ̇0), where θ̇0 ∈ {0.0, 0.1, . . . , 2.5, 2.6}

of 2π , i.e. employing stroboscopic variables, provides insight into the rotational dynamics.
Furthermore, the rotation of the satellite by 180◦ (i.e., θ → θ + π) gives an equivalent
configuration, hence θ can be confined to the interval [0, π). Such surfaces of section are
shown in Fig. 2.

As is common in Hamiltonian systems, the phase space is divided into regions occupied
with chaotic trajectories, and regions of regular (periodic or quasiperiodic) motion. There are
alsomotions called sticky orbits, when the trajectory initially behaves in a regular manner and
diverges into the chaotic zone after some time. (See alsoMelnikov 2014 for the emergence of
strange attractors when dissipation is introduced.) The phase space in Fig. 2a is dominated by
a large chaotic sea, formed by merging the chaotic zones surrounding spin-orbit resonances
from p=1:2 to p=2:1 when ω2 increases (Wisdom et al. 1984). Quasiperiodic motions are
represented by smooth curves and by closed curves, e.g. the ones surrounding the synchronous
p = 1:1 resonance (see Table 1 in Black et al. 1995 for locations of the surviving resonances).
When the IC is located near the boundary between regular motion and the chaotic sea, sticky
motion occurs. A narrow chaotic zone is present also in Fig. 2b, c obtained for smaller values
of the eccentricity and oblateness, respectively. In fact, every Solar System satellite has a
chaotic period in its past (Spohn et al. 2014).

4 Methods

4.1 Correlation dimension

The algorithm and programme for computing the correlation dimension are briefly described
in Sect. 4.1.1, which is followed by the description of methodology and discussion of the
results of the benchmark testing in Sect. 4.1.2.

4.1.1 Algorithm

A fractal dimension (or, more precisely, the Hausdorff dimension; Hausdorff 1919; Theiler
1990; Ott 2002) is often measured with the correlation dimension, dC (Grassberger and
Procaccia 1983; Grassberger 1986; Theiler 1990; Alligood et al. 2000; Ott 2002), which
takes into account the local densities of the points in the examined dataset. For usual 1D,
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Table 2 Results of the
correlation dimension benchmark
testing for uniformly sampled
regions I and II; σ denotes the
standard deviation of the sample

Region 〈dC 〉 σ

I 1.988 0.027

II 1.988 0.023

Table 3 Results of the
correlation dimension benchmark
testing when clustering is
introduced

Region 〈dC 〉 σ

I 1.981 0.026

II 1.974 0.022

2D or 3D cases the dC is equal to 1, 2 and 3, respectively. Typically, a fractional correlation
dimension is obtained for fractals (Mandelbrot 1983).

The correlation dimension is defined as

dC = lim
R→0

lnC(R)

ln R
, (11)

with the estimate for the correlation function C(R) as

C(R) = 1

N 2

N∑

i=1

N∑

j=i+1

Θ
(
R − ||xi − x j ||

)
, (12)

where the Heaviside step functionΘ adds toC(R) only points xi in a distance smaller than R
from x j and vice versa. The total number of points is denoted by N , and the usual Euclidean
distance, ||.||, is employed. The limit in Eq. (11) is attained by using multiple values of
R and fitting a straight line to the linear part of the obtained dependency. The correlation
dimension is estimated as the slope of the linear regression. The computations in this work
were performed using the python code from (Tarnopolski 2014), with a slight modification
so that ln R, instead of R, is uniformly sampled with a step Δ ln R. Throughout this paper,
when the dC is considered, N is set to be 10, 201 (see Sect. 5.2).

4.1.2 Benchmark testing

In order to verify the reliability of the correlation dimension algorithm, benchmark testing
is performed on 128 realisations of uniform sampling with N points in each of the regions
I and II defined as follows: region I is a unit square, and region II is a unit square without a
circle of radius 1/4 placed at the center of the square. Next, the dC is computed as described
in Sect. 4.1.1, with ln R ∈ [−8,−2] and Δ ln R = 0.5. The results are gathered in Table 2,
from which it follows that the estimated dC is very close to the correct dimension expected
for an Euclidean 2-dimensional space.

To validate the performance when clustering is introduced, regions I and II are uniformly
sampled with 9000 points, and the remaining 1201 points are introduced in a circular region
with radius equal to 1/8 (which is overlaid with points in the unit square), randomly chosen at
each of the 128 realisations and lying entirely within region I or II. The results are gathered in
Table 3. The correlation dimensions are close to the expected value of 2, but slightly smaller
than they were when there was no clustering.

Finally, 128 realisations of uniformdistributions of 2101 pointswithin a unit square, which
was overlaid with 8000 points distributed uniformly in a 0.25 × 0.25 square located in one
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Fig. 3 Estimation of the dC for 128 realisations of a a uniformly sampled unit square and b for 2101 points
in a unit square overlaid with 8000 points in a 0.25 × 0.25 square (clustering). The vertical dashed linesmark
the region where linear regression was performed. Note different scales on the vertical axis. When clustering
is introduced the lnC(R) versus ln R dependency is broken at some point

corner of the unit one, were generated. The resulting mean dC was 1.937, and σ = 0.008.
Hence it was shown that clustering might result in a correlation dimension systematically
lower than the expected one. Figure 3 shows the lnC(R) versus ln R relations for a uniformly
sampled unit square and for the last numerical experiment on clustering.

4.2 Bifurcation diagrams

In dynamical systems theory, a bifurcation occurs when an infinitesimal change of a (non-
linear) parameter governing the system leads to a topological change in its behaviour.
Generally speaking, at a bifurcation the stability of equilibria, periodic orbits or other invari-
ant sets is changed. The theory of bifurcation is a vast field (Crawford 1991; Lichtenberg
and Lieberman 1992; Baker and Gollub 1996; Alligood et al. 2000; Ott 2002; Kuznetsov
2004; Peitgen et al. 2004). Herein focus will be laid on the pitchfork bifurcations, that
are present e.g. in the logistic map (May 1976; Feigenbaum 1979) and that constitute
one of the routes to chaos. Let us consider a system of differential equations in the form
ẋ = f (x;α), where α is a parameter, and assume that given x0 as an IC, for α < α1

the orbit is 1-periodic. A bifurcation at α = α1 is a point where the trajectory begins to
be 2-periodic and maintains its periodicity up to α = α2. Similarly, at α = α2 a bifurca-
tion occurs on each of the two branches, hence the orbit becomes 4-periodic. This scheme,
called a period-doubling (pitchfork) bifurcation cascade, continues until at α = α∞ < ∞
the orbit becomes chaotic. However, in the chaotic zone, α > α∞, windows of peri-
odic motion with arbitrary period occur. E.g., when a 3-periodic trajectory emerges from
the chaotic zone it also undergoes the period-doubling, hence produces orbits that are 6-
periodic, 12-periodic, and so on. A bifurcation diagram is a diagram illustrating this complex
mechanism with respect to the nonlinear parameter α. Finally, bifurcations may also occur
when α is decreasing (period-halving bifurcations) as well as when |α| is decreasing or
increasing.

123



Influence of a second satellite on the rotational dynamics 129

Fig. 4 The phase space evolution after k revolutions of (from top to bottom): IC1 in case of the second
satellite’s absence, IC1 but including additional gravitational influence, IC2 in the absence of the second
satellite, and IC2 in its presence. The sets IC1 and IC2 are depicted in red in each panel

Usually, on the bifurcation diagrams there appear to be some curves running through the
plot in the chaotic region. These are the so called critical curves (Peitgen et al. 2004) defined
by x = f n(x0;α).

5 Results

5.1 Correlation dimension

In this section the influence of the second satellite’s absence or presence on the phase space
flow is examined. In order to do so, two sets of ICs (θ0, θ̇0) are chosen:

1. IC1 – a total of 101× 101 = 10, 201 ICs distributed uniformly (with a step of 10−3) on
a 0.1 × 0.1 square centered on (π/2, 0.55);

2. IC2 – similar to IC1, but centered on (π/2, 1.5).

IC1 was chosen so that it is located on the edge of the chaotic sea and the domain of quasi-
periodic motion (according to Black et al. 1995, the 1:2 resonance is located at (π/2, 0.9);
compare also with Fig. 2a), and IC2 was chosen so that it lies entirely within the chaotic zone
(according to Wisdom et al. (1984), the 3:2 resonance does not exist).

The equations of motion (3) and (10) are solved numerically for every IC in the sets
IC1 and IC2. The integration time is equal to 20 orbital periods of the oblate satellite, i.e.
tmax = 20 × 2π . After each revolution, starting from t = 0 (corresponding to the sets IC1
and IC2), the value of θ and θ̇ is recorded, and the sets to which IC1 and IC2 evolved after
k orbital periods are displayed in Fig. 4.
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Fig. 5 The correlation dimension for the sets in Fig. 4. Note different scales on the vertical axes on (a, b)
and (c, d)

Next, the correlation dimensions of these sets are computed according to Sect. 4.1. The
linear regressionwasperformed for lnC(R)vs. ln R relation in the region ln R ∈ (−7, ln Rth),
where Rth was chosen in each case so that the fit was done only in the linear part of the plot.
The results, in graphical form, are displayed in Fig. 5. Because all orbits corresponding to
IC1 and the absence of the second satellite are quasiperiodic, the dC , as expected, plateaus
to a value near 1 (Fig. 5a). However, when its influence is taken into account, the dC initially
tends to a slightly higher value, approximately 1.1, but then starts to rise suddenly (Fig. 5b).
As can be seen in the second row of Fig. 4, some of the orbits appear to remain quasiperiodic
when the other satellite’s gravitation is switched on, but some become chaotic. On the other
hand, based on the behaviour of dC in Fig. 5b, one might suspect that sticky chaos is also
encountered. While the analysis of different types of rotation—periodic, quasiperiodic, and
chaotic, including sticky chaos—is beyond the scope of this work, it is remarkable to note
a clear impact of a second satellite on the rotation of an oblate moon: some ICs that would
lead to quasiperiodic motion become chaotic.

The evolution of IC2 is very similar in case of both the absence and presence of the second
satellite’s gravity (third and fourth rows in Fig. 4). Also, the dC behaves in the same manner
for both models, reaching a plateau of dC ≈ 1.75 after about 16 orbital periods, as shown
in Fig. 5c, d. It is important to note that the value 1.75 cannot be a reliable estimate of the
supposed fractality of the attained structure due to the following reasons:

• bothmodels given by Eqs. (3) and (10) areHamiltonian and hence cannot posses a strange
attractor (Greiner 2010) that could be characterized by a fractional correlation dimension;
assymptotically any set of ICs leading to chaotic orbits should occupy a 2-dimensional
subset in the phase space;

• the number of points, N = 10, 201, used to estimate the dC is relatively small and hence
might bias the outcome (Tarnopolski 2014);
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• local densities exceeding the average density (clustering) affect the correlation dimension
such that it is lower than the dimension of the embedding space (see Sect. 4.1.2 and
Tarnopolski 2015b).

5.2 Bifurcation diagrams

First, Eq. (3), describing the rotation in the absence of a second satellite, was integrated using
the initial conditions (θ0, θ̇0) = (π/2, 3/2) in the time range t ∈ (0, 104), and the values
of θ̇ were recorded every revolution, i.e. with a time step of 2π . To obtain the bifurcation
diagrams in dependence on the oblateness, the eccentricity ewas set to 0.1 andω2 was varied.
Next, the same procedure was undertaken to obtain the bifurcation diagrams in dependence
on the eccentricity, i.e. the oblateness was set to ω2 = 0.79 and e was varied. The results
are presented in Fig. 6a, c. For relatively small values of ω2 and e, the magnifications in
Fig. 6b, d show a very complex structure with alternating quasiperiodic and periodic orbits
with a wide range of periods, e.g. a 4-period at ω2 ≈ 0.08 or a 2-period at e ≈ 0.005 in
Fig. 6b, d, respectively. Note that global chaos occurs at ω2 ≈ 0.083, which corresponds to
ω ≈ 0.29, what is in good agreement with the critical value obtained byWisdom et al. (1984)
using the resonance overlap criterion (Chirikov 1979; Lichtenberg and Lieberman 1992),

ωRO = 1/
(
2 + √

14e
)

≈ 0.31. Hence the bifurcation diagrams confirm the applicability of

this criterion to the rotation of an oblate moon.
In the same way the bifurcation diagrams were obtained using Eq. (10) including the

gravitational influence of a second satellite. In this case the motion is governed by a third
parameter, m1/M , in addition to ω2 and e. The diagram in Fig. 7a (where m1/M was set to
0.00024) is qualitatively similar to the corresponding one in Fig. 6a, and the dependence on
the ratio m1/M in Fig. 7b is mainly structureless. However, there is a significant difference
when the oblateness and mass ratio are set to the values from Table 1, and the eccentricity e is
varied. Note that the range of e in Fig. 7c is about four times smaller than in the corresponding
Fig. 6c, as the computational complexity of the problem was much higher when Eq. (10)
was applied. However, using a more sparse grid it was confirmed that the range of θ̇ also
increases with the eccentricity (not shown). A remarkable difference becomes apparent in
Fig. 7d: the image drawn by the bifurcation diagram is less structured compared to Fig. 6d,
and the critical curves are much more tangled. Hence, the impact of a second satellite on
the rotation is that the additional body destroys a number of periodic orbits that could occur
for low eccentricity values, but for the parameters (i.e., oblateness and eccentricity) of the
Saturn–Titan–Hyperion system, its dynamics should also be expected to remain in a chaotic
state.

As was pointed out in Sect. 2.1, the model of planar rotation is not applicable to the real
Saturn–Titan–Hyperion system as it is attitude unstable. Hence, the bifurcation diagrams are
also computed in dependence of ω2 and the ratio m1/M with e = 0.005, which is the
mean eccentricity of all Solar System satellites.2 Figure 8 shows that for a range of ω2 the
rotation is highly structured in the absence of the second satellite. Interestingly, a distinct 2-
periodic window emerges at ω2 ≈ 0.79, which surprisingly coincides with the oblateness of
Hyperion. Figure 9 shows that the picture becomes much more complex also for such small
eccentricity when the gravitational influence of a second satellite is introduced. In particular,
the 2-periodic window from Fig. 8 has disappeared altogether. Finally, when ω2 was set to
0.04, the bifurcation diagrams revealed a highly regular structure (not shown).

2 http://ssd.jpl.nasa.gov/?sat_elem
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Fig. 6 Bifurcation diagrams for the case of the absence of the second satellite. In a, b the eccentricity e = 0.1,
and Δω2 = 0.001 and 0.0001, respectively. In c, d the oblateness ω2 = 0.79, and Δe = 0.001 and 0.00002,
respectively

6 Discussion and conclusions

The aim of this paper was to investigate how does the gravitational interaction with a sec-
ond satellite influence the rotational dynamics of an oblate moon. A simplified model was
designed, resulting in the equation onmotion given in Eq. (10), being basically a perturbation
of the well known Eq. (3). The derived equation of motion introduces a third parameter, the
mass ratio m1/M , additional to the oblateness ω2 and eccentricity e. To allow comparison,
two sets of ICs distributed uniformly in a 0.1 × 0.1 square in the phase space were evolved,
in case of the absence and presence of the additional source of gravitation. In case of the
set IC1 [centered at (π/2, 0.55)] the difference between the two models is qualitative in
nature: when the second satellite was absent all trajectories were quasiperiodic (first row in
Fig. 4), as indicated by the dC = 1 in Fig. 5a. Interestingly, when its presence was taken into
account, one could observe leaking of the orbits into the chaotic sea (second row in Fig. 4).
This phenomenon manifests itself also through a higher dC attained in Fig. 5b. Hence, it
turns out that an additional satellite has the ability to change quasiperiodic orbits into chaotic
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Fig. 7 Bifurcation diagrams when the gravitational influence of the second satellite is included. In a the
eccentricity e = 0.1, the mass ratio m1/M = 0.00024 and Δω2 = 0.001. In b e = 0.1 and ω2 = 0.79 with
Δ (m1/M) = 10−6. In c, d the oblateness ω2 = 0.79, m1/M = 0.00024, and Δe = 0.0002 and 0.00005,
respectively. Note a change of scale on the horizontal axis in c compared to Fig. 6c

ones, i.e. it enlarges the chaotic domain. On the other hand, when the set IC2, located in the
center of the chaotic region [an 0.1 × 0.1 square centered at (π/2, 1.5)], was considered,
no long term (assymptotic) differences could be observed (third and fourth rows in Fig. 4),
and the correlation dimension for both models reached a plateau at dC ≈ 1.75 < 2 (Fig. 5c,
d), likely due to clustering. However, this is not that surprising, given that the gravitational
influence under investigation was three orders of magnitude smaller than the planet’s, and
that the rotational model in absence of the second satellite is dominated by the chaotic zone,
hence it would be highly unexpected for it to have the ability to change chaotic motion into
a regular one.

The bifurcation diagrams, especially interesting when m1/M and ω2 were fixed and e
was varied, when small values of the eccentricity (i.e., e < 0.03) are considered lead to
a conclusion that the regular and highly structured picture (Fig. 6d) becomes much more
messy, and the transition to chaos occurs for smaller eccentricities than in the case when
additional gravitation source is neglected (Fig. 7d). This is consistent with the results of
the other method (i.e., evolving the sets IC1 and IC2) in the sense that the second satellite
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Fig. 8 Bifurcation diagrams for the case of the absence of the second satellite. The eccentricity e = 0.005 and
a Δω2 = 0.001; b shows the magnification around the 2-periodic window at ω2 ≈ 0.79, with Δω2 = 0.0001
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Fig. 9 Bifurcation diagrams when the gravitational influence of the second satellite is included. In a the
eccentricity e = 0.005, the mass ratio m1/M = 0.00024 and Δω2 = 0.001. In b e = 0.005, ω2 = 0.79 and
Δ (m1/M) = 10−6

changes regular motion into chaotic. The differences in case when ω2 was varied was not
that much remarkable (Figs. 6a, 7a), and both models lead to chaotic motion when larger e
are considered (Fig. 6c, 7c). The bifurcation diagram in dependence on the ratio m1/M was
mostly structureless (Fig. 7b). Eventually, the destruction of regular rotation caused by the
second satellite might be ascribed to the destruction of the invariant tori (Tabor 1989; see
also Celletti and Chierchia 1998 and references therein).

Finally, when e was set to the mean eccentricity of all Solar System satellites (i.e., e =
0.005), the highly structured bifurcation diagram displayed in Fig. 8 also got destroyed and
became much more tangled, as shown in Fig. 9. To conclude, the derived simplified model
of a second satellite’s influence on rotational dynamics of an oblate satellite implies that:
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1. the additional source of gravitation can change some regular orbits into chaotic ones, and
2. it destroys the regularity, particularly the periodicities and critical curves, in the bifurca-

tion diagram for small eccentricities e < 0.03.
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Appendix 1: Moments of inertia

Assuming the oblatemoon is a triaxial ellipsoidwith axes a > b > c andmassM = 4π
3 ρabc,

the respective principal moments of inertia A < B < C are

A = M

5
(b2 + c2), B = M

5
(a2 + c2), C = M

5
(a2 + b2). (13)

In the double dumbbell model (here c = 0):

A = m

2
b2, B = m

2
a2, C = m

2
(a2 + b2). (14)

Comparing Eqs. (13) and (14), the masses should obey m = 2
5M for the moments of inertia

for the ellipsoid model to contain the double dumbbell model. However, this does not affect
the analysis performed here because the equations of motion (3) and (10) depend only on a
dimensionless parameter ω2 = 3(B−A)

C which takes the same value for both models (with
4m = M).

Appendix 2: Equations of motion

Rotational model of an oblate moon

Denote by e1 the body-fixed axis joining points 2 and 1, and by e2 the axis joining points 4
and 3 (see Fig. 1). Thence, e3 = e1 × e2 is perpendicular to the orbital plane. Since A �= B,
the satellite experiences a torque. Specifically, when points 1 and 2 are considered, the torque
is

D(1,2) = d12e1
2

× (F1 − F2) , (15)

where Fi = −GMmri r
−3
i is the gravitational force acting onmass i . Using the law of cosines

to the triangles SHi (i = 1, 2) and the fact that d12 � r , one obtains

1

r3i
≈ 1

r3

(
1 ∓ 3d12

2r
cosα

)
, (16)

where the positive sign holds for r1, while the negative for r2. Inserting this into Eq. (15),
after some algebraic manipulations one arrives at

D(1,2) = 6π2B
( a
r

)3 sin 2α
T 2 e3. (17)
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Similarly, the torque D(3,4) can be calculated as

D(3,4) = −6π2A
( a
r

)3 sin 2α
T 2 e3. (18)

The total torque is thereforeD = D(1,2)+D(3,4), andwith Euler’s second law:D = L̇ = C θ̈e3
the equation of angular motion takes the form from Eq. (3).

Introducing the second satellite

The torques coming from an additional satellite and acting on the oblate moon are given by

D(1,2)
T = 3Gm1B sin 2α1

2r3T H

e3 (19)

and

D(3,4)
T = −3Gm1A sin 2α1

2r3T H

e3, (20)

wherem1 is the mass of the second satellite. The total torque acting on an oblate body is then

Dtot = D + DT = D(1,2) + D(3,4) + D(1,2)
T + D(3,4)

T

= 3(B−A)
2

(
GM sin 2α

r3
+ Gm1 sin 2α1

r3T H

)
e3,

(21)

which after inserting the formula for α1 from Eq. (8), and noting that Gm1 = GM m1
M =

n2a3 m1
M , leads via Euler’s second law to the equation of motion from Eq. (10).
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