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Abstract A number of studies, referring to the observed Trojan asteroids of various planets
in our Solar System, or to hypothetical Trojan bodies in extrasolar planetary systems, have
emphasized the importance of so-called secondary resonances in the problemof the long term
stability of Trojan motions. Such resonances describe commensurabilities between the fast,
synodic, and secular frequency of the Trojan body, and, possibly, additional slow frequencies
produced by more than one perturbing bodies. The presence of secondary resonances sculpts
the dynamical structure of the phase space. Hence, identifying their location is a relevant
task for theoretical studies. In the present paper we combine the methods introduced in two
recent papers (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez
and Locatelli in MNRAS 453(2):2177, 2015) in order to analytically predict the location of
secondary resonances in the Trojan problem. In Páez and Efthymiopoulos (2015), the motion
of a Trojan body was studied in the context of the planar Elliptic Restricted Three Body or
the planar Restricted Multi-Planet Problem. It was shown that the Hamiltonian admits a
generic decomposition H = Hb + Hsec. The term Hb, called the basic Hamiltonian, is a
model of two degrees of freedom characterizing the short-period and synodic motions of a
Trojan body. Also, it yields a constant ‘proper eccentricity’ allowing to define a third secular
frequency connected to the body’s perihelion precession. Hsec contains all remaining secular
perturbations due to the primary or to additional perturbing bodies. Here, we first investigate
up to what extent the decomposition H = Hb + Hsec provides a meaningful model. To
this end, we produce numerical examples of surfaces of section under Hb and compare with
those of the full model. We also discuss how secular perturbations alter the dynamics under
Hb. Secondly, we explore the normal form approach introduced in Páez and Locatelli (2015)
in order to find an ‘averaged over the fast angle’ model derived from Hb, circumventing
the problem of the series’ limited convergence due to the collision singularity at the 1:1
MMR. Finally, using this averaged model, we compute semi-analytically the position of the
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most important secondary resonances and compare the results with those found by numerical
stability maps in specific examples. We find a very good agreement between semi-analytical
and numerical results in a domain whose border coincides with the transition to large-scale
chaotic Trojan motions.

Keywords Trojan bodies · Perturbation theory · Normal forms · Hamiltonian formalism ·
Restricted Multi-Planet Problem (RMPP) · Minor bodies

1 Introduction

Ever since the discovery of the triangular equilibrium solutions of the Three Body Problem
by Lagrange (1772), the problem of the dynamical behavior of the orbits near the equilateral
equilibrium points has attracted great interest in the astronomical community. A long known
application refers to the family of Trojan asteroids of Jupiter (see Robutel 2010 and references
therein). Trojan asteroids were found also around other planets in our Solar System, i.e. the
Earth,Mars, Uranus andNeptune (Bowell et al. 1990; Connors et al. 2011;Alexandersen et al.
2013). On different grounds, a number of works have adressed the questions of the overall
existence, formation and detectability of Trojan exoplanets (Beaugé et al. 2007; Cresswell
and Nelson 2009). No such body has been identified so far in exoplanet surveys. This may
indicate that such planets are rare, which case would necessitate a dynamical explanation, or
that there exist yet unsurpassed constrains in exo-Trojan detectability. It has been proposed
that the complexity of the orbits of Trojan bodies may itself introduce intricacies in possible
methods of detection, see, for example, Haghighipour et al. (2013) refering to the Transit
Timing Variation method; regarding, in particular, the radial velocity measurements, see
Dobrovolskis (2013). The above and other examples emphasize the need to understand in
detail the orbital dynamics in the 1:1 mean-motion commensurability.

In the present paper we extend the work of two previous papers (Páez and Locatelli 2015;
Páez and Efthymiopoulos 2015), in the direction of developing an efficient analytical method
for the study of Trojan orbital dynamics. The aim of analytical studies is to identify the main
features of the phase space and to quantify their role in the dynamical behavior of the orbits.
Some important references of past analytical studies of the Trojan problem can be found in
Érdi (1997) and references therein.

Regarding past approaches, the following is a key remark. Most analytical treatments of
the Trojan problem in the literature are so far based upon series expansions of the equations of
motion around the stable equilibria L4 and L5, using various sets of variables (e.g Cartesian,
cylindrical, or Delaunay-like action-angle variables). However, it is important to recall that
all these kinds of expansions exhibit an important limitation, related to the singular behavior
of the equations of motion at relatively large Trojan libration amplitudes. In the framework
of the ERTBP, defined by a central mass, a perturber body and a massless particle (the Trojan
body), this singular behavior corresponds geometrically to an approach of the Trojan body
close to the perturbing body, which is possible only at the 1:1 Mean Motion Resonance. The
relevant remark is that, the presence of a singularity in the equations of motion implies a finite
disc of convergence for any kind of series expansions around L4 or L5. It is straightforward
to see that the projection of this disc in configuration space is such so as to render the
series’ convergence very poor for orbits with large libration amplitudes not only towards the
perturber, but also in the direction opposite to the perturber, i.e. towards the unstable colinear
point L3. Let us note that this poor convergence has a pure mathematical origin; no physical
singularity actually exists exactly at or close to L3.
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New Hamiltonian expansions adapted to the Trojan problem 521

The following is a more precise form of the above remark. Let θ be the angular distance
between the perturber and the Trojan body, e.g. in a heliocentric frame. Regardless the
initial choice of variables, model approximation, etc., one finally recovers for θ a differential
equation of the form (see, for example, Érdi 1978)

d2θ

dt2
+ 3μ sin θ

[
1 − 2−3/2(1 − cos θ)−3/2] + h.o.t. = 0 (1)

where μ is the mass parameter of the perturber. The higher order terms include epyciclic
oscillations, the eccentricity of the Trojan or the perturber, as well as any other kind of
perturbation induced, for example, by more perturbing bodies. Ignoring such terms, Eq. (1)
can be thought of as Newton’s equation corresponding to a ‘potential’

V (θ) = 3μ

[
1√

2 − 2 cos θ
− cos θ

]
. (2)

This differs only by a constant from the quantity H(θ) introduced in Murray and Dermott
(1999), called also the ‘ponderomotive potential’ in Namouni andMurray (2000). If, instead,
one expresses the equations of motion in orbital elements, one encounters equivalent terms
in the disturbing function (Murray and Dermott 1999 §6), taking the form μ[− cos τ +
(1 − cos τ)−1/2], where τ = λ − λ′ corresponds to the critical argument of the 1:1 Mean
Motion commensurability, λ, λ′ being the mean longitudes of the Trojan and the perturber
respectively. The position of L4 (or L5) corresponds to θ0 = τ0 = π/3 (or 5π/3). Setting
u = θ − θ0 or u = τ − τ0 and expanding the equations of motion in powers of the quantity
u leads to expressions converging in the domain |u| < π/3. The convergence is quite slow
for angles approaching the limiting values ulim ± π/3. In reality, such expansions become
unpractical for libration angles ∼30◦ and beyond, i.e. after half way to the singularity. The
applicability of all analytical methods based on polynomial expansions around L4 or L5 is
severely limited by this poor convergence.

On the other hand, one finds numerically that stable tadpole orbits exist in domains extend-
ing well beyond the limits of convergence of the analytical methods (see Fig. 1).

In Páez and Locatelli (2015), a new method of series expansions for the Trojan problem
was introduced, aiming, precisely, to remedy the poor convergence of the classical series
expansions around L4 or L5. The method was developed in the context of the canonical
formalism. In more detail, an algorithm was derived allowing to compute a so-called Hamil-
tonian normal form for Trojan motions. In the normal form approach, starting from an initial
Hamiltonian model, one performs a series of near-identity canonical transformations from
old to new canonical variables, leading to a new expression for the Hamiltonian (called the
‘normal form’). Via these transformations, the goal is to arrive at a new form of the equations
of motion in the new variables, which is simpler to solve than in the original variables. In Páez
and Locatelli (2015) the algorithm was applied to the simplest possible model, namely the
planar and circular Restricted Three Body Problem (CRTBP). In this case, the normal form
becomes an integrablemodel of one degree of freedom, allowing to analytically approximate
the motion in the so-called synodic (associated with the libration motion around L4) degree
of freedom. The key point of the method is that the functional dependence of all involved
quantities (i.e. normal form, transformation equations etc., see Sect. 3 below for details) on
the quantity

β0 = 1√
1 − cos τ

(3)
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Fig. 1 Representation of the domain of τ where polynomial series are convergent if the expansion takes
place around L4, in a heliocentric Cartesian frame co-rotating with the perturber (x, y). The position of the
equilibrium points L4 and L3, the central mass m0 and the perturber m′ are indicated with black points. The
radius of convergence (thick pink line) of the series is given by the distance between L4 and the perturber,
namely 60◦ (τ = π/3). While this does not induce any problem in the direction towards the perturber, it
does limit the convergence in the opposite direction. In purple, we show an example of a typical Trojan
orbit, obtained by numerically integrating the equations of motion of the ERTBP, for the initial condition
(x, y, ẋ, ẏ) = (0.507, 0.87402, 0, 0). The orbit clearly exceeds the leftward limit of 60◦ from L4

and on the powers of β0 is maintained at all orders of perturbation theory. Hence, the so-
resulting series are not affected by the singularity at τ = 0 (i.e. u = −π/3) and remain
useful practically within the whole tadpole domain.

In the present paper we implement the method developed in Páez and Locatelli (2015) in a
modelmore realistic than theCRTBP, namely themodel introduced in Páez andEfthymiopou-
los (2015). This provides an approximation to the Trojan dynamics applicable to two distinct
cases: (i) the planar Elliptic Restricted Three Body Problem (ERTBP), and (ii) what was
called in Páez and Efthymiopoulos (2015) the ‘Restricted Multi-Planet Problem’ (RMPP).
In the latter case, we assume that there are more than one perturbing bodies which exert sec-
ular perturbations on the Trojan body. The main application in mind is a hypothetical Trojan
exoplanet in a multi-planet extrasolar system, although the model applies equally well to the
Trojan asteroids of giant planets in our solar system. TheRMPP exhibits amore rich spectrum
of secular perturbations than the ERTBP. Even so, in Páez and Efthymiopoulos (2015) it was
shown that in both problems, one can derive a so-called, ‘basic Hamiltonian model’ (denoted
hereafter as Hb). The Hamiltonian Hb approximates the dynamics in the fast and synodic
degrees of freedom. Furthermore, in Páez and Efthymiopoulos (2015) it was shown that Hb is
formally identical in the ERTBP and the RMPP (apart from a re-interpretation of the physical
meaning of one pair of action-angle variables). Consequently, the two problems are formally
diversified only by their different sets of secular terms in the Hamiltonian, denoted by Hsec.
Let us note that here, as in Páez and Efthymiopoulos (2015), we focus only on the planar
version of the Hb model, although generalization to the spatial version is straightforward.

Combining the results of Páez and Efthymiopoulos (2015) and Páez and Locatelli (2015),
we provide below an application of particular interest, namely, the semi-analytical determina-
tion of the location of secondary resonances in the tadpole domain of motion. As was shown
in Érdi et al. (2007), secondary resonances play a key role in determining the boundary and
the size of the tadpole stability domain.
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In Páez and Efthymiopoulos (2015) a combination of numerical indicators (the Fast Lya-
punov Indicator—FLI (Froeschlé et al. 1997), as well as the NAFF (Numerical Analysis
of the Fundamental Frequencies) algorithm (Laskar 2004) were used to identify the most
important secondary resonances in a space corresponding to what is known as the ‘proper
elements’ of the Trojan body’s motion (see Milani 1993; Beaugé and Roig 2001, as well as
the definitions in Páez and Efthymiopoulos 2015). As an example, in the case of the ERTBP,
the location of various secondary resonances was determined in the space of proper elements,
depending mainly on two parameters, i.e., the perturber’s mass parameter μ and eccentricity
e′. In the present paper, we demonstrate, instead, the efficiency of the analytical normal form
approach of Páez and Locatelli (2015) in identifying the location of secondary resonances in
the space of proper elements.

The structure of the paper is as follows: in Sect. 2 we examine some features of the ‘basic
Hamiltonian’ model of Páez and Efthymiopoulos (2015), and validate the usefulness of the
decomposition H = Hb+Hsec by performing a numerical exploration of the dynamics under
Hb alone, as well as of how the latter compares to the full Hamiltonian dynamics. Then, in
Sect. 3 we implement the normal form method introduced in Páez and Locatelli (2015) to
the Hamiltonian Hb, and check its performance in the location of the secondary resonances.
Section 4 summarizes our conclusions.

2 Basic Hamiltonian Hb: construction and features

In this section, we aim to explore in some detail the features of the Hamiltonian model intro-
duced in Páez and Efthymiopoulos (2015), and to discuss the advantages and the limitations
in the approximations of this model. For completeness, we begin by briefly reviewing the
construction of the model. For more details, we defer the reader to Páez and Efthymiopoulos
(2015).

2.1 Construction

In the framework of the planar elliptic Restricted Three Body Problem (pERTBP), the equa-
tions of motion of the Trojan body (’massless body’) depend on two physical parameters: (i)
the mass parameter μ = m′

m′+M , where M is the mass of the central mass and m′ the mass of
the perturber (also ’primary perturber’ or simply ’primary’), and (ii) the eccentricity of the
heliocentric orbit of the primary perturber, e′. In the ERTBP e′ and the major semi-axis of
the primary’s orbit are constant, set a′ = 1 in our units.

In Páez and Efthymiopoulos (2015), a Hamiltonian formulation was provided for the
Trojan motion, in the pERTBP, and also in a more complex problem where S additional
perturbing bodies (e.g. planets) are present, beingmutually far fromMMRs. TheHamiltonian
of the ’Restricted Multi-Planet Problem’ (RMPP) was written in Páez and Efthymiopoulos
(2015) under the form

H = Hb (Y f , φ f , u, v, Yp;μ, e′
0)

+ Hsec (Y f , φ f , u, v, Yp, φ, P ′, I1, . . . IS, φ′, φ1, . . . , φS). (4)

In Eq. (4), the variables (φ f , Y f ), (u, v) and (φ, Yp) are pairs of action-angle variables, whose
definition stems from Delaunay-like variables following a sequence of four consecutive
canonical transformations (see Appendix). The reader is deferred to Section 2 of Páez and
Efthymiopoulos (2015) for the details, while a schematic description of the physical meaning
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Fig. 2 Schematic representation of the physicalmeaning of the action-angle variables used for theHamiltonian
Hb in (5). The plane (u, v) corresponds to the ‘synodic’ motion of the Trojan body, where u = λ − λ′ − π/3
(λ and λ′ correspond to the mean longitude of the Trojan body and the primary, respectively) and v = √

a− 1
(a is the major semi-axis of the Trojan and a′ = 1 for the primary). Under the Hamiltonian Hb , the phase
portrait can be represented by a Poincaré surface of section corresponding, e.g., to every time when the angle
φ f accomplishes a full cycle. The left panel shows the form of the projection of this section on the plane (u, v).
The central point P represents a stable fixed point corresponding to the short-period periodic orbit around L4.
The orbit has frequency ω f , while its amplitude increases monotonically with Y f . The forced equilibrium
corresponds to u0 = 0, Y f = 0. The point P, however, has in general a shift to positive values u0 > 0 for proper
eccentricities ep larger than zero. On the surface of section, the frequency of libration around the periodic orbit
is given by the synodic frequency ωs . Resonances, and their island chains, correspond to rational relations
between the fast frequencyω f andωs .On the other hand, the plane (W, V ) = (

√−2y cos δ
,
√−2y sin δ
, )

with y = √
a(

√
1 − e2 −1) and δ
 = 
 −
 ′ the difference of longitude of perihelion of the Trojan and the

primary (right panel) depicts the evolution of the Trojan body’s eccentricity vector under the Hamiltonian Hb .
The motion of the endpoint of the eccentricity vector can be decomposed to a circulation around the forced
equilibrium, with angular frequency g, and a fast (of frequency ω f ) ‘in-and-out’ oscillation with respect to a
circle of radius ep , of amplitudewhich is of orderO(Y f ). All extra termswith respect to Hb in theHamiltonian
(4) depend on the slow angles (φ, φ′) in pERTBP, and also on the angles φ j , j = 1, . . . , S in the RMPP. Thus,
all these terms can only slowly modulate the dynamics under Hb

of these variables is given in Fig. 2. On the other hand, the angle φ′ = g′t corresponds to the
longitude of the pericenter of the primary perturber (constant in the pERTBP, precessing in
the RMPP), while the angles φ j = g j t account for the secular perturbations induced by the
S additional perturbers. These angles are canonically conjugate to a set of (dummy) action
variables denoted by P ′ and I j respectively. Finally, e′

0 is the average eccentricity of the
primary perturber, which coincides with e′ in the pERTBP.

We call the term Hb in theHamiltonian of Eq. (4) the ‘basic Hamiltonianmodel’ for Trojan
motions in the 1:1 MMR. Its detailed form is given in the Supplementary Online Material of
Páez and Efthymiopoulos (2015). We find

Hb = − 1

2(1 + v)2
− v + (1 + g′)Y f − g′Yp − μF (0)(u, φ f , v, Y f − Yp; e′

0). (5)
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The function F (0), contains terms depending on the canonical pairs (φ f , Y f ) and (u, v). The
former characterizes fast motions (with frequencyω f ∼ O(1)), while the latter characterizes
the ‘long-period’ synodic motions (with frequency ωs ∼ O(

√
μ)). On the other hand, since

the angle φ (see Fig. 2) is ignorable in Hb, the action variable Yp is an integral of the basic
Hamiltonian. This allows to define also a secular frequency via g = φ̇ = ∂Hb/∂Yp . More
precisely, we recover the well known relations (e.g., Érdi 1988)

ω f ≡ φ̇ f = 1 − 27

8
μ + g′ + · · · , (6)

ωs ≡ φ̇s = −
√
27μ

4
+ · · · , (7)

g ≡ φ̇ = 27

8
μ − g′ + · · · . (8)

On the other hand, the higher order corrections in Eqs. (6), (7), (8), can be recovered by an
efficient normal form approach, as shown in Sect. 3 below.

Three additional remarks concerning Hb are:
(i) The constancy of Yp under Hb allows to define an approximation to the quasi-integral

of the proper eccentricity ep (see Páez and Efthymiopoulos 2015) via

ep = √−2Yp. (9)

This approximation remains useful in thewhole spectrum ofmodels ranging from theCRTBP
to the full RMPP.

(ii) In Eq. (5), the dependence of F (0) on the actions Yp and Y f is exclusively via the
difference Y f − Yp . This fact allows to simplify some normal form computations, as shown
in Sect. 2.2 below. We can define, in respect, an eccentricity parameter

ep,0 = √−2Y = √
2Y f − 2Yp. (10)

The quantity ep,0 will be used below in labeling several solutions found via the study of Hb.
(iii) By construction, Hb is formally identical in the RMPP and in the pERTBP, with the

substitution e′
0 → e′ and setting g′ = 0. Thus, the determination of the frequencies ω f , ωs

and g based on a normal form manipulation of Hb as below (Sect. 3) leads to equivalent
results regardless the number of additional perturbing bodies besides the primary.

On the other hand, Hsec in (4) gathers all the terms of H depending on the slow (secular)
angle φ (with frequency g ∼ O(μ)), or, in the case of the RMPP, also on the slow angles
φ′, φ j , j = 1, . . . S (of frequencies O(μ j )). As a consequence, in Páez and Efthymiopoulos
(2015) it was proposed that the dynamics at secondary resonances can be approximated as a
slow modulation of all the resonances produced by the basic model Hb, due to the additional
influence of Hsec. Considering the RMPP with S bodies, the most general form of a planar
secondary resonance is given by

mf ωf + msωs + mg + m′g′ + m1g1 + · · · + msgs = 0, (11)

where mf , ms , m, m′, m j (with j = 1, . . . , S) are integers. Keeping the notation of Páez
and Efthymiopoulos (2015), the most important secondary resonances are those present in
the basic Hamiltonian model Hb, already if e′ = 0, i.e. the resonances of the circular RTBP.
These are denoted as the mf :ms resonances, with comensurability relation

mf ω f + msωs = 0. (12)

123



526 R. I. Páez et al.

The particular case when mf = 1 corresponds to the lowest order resonances that can be
found for a certain value of the mass parameter μ, and usually dominate the structure of
the phase-space. These are called the ‘main secondary resonances’ 1:n, where n = ms . For
values of μ between 0.01 and 0.0005, n corresponds to 4, 5, 6 . . . , 16. On the other hand,
we collectively refer to any other resonance of the ERTBP (involving all 3 frequencies ω f ,
ωs and g) as well as to more general cases of the RMPP (including the frequencies g′, g j )
as ’transverse’ resonances.

2.2 Limits of applicability of the basic model Hb

Thebasicmodel Hb represents a reduction of the number of degrees of freedomwith respect to
the original problem. Thus, we expect that its usefulness in approximating the full problem
(ERTBP or RMPP) holds to some extent only. The following numerical examples aim to
compare the dynamical behavior of the orbits under the Hb and the full Hamiltonian. To
this end, we compute and compare various phase portraits (surfaces of section) arising under
the two Hamiltonians. We restrict ourselves to the comparison between Hb and the full
Hamiltonian of the ERTBP only. We thus set e′

0 = e′, and g′ = 0, S = 0. Then, all secular
perturbations are accounted for by only one additional degree of freedom with respect to
Hb, represented by the canonical pair (φ, Yp). Integrating numerically the RMPP instead
of the ERTBP is considerably more expensive. Still, it is arguable that the effect of the
secular perturbations should remain qualitatively similar by adding more degrees of freedom
consisting of slow action-angle pairs only, as in the Hamiltonian decomposition of Eq. (4).

Our numerical integrations of the full Hamiltonian model (ERTBP) are performed in
heliocentric Cartesian variables, in which the equations of motion are straightforward to
express. Whenever needed, translation from Cartesian to the canonical variables appearing
in (4) and vice versa is done following the sequence of canonical transformations defined in
Páez and Efthymiopoulos (2015).

On the other hand, for the basic Hamiltonian Hb we have an explicit expression only
in the latter variables. However, one can readily see that, for fixed (u, v, φ f ), all the initial
conditions of fixed difference Y f −Yp lead to the same orbit, independently of the individual
values of Y f or Yp . If we set Y f = Y f,re f = 0 and Yp = Yp,re f = −e2p,re f /2 for one
particular orbit chosen in advance, that we call the ‘reference orbit’, this allows to specify
a certain appropriate value of the energy E = Eref equal to the numerical value of Hb

for that orbit. The reference orbit satisfies the condition ep,re f = ep,0, i.e., ep,0 becomes
equal to the modulus of the initial vector e − e f orced , where e = (e cosω, e sinω), and
e f orced = (e′/2, e′√3/2). Now, keeping both Yp = Yp,re f and E = Eref fixed, but altering
(u, v, φ f ), allows to solve the equation Eref = Hb for Y f and specify new initial conditions
formore orbits at the same energy as the reference orbit. However, nowwewill find in general
that the initial value of Y f for any of these new orbits satisfies Y f �= 0. In terms of the initial
eccentricity vector, this implies that ep,0 �= ep,re f . The so found orbit is the same as the
one in which we set Yp = −e2p,0/2 �= Yp,re f , and Y f = 0. For convenience, we formally
proceed with the former process (keeping E = Eref and Yp = Yp,re f fixed and adjusting Y f

for different initial conditions). However, since the value of the proper eccentricity for each
of these initial conditions is ep,0, we label all plots by ep,0 instead of ep in the FLI stability
maps presented below as well as in Páez and Efthymiopoulos (2015).

Returning to our numerical computations, in order to choose a reference orbit we select
one close to the short period family around L4 (Rabe 1968). More precisely, we set u =
v = φ f = Y f = 0 for the reference orbit, and consider different values for Yp = Yp,re f .
Physically, this means to choose different energy levels E = Eref at which the reference
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orbit has different proper eccentricity. Let us note that the existence of a central periodic
orbit is itself a property of the basic model Hb; adding more degrees of freedom implies,
instead, the existence of an invariant torus of dimension larger than one and smaller than the
full number of degrees of freedom.

Having selected Eref and Yp,re f , we compute initial conditions for more orbits at the
energy E = Eref . More precisely, in each of the figures which follow, we define a set of
19 initial conditions given by u j = 0.05 × j , v j = 0, φ f, j = 0, for j = 0, . . . , 18, and
Y f, j computed as described above. With these initial conditions, we numerically integrate
the orbits, under the equations of motion of Hb, up to collecting, for each orbit, 500 points
on the surface of section φ f = 0 (mod 2π).

The same set of initial conditions is integrated under the equations of motion of the full
ERTBP, for a time equivalent to 500 revolutions of the primary, collecting about 490 points
in the same surface of section. In the ERTBP, the surface of section is four-dimensional, but
a two-dimensional projection on the plane (u, v) allows comparisons with the corresponding
section of the basic model Hb.

As an additional comparison, we also compute the surface of section provided by an
intermediate model between the Hb and the pERTBP. We construct a 3 d.o.f Hamiltonian in
the following way

Hb,sec = Hb (Y f , φ f , u, v, Yp;μ, e′, ep,0) + 〈F (1)〉(u, v, Yp, φ;μ, e′, ep,0, Y f ), (13)

where

〈F (1)〉 = 1

2π

∫ 2π

0
Hsecdφ f . (14)

Explicit formulae for 〈F (1)〉 can be found in the Supplementary Online Material of Páez and
Efthymiopoulos (2015). Such terms may depend on the slow angle φ, but are independent of
the fast angle φ f . Hence, Hb,sec contains some, but not all, the secular terms of the disturbing
function of the pERTBP. On the other hand, up to first order in the mass parameter μ, the
averaging (14) yields the sameHamiltonian as the one produced by a canonical transformation
eliminating all terms depending on the fast angle φ f . Thus, the model Hb,sec captures the
main effect of the secular terms, as discussed in Páez and Efthymiopoulos (2015), which is
a pulsation, with frequency g, of the separatrices of all the secondary resonances induced by
Hb. Since the modulation due to these secular terms is slow, far from secondary resonances
we expect that an adiabatic invariant holds for initial conditions close to the invariant tori
of Hb, thus yielding stable regular orbits. On the other hand, in Páez and Efthymiopoulos
(2015) it was argued that close to secondary resonances the pulsation provokes aweak chaotic
diffusion best described by the paradigm of modulational diffusion.

Figures 3, 4 and 5 show an example of the comparison between the three mentioned
above models. The physical parameters chosen for these plots are μ = 0.0024 (which
depicts clearly the 1:8 main secondary resonance) and e′ = 0.04. Figure 3 shows the surface
of section φ f = 0 (mod 2π) corresponding to ep,re f = 0.01, Fig. 4 to ep,re f = 0.035 and
Fig. 5 to ep,re f = 0.07. In each figure, the upper left plot (pink points) corresponds to the
surface of section produced by the flow under the basic model Hb, the upper right plot (blue
points) to the flow under Hb,sec and the lower left plot (purple points) to the flow under the
full Hamiltonian of the pERTBP. As an additional information, we provide the FLI stability
map corresponding to the same parameters μ and e′, which was computed in Fig. 8c of Páez
and Efthymiopoulos (2015) (see that paper for details on the FLI computation). On top of the
FLI map, in green we show the locus of initial conditions (u, ep,0) on the surface of section
whose orbits have constant energy E = Eref .
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Fig. 3 Comparison of surfaces of section (section condition φ f = 0) provided by different models. The
considered parameters are μ = 0.0024, e′ = 0.04 and ep,re f = 0.01. In pink points (upper left), we show
the surface of section provided by Hb . In blue points (upper right), the one corresponding to Hb,sec . In
purple points (lower left), the one corresponding to pERTBP. In lower right panel, we reproduce the FLI
map of Páez and Efthymiopoulos (2015) corresponding to the physical parameters μ and e′ considered, with
the most important secondary resonances indicated. The color-scale for the FLI map goes as follows: dark
colors (purple) indicate regular orbits, while light colors (yellow) indicate for the chaotic orbits (see Páez and
Efthymiopoulos 2015 for the exact FLI computation). The green line on the FLI map indicates the isoenergetic
curve where the initial conditions are located

In Fig. 3, in the approximation based on the model Hb, the absence of any dependence
of the dynamics on the slow angle φ renders possible to clearly display the short period and
synodic dynamics by means of the surface of section φ f = 0 (mod 2π), which, for Hb,
is two-dimensional. In fact, for more complex models like Hb,sec or the full pERTBP, the
corresponding surface of section is 4-dimensional and its 2D projection on the (u, v) plane
becomes blurred (top right and bottom left panels respectively). The blurring can be due
partly to projection effects. However, we argue below that an important effect is caused also
by the influence of the secular terms, absent in Hb, to the dynamics.

Returning to the phase portrait of Hb, this allows to extract relevant information such
as: (i) the position of the central fixed point, corresponding to the crossing of the section
by the short period orbit, (ii) several secondary resonances and the corresponding resonant
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Fig. 4 Same as in Fig. 3, but for a higher parameter value ep,re f = 0.035

islands of stability, and (iii) the overall size of the libration domain of effective stability.
Also, this phase portrait allows to understand the structure of the stability map. In the phase
portrait, as we move from left to right along the line x = 0, we encounter non-resonant tori,
interrupted by thin chaotic layers and the islands of some secondary resonances, namely the
resonances 1:8 (at u ∼ 0.55) and 2:17 (at u ∼ 0.85). Note, however, that no transverse
secondary resonances can be seen in the Hb portrait, since these resonances correspond, in
general, to a non-resonant frequency ratio of the fast and synodic frequencies ω f and ωs ;
except at resonance junctions, the exact resonance condition mf ω f + msωs + mgg = 0 for
some non-zero ms , mf , mg implies, in general, non-commensurable values of ω f and ωs .
Since g � ωs � ω f , most transverse resonances can only accumulate close to the main
secondary resonances forming resonant multiplets, as confirmed by visual inspection of the
stability maps (see also Páez and Efthymiopoulos 2015). However, some isolated transverse
resonances may be embedded in the main domain of stability whose border is marked by the
most conspicuous secondary resonance. In Fig. 3, this domain extends up to about u ≈ 0.5. In
the stability map of Fig. 3, the transverse resonances [1,−8, k], with k = −2,−1, 1, 2 form
a multiplet together with the conspicuous resonance 1:8. Two of these transverse resonances
(k = 2 and k = 1) are embedded in the main domain of stability. However, none of the
transverse resonances is visible in the phase portrait of the basic model Hb.
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Fig. 5 Same as in Fig. 3, but for a still higher parameter value ep,re f = 0.07

We now discuss the pulsation effect of the phase portrait due to the slow modulation
induced by the secular terms. As shown in Páez and Efthymiopoulos (2015), the amplitude
of the secular terms depends on the values of e′ and ep,0. For fixed e′ �= 0, the amplitude of
the pulsation generated by such terms increases with ep,0. For values of ep,0 large enough,
the pulsation modifies the whole behavior in phase-space. Since, along the line x = 0, ep,0
increases with u (green curve in low-right panel of Fig. 3), the amplitude of the pulsation
increases as we move from the central fixed point outwards. In regions where the resonant
web is dense enough, this pulsation causes all narrow transverse resonances in a multiplet to
overlap, increasing the size of the chaotic domain and facilitating escaping mechanisms. For
the set of parameters of Fig. 3, we see from the corresponding FLI map that this happens for
values of ep,0 greater than about 0.06. Beyond this value, the effect induced by Hsec implies
that the blurring observed in the phase portraits (apart from the one of Hb) is not due just to
projection effects but it has a dynamical origin, the nature of the orbits changes as they are
converted from regular to chaotic. Evidence of this phenomenon is found, e.g, in the case
of the resonance 2:17. While in the surface of section of the Hb, the 2:17 stability islands
are clearly seen, such resonance is not evident in the surfaces of section of the ERTBP and
Hb,sec. As represented by the FLI map, the effect of the resonance’s separatrix pulsation
results in that no libration domain is identifiable in the FLI map.
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This latter effect is more conspicuous in Figs. 4 and 5 , in which, choosing a higher ep,re f ,
we increase the level of proper eccentricities of all the orbits. In Fig. 4, the FLI stability map
shows large domains of chaos which are not observed in the phase portrait of Hb, but they
appear in the phase portrait of the full model. The separatrix pulsation of the 1:8 resonance
is not, however, large enough so as to completely wash out this resonance, which is therefore
seen in all four panels of the plot. On the other hand, increasing still more the level of proper
eccentricities (Fig. 5) makes this pulsation large enough so as to completely introduce chaos
in the position of the 1:8 resonance. This limit of eccentricity levels marks the overall validity
of the approximation based on Hb regarding the position of secondary resonances. Beyond
this value, Hb still represents fairly well the dynamics only inside themain librational domain
of stability. We note also that the elimination of the main secondary resonance 1:8 by the
separatrix pulsation is already present in the model Hb,sec (compare the corresponding phase
portraits in the three Figs. 3, 4, 5).

In conclusion, the pulsation mechanism induced by the secular terms in the Hamiltonian
affects essentially the regions of the phase space where resonances accumulate in the form of
multiplets. For libration orbits, these are the regions beyond the main secondary resonance
1:n, which always dominates the phase-space. The regions inner to that resonance are not
influenced considerably and the representation of the dynamics via the basic model Hb

remains accurate there, even for high values of the proper eccentricity. The value of the latter
at which the separatrix pulsation of the 1:n resonance completely washes this resonance
marks the overall limit of approximation of the basic model. On the other hand, most orbits
beyond that limit turn to be chaotic and fast-escaping the libration domain, thus of lesser
interest in applications related to Trojan or exo-Trojan objects.

3 Normal form

In Páez and Locatelli (2015), a new normalizing scheme was introduced for the Hamiltonian
of the planar Circular Restricted Three Body Problem (pCRTBP). Here, we adapt the scheme
in order to compute a normal form in the case of the basicmodel Hb derived from the pERTBP.
The particular application considered is the semi-analytic determination of the position of
the secondary resonances in the plane of the Trojan body’s proper elements.

3.1 Hamiltonian preparation

The novelty of the normalizing scheme introduced in Páez and Locatelli (2015) lies on the
way the scheme deals with the synodic degree of freedom, expressed in the Hamiltonian
through the variables (u, v). For obtaining the dynamics in the synodic variables via a nor-
mal form, it is only necessary to average the Hamiltonian Hb over the fast angle φ f . The
novelty consists of retaining the original non-polynomial and non-trigonometric-polynomial
functional dependence of the Hamiltonian on the synodic angle u in all normal form expan-
sions. As pointed out in the introduction, this allows to deal efficiently with the model’s
singular behavior at u = −π/3.

We start by first expressing the basic model Hb in variables appropriate for introducing
the normalization scheme of Páez and Locatelli (2015). The synodic degree of freedom is
represented by the variables

v = x − x0, u = τ − τ0, (15)
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where

x = √
a − 1 , τ = λ − λ′, (16)

a being the major semi-axis of the Trojan body, and λ, λ′ the mean longitudes of the Trojan
body and the primary respectively. The constants x0 and τ0 in (15) give the position of the
forced equilibrium of the Hamiltonian averaged over λ′ (see Páez and Efthymiopoulos 2015).
In the case of the pERTBP, in the vicinity of L4, we have x0 = 0, τ0 = π/3. Finally, it turns
convenient to introduce new canonical pairs: (φ f , Y = Y f − Yp), and (θ = φ + φ f , Yp).
After these preliminary transformations, the basic model Hb reads

Hb = − 1

2(1 + x)2
− x + Y + Yp − μF (0)(τ, φ f , x,Y; e′). (17)

The dependence of Hb on τ is of the form cosk1 τ
(2−2 cos τ) j/2

or sink2 τ
(2−2 cos τ) j/2

, j = 2n − 1 with k1,
k2 and n integers (see Supplementary Online Material of Páez and Efthymiopoulos 2015).
Also, since the angle θ is ignorable, Yp is a constant that can be viewed as a parameter in Hb.

In order to initialize the normalization procedure, we write and expand the Hamiltonian in
(17), by introducing modified Delaunay-Poincaré variables, as in Páez and Locatelli (2015)

x , τ

ξ = √
2Y cosφ f ,

η = √
2Y sin φ f .

(18)

The new expression for the Hamiltonian reads

Hb(τ, x, ξ, η, Yp) = − 1

2(1 + x)2
− x + Yp + ξ2 + η2

2
− μF (0)(τ, x, ξ, η; Yp, e

′). (19)

Finally, we expand the Hamiltonian in terms of every variable except τ , obtaining

Hb(τ, x, ξ, η, Yp) = −x +
∞∑

i=0

(−1)i−1(i + 1)
xi

2
+ ξ2 + η2

2
+ Yp

+ μ
∑

m1,m2,m3
k1,k2,k3, j

am1,m2,m3,k1,k2, j e
′k3xm1 ξm2 ηm3 cosk1(τ ) sink2(τ ) β j (τ ),

(20)

where am1,m2,m3,k1,k2, j is a rational number and β(τ) = 1√
2−2 cos τ

. The Hamiltonian Hb

in (20) represents the ‘normal form at the zero-th step in the normalizing scheme’, i.e.,
before any normalization. This we denote as H (1,0).

4 Normalizing scheme

The normalizing algorithm defines a sequence of Hamiltonians by an iterative procedure. In
order to simplify some of the concepts below we define the class Ps,l as the set of functions
whose expansion is of the form

∑

2m1+m2+m3=l

∑

k1+k2≤l+4s−3
j≤2l+7s−6

am1,m2,m3,k1,k2, j e
′k3xm1 ξm2 ηm3 cosk1(τ ) sink2(τ ) β j (τ ).

(21)
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Let r1, r2 be two integer counters, 1 ≤ r1 ≤ R1 and 1 ≤ r2 ≤ R2 with fixed R1, R2 ∈ N.
We assume that at a generic normalizing step (r1,r2 − 1), the expansion of the Hamiltonian
is given by

H (r1,r2−1)(x, ξ, τ, η, Yp) = Yp + ξ2 + η2

2
+

∞∑

i=2

αi x
i

+
r1−1∑

s=1

R2∑

l=0

μs Zs,l (x, (ξ
2 + η2)/2, τ )

+
r2−1∑

l=0

μr1 Zr1,l (x, (ξ
2 + η2)/2, τ )

+ R(r1,r2−1)(x, ξ, η, τ ) ,

(22)

where αi are real coefficients and the remainder R(r1,r2−1)(x, ξ, η, τ ) is given by

R(r1,r2−1) (x, ξ, η, τ ) = μr1 f (r1,r2−1)
r1,r2 (x, ξ, η, τ ) +

R2∑

l=r2+1

μr1 f (r1,r2−1)
r1,l

(x, ξ, η, τ )

+
∞∑

s=r1+1

R2∑

l=0

μs f (r1,r2−1)
s,l (x, ξ, η, τ )

+
∞∑

s=1

∞∑

r=R2+1

μs f (r1,r2−1)
s,l (x, ξ, η, τ ) . (23)

All the terms Zs,l and f (r1,r2−1)
s,l appearing in (22) are made by expansions including a

finite number of monomials of the type given by the class Ps,l . More specifically Zs,l ∈ Ps,l

∀ 0 ≤ l ≤ R2 , 1 ≤ s < r1 , Zr1,l ∈ Pr1,l ∀ 0 ≤ l < r2 , f (r1,r2−1)
r1,l

∈ Pr1,l ∀ l ≥ r2 ,

f (r1,r2−1)
s,l ∈ Ps,l ∀ l > R2 , 1 ≤ s < r1 and ∀ l ≥ 0, s > r1 .
In formula (22), one can distinguish the terms in normal form from the remainderR: the

latter depend on (ξ, η) in a generic way, while in the normal form terms Z , those variables just
appear under the form (ξ2 +η2)/2. The (r1, r2)–th step of the algorithm formally defines the
new Hamiltonian H (r1,r2) by applying the Lie series operator expLμr1χr1,r2

to the previous

Hamiltonian H (r1,r2−1), as it follows1

H (r1,r2) = exp
(
Lμr1χr1,r2

)
H (r1,r2−1). (24)

The Lie series operator is given by

exp
(Lχ

) · =
∑

j≥0

1

j !L
j
χ ·, (25)

where the Lie derivative Lχ g = {g, χ}, is such that {·, ·} is the classical Poisson bracket.
The new generating function μr1χr1,r2 is determined by solving the following homological

1 We stress here that after each transformation we do not change the name of the canonical variables in order
to simplify the notation.
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equation with respect to the unknown χr1,r2 = χr1,r2(x, ξ, τ, η):

Lμr1χr1,r2
Z0,2 + f (r1,r2−1)

r1,r2 = Zr1,r2 , (26)

where Z0,2 = ξ2+η2

2 and Zr1,r2 is the new term in the normal form, i.e. Zr1,r2 =
Zr1,r2(x, τ, (ξ

2 + η2)/2). In other words, μr1χr1,r2 is determined so as to remove the terms

that do not belong to the normal form from the main perturbing term μr1 f (r1,r2−1)
r1,r2 . Thus,

by construction, the new Hamiltonian H (r1,r2) inherits the structure of Eq. (22). From the
latter, we point out that the splitting of the Hamiltonian in sub-functions of the form Ps,l ,
organizes the terms in groups with the same order of magnitude μs and total degree l/2

(possibly semi-odd) in the variables x and Y = ξ2+η2

2 . This way, we exploit the existence
of the natural small parameters of the model in the normalizing procedure. Furthermore,
after having omitted the constant term α0 , we can set the Hamiltonian Hb in (20) as the first
normalizing step Hamiltonian H (1,0), according to (22).

The algorithm requires just R1 · R2 normalization steps, constructing the finite sequence
of Hamiltonians

H (1,0) = Hb, H (1,1), . . . , H (1,R2), H (2,1), . . . , H (R1,R2). (27)

Here, we add the prescription that H (r1,0) = H (r1−1,R2) ∀ 1 < r1 ≤ R1. Then, we write the
final Hamiltonian, where we distinguish the normal form part from the remainder, as

H (R1,R2)(x, ξ, τ, η, Yp) = Z(R1,R2)

(
x,

(ξ2 + η2)

2
, τ, Yp

)
+ R(R1,R2)(x, ξ, τ, η). (28)

At this point, we must remark a few features of the normal form Z(R1,R2). While its

dependence on x and τ remains generic, it depends on ξ and η only through the form ξ2+η2

2 .
That is, we have

H (R1,R2)(x, τ,Y, φ f , Yp) = Z(R1,R2)
(
x, τ,Y, Yp

) + R(R1,R2)(x, τ,Y, φ f ). (29)

The key remark is thatφ f becomes ignorable in the normal form, and, therefore,Y becomes an
integral of motion ofZ(R1,R2). Then, the normal form can be viewed as a Hamiltonian of one
degree of freedomdepending on two constant actionsY and Yp , i.e.Z(R1,R2) represents now a
formally integrable dynamical system. Of course, since the true system is not integrable, it is
natural to expect that the normalization procedure diverges in the limit of R1, R2 → ∞. The
divergence corresponds formally to the fact that the size of the remainder function R(R1,R2)

cannot be reduced to zero as the normalization order tends to infinity. Then, the optimal
normal form approximation corresponds to choosing the values of both integer parameters
R1 and R2 so as to reduce the size of the remainderR(R1,R2) as much as possible. In practice,
there are computational limits that compromise the choice of values of R1 and R2. In all
subsequent computations, the values are R1 = 2 and R2 = 4, corresponding to a second order
expansion and truncation on the mass parameter μ and fourth order for the total polinomial
degree of x , ξ and η. These normalization orders prove to be sufficient for the normal form to
represent a good representation of the original Hamiltonian in the domain of regular motions.
In particular, wewill now employ this possibility in order to compute the positions of different
secondary resonances, based on the integrable approximation provided by our normal form.

4.1 Application: determination of the location of resonances via the normal form

Consider an orbit with initial conditions specified in terms of the two parameters u = τ − τ0
and ep,0 in the same way as in the stability maps of Figs. 3, 4, 5. We will make use of

123



New Hamiltonian expansions adapted to the Trojan problem 535

the normal form approximation Z (R1,R2) in (29) in order to compute the values of the three
main frequencies of motion for the given initial conditions. The computation proceeds by
the following steps:

(1)Wefirst evaluate the synodic frequencyωs , i.e., the frequency of libration of the synodic
variables τ and x . The normal form Z (R1,R2) leads to Hamilton’s equations:

dx

dt
= f (x, τ ;Y) = −∂Z (R1,R2)

∂τ
(30)

and

dτ

dt
= g(x, τ ;Y) = ∂Z (R1,R2)

∂x
. (31)

For every orbit we can define the constant energy

Z (R1,R2)(x, τ ;Y, Yp) − Yp ≡ ζ (R1,R2)(x, τ ;Y) = E . (32)

Note that since Yp appears only as an additive constant in Z (R1,R2), the function ζ (R1,R2)

does not depend on Yp . Also, according to (10) and (18), we have Y = e2p,0
2 . Then, for fixed

value of E , we can express τ as an explicit function of x ,

ζ (R1,R2)(x, τ ;Y) = E �⇒ τ = τ(E, x;Y). (33)

Replacing (33) in (30), we get

dx

dt
= f (x, τ (E, x;Y);Y) �⇒ dt = dx

f (x, τ (E, x;Y);Y)
, (34)

whereby we can derive an expression for the synodic period Tsyn

Tsyn =
∮

dx

f (x, τ (E, x;Y);Y)
, (35)

and thus the synodic frequency

ωs = 2π

Tsyn
. (36)

In practice, (33) is hard to invert analytically, and hence, the integral (35) cannot be explicitly
computed. We thus compute both expressions numerically on grids of points of the associ-
ated invariant curves on the plane (τ, x), or by integrating numerically (34) as a first order
differential equation.

(2) We now compute the fast and secular frequencies ω f , g. To compute ω f , we use the
equation

ω f = 1

Tsyn

∫ Tsyn

0

dφ f

dt
dt = 1

Tsyn

∫ Tsyn

0

∂Z (R1,R2)(x, τ ;Y)

∂Y dt. (37)

Replacing (34) in (37), we generate an explicit formula for the fast frequency

ω f = 1

Tsyn

∮
1

f (x, τ (E, x;Y);Y)

∂ZR1,R2(x, τ (E, x;Y);Y)

∂Y dx . (38)

Since Z (R1,R2)(x, τ ;Y, Yp) = Yp + ζ (R1,R2)(x, τ ;Y) we find θ̇ = 1 implying g = 1 − ω f .
All the frequencies are thus functions of the labels E andY , which, in the integrable normal

form approximation, label the proper libration and the proper eccentricity of the orbits. In
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Fig. 6 Representation of the evolution of the frequencies as function of u. In the upper panel, mf ω f (red
square points) and −msωs (blue triangle points). In the lower panel, the evolution of the function mf ω f +
msωs (black curve). The arrows denote the point where the frequencies accomplish the resonant condition
mf ω f + msωs = 0, giving the position of the resonance in terms of u. For this example, we choose the
resonance 1:8, corresponding to mf = 1, ms = 8, μ = 0.0024, e′ = 0.04 and a representative value for
ep,0 = 0.05

the normal form approach one has ep,0 = ep = const, implying Y = e2p/2. If, as in Páez and
Efthymiopoulos (2015), we fix a scanning line of initial conditions xin = Buin = τin − τ0,
with B a constant, the energy E , for fixed ep , becomes a function of the initial condition uin
only. Thus, uin represents an alternative label of the proper libration (see Section 3 of Páez
and Efthymiopoulos 2015 for a detailed discussion of this point). With these conventions, all
three frequencies become functions of the labels (uin, ep). A generic resonance condition
then reads

�mf ,ms ,m(u) = mf ω f (ep, uin) + msωs(ep, uin) + mg(ep, uin) = 0. (39)

For fixed resonance vector (mf ,ms,m), Eq. (39) can be solved by root-finding, thus speci-
fying the position of the resonance on the plane of the proper elements (uin, ep).

As an example, Fig. 6, shows ω f and ωs , as well as the function �1,8,0(ep, uin), as a
function of uin for the parameters μ = 0.0024, e′ = 0.04 and a fixed value of ep = 0.05.
The arrow in the lower panel marks the position of the resonance. Changing the value of ep in
the same range as the one considered in our numerical FLI stability maps (0 < ep,0 < 0.1),
we specify uin all along the locus of the resonance projected in the stability map. Repeating
this computation for several transverse resonances (mf ,ms,m), we are able to trace the
location of each of them.

In order to test the accuracy of the above method, we compare the results of the semi-
analytical estimation with the position of the resonances extracted from the FLI maps
computed in Páez and Efthymiopoulos (2015). Under the assumption that the local mini-
mum of the FLI in the vicinity of a resonance gives a good approximation of the resonance
center, we study the curves of the FLI � as a function of u, for a fixed value of ep,0. Figure 7
gives an example forμ = 0.0031, e′ = 0.04, ep,0 = 0.015, where we choose four candidates
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Fig. 7 FLI � as function of u, for fixed parameters μ = 0.0031, e′ = 0.04 and ep,0 = 0.015 (right
panel). The local minima give a good approximation of the position of the centers of each resonance. The
orbits whose corresponding FLI values are plotted in the left panel lie on the green line on top of the FLI map
(right panel). The confirmation of each resonance is done by frequency analysis

Fig. 8 Main and transverse
secondary resonances located by
Z (R1,R2) (yellow) and the
estimation of FLI � minima
(green). In this example,
μ = 0.0031, e′ = 0.04, mf = 1,
ms = 7, m = 0, ±1,±2. Labels
indicate the corresponding
resonance in each case

as centers of the resonances (1, 7, 1), 1:7, (1, 7,−1) and (1, 7,−2). We confirm the resonant
character of these orbits also by performing a numerical Frequency Analysis (Laskar 2004).
By changing the value of ep,0 along the interval [0, 0.1], we can depict the centers of the
resonances on top of the FLI maps.

Figures 8, 9 and 10 show examples of these computations, for the parameters μ = 0.0031
and e′ = 0.04, μ = 0.0024 and e′ = 0.06, μ = 0.0014 and e′ = 0.02, respectively. The
normal form predictions are superposed as yellow lines upon the underlying FLI stability
maps while the centers of each resonance, as extracted from the FLI maps, are denoted by the
green curves. Due to the numerical noise in the FLI curves, it is not possible to clearly extract
the position of the resonance centers for all values of ep,0, while a semi-analytic estimation
(with varying levels of accuracy) is always possible. At any rate, in Figs. 8, 9 and 10, we
compare the position of the resonances only in these cases when both methods provide clear
results. Table 1 summarizes the results for the location of the centers (uZ , u� ) and the relative
errors (δuin = |uZ−u� |

u�
), on average, for the resonances shown in the corresponding figures.
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Fig. 9 Same as Fig. 8, for
μ = 0.0024, e′ = 0.06, and
mf = 1, ms = 8,
m = 0, ±1, ±2, 3

Fig. 10 Same as Fig. 8, for
μ = 0.0014, e′ = 0.02, and
mf = 1, ms = 11, 12, m = 0

Regarding the overall performance of the estimation, we can note that the level of approxi-
mation is very good for relatively low values ofμ, ep and uin , while the error in the predicted
position of the resonance increases to a few percent for greater values of those parameters,
with an upper (worst) value 6% (see Table 1). This is the expected behavior for a normal
formmethod, whose approximation becomes worse with higher values of the method’s small
parameter(s). Independently of this fact, the normal form approach is based on the use of the
basic model Hb as a starting Hamiltonian. This confirms that the basic Hamiltonian is able to
well approximate the fast and synodic dynamics of the ERTBP. Additionally, the fact that we
do not consider expansions in terms of τ allows to retain accurate information about higher
order harmonics. Finally, by using the relation between the fast action Y f and the secular
action Yp , it is possible to estimate, via Hb, the value of the secular frequency g, and, hence,
to determine also the position of transverse resonances in the plane of proper element, even
though these resonances have no ’width’ in the dynamics under the Hb.
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Table 1 Averaged values of uZ , u� and δuin for the resonances in Figs. 8, 9 and 10

Resonance μ, e′ uZ u� δuin

1:7 0.0031, 0.04 0.453908 0.463308 2.129422× 10−2

(1, 7, 1) 0.0031, 0.04 0.377456 0.380947 1.417910× 10−2

(1, 7, 2) 0.0031, 0.04 0.306036 0.312011 1.880279× 10−2

(1, 7,−1) 0.0031, 0.04 0.527218 0.554430 4.885329× 10−2

(1, 7,−2) 0.0031, 0.04 0.593373 0.618057 3.964370× 10−2

1:8 0.0024, 0.06 0.524485 0.535153 1.993063× 10−2

(1, 8, 1) 0.0024, 0.06 0.465475 0.464924 6.377401× 10−3

(1, 8, 2) 0.0024, 0.06 0.406439 0.412246 1.605145× 10−2

(1, 8, 3) 0.0024, 0.06 0.374879 0.385020 2.617987× 10−2

(1, 8,−1) 0.0024, 0.06 0.587834 0.616093 4.572688× 10−2

(1, 8,−2) 0.0024, 0.06 0.646464 0.679154 4.796435× 10−2

1:11 0.0014, 0.02 0.367663 0.370842 9.264243× 10−3

1:12 0.0014, 0.02 0.482117 0.486631 1.021940× 10−2

5 Conclusions

Our main results in this work can be summarized as follows:
(1) We have demonstrated the efficiency of the normal form approach introduced in Páez

and Locatelli (2015) in order to determine the position of resonances in the space of proper
elements in the tadpole domain of Trojanmotions. As discussed in Sect. 1, themain advantage
of the new approach is based on avoiding to perform series expansions with respect to
the synodic co-ordinates around the Lagrangian equilibrium points L4 and L5. The latter
expansions are subject to a poor convergence. On the contrary, the method proposed here
circumvents the issue of this poor convergence, and even relatively low order expansions can
give results accurate down to an error of a few percent only.

(2) We have applied the above normal formal approach in a Hamiltonian model called
‘the basic model’ in Páez and Efthymiopoulos (2015). This is a model allowing to efficiently
separate the secular part of the Hamiltonian from the part representing the dynamics in the
fast and synodic degrees of freedom. We should emphasize here that in the case of the 1:1
mean-motion resonance this separation is non-trivial and proceeds along different lines than
in the case of other meanmotion resonances. This is due to the non-trivial nature of the forced
equilibrium at the 1:1 MMR. Yet, as detailed in Sect. 2 above, the ‘basic model’ allows to
study the dynamics in the fast (O(1)) and intermediate (O(

√
μ) frequency scales in a unified

way independently of the number of the disturbing bodies in the system. As shown in Sect. 3,
normalizing the basic model turns to be sufficient for most analytical predictions regarding
the dynamics in these timescales.

The present methods can be easily adapted in two cases: (i) considering Trojan motions
off the plane (spatial ERTBP or RMPP), and (ii) considering a time-varying configuration of
the S perturbers, beyond the quasi-periodic secular variations of Eq. (4). For the long term
stability, as well as the possibility of captures or escapes of small Trojan bodies (asteroids
and/or hypothetical exo-planets), in Robutel and Bodossian (2009) the authors demonstrated
that a crucial role is played by resonances crossing the Trojan domain during the phase of

123



540 R. I. Páez et al.

planetary migration. In this case, it would be desirable to be able to specify the time-varying
locus of the secondary resonances via analytical techniques. Let us note here that the depletion
rate of a Trojan swarm along secondary resonances is, in principle, related to the size of the
remainder function of the normal form proposed in Sect. 3. In simple Hamiltonian models,
it has been found that the diffusion rate goes as a power-law of the size of the remainder
function (see Efthymiopoulos 2008; Efthymiopoulos and Harsoula 2013). The degree up to
which such laws are applicable in a physical context like the co-orbital resonance is unknown,
and this question poses a possible extension of the present work.
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Appendix

Variables corresponding to the three degrees of freedom appearing in the expression of the
Basic Hamiltonian Hb in Eq. (5), (u, v), (Y f , φ f ) and (Yp, φp), in terms of the orbital
elements:

u = λ − λ′ − π

3
, (40)

v = √
a − 1, (41)

β = ω − φ′,

y = √
a

(√
1 − e2 − 1

)
,

V = √−2y sin β − √−2y0 sin β0,

W = √−2y cosβ − √−2y0 cosβ0,

Y = −
(
W 2 + V 2

2

)

φ = arctan

(
V

W

)
(42)

φ f = λ′ − φ, (43)

Y f =
∫

∂E

∂λ′ dt + v, (44)

Yp = Y − Y f , (45)

where λ,ω, a and e are themean longitude, the longitude of the perihelion, themajor semiaxis
and eccentricity of the Trojan body, λ′ and φ′ = ω′ are the mean longitude and longitude
of the perihelion of the perturber, β0 = π/3, y0 = √

1 − e′2 − 1, and E represents the total
energy of the Trojan as computed fromEq. (4) (see Páez and Efthymiopoulos 2015 for further
details in the construction).
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