
Celest Mech Dyn Astr (2016) 126:31–60
DOI 10.1007/s10569-016-9708-x

ORIGINAL ARTICLE

Complete spin and orbital evolution of close-in bodies
using a Maxwell viscoelastic rheology

Gwenaël Boué1 · Alexandre C. M. Correia2 ·
Jacques Laskar1

Received: 11 March 2016 / Revised: 26 May 2016 / Accepted: 4 June 2016 /
Published online: 5 July 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In this paper, we present a formalism designed to model tidal interaction with
a viscoelastic body made of Maxwell material. Our approach remains regular for any spin
rate and orientation, and for any orbital configuration including high eccentricities and close
encounters. The method is to integrate simultaneously the rotation and the position of the
planet as well as its deformation. We provide the equations of motion both in the body
frame and in the inertial frame. With this study, we generalize preexisting models to the
spatial case and to arbitrary multipole orders using a formalism taken from quantum theory.
We also provide the vectorial expression of the secular tidal torque expanded in Fourier
series. Applying this model to close-in exoplanets, we observe that if the relaxation time
is longer than the revolution period, the phase space of the system is characterized by the
presence of several spin-orbit resonances, even in the circular case. As the system evolves,
the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along
most of these resonances, but we observe a case where the planet tilt is instead growing.
These conclusions derived from the secular torque are successfully tested with numerical
integrations of the instantaneous equations of motion on HD 80606 b. Our formalism is
also well adapted to close-in super-Earths in multiplanet systems which are known to have
non-zero mutual inclinations.
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1 Introduction

Short period exoplanets are tidally distorted by their stars. This phenomenon alter both the
planet rotation and its orbital evolution over long timescale. The mechanism is the same as
in the problem of a satellite orbiting a planet which has been modeled by Darwin (1880) and
generalized by Kaula (1964).

In these models, the gravitational potential of the deformed planet is expanded in mul-
tipoles and then expressed in terms of elliptical elements as a Fourier series truncated in
eccentricity. Each term involves a Love number associated to the amplitude of the tide and
a phase lag accounting for the non-instantaneous deformation of the planet. These lags have
been interpreted as constant geometric lag angles (MacDonald 1964). However, the tidal
torque should vanish at equilibrium, i.e. when the perturbing body (star or satellite) has a
circular orbit in the planet equatorial plane with a mean motion equal to the planet rotation
speed. To remedy this problem, Singer (1968) proposed a frequency-dependent theory of
tides which is now known as the constant time lag model. According to this theory, the defor-
mation of the planet at time t is aligned with the position occupied by the disturbing body at
time t − �t in the planet reference frame.

The constant time lag model has been widely used because of its intuitive physical inter-
pretation and also because the analytical expressions of the tidal force and torque expanded
in first order in �t are very compact and not truncated in eccentricity (Mignard 1979).

More generally, Love numbers and phase lags depend on the structure and the rheology
of the planet (e.g., Efroimsky 2012a), but none of the two models quoted above corresponds
to a physical rheology (Efroimsky and Makarov 2013). The constant time lag model can
nevertheless be seen as a first order expansion of a viscoelastic rheology (Darwin 1880;
p. 740 § 7; see also Ferraz-Mello 2013).

Different rheologies have been suggested for rocky and giant gaseous planets (e.g., Ogilvie
and Lin 2004; Efroimsky and Lainey 2007; Henning et al. 2009; Remus et al. 2012; Efroimsky
2012b). A few of them have been proposed because of their (mathematical and physical)
simplicity, others are motivated by laboratory and/or numerical experiments or by geophysical
measurements.

In the general case, mathematical models describing the rheology are intricate and do
not allow to follow the long term rotation and orbital motion without a Fourier series as in
Kaula’s (1964) theory. This is a disadvantage since such expansions are only valid at low
eccentricities unless a huge number of terms is kept [see the discussion in the Appendix of
Ferraz-Mello (2013)].

A few physical rheologies can nevertheless be treated without Fourier series, such as the
viscous creep model (Ferraz-Mello 2013) and the Maxwell viscoelastic model (Correia et al.
2014). It should be noted that dissipation is equivalent in both models (Correia et al. 2014;
Ferraz-Mello 2015). These rheologies can be seen as first order low-pass filters and can thus
be modeled by first order differential equations. In these models, coefficients of the potential
are integrated at the same time as the orbital and rotational elements. There is no requirement
regarding the perturbation: it does not have to be periodic nor low-eccentric.

Recently, Frouard et al. (2016) proposed an alternative approach with the same advantages
where the extended body is made of a large number N of massive gravitating particles linked
by damped massless springs. The demo version of this method, described in Ibid., employed
springs obeying the Kelvin–Voigt law. Accordingly, the resulting shear response of the mesh
was close to Kelvin–Voigt. By choosing different deformation laws for the springs, it is
possible to endow the mesh with different rheologies. This approach can easily be set up to
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Complete spin and orbital evolution of close-in bodies 33

model bodies with complex internal structure and/or geometry. But it requires the integration
of about 6N differential equations.

Earths and super-Earths are assumed to behave like a Maxwell body at low frequency, but
in the opposite regime such model does not account for enough dissipation and an Andrade
rheology is required (Efroimsky 2012b). This composite model, which can only be expressed
mathematically as a truncated Fourier series, led to unexpected results. Indeed, according to
Singer’s (1968) and Mignard’s (1979) constant �t model, the rotation of a planet without
permanent quadrupole on eccentric orbit is expected to be pseudo(or super) synchronous,
while with this new rheology the only stable configurations are at the vicinity of spin-orbit
resonances (Makarov and Efroimsky 2013). Actually, entrapment into spin-orbit resonances
is not an exclusive property of the composite Maxwell + Andrade rheology but a robust
entailment of linear rheologies (Makarov and Efroimsky 2013). In particular, these resonances
are also expected in the case of purely Maxwell bodies (Correia et al. 2014).

In summary, Maxwell rheology presents two advantages: a simple mathematical repre-
sentation valid at all eccentricities and similar qualitative outcomes as more complex models.
In Ferraz-Mello (2013) and Correia et al. (2014), the problem has been studied in the planar
case where the spin of the planet is orthogonal to the orbital plane. In this work we present a
formalism for inclined systems. For that purpose, multipole expansion in complex spherical
harmonics Yl,m , as initiated by Mignard (1978), proves to be efficient especially as these
functions have simple expressions in terms of Cartesian coordinates, they are the eigenvec-
tors of ladder operators from which the tidal force and torque are derived, and each operation
(rotation, differentiation, ...) on these functions can be found in any textbook about quantum
mechanics such as in Varshalovich et al. (1988). The equations of motion are given both in
the frame of the planet, in which tides are naturally expressed, but also in a fixed reference
frame more suitable for describing the orbital evolution. In this work, we mainly concentrate
on the instantaneous equations of motion valid at all eccentricities, except in Sect. 5 where
we provide the secular tidal torque in the form of a standard Fourier expansion.

The paper is organized as follows : the model and the notations are presented in Sect. 2;
the next two Sects. (3) and (4) provide the instantaneous equations of motion in the body
frame and in the inertial frame; Sect. 5 focuses on the secular evolution. It provides the
secular torque and maps of the secular evolution of the spin-axis; our model is then applied
on HD 80606 b in Sect. 6; the conclusion is drawn in Sect. 7.

2 Model and notation

We wish to determine the orbital and rotational evolution of an extended planet of mass
m1 orbiting a point-mass star m0. The planet is assumed to be made of a viscoelastic fluid
governed by Maxwell rheology. At rest, the planet would thus be a perfect sphere of radius
R. In this problem, the planet is deformed by its rotation around its spin-axis and by the
differential gravitational field of the star.

We denote by V (�x, t) the gravitational potential of the deformed planet at time t and at
the position �x with respect to its center of mass. In the following, we provide the expression
of this potential and the equations of motion both in the body frame F p rotating with the
planet and in an inertial frame F0.

Thus, for any vector �x in the physical space written with an arrow, we distinguish its
coordinates in F0 represented by a bold lower case such as x from those in Fp denoted by
a bold face capital letter such as X. We also let x = X = ‖�x‖ be its norm. Unit vectors are
denoted with a hat, e.g., x̂ = �x/x .
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34 G. Boué et al.

Let f (�x, t) be an arbitrary function whose expressions in the frames F0 and Fp are
respectively denoted by f0(x, t) and f p(X, t). We define the gradient operators ∇x and ∇X by

∇x f (�x, t) ≡ ∇ f0(x, t) and ∇X f (�x, t) ≡ ∇ f p(X, t).

Equivalently, we consider the angular momentum operators Jx and JX in the frames F0 and
Fp , respectively, such that

Jx f (�x, t) = J f0(x, t) ≡ −i x × ∇ f0(x, t)

and

JX f (�x, t) = J f p(X, t) ≡ −i X × ∇ f p(X, t)

where i = √−1. The gradient and the angular momentum operators will be used to express
the tidal force and torque, respectively.

The formalism described in this paper is completely vectorial and can thus be computed in
any coordinate system (either spherical or Cartesian). We have chosen the complex Cartesian
coordinate system as defined in Varshalovich et al. (1988) because it leads to very compact
formulas. This system is defined as follows, for any vector �v, its coordinates in F0 are
v = (v+, v0, v−) with

v+ = − 1√
2
(vx + ivy), v0 = vz, v− = 1√

2
(vx − ivy),

where (vx , vy, vz) are the usual real Cartesian coordinates. The coordinates V =
(V+, V0, V−) in Fp are equivalently defined using the same rule. For any complex quan-
tity z ∈ C, the complex conjugate is written with a bar as z̄. We stress that v− = −v̄+ and
thus a vector �v is fully characterized by only two components, e.g., v+ and v0.

3 Description in the planet frame

3.1 Tidal potential

The gravitational potential V (�x, t) of the planet is the sum of two components: the potential at
rest V 0(�x) = −Gm1/x and a small correction V ′(�x, t) due to the mass redistribution within
the planet. The latter is usually expressed in the body frame Fp . Outside of the planet, i.e. for
‖x‖ > R, V ′ satisfies Laplace’s equation ΔV ′ = 0 and remains finite when ‖�x‖ → ∞. Thus,
it can be expanded in spherical harmonics Yl,m (here we use the Schmidt semi-normalization
convention, see Appendix 1). Beyond the planet surface, we have then

V ′(�x, t) =
∞∑

l=2

V ′
l (�x, t)

with

V ′
l (�x, t) = −Gm1

R

(
R

X

)l+1 l∑

m=−l

Z̄l,m(t)Yl,m(X̂) (1)

where Zl,m(t) are coefficients whose relation to Stokes coefficients will be detailed later on.
This deformation is induced by a “disturbing potential” W (�x, t) associated to the rotation of
the planet and to the differential potential of the star. Let �ω be the instantaneous rotation vector
of the planet, and � and ω its coordinates in Fp and F0, respectively. If we neglect the radial
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term of the centrifugal force which has no effect if the planet is made of incompressible
fluid, both disturbing potentials can also be expanded in spherical harmonics W (�x, t) =∑∞

l=2 Wl(�x, t), with

W2(�x, t) =1

3
Ω2(t)X2

2∑

m=−2

Ȳ2,m(�̂(t))Y2,m(X̂)

− Gm0
X2

X3
�(t)

2∑

m=−2

Ȳ2,m(X̂�(t))Y2,m(X̂) (2a)

and for l ≥ 3,

Wl(�x, t) = −Gm0
Xl

Xl+1
� (t)

l∑

m=−l

Ȳl,m(X̂�(t))Yl,m(X̂) (2b)

where X�(t) is the coordinates in the frame Fp of the position �x�(t) of the star relative to the
planet barycenter at time t . To simplify the notation, the explicit time dependency of �(t)
and X�(t) will be dropped in the following equations.

According to the linear model of tides, at ‖�xR‖ = R from the planet center, V ′
l (�xR, t) is

a linear combination of all Wl(�xR, t ′) with t ′ ≤ t . Thus, for all l ≥ 2,

V ′
l (�xR, t) = kl(t) ∗ Wl(�xR, t) =

∫ t

−∞
kl(t − t ′)Wl(�xR, t ′), dt ′, (3)

where kl(t) is a Love distribution such that kl(t) = 0 for all t > 0 and where ∗ is the
convolution product. The terminology is chosen by analogy with the Love numbers kl . Note
that in Efroimsky (2012a), these distributions are noted kl(t). Love distributions are a property
of the planet. They depend on its internal structure and composition, but not on the perturbing
body. Substituting in (3) the expressions (1) and (2) of V ′

l and Wl respectively, we get

Zl,m(t) = kl(t) ∗ Z�
l,m(t), (4)

with

Z�
2,m(t) = −1

3

Ω2R3

Gm1
Y2,m(�̂) + m0

m1

(
R

X�

)3

Y2,m(X̂�) (5a)

and for all l ≥ 3,

Z�
l,m(t) = m0

m1

(
R

X�

)l+1

Yl,m(X̂�). (5b)

3.2 Differential equations satisfied by the Zl,m

The convolution Eqs. (3) and (4) are very general. They only assume that the tidal response
is linear and isotropic in the frame of the planet. Now, we add a new hypothesis in the
model saying that the planet behaves like an homogeneous viscoelastic body with Maxwell
rheology. In that case, the Fourier transform kl of the distribution kl is of the form1 (e.g.,
Henning et al. 2009)

kl(ν) = k0
l

1 + iτeν

1 + iτlν
(6)

1 Note that if the material composing the extended body was governed by the Newtonian creep rheology or
by the Kelvin-Voigt one, kl (ν) would have the same analytical expression but with τe = 0.
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where k0
l = 3/[2(l − 1)] is the fluid Love number of degree l, τl = (1 + Al)τe is a global

relaxation time, τe = η/μ is the elastic or Maxwell relaxation time, Alτe = (2l2 + 4l +
3)η/(lgρR) is the fluid relaxation time, η is the viscosity, μ is the rigidity (or shear modulus),
and ρ is the mean density. It must be stressed that the aforementioned expressions of k0

l and
τl only hold for perfectly homogeneous incompressible viscous sphere. Real planets are
stratified and thus each k0

l , τl , and even τe can be considered as free parameters that have to
be fitted to reproduce the response of a more complex internal structure (e.g., Peltier 1974).

Given the expression of the Fourier transform of kl (Eq. 6), the convolution Eq. (4) becomes
a first order differential equation (Correia et al. 2014)

Zl,m + τl Żl,m = Ze
l,m + τe Ż

e
l,m

where Ze
l,m = k0

l Z
�
l,m . Following Ferraz-Mello (2015), we can also express the previous

equation in a simpler form that does not depend on the derivatives of Ze
l,m as

Zl,m =
(

1 − τe

τl

)
Zν
l,m + τe

τl
Ze
l,m with Zν

l,m + τl Ż
ν
l,m = Ze

l,m . (7)

We recall that all Ze
l,m(t) = k0

l Z
�
l,m(t), given by Eq. (5), are only functions of the instanta-

neous rotation vector �(t) of the planet and of the position X�(t) of the disturbing star at time
t . There is no restriction regarding the orbital evolution. Equation (7) can thus be integrated
even if the trajectory is chaotic, aperiodic, or highly eccentric.

3.3 Stokes coefficients and matrix of inertia

Conventionally, the potential is developed in the body frame as (e.g., Lambeck 1988)

V (�x, t) = −Gm1

R

∞∑

l=0

(
R

X

)l+1 l∑

m=0

(Cl,m cos(mφ) + Sl,m sin(mφ))Pl,m(cos θ),

where Cl,m = C0
l,m + C ′

l,m and Sl,m = S0
l,m + S′

l,m are the Stokes coefficients splitted into
their permanent part (superscript 0) and their deformation part (with a prime), and where
(φ, θ) are the longitude and colatitude of �x in Fp . In our problem, C0

l,m = S0
l,m = 0 because

the body is assumed to be spherical without tidal or rotational deformation. We thus have
Cl,m = C ′

l,m and Sl,m = S′
l,m . A comparison with the Eq. (1) using the definition of the

spherical harmonics given in Appendix 1 shows that

Zl,m = (−1)m
1 + δm,0

2

√
(l + m)!
(l − m)!

(
Cl,m + iSl,m

)
if m ≥ 0. (8)

In this expression, δi, j is Kronecker’s delta equal to 1 if i = j and 0 otherwise. The other
coefficients are given by Zl,m = (−1)m Z̄l,−m .

The relation (8) between the coefficients Zl,m and Stokes coefficients allows to compute
the matrix of inertia In(Zl,m). To express the result, let us first denote by ξ the normalized
moment of inertia such that, without deformation, In = ξm1R2I3×3 where I3×3 is the identity.
For homogeneous body, we have ξ = 2/5, but more generally, ξ is related to the fluid Love
number k0

2 through the Darwin–Radau equation (e.g., Jeffreys 1976)

ξ = 2

3

(
1 − 2

5

√
4 − k0

2

1 + k0
2

)
.
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Complete spin and orbital evolution of close-in bodies 37

Once the planet is deformed by its rotation and by tides, we have to add in the matrix of
inertia a contribution due to the mass redistribution within the planet, and we get

In(Zl,m) = (
ξm1R

2) I3×3 + m1R
2

⎛

⎜⎜⎜⎜⎜⎜⎝

1

3
Z2,0 − 1√

3
Z2,1

√
2

3
Z2,2

1√
3
Z2,−1 −2

3
Z2,0

1√
3
Z2,1

√
2

3
Z2,−2 − 1√

3
Z2,−1

1

3
Z2,0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

This matrix of inertia is complex because it is defined such that the angular momentum L
reads

⎛

⎝
L+
L0

L−

⎞

⎠ = In(Zl,m)

⎛

⎝
Ω+
Ω0

Ω−

⎞

⎠ .

The modification of the matrix of inertia due the mass redistribution is a small correction. In
the subsequent simulations, the rotation vector �ω is deduced from the angular momentum ��
through the relation �� = C �ω with C = ξm1R2 as in Correia et al. (2014).

3.4 Complete set of differential equations

Given the gravitational potential V (�x, t) raised by the planet, the force acting on the star
is F = −m0∇XV (�x, t). If the reference frame were not rotating, we would have formally
obtained the orbital evolution of the system with Ẍ = F/β, where β = m0m1/(m0 +m1) is
the reduced mass. Here, we have to add the usual inertial forces. We get

Ẍ = −m0

β
∇XV (�x, t) − �̇ × X − 2� × Ẋ − � × (� × X).

In order to have first order differential equations, we introduce the velocity U = Ẋ + � × X
of the star relative to the planet center of mass in the frame F0. We have then

Ẋ = U − � × X and U̇ = −m0

β
∇XV (�x, t) − � × U.

The torque on the planet is T = −X × F. Thus, the evolution of the angular momentum L
of the planet in Fp is given by

L̇ = m0X × ∇XV (�x, t) − � × L.

Now, we substitute the expression of V (�x, t) and we add the equation of motion satisfied by
Zν
l,m . The result is

Ẋ = U − � × X, (9a)

U̇ = −G(m0 + m1)

(
X̂
X2 −

lmax∑

l=2

Rl
l∑

m=−l

Z̄l,m∇
(
Yl,m(X̂)

Xl+1

))
− � × U, (9b)

L̇ = −i
Gm0m1

X

lmax∑

l=2

(
R

X

)l l∑

m=−l

Z̄l,mJ
(
Yl,m(X̂)

)
− � × L, (9c)

Żν
l,m = 1

τl
(Ze

l,m − Zν
l,m), l ∈ {2, lmax}, m ∈ {0, l}, (9d)

123
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where lmax is the maximal order at which the multipole expansion is performed. For this
problem, the state vector is Y = (X0, X+,U0,U+, L0, L+, Zν

l,m) with 2 ≤ l ≤ lmax and
0 ≤ m ≤ l. Auxiliary quantities are computed as follows:

– X− = −X̄+, U− = −Ū+, L− = −L̄+,
– X = ‖�x‖ = X2

0 − 2X−X+,
– � = C−1L,
– Yl,m(X̂) with l ∈ {2, lmax + 1} and m ∈ {−l, l} from Appendix 1,
– ∇(Yl,m(X̂)/Xl+1) and J(Yl,m(X̂)) with l ∈ {2, lmax} and m ∈ {−l, l} from Appendix 2,
– (Zl,m)m≥0 from Eq. (7) and Zl,−m = (−1)m Z̄l,m ,
– Ze

l,m = k0
l Z

�
l,m with Z�

l,m given by Eq. (5).

We stress that the state vector contains the minimal set of variables allowing to integrate the
problem. Indeed, (X0,U0, L0, Zν

l,0) are real and the others are complex. We thus have six
(real) coordinates for the orbit: position and velocity, three for the angular momentum but
none for the orientation (because the body is spherical at rest), and 2l + 1 coefficients per
multipole of degree l. However, this formalism is not the most convenient to study n-body
problems because trajectories are followed in the frame of the tidally deformed planet rather
than in the inertial frame. Moreover, if more than one body is allowed to be distorted, one
also has to integrate orientations to compute change of bases. This increases the dimension
of the state vector. In the next section, we provide an alternative approach directly written in
the inertial frame F0.

4 Description in the inertial frame

4.1 Tidal potential

In the previous section, we wrote the harmonics of the additional potential V ′
l (�x, t) in the

body frame as

V ′
l (�x, t) = −Gm1

R

(
R

X

)l+1 l∑

m=−l

Z̄l,m(t)Yl,m(X̂),

but we could also have decomposed V ′
l (�x, t) in the inertial frame as

V ′
l (�x, t) = −Gm1

R

(
R

x

)l+1 l∑

m=−l

z̄l,m(t)Yl,m(x̂)

with new time-dependent coefficients zl,m(t) expressing the gravity field of the planet in the
inertial frame. Coefficients Zl,m and zl,m are related between themselves through Wigner’s
D matrix of size (2l + 1) × (2l + 1) denoted Dl

m,m′(t) and associated to the orientation of
the frame Fp with respect to F0 at time t . By definition, we have

Yl,m(X̂) =
l∑

m′=−l

Dl
m′,m(t)Yl,m′(x̂) thus zl,m(t) =

l∑

m′=−l

D̄l
m,m′(t)Zl,m′(t). (10)

For the present study, we do not need to explicit this matrix. We refer the interested reader
to the chapter 4 of Varshalovich et al. (1988). We can nevertheless deduce the equation of
evolution of zl,m(t) from that of Zl,m(t) (see Appendix 4). We get
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Complete spin and orbital evolution of close-in bodies 39

zl,m + τl

(
żl,m − i

∑

m′
J̄lm,m′(ω)zl,m′

)
= zel,m + τe

(
żel,m − i

∑

m′
J̄lm,m′(ω)zel,m′

)
,

where J̄lm,m′(ω) is the complex conjugate of the matrix Jlm,m′(ω) expressing the inertia felt
by the zl,m which are given in the fixed frame F0 rather than in the frame of the planet Fp .
The equilibrium zel,m in the right-hand side are, as in the previous section,

ze2,m(t) = k0
2

(
−1

3

ω2R3

Gm1
Y2,m(ω̂) + m0

m1

(
R

x�

)3

Y2,m(x̂�)

)
, (11a)

and for l ≥ 3,

zel,m(t) = k0
l
m0

m1

(
R

x�

)l+1

Yl,m(x̂�). (11b)

Applying the change of variable proposed in Ferraz-Mello (2015),

zl,m =
(

1 − τe

τl

)
zνl,m + τe

τl
zel,m, (12)

we obtain the simplified equations of motion

zνl,m + τl

(
żνl,m − i

∑

m′
J̄lm,m′(ω)zνl,m′

)
= zel,m . (13)

Hence, in F0, the time derivative of the harmonic zl,m is not only a function of itself and zel,m ,
it also depends on the other coefficients of degree l but of different orders m′. The system
of differential equations is not diagonal anymore. This is the price to pay when we express
tides in the inertial frame.

4.2 Matrix of inertia

In the inertial frame, the matrix of inertia In(zl,m) such that � = In(zl,m)ω has exactly the
same form as in the planet frame except that capital Zl,m’s have to be replace by their lower
case counterparts zl,m . The result is

In(zl,m) = (
ξm1R

2) I3×3 + m1R
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
z2,0 − 1√

3
z2,1

√
2

3
z2,2

1√
3
z2,−1 −2

3
z2,0

1√
3
z2,1

√
2

3
z2,−2 − 1√

3
z2,−1

1

3
z2,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4.3 Equations of motion

In the inertial frame, orbital and rotational equations of motion are simply written without
terms of inertia. The evolution of the gravity field coefficients are taken from Sect. 4.1. We
get
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ẋ = u, (14a)

u̇ = −G(m0 + m1)

(
x̂
x2 −

lmax∑

l=2

Rl
l∑

m=−l

z̄l,m∇
(
Yl,m(x̂)

xl+1

))
, (14b)

�̇ = −i
Gm0m1

x

lmax∑

l=2

(
R

x

)l l∑

m=−l

z̄l,mJ
(
Yl,m(x̂)

)
, (14c)

żνl,m = 1

τl

(
zel,m − zνl,m

) + i
l∑

m′=−l

(
J̄lm,m′(ω)zνl,m′

)
, l ∈ {2, lmax}, m ∈ {0, l}. (14d)

The state vector y = (x0, x+, u0, u+, �0, �+, zνl,m) with l ∈ {2, lmax} and m ∈ {0, l} has the
same dimension as in the body frame (Sect. 3.4). Auxiliary quantities are computed in the
same way:

– x− = −x̄+, u− = −ū+, �− = −�̄+,
– x = ‖x‖ = x2

0 − 2x−x+,
– ω = C−1�,
– Yl,m(x̂) with l ∈ {2, lmax + 1} and m ∈ {−l, l} from Appendix 1,
– ∇(Yl,m(x̂)/xl+1) and J(Yl,m(x̂)) with l ∈ {2, lmax} and m ∈ {−l, l} from Appendix 2,
– (zl,m)m≥0 from Eq. (12) and zl,−m = (−1)m z̄l,m ,
– zel,m from Eq. (11),

– Jlm,m′(ω) from Appendix 4.

This formalism has the advantage that it can easily be extended to n-body problems with
additional distorted planets. There is no need to add the orientation of the extended bodies
in the state vector nor to perform change of bases. Evidently, this is not true if planets have
permanent multipoles.

5 Secular rotation

In the previous section, we have presented a set of differential equations describing the
evolution of the planet rotation, orbital motion, and instantaneous deformation under tidal
dissipation. Nevertheless, the influence of tides on the orbit and on the planet spin are only
significant over long timescales. In this section we propose to express the secular torque
averaged over one orbital period. Our goal is to look for the existence of any rotation equilibria
at non-zero obliquity. This torque is computed in the inertial frame F0.

To do so, it should first be noted that the equations of motion of the gravity field coefficients
(14d) are those of driven harmonic oscillators. The general solution is a sum of a transient
solution, which is damped within a timescale τl , and a steady-state proportional to the driving
force. We retain the forced solution, substitute it in the expression of the instantaneous torque
(14c), and average the result to get the secular torque (see Sects. 3, 4 of Correia et al. 2014).
The result is given in the form of a Fourier series. As notified earlier, such expansions are not
suited to numerical simulations of highly eccentric systems. The secular torque is provided
here as a guideline to probe the phase-space of the rotation motion of a single planet system
on a Keplerian orbit.

In this section, we make the approximation �� = C �ω in such a way that the rotation vector
is easily derived from the torque. In the averaging process over the mean anomaly M of the
planet, the orbit is Keplerian by definition and the angular momentum, as well as the rotation
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Fig. 1 Definition of the basis
vectors associated to the orbit, to
the equatorial plane, and to the
planet frame: the orbital basis
Bo = (�ıo, �jo, �ko) has �ko normal
to the orbit and �jo along the node
of the equatorial plane; the
equatorial basis Be = (�ıe, �je, �ke)
has �je = �jo and �ke along the
planet spin; the planet basis
Bp = (�ı p, �jp, �kp) has fixed
vectors in the planet frame with
�kp = �ke

�ie

�ke,�kp

�io

�jo,�je

�ko

�ip

�jp

θ

orbital plane

equatori
al pla

ne

vector, are fixed as they do not depend on M . At this stage, we shall introduce basis vectors
which are used to compute the secular torque. They are represented in Fig. 1. On the one
hand, the orbital motion is written in an orbital coordinate system Bo = (�ıo, �jo, �ko) such that
�jo coincides with the ascending node of the equatorial plane and �ko is normal to the orbit. On
the other hand, the torque is decomposed in an equatorial basis Be = (�ıe, �je, �ke) constructed
such that �je = �jo also points towards the node of the equator and �ke is along the spin axis
�ω. The rotation angle between these two coordinate systems is the obliquity denoted by θ .
For completeness, Fig. 1 also displays the basis Bp = (�ı p, �jp, �kp) associated to the planet
frame Fp which differs from Be by a rotation around �ke = �kp . It should be stressed that even
though the basis vectors of Bo and Be are assumed constant during a revolution period, they
are not vectors of the inertial frame F0 because both the planet and the orbit are precessing
on long timescales. But nothing prohibits to decompose an inertial vector in a non-inertial
coordinate system.

Let us introduce a few additional notations. We denote by xo and by xe the coordinates of
any vector �x (computed with respect to the inertial frame) in the basesBo andBe, respectively.
We also define irregular solid harmonics Sl,m as

Sl,m(x) = 1

xl+1 Yl,m(x̂).

Solid harmonics transform in the same way as spherical harmonics under rotation, thus

Sl,m(xe) =
l∑

m′=−l

dlm′,m(θ)Sl,m′(xo), (15)

where dlm′,m(θ) is Wigner’s d matrix (Appendix 3). The Keplerian elements used in the
following are the semi-major axis a, the mean motion rate n, the eccentricity e, the true
anomaly v, the mean anomaly M , and the longitude of periastron � whose origin is the
vector �ı0. We denote by Xn,m

k the Hansen coefficients defined such that

( r
a

)n
eimv =

∞∑

k=−∞
Xn,m
k eikM .
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Hansen coefficients are functions of eccentricity but this dependency is dropped to simplify
the notation. At least, we decompose the Fourier transform of the Love distributions into
their real and imaginary parts as

kl(ν) = k0
l al(ν) + ik0

l bl(ν).

With Maxwell rheology, we have

al(ν) = 1 + τeτlν
2

1 + τ 2
l ν2

, bl(ν) = −
(

1 − τe

τl

)
τlν

1 + τ 2
l ν2

.

5.1 Gravitational field coefficients

In the body frame and in the frequency domain, gravitational field coefficients are related to
the external potential through (e.g., Lambeck 1988)

Zl,m(ν) = kl(ν)Z�
l,m(ν).

This relation expressed in the inertial equatorial frame becomes (see Appendix 5)

zl,m(ν) = kl(ν − mω) z�l,m(ν).

Or, using the decomposition of the Fourier transform of the Love distribution kl ,

zl,m(ν) =
(
al(ν − mω) + ibl(ν − mω)

)
zel,m(ν). (16)

We now express the Fourier transform of zel,m(t). From its definition (Eq. 11), we have

zel,m(t) = −δl,2δm,0k
0
2

ω2R3

3Gm1
+ k0

l
m0

m1
Rl+1Sl,m(xe). (17)

As said before, it is more simple to express solid harmonics in the orbital frame. Indeed, in
the latter frame, the colatitude of the radius vector is π/2 and its longitude is � + v. Thus,
using the expression of the spherical harmonics recalled in the Appendix 1, we get

Sl,m(xo) = (−1)m

√
(l − m)!
(l + m)! Pl,m(0)

1

xl+1 eim(�+v)

= Yl,m(ı̂)
eim�

al+1

∞∑

k=−∞
X−(l+1),m
k eikM , (18)

where ı̂ is the unit vector of coordinates (ı̂+, ı̂0) = (−1/
√

2, 0). The Fourier transform of
the steady-state gravity coefficients zl,m in the inertial equatorial frame is then deduced from
Eqs. (15), (16), (17), and (18). The result only contains terms at frequencies νp = pn, p ∈ Z,
which are given by

zl,m(pn) = − δl,2δm,0δp,0a2(0)k0
2

ω2R3

3Gm1

+ kl(pn − mω)
m0

m1

(
R

a

)l+1 l∑

m′=−l

dlm′,m(θ)Yl,m′(ı̂)X−(l+1),m′
p eim′� .
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5.2 Secular torque

The torque t = �̇ (Eq. 14c) involves the angular operator J = (J+, J0, J−). Let us denote by
Jμ
l,m , (μ = +1, 0,−1) the coefficient such that

Jμ(Sl,m(x)) = Jμ
l,mSl,m+μ(x).

From the Appendix 2, we have

J+
l,m = −

√
l(l + 1) − m(m + 1)

2
and J 0

l,m = m.

With this notation,

�̇μ = −i
Gm0m1

R

lmax∑

l=2

Rl+1
l∑

m=−l

z̄l,m Jμ
l,mSl,m+μ(xe).

We expand Sl,m(xe) = ∑
m′ dlm,m′(θ)Sl,m′(xo) as above. Then, we substitute the steady-state

solution of zl,m previously found to get the steady-state torque

�̇μ = − i
Gm0m1

R

lmax∑

l=2

Rl+1
l∑

m=−l

l∑

m′=−l

l∑

m′′=−l

∞∑

p=−∞

∞∑

p′=−∞
k̄l(pn − mω)

×
(

− δl,2δm,0δp,0
ω2R3

3Gm1
+ m0

m1
Rl+1dlm′,m(θ)S̄l,m′(pn)

)
Jμ
l,m

× dlm′′,m+μ(θ)Sl,m′′(p′n)ei(p′−p)M .

In this expression, Sl,m(ν) is the Fourier transform of Sl,m(xo(t)) evaluated at the frequency
ν. The secular torque is obtained for p = p′. The result is a function of (θ, a, e,�) and
of the physical parameters of the problem, but it can be simplified considering the fact that
the pericenter is circulating rapidly. We recall that Sl,m is proportional to exp(im�). Thus,
〈S̄l,m′ Sl,m′′ 〉� is not zero only if m′ = m′′ and 〈J2Sl,m′′ 〉� �= 0 when m′′ = 0. The torque
is further simplified by the symmetry of the Love distributions, viz. kl(−ν) = k̄l(ν), or
equivalently, al(−ν) = al(ν) and bl(−ν) = −bl(ν). The average torque becomes

〈�̇μ〉M,� = i

3
k0

2m0ω
2R5a2(0)Jμ

2,0d
2
0,μ(θ)S2,0(0)

−i
Gm2

0

R

lmax∑

l=2

R2l+2
l∑

m=−l

l∑

m′=−l

∞∑

p=−∞
kl(mω − pn)

×dlm′,m(θ)dlm′,m+μ(θ)Jμ
l,m |Sl,m′(pn)|2 (19)

We now focus on the component μ = 0 of the secular torque which is directly related
to the evolution of the spin rate ω̇. Given that J 0

l,m = m, terms in factor of k0
2 disappear.

Furthermore, the term Tm,m′,p = mkl(mω − pn)|dlm′,m(θ)Sl,m′(pn)|2 in the triple sum has

the following symmetry T−m,−m′,−p = −T̄m,m′,p . As a result,

〈�̇0〉M,� = 2
Gm2

0

R

lmax∑

l=2

R2l+2k0
l

l∑

m=1

l∑

m′=−l

∞∑

p=−∞
mbl(mω − pn)|dlm′,m(θ)Sl,m′(pn)|2.
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Finally, we substitute the expression of Sl,m′(pn) and we get

〈�̇0〉M,� = 2
Gm2

0

R

lmax∑

l=2

(
R

a

)2l+2

k0
l

l∑

m=1

l∑

m′=−l

∞∑

p=−∞
mbl(mω − pn)

×
∣∣∣dlm′,m(θ)Yl,m(ı̂)X−(l+1),m′

p

∣∣∣
2
. (20)

Note that in this sum, m′ is incremented by step of 2 because m′ should have the same parity
as l for Pl,m′(0) �= 0 in the expression of Yl,m′(ı̂). At the quadrupole order lmax = 2, the
explicit expression is

〈�̇0〉M,� = k0
2
Gm2

0R
5

a6

∞∑

k=−∞

(
b2(2ω − kn)(X−3,2

k )2 3

32
(1 + cos θ)4

+ b2(2ω − kn)(X−3,0
k )2 3

8
sin4 θ

+ b2(2ω − kn)(X−3,−2
k )2 3

32
(1 − cos θ)4

+ b2(ω − kn)(X−3,2
k )2 3

16
sin2 θ(1 + cos θ)2

+ b2(ω − kn)(X−3,0
k )2 3

4
sin2 θ cos2 θ

+ b2(ω − kn)(X−3,−2
k )2 3

16
sin2 θ(1 − cos θ)2

)
. (21)

The orthogonal component of the torque �̇+ does not present as much symmetries as �̇0.
From the general expression of 〈�̇μ〉M,� (Eq. 19), we get

〈�̇+〉M,� = i

2
√

2

k0
2m0ω

2R5

a3(1 − e2)3/2 sin θ cos θ

+i
Gm2

0

R

lmax∑

l=2

(
R

a

)2l+2 l∑

m=−l

l∑

m′=−l

∞∑

p=−∞

√
l(l + 1) − m(m + 1)

2

×kl(mω − pn)dlm′,m(θ)dlm′,m+1(θ)

∣∣∣Yl,m′(ı̂)X−(l+1),m′
p

∣∣∣
2
. (22)

At the quadrupole order and using the symmetries, this gives

〈�̇+〉M,� = i

2
√

2

k0
2m0ω

2R5

a3(1 − e2)3/2 sin θ cos θ

+ 3i

32
√

2

Gm2
0R

5

a6 sin θ

∞∑

p=−∞

((
k2(ω − pn) − k̄2(2ω − pn)

)

×
( (

X−3,−2
p

)2
(1 − cos θ)3

+4
(
X−3,0

p

)2
cos θ sin2 θ −

(
X−3,2

p

)2
(1 + cos θ)3

)
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Table 1 Components of the secular torque 〈�̇〉M,� = t1 ŝ + t2k̂ + t3k̂ × ŝ

t1 = 3

32
k0

2
Gm2

0R
5

a6

∞∑

k=−∞

(
b2(2ω − kn)

(
(X−3,2

k )2(1 + cos θ)4

+ 4(X−3,0
k )2 sin4 θ + (X−3,−2

k )2(1 − cos θ)4
)

+ 2b2(ω − kn)

×
(

(X−3,2
k )2 sin2 θ(1 + cos θ)2 + 4(X−3,0

k )2 sin2 θ cos2 θ

+ (X−3,−2
k )2 sin2 θ(1 − cos θ)2

))
− t2 cos θ

t2 = − 3

32
k0

2
Gm2

0R
5

a6

∞∑

k=−∞

((
b2(ω − kn) + b2(2ω − kn)

)

×
((

X−3,−2
k

)2
(1 − cos θ)3

+ 4
(
X−3,0
k

)2
cos θ sin2 θ −

(
X−3,2
k

)2
(1 + cos θ)3

)

+
(
b2(−kn) + b2(ω − kn)

)
×

(
3

(
X−3,−2
k

)2
sin2 θ(1 − cos θ)

+4
(
X−3,0
k

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2
k

)2
sin2 θ(1 + cos θ)

))

t3 = − k0
2m0ω2R5

2a3(1 − e2)3/2 cos θ − 3

32
k0

2
Gm2

0R
5

a6

∞∑

k=−∞

((
a2(ω − kn) − a2(2ω − kn)

)

×
( (

X−3,−2
k

)2
(1 − cos θ)3

+ 4
(
X−3,0
k

)2
cos θ sin2 θ −

(
X−3,2
k

)2
(1 + cos θ)3

)

+
(
a2(−kn) − a2(ω − kn)

)
×

(
3

(
X−3,−2
k

)2
sin2 θ(1 − cos θ)

+ 4
(
X−3,0
k

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2
k

)2
sin2 θ(1 + cos θ)

))

+(
k2(−pn) − k̄2(ω − pn)

) ×
(

3
(
X−3,−2

p

)2
sin2 θ(1 − cos θ)

+ 4
(
X−3,0

p

)2
(3 cos2 θ − 1) cos θ − 3

(
X−3,2

p

)2
sin2 θ(1 + cos θ)

))
. (23)

Equations (21) and (23) are written in a specific coordinate system, viz. the equatorial basis
Be. For more generality, we now express the result in a vectorial form. Let ŝ and k̂ be the
coordinates of the unit spin vector and of the unit orbit normal in F0, respectively, i.e.,
ŝ = k̂e = k̂p and k̂ = k̂o. The torque can formally be decomposed as follows

〈�̇〉M,� = t1ŝ + t2k̂ + t3k̂ × ŝ.

with

〈�̇0〉M,� = t1 + t2 cos θ and 〈�̇+〉M,� = sin θ√
2

(t2 − it3).

The explicit expressions of t1, t2, and t3 are displayed in Table 1.
In summary, Eqs. (20) and (22) provide the general expression of the secular torque in

the equatorial coordinate system of the inertial frame. This torque is written explicitly at the
quadrupole order in Eqs. (21) and (23) and in a vectorial form in Table 1. It must be stressed
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that these formulas are not limited to Maxwell bodies and can be applied to any rheologies.
They are exact in eccentricity but they involve an infinite sum which has to be truncated. This
sum is associated to the Fourier expansion of the orbital motion.

5.3 Quasi-circular orbit

At zero eccentricity, Hansen coefficients are given by Xn,m
k = δk,m . With this hypothesis, we

retrieve the expressions (22) and (23) obtained by Correia et al. (2003) which correspond to
〈�̇0〉M,� = t1 + t2 cos θ and 〈k · �̇〉M,� = t1 cos θ + t2, respectively.2

In the case of low eccentric orbits, Hansen coefficients can be expanded at second order
according to

X−3,0
0 = 1 + 3

2
e2, X−3,0

1 = 3

2
e, X−3,0

2 = 9

4
e2,

and

X−3,2
1 = −1

2
e, X−3,2

2 = 1 − 5

2
e2, X−3,2

3 = 7

2
e, X−3,2

4 = 17

2
e2.

With these values, we retrieve the expressions (10) and (11) of Cunha et al. (2015) which
also correspond to t1 + t2 cos θ and t1 cos θ + t2, respectively.

5.4 Linear regime

For completeness, we provide the vectorial decomposition of the torque in the linear regime
τ2ν � 1, where

k2(ν) = k0
2

(
1 − i

(
1 − τe

τ2

)
iτ2ν

)
.

From the definition of the Hansen coefficients, we get [see Appendix B of Correia et al.
(2014)],

∞∑

k=−∞

(
Xn,m
k

)2 = X2n,0
0 and

∞∑

k=−∞
k

(
Xn,m
k

)2 = m
√

1 − e2X2n−2,0
0 .

Substituting these equalities in the expressions of the Table 1, we recover the secular torque,
Eqs. (10, 29) of Correia et al. (2011), viz.

2 Our notation is very similar to that of Correia et al. (2003) and Cunha et al. (2015) but, in these papers,
bg(ν) is defined as the opposite of the imaginary part of the Love number k2(ν). Thus, bg(ν) is related to our
b2(ν) through the relation bg(ν) = −b2(ν).
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〈�̇〉M,� = −K τ2n

(
f1(e)

ŝ + cos θ k̂
2

ω

n
− f2(e)k̂

)
− α cos θ k̂ × ŝ ,

with

K = 3Gm2
0R

5

a6 k0
2

(
1 − τe

τ2

)
,

α = 1

2

k0
2m0ω

2R5

a3(1 − e2)3/2 ,

f1(e) = X−6,0
0 = 1 + 3e2 + 3

8e
4

(1 − e2)9/2 ,

f2(e) =
√

1 − e2X−8,0
0 = 1 + 15

2 e2 + 45
8 e4 + 5

16e
6

(1 − e2)6 .

5.5 Spin-rate and obliquity

Let us assume that the orbit has most of the angular momentum of the system. In that case,
the equations of motion of the spin-rate and of the obliquity are simply deduced from the
secular torque (Table 1). One gets

1

n

dω

dt
= t1 + t2 cos θ

Cn
and

dθ

dt
= − t2 sin θ

Cω
. (25)

It should be noted that the trajectory of the spin in the plane (ω/n, θ) only depends on the
ratio ω/n, the obliquity θ , the eccentricity e, and the product nτ2. A few of them are plotted
in Fig. 2 for e ∈ {0, 0.3, 0.6} and nτ2 ∈ {0.01, 1, 100}. Plots are limited to positive ω/n
but they can be extended to negative rotations with the symmetry (ω, θ) ↔ (−ω, π − θ).

Indeed, these two pairs are equivalent although they do not correspond to the same physical
state (Correia and Laskar 2001).

For nτ2 = 0.01 (Fig. 2, left column), i.e. when the viscous timescale is much shorter
than the orbital period, the system is in the linear regime. All trajectories converge smoothly
towards a prograde pseudo-synchronous rotation on the x-axis. Evolutions are free from
temporary captures in spin-orbit resonance.

At nτ2 = 100 (Fig. 2, right column), the viscous timescale is much greater than the
orbital period. Resonant features appear in the phase space even at zero eccentricity. Indeed,
when e = 0, if the planet is tilted, its rotation can be trapped in three different spin-orbit
resonances, namely the 0:1, the 1:1, and the 2:1. However, the obliquity is decreasing along
these resonances and, in the planar configuration, only the synchronous holds. The final state
is thus the synchronous rotation. At higher eccentricities, we observe many more spin-orbit
equilibria for which ω/n is a half integer. As in the circular case, a few of these resonances
disappear at zero obliquity but several do persist. The case e = 0.3 shows an interesting
feature: let us consider a trajectory (not represented) starting at ω/n = 4.5 and θ = 90◦.
Because this point is in a blue region, ω decreases until the rotation reaches the 4:1 resonance.
Then, the system follows the resonance downward until the obliquity reaches about 5◦ where
the resonance disappears. The subsequent evolution is horizontal toward the 7:2 resonance.
But this resonance is special because dθ/dt > 0. Thus, the system climbs this resonance up
to its end at θ ≈ 16◦. The field line continues on the left towards the 3:1 spin-orbit resonance.
At last, this resonance has a “normal” behavior, the obliquity decreases and the system ends
up in a planar state with ω/n = 3. This prediction has been tested numerically by integration
of the instantaneous equations of motion (Eq. 14) (see Sect. 6.3). At higher eccentricity
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Fig. 2 Secular trajectories of the spin-axis in the plane obliquity θ versus rotation ω/n. From left to right,
the product nτ2 increases from 0.01 to 100. From bottom to top, the eccentricity increases from 0.0 to 0.6.
Trajectories of the spin-axis are represented by green solid curves, the background color represents the
derivative of ω: in blue ω decreases, in red ω increases. The locus of rotation equilibria such that dω/dt = 0
(irregardless of dθ/dt) are highlighted by black curves. Dashed ones and dotted ones represent stable and
unstable equilibria, respectively. Black dots on the x-axis are the fixed points. This figure has been made by
integration of Eq. (25) with t1, t2, and t3 taken from Table 1. Sums have been truncated at |k| ≤ 100

(e = 0.6), all spin-orbit resonances displayed in Fig. 2, i.e. with ω/n ≤ 5, are such that
dθ/dt is negative. Thus, along these resonances the obliquity varies in a monotonous way
toward the planar configuration. Note that if a system starts with a fast rotation ω � n, it
will almost certainly never reach an intermediate spin-orbit resonance such as the 2:1 or the
3:1 because the obliquity would have to be very fine tuned close around 164◦ at ω/n = 5.

For nτ2 = 1 (Fig. 2, middle column), the evolution does not show any spin-orbit reso-
nances. The phase space is qualitatively similar to that of the linear regime. Field lines are
only slightly deformed.

6 Application to HD 80606b

In this section, we apply the model at the quadrupole order lmax = 2 to HD 80606b. The
formalism is the same as in Correia et al. (2014), except that only the planar case was studied
in this previous work. Here, we extend the analysis to the spatial case by allowing non-zero
initial obliquities. First, we briefly recall the results obtained for HD 80606 b in the planar
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case, with τe = 0 and τ2 ranging between 10−5 and 100 year. Then, we present our results
in the spatial problem.

6.1 Description of the planar evolution

As shown by the differential Eq. (7), tides can be seen as a low-pass filter between the
excitation Ze

l,m and the response Zν
l,m = Zl,m . If the cutoff frequency 1/τ2 is much greater

than the orbital frequency n, i.e., τ2 � 10−2 year, all the “signal” is transmitted by the filter
but with a small phase shift. This is equivalent to the constant time-lag model �t = τ2. The
surface of the planet undergoes strong deformations at the orbital frequency but the amount
of dissipation is low because of the weak viscosity. Once the spin of the planet is damped,
it follows a pseudo-synchronous equilibrium Ωe which is a function of the eccentricity e.
Here, we recall its expression in the spatial case, i.e. with obliquity θ , in anticipation to the
forthcoming section. We have (e.g., Correia et al. 2011)

Ωe

n
= 1 + 15

2 e2 + 45
8 e4 + 5

16e
6

(1 − e2)3/2
(
1 + 3e2 + 3

8e
4
)

2 cos θ

1 + cos2 θ
. (26)

For τ2 � 10−2 year, the cutoff frequency is less than the mean motion rate. The defor-
mation of the planet, represented by

J2 = −Z2,0 and ε =
√
C2

22 + S2
22 = √

6|Z22|,
only sees a mean excitation averaged over the mean anomaly and takes the expression (Correia
et al. 2014)

〈J2〉M = k0
2

(
Ω2R3

3Gm1
+ 1

2

m0

m1

(
R

a

)3

(1 − e2)3/2

)
, (27a)

〈εp〉M = k0
2

4

m0

m1

(
R

a

)3

X−3,2
2p (e), (27b)

with p = [2Ω/n]/2, where [x] means the nearest integer of x ([x] ∈ Z and [x] − 1/2 ≤
x < [x] + 1/2). Thus, despite a high viscosity, dissipation is low because the deformation is
weak and slow. In that case, the constant time-lag model does not hold anymore. The planet
rotation gets trapped in spin-orbit resonances Ω/n = p, the pseudo-synchronous state is not
an equilibrium anymore.

At τ2 ≈ 10−2 year, the orbital frequency is of the same order of magnitude as the cutoff
frequency. A few harmonics of the orbital period pass the filter and are retrieved in the
deformation of the planet. Moreover, the viscosity is higher than in the constant-time lag
regime. Both effects generate strong dissipation and a fast decay of the semi-major axis and
eccentricity.

6.2 Fast damping of the obliquity and subsequent planar evolution

Numerical simulations were performed using the formalism in the inertial reference frame
(Sect. 4, Eq. 14). We have tested different values of τ2, but the main conclusion of this
section remains unchanged. Thus, we only present results corresponding to the intermediate
case τ2 = 10−2 year.

Figure 3a depicts the evolution of the planet obliquity for 400 different initial conditions:
20 obliquities regularly spread between 0◦ and 180◦ times 20 precession angles equispaced
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Fig. 3 Time evolution of HD 80606b for τ2 = 10−2 year (0.21 ≤ nτ2 ≤ 0.95). Panel a shows 400 evolutions
with a grid of initial spin-axes (20 obliquities ranging between 0◦ and 180◦ times 20 precession angles ranging
between 0◦ and 360◦). The other three figures are initialized with an obliquity of 60◦ and a precession angle of
0◦. We plot the obliquity (a), the semi-major axis (in au) and the eccentricity (b), the ratio between the planet
spin rate and the orbital mean motion (c), and the planet J2 and ε (d). The green line gives the equilibrium
rotation (Eq. 26) (c), and the equilibrium values for J2 and ε, respectively (Eqs. 27a, 27b) (d)

over 360◦. The initial precession angle does not play a significant role in the evolution
of the system. At a given initial obliquity, all integration’s closely follow the same track.
This result strengthens the approximation made in the previous section where we averaged
the secular equations of motion over the longitude of the pericenter � . In comparison,
obliquities starting at different values can have distinct initial slopes. But in all cases, the
obliquity is fully damped before 30 ka, a timescale much shorter than that of the orbital
decay.

The subsequent evolution (t > 30 ka) is done at zero obliquity. The problem is thus fully
described by the planar model. Indeed, we recover the results displayed in Correia et al.
(2014, Fig. 6). The semi-major axis and the eccentricity are damped within a timescale of
2 Ma (Fig. 3b), the spin rate of the planet follows a series of resonances with the orbital mean
motion (Fig. 3c), and the deformation of the planet oscillates with intermediate amplitudes
around its equilibrium given by Eq. (27).

Numerical experiments performed with different values of τ2 are similar. Obliquities are
fully damped in a timescale much shorter than those associated to the semi-major axis and
the eccentricity. Once the system becomes coplanar, we retrieve the evolution observed in
Correia et al. (2014). This result reveals that the motion of the spin-axis can be followed
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Fig. 4 Instantaneous versus secular evolution. Solid thick curves are the trajectories obtained by integration
of the instantaneous equations of motion (Eqs. 14). Thin dashed curves are the field lines of the Fig. 2 obtained
by integration of the secular equations of motion (Eq. 25). The red curve is the trajectory discussed in Sect. 5.5

independently from that of the orbit. Thus, we can directly compare the numerical solutions
of the instantaneous equations of motion (Eq. 14) to those dictated by the secular torque
(Sect. 5).

6.3 Instantaneous versus secular evolution

In this section, we keep the system HD 80606 b as a proxy to analyze the spatial evolution of
spin-axes given by the instantaneous equations of motion (Eq. 14). To start a simulation at a
given eccentricity e, we choose the semi-major axis a as if the system had evolved from its
current orbit (e0 = 0.933 and a0 = 0.455 au) with a constant angular momentum, i.e., such
that a(1 − e2) = a0(1 − e2

0). In all simulations, we set the initial precession angle and the
initial longitude of periapsis to zero.

Figure 4 displays the results in the plane (ω/n, θ) as in Fig. 2 together with the secular
field lines obtained in Sect. 5. The match between the two approaches is excellent. Solutions
of the instantaneous equations of motion (Eq. 14) closely follow the paths dictated by the
secular torque (Eq. 25), except however for e = 0.6 and nτ2 = 1 where the instantaneous
evolutions exhibit more wiggles than the secular ones. In particular, we retrieve the special
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Fig. 5 Time evolution of
HD 80606b with the same initial
conditions as the red trajectory in
Fig. 4 (e = 0.3 and nτ2 = 100).
Vertical dashed lines delimit
regions of spin-orbit resonance.
Note that after 50 Ma, the
eccentricity and the semi-major
axis have only decreased by
about 3 × 10−4 and 10−3 in
relative value, respectively. They
can thus be considered constant
as in Fig. 4
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trajectory at e = 0.3 and nτ2 = 100 discussed in Sect. 5.5 which starts at ω/n = 4.5 and
θ = 90◦ (plotted in red in Fig. 4). The time evolution of this trajectory is shown in Fig. 5.
We see that the system spends most of the time in spin-orbit resonant configurations. The
temporal evolution also emphasizes the peculiar behavior of the 7:2 resonance in which the
planet obliquity increases.

7 Conclusion

In this paper, we present a tidal theory based on the Maxwell rheology valid in the spatial
case. This extends the models presented by Ferraz-Mello (2013) and Correia et al. (2014)
which were restricted to planar configurations.

The evolution of the deformation of the planet, given by a first order differential equation
(Eqs. 9d, 14d), is integrated numerically together with the orbital motion. As already noted
by Correia et al. (2014), this way allows to compute the instantaneous variation of the shape
of the planet for all perturbations, even for non-periodic ones. There is no need to decompose
the excitation in an infinite Fourier series as in, e.g., Kaula (1964). By consequence, the
formalism is regular at all eccentricities, spin rates, and obliquities.

For this problem, we have chosen a formalism taken from quantum theory, conceived for
angular momentum representations, and based on complex spherical harmonics Yl,m . Our
choice has been motivated by the following reasons: the gravitational potential of the planet
is easily expanded in Yl,m ; Yl,m’s can be conveniently expressed in terms of Cartesian coordi-
nates; tidal force and torque have compact expressions because Yl,m’s are the eigenvectors of
the ladder operators ∇ and J = −ix ×∇; our model is given at any multipole order thanks to
the recurrence relations present in many quantum mechanics textbooks such as Varshalovich
et al. (1988).

Tidal equations are naturally written in the frame of the body, but this choice is not
convenient for the analysis of the orbital evolution. Here, we provide the equations of motion
both in the body frame Fp (Eq. 9) and in the inertial frame F0 (Eq. 14). If the planet does
not have any permanent zonal coefficients, the description of the problem in F0 presents a
numerical advantage. Indeed, whatever is the rotation speed of the planet, the tidal bulge
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follows the perturbing body. Thus, the integration time step can be adjusted to the orbital
motion even if the planet rotates much faster.

The equations of motion written in the inertial frame allowed us to compute the secular
tidal torque as a Fourier series averaged over the orbital revolution and over the precession
period. We provide an explicit vectorial expression of this torque at the quadrupolar order as
well as the general expression at any multipole order. Maps of the secular evolution of the
spin-axis show many resonant features when the viscous timescale is longer than the orbital
period. This characteristic was already present in planar studies but here we observe that
non-synchronous spin-orbit resonances appear in the spatial case even at zero eccentricity.
In most of these resonant states, the obliquity decreases to zero, but we found a peculiar
situation were the obliquity is instead growing.

We applied our model to HD 80606 with different values of relaxation time and different
initial obliquities. We observed that in all cases, the obliquity is damped faster than the semi-
major axis and the eccentricity. Once the system becomes planar, the evolution follows the
path described in Correia et al. (2014). In particular, when the relaxation time is greater than
the orbital period, the planet gets trapped in successive spin-orbit resonances even though it
does not have any permanent multipole (Correia et al. 2014). We have also analyzed in more
detail the evolution of the spin-axis during the phase where the obliquity is not fully damped.
Results are in good agreement with the predictions made with the averaged equations. We
nevertheless observe wiggles at high eccentricity which were not present in the secular phase-
space.

Our model can also be applied to close-in super-Earths for which the relaxation time of the
mantle is almost certainly longer than the orbital period. As these planets are often found with
planetary companions, their eccentricities are never exactly zero (e.g., Laskar et al. 2012). This
implies that short-period terrestrial exoplanets are likely in spin-orbit resonances (Correia
et al. 2014). In addition, as in the Solar System, they also present small mutual inclinations of
about 1◦ on average (Tremaine and Dong 2012; Figueira et al. 2012; Fabrycky et al. 2014).
This value is large enough to perturb the long-term evolution of their obliquity and, even
if the orbit is circular, a forced obliquity can trap the rotation in a non-synchronous spin-
orbit resonance state. Our formalism is thus well adapted to model the evolution of these
planets spin-axis and to infer constraints on their habitability. We also envision to extend
the formalism to thermal atmospheric tides which have the same frequency dependence as
Maxwell rheology (Auclair-Desrotour et al. 2016).

Acknowledgments GB is grateful to Dan Fabrycky for the fruitful discussions which lead to this work. We
acknowledge support from CIDMA strategic project UID/MAT/04106/2013.

Appendix 1: Spherical harmonic

By convention, Legendre associated polynomials are defined as

Pl,m(x) = 1

2l l! (1 − x2)m/2 dl+m

dxl+m
(x2 − 1)l , (28)

with the symmetry

Pl,−m(x) = (−1)m
(l − m)!
(l + m)! Pl,m(x). (29)
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The Schmidt semi-normalized spherical harmonics are defined as

Yl,m(θ, φ) = (−1)m

√
(l − m)!
(l + m)! Pl,m(cos θ)eimφ (30)

with the symmetry

Yl,−m(θ, φ) = (−1)mȲl,m(θ, φ). (31)

Using the complex Cartesian coordinate system as defined in Varshalovich et al. (1988), for
any unit vector x̂ , we have

Y0,0(x̂) = 1, (32a)

Y1,0(x̂) = x̂0, (32b)

Y1,1(x̂) = x̂+, (32c)

l Yl,0(x̂) = (2l − 1)x̂0Yl−1,0(x̂) − (l − 1)Yl−2,0(x̂), (32d)√
l + mYl,m(x̂) = √

l − m x̂0Yl−1,m(x̂) + √
2(l + m − 1)x̂+Yl−1,m−1. (32e)

The last two Eqs. (32d) and (32e) allow to recursively compute all spherical harmonics of
order m ≥ 0. Those with m < 0 are deduced from the symmetry relation (31). Up to the
degree 3 included, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y2,0 = 1

2
(3x̂2

0 − 1)

Y2,1 = √
3x̂0 x̂+

Y2,2 =
√

6

2
x̂2+

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y3,0 = 5

2
x̂3

0 − 3

2
x̂0

Y3,1 =
√

6

4

(
5x̂2

0 x̂+ − x̂+
)

Y3,2 =
√

30

2
x̂0 x̂

2+

Y3,3 =
√

10

2
x̂3+

. (33)

Appendix 2: Ladder operators

Regular solid harmonics xlYl,m(x̂) and irregular ones Yl,m(x̂)/xl+1 are eigenvectors of each
component of the gradient operator ∇ = (∇+,∇0,∇−) and of the angular momentum oper-
ator J = (J+, J0, J−). The respective eigenvalues can be found in (e.g., Varshalovich et al.
1988). We have

∇+
(
xlYl,m(x̂)

)
= −

√
(l − m − 1)(l − m)

2
xl−1Yl−1,m+1(x̂)

∇0

(
xlYl,m(x̂)

)
= +√

(l + m)(l − m) xl−1Yl−1,m(x̂)

∇−
(
xlYl,m(x̂)

)
= −

√
(l + m − 1)(l + m)

2
xl−1Yl−1,m−1(x̂), (34)

∇+
(

1

xl+1 Yl,m(x̂)

)
= −

√
(l + m + 1)(l + m + 2)

2

1

xl+2 Yl+1,m+1(x̂)

∇0

(
1

xl+1 Yl,m(x̂)

)
= −√

(l + m + 1)(l − m + 1)
1

xl+2 Yl+1,m(x̂)
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∇−
(

1

xl+1 Yl,m(x̂)

)
= −

√
(l − m + 1)(l − m + 2)

2

1

xl+2 Yl+1,m−1(x̂), (35)

and

J+
(
f (x)Yl,m(x̂)

)
= −

√
l(l + 1) − m(m + 1)

2
f (x)Yl,m+1(x̂)

J0

(
f (x)Yl,m(x̂)

)
= m f (x)Yl,m(x̂)

J−
(
f (x)Yl,m(x̂)

)
= +

√
l(l + 1) − m(m − 1)

2
f (x)Yl,m−1(x̂), (36)

where f (x) is any function of the modulus x = ‖�x‖.

Appendix 3: Rotation and Wigner matrices

Let a vector �x and two coordinate systems B and B′ such that x and x′ are the coordinates of
�x in B and B′, respectively. Let us further assume that x and x′ are related to each other by a
rotation of the form

x = R3(α)R2(β)R3(γ )x′,

whereR3 andR2 are the matrices of rotation around the third and the second axes, respectively.
Wigner D matrix Dl

m,m′(α, β, γ ) is defined such that (e.g., Varshalovich et al. 1988)

Yl,m(x̂′) =
l∑

m′=−l

Dl
m′,m(α, β, γ )Yl,m′(x̂). (37)

Each element Dl
m,m′(α, β, γ ) can be written as (e.g., Varshalovich et al. 1988)

Dl
m,m′(α, β, γ ) = e−imαdlm,m′(β)e−im′γ , (38)

where dlm,m′(β) is the Wigner d matrix. The inverse Dl
m,m′(−γ,−β,−α) is given by the

adjoint D̄l
m′,m(α, β, γ ) of Dl

m,m′(α, β, γ ):

Dl
m,m′(−γ,−β,−α) = eim′αdlm′,m(β)eimγ .

The convention 3-2-3 of the rotation (Eq. 37) is such that dlm,m′(β) is a real function. Wigner
d matrix possesses many symmetries, among which (e.g., Varshalovich et al. 1988)

dlm,m′(β) = (−1)m−m′
dl−m,−m′(β) = (−1)m−m′

dlm′,m(β) = dl−m′,−m(β).

Wigner d matrix can be constructed recursively using the hereinabove symmetries, the fol-
lowing initialization (e.g., Varshalovich et al. 1988)

d0
0,0(β) = 1 , d1

0,0(β) = cos β , d1
1,−1(β) = 1 − cos β

2
, d1

1,0(β) = − sin β√
2

, d1
1,1(β)

= 1 + cos β

2
(39)
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and the recurrence relation (Gimbutas and Greengard 2009)

dlm,m′(β) = +
√

(l + m′)(l + m′ − 1)

(l + m)(l + m − 1)
d1

1,1(β)dl−1
m−1,m′−1(β)

−
√

(l + m′)(l − m′)
(l + m)(l + m − 1)

sin(β)dl−1
m−1,m′(β)

+
√

(l − m′)(l − m′ − 1)

(l + m)(l + m − 1)
d1

1,−1(β)dl−1
m−1,m′+1(β)

(40)

which also implies

dll,l(β) = d1
1,1(β)dl−1

l−1,l−1(β) and dll,−l(β) = d1
1,−1(β)dl−1

l−1,1−l(β). (41)

The algorithm is the following:

Algorithm 1 Calculate Wigner d matrix

initialize d1
0,0, d1

1,1, d1
1,0, and d1

1,−1 from (Eq. 39)
calculate the other terms of order 1 using the symmetries (Eq. 38)
for l = 2 to lmax do
// apply the recurrence relations as follows
for m = 0 to l do

for m′ = MAX(−m, 1 − l) to MIN(m, l − 1) do
calculate dlm,m′ using (Eq. 40)

end for
end for
compute dll,l and dll,−l from (Eq. 41)
calculate the other terms of order l using the symmetries (Eq. 38)

end for

For completeness, we also provide the explicit terms at order l = 2 in Table 2.

Appendix 4: Time derivatives

Let a function f (�x, t) developed in spherical harmonics as

f (�x, t) =
∑

l,m

z̄l,m(t)Yl,m(x̂) (42)

in the inertial frame F0, and as

f (�x, t) =
∑

l,m

Z̄l,m(t)Yl,m(X̂) (43)

in the body frame Fp . For any constant vector �x in Fp , we have

ẋ = ω × x and Ẋ = 0, (44)

with respect to the frame Fp . By consequence, in Fp , on the one hand,

ḟ (�x, t) =
∑

l,m

( ˙̄zl,m(t)Yl,m(x̂) + z̄l,m(t)ẋ · ∇Yl,m(x̂)
)
, (45)
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Table 2 Explicit Wigner d matrix d2
m,m′ (β)

m m′

2 1 0 −1 −2

2
(1 + cos β)2

4
− sin β(1 + cos β)

2

1

2

√
3

2
sin2 β − sin β(1 − cos β)

2

(1 − cos β)2

4

1
sin β(1 + cos β)

2

2 cos2 β + cos β − 1

2
−

√
3

2
sin β cos β − 2 cos2 β − cos β − 1

2
− sin β(1 − cos β)

2

0
1

2

√
3

2
sin2 β

√
3

2
sin β cos β

3 cos2 β − 1

2
−

√
3

2
sin β cos β

1

2

√
3

2
sin2 β

−1
sin β(1 − cos β)

2
− 2 cos2 β − cos β − 1

2

√
3

2
sin β cos β

2 cos2 β + cos β − 1

2
− sin β(1 + cos β)

2

−2
(1 − cos β)2

4

sin β(1 − cos β)

2

1

2

√
3

2
sin2 β

sin β(1 + cos β)

2

(1 + cos β)2

4

and on the other hand,
ḟ (�x, t) =

∑

l,m

˙̄Zl,m(t)Yl,m(X̂). (46)

But given that the time derivative of x is ẋ = ω × x, we get

ẋ · ∇ = (ω × x) · ∇ = i(ω · J) (47)

where J = −ix × ∇ is the angular momentum operator and where, by construction of the
scalar product (Varshalovich et al. 1988),

ω · J = −ω+ J− + ω0 J0 − ω− J+. (48)

We then define a matrix J(ω) of size (2l + 1) × (2l + 1) such that

(ω · J)Yl,m(x̂) =
l∑

m′=−l

[J(ω)]lm′,mYl,m′(x̂), (49)

where all non-zero coefficients are

[
J(ω)

]l
m−1,m = −

√
l(l+1)−m(m−1)

2 ω+,
[
J(ω)

]l
m,m = m ω0,

[
J(ω)

]l
m+1,m = +

√
l(l+1)−m(m+1)

2 ω−.

(50)

Combining Eqs. (10), (45–47), and (49), we obtain

∑

m′
Dl
m,m′ ˙̄Zl,m′ = ˙̄zl,m + i

∑

m′
[J(ω)]lm,m′ z̄l,m′ . (51)
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Appendix 5: Fourier transform

Let two functions f (�x, t) and g(�x, t) expanded in spherical harmonics as f = ∑
l fl and

g = ∑
l gl with

fl(�x, t) =
l∑

m=−l

Z̄l,m(t)Yl,m(X̂) and gl(�x, t) =
l∑

m=−l

Z̄ ′
l,m(t)Yl,m(X̂)

in the frame Fp and

fl(�x, t) =
l∑

m=−l

z̄l,m(t)Yl,m(x̂) and gl(�x, t) =
l∑

m=−l

z̄′l,m(t)Yl,m(x̂)

in F0. Let α, β, and γ = ωt be the three angles such that

x = R3(α)R2(β)R3(γ )X.

We have then

zl,m(t) =
l∑

m′=−l

D̄l
m,m′(t)Zl,m′(t) and z′l,m(t) =

l∑

m′=−l

D̄l
m,m′(t)Z ′

l,m′(t) (52)

with

Dl
m,m′(t) = Dl

m,m′(0)e−im′ωt .

Let us further assume that the two functions are related to each other in Fp by

fl(�x, t) = hl(t) ∗ gl(�x, t) for all l,

where hl(t) ∈ R is a real distribution. The symbol ∗ denotes the convolution product. As
the convolution is done with respect to time, the orthogonality of the spherical harmonics
implies that for all l and m,

Zl,m(t) = hl(t) ∗ Z ′
l,m(t). (53)

Combining Eqs. (52) and (53), we get

zl,m(t) =
l∑

m′=−l

l∑

m′′=−l

∫ ∞

−∞
D̄l
m,m′(t)hl(t − t ′)Dl

m′′,m′(t ′)z′l,m′′(t ′) dt ′

=
l∑

m′′=−l

hlm,m′′(t) ∗ z′l,m′′(t), (54)

where

hlm,m′′(t) =
l∑

m′=−l

D̄l
m,m′(0)hl(t)e

im′ωtDl
m′′,m′(0).

In particular, if the rotation axis �ω is aligned with the third axis of F0 and Fp , i.e., if
α = β = 0, hlm,m′′(t) is diagonal and we obtain

zl,m(t) = (
hl(t)e

imωt ) ∗ z′l,m(t) if α = β = 0. (55)
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Taking the Fourier transform of Eqs. (54) and (55), we get

zl,m(ν) =
l∑

m′′=−l

hlm,m′′(ν)z′l,m′′(ν)

with

hlm,m′′(ν) =
l∑

m′=−l

D̄l
m,m′(0)hl(ν − m′ω)Dl

m′′,m′(0),

on the one hand, and

zl,m(ν) = hl(ν − mω)z′l,m(ν) if α = β = 0,

on the other.
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