
Celest Mech Dyn Astr (2016) 126:461–481
DOI 10.1007/s10569-016-9703-2

ORIGINAL ARTICLE

L1-optimality conditions for the circular restricted
three-body problem

Zheng Chen1

Received: 24 November 2015 / Revised: 9 March 2016 / Accepted: 14 May 2016 /
Published online: 1 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In this paper, the L1-minimization for the translational motion of a spacecraft
in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions
are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of
bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of
the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory
Appl 11(5):441–486, 1973; Zelikin and Borisov in Theory of Chattering Control with Appli-
cations to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994;
in J Math Sci 114(3):1227–1344, 2003). The sufficient optimality conditions for the L1-
minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J
Control Optim 54(3):1245–1265, 2016). In the current paper, we establish second-order con-
ditions for optimal control problems with more general final conditions defined by a smooth
submanifold target. In addition, the numerical implementation to check these optimality con-
ditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an
L1-minimization trajectory for the translational motion of a spacecraft is computed by com-
bining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn
Astron 114:137–150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178–3202,
2012). The local optimality of the computed trajectory is asserted thanks to the second-order
optimality conditions developed.
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462 Z. Chen

1 Introduction

As an increasing number of artificial satellites or spacecrafts have been and are being launched
into deeper space since the 1960s, the problem of controlling the translational motion of a
spacecraft in the gravitational field of multiple celestial bodies such that some cost function-
als are minimized or maximized arizes in astronautics. The CRTBP that captures the chaotic
property of n-body problem, has been widely used in the literature to study optimal trajecto-
ries in deeper space. The present paper is concerned with the L1-minimization problem of the
motion of a spacecraft in the CRTBP. If the control is generated by propulsion systems which
expel mass in a high speed to generate an opposite reaction force according to Newton’s third
law of motion, the L1-minimization problem is related to the important fuel-optimal control
problem in astronautics. According to the controllability properties studied in (Caillau and
Daoud 2012), there exist admissible controlled trajectories in an appropriate subregion of the
state space. Then, the existence of L1-minimizing trajectories can be obtained by a combi-
nation of Filippov theorem in (Agrachev and Sachkov 2004) and the technique in (Gergaud
and Haberkorn 2006), provided that the admissible controlled trajectories remain in a fixed
compact set (see Caillau et al. 2012). While in the planar case the singular extremals and the
corresponding chattering arcs were analyzed by Zelikin and Borisov (2003), the synthesis
of the solutions of singular extremals in the 3-dimensional case has not yet been covered to
the author’s knowledge. Not considering singular and chattering controls, even the computa-
tion of a bang-bang control of the chaotic CRTBP is a challenging task in the framework of
low thrust. To address this challenge, various numerical methods, e.g., direct methods (Min-
gotti et al. 2009; Ross and Scheeres 2007), indirect methods (Caillau et al. 2012; Caillau and
Daoud 2012), and hybrid methods (Ozimek andHowell 2010), have been developed recently.
In this paper, the indirect method, proposed by Caillau et al. (2012), that combines a shoot-
ing method with a continuation method, is employed to compute the extremal trajectories of
the L1-minimization problem. Based on this method, some fuel-optimal trajectories in the
CRTBP were computed recently as well in (Zhang et al. 2015). Nevertheless, these extremal
trajectories cannot be guaranteed to be at least locally optimal unless sufficient optimality con-
ditions are satisfied. The sufficient conditions for optimal control problems have been widely
studied in the literature in recent years (see Agrachev et al. 2002; Poggiolini and Stefani
2004; Schättler and Ledzewicz 2012; Noble and Schättler 2002; Chen et al. 2016; Agrachev
and Sachkov 2004; Kupka 1987; Sarychev 1982; Flies and Hazewinkel 1987; Bonnard et al.
2007, and references therein). Through defining an accessory finite dimensional problem in
(Agrachev et al. 2002; Poggiolini and Stefani 2004), some sufficient conditions were devel-
oped for optimal control problemswith a polyhedral control set. In (Chen et al. 2016), no-fold
conditions related to those of (Schättler and Ledzewicz 2012; Noble and Schättler 2002) were
established for the L1-minimization problem. Assuming the endpoints are fixed, these con-
ditions suffice to guarantee that a bang-bang extremal of the L1-minimization problem is a
strong local optimizer. In addition to these no-fold conditions, an extra condition has to be
taken into account whenever the target is a genuine submanifold (see Agrachev et al. 2002;
Brusch and Vincent 1970; Wood 1974). It is shown in this paper that the propagation of
Jacobi fields is enough to test these sufficient optimality conditions (cf. Sect. 5).

The paper is organized as follows. In Sect. 2, the L1-minimization problem is formulated in
theCRTBP. Then, the necessary conditions are derivedwith an emphasis on singular solutions
inSect. 3. InSect. 4, a parameterized family of extremals is first constructed.Under some regu-
larity assumptions, the sufficient conditions for the strong-local optimality of the nonsingular
extremals with bang-bang controls are established. In Sect. 5, a numerical implementation
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L1-optimality conditions 463

Fig. 1 Rotating frame OXY Z of
the CRTBP

for the optimality conditions is derived. In Sect. 6 a transfer trajectory of a spacecraft from a
circular geosynchronous orbit of the Earth to a circular orbit around the Moon is computed,
and its local optimality is tested thanks to the second-order optimality conditions developed.

2 Definitions and notations

The CRTBP in Celestial Mechanics is defined as an isolated dynamical system consisting of
three gravitationally interacting bodies, P1, P2, and P3, whose masses are denoted by m1,
m2, andm3, respectively, such that (1) the third massm3 is so smaller than the other two that
its gravitational influence on the motions of the other two is negligible; (2) the two bodies,
P1 and P2, move on circular orbits around their common centre of mass. Without loss of
generality, we assume m1 > m2 and consider a rotating frame OXY Z such that its origin is
located at the barycentre of the two bodies P1 and P2 (see Fig. 1). The unit vector of X -axis
is oriented by the axis between the two primaries P1 and P2 and points toward P2; the unit
vector of Z -axis is defined as the unit vector of the momentum vector of the motion of P1 and
P2, and the Y -axis is defined to complete a right-hand coordinate system. It is advantageous
to use non-dimensional parameters. Let d∗ be the distance between P1 and P2, and let m∗
be the initial mass of the spacecraft, we denote by d∗ and m∗ the unit of length and mass,
respectively. We also define the unit of time t∗ in such a way that the gravitational constant
G > 0 equals to one. Accordingly, one can obtain

t∗ =
√

d3∗
G(m1 + m2)

through the usage of Kepler’s third law. If μ = m2/(m1 + m2), the two constant vectors
r1 = [−μ, 0, 0]T and r2 = [1− μ, 0, 0]T denote the position of P1 and P2 in the rotating
frame OXY Z , respectively (the superscript “T” denotes the transpose of a matrix).

2.1 Dynamics

Throughout the paper, we denote the space of n-dimensional column vectors by R
n and the

space of n-dimensional row vectors by (Rn)∗.
Let t ∈ R+ be the non-dimensional time and let r ∈ R

3 and v ∈ R
3 be the non-dimensional

position and velocity vectors of P3 in the rotating frame OXY Z . The spacecraft is the third
mass point P3 that is controlled by a finite-thrust propulsion system. Finally, if m = m3/m∗,
the state x ∈ R

n (n = 7) consists of r , v, andm. Denote by rm1 > 0 and rm2 > 0 the radiuses
of the bodies P1 and P2, and denote by mc > 0 the mass of the spacecraft without any fuel.
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464 Z. Chen

We define the admissible subset for state x as

X = {
(r, v,m) ∈ R

3 × R
3 × R+ | ‖r − r1‖ > rm1 , ‖r − r2‖ > rm2 , m ≥ mc

}
,

where ‖ · ‖ denotes the Euclidean norm. Then, the differential equations for the controlled
translational motion of the spacecraft in the CRTBP in the admissible set X for positive
times can be written as

Σ :

⎧⎪⎨
⎪⎩
ṙ(t) = v(t),

v̇(t) = h(v(t)) + g(r(t)) + τ(t)
m(t) ,

ṁ(t) = −β‖ τ(t) ‖,
(1)

with

h(v) =
⎡
⎣ 0 2 0

−2 0 0
0 0 0

⎤
⎦ v, g(r) =

⎡
⎣ 1 0 0
0 1 0
0 0 0

⎤
⎦ r − 1 − μ

‖r − r1‖3 (r − r1)

− μ

‖r − r2‖3 (r − r2),

where β ≥ 0 is a scalar constant determined by the specific impulse of the engine and τ ∈ R
3

is the thrust vector taking values in

T = {τ ∈ R
3 | ‖τ‖ ≤ τmax }.

The constant τmax > 0 (in unit of m∗d∗/t2∗ ) denotes the maximum magnitude of the thrust
of the engine. We denote by ρ ∈ [0, 1] the normalized mass flow rate of the engine, ρ =
‖τ‖/τmax , and by ω ∈ S

2 the unit vector of the thrust direction, τ = ρτmaxω; ρ and ω are
control variables. Let u = (ρ, ω) and U = [0, 1] × S

2, so U is the admissible set for the
control u. Let us define the controlled vector field f on X × U by

f : X × U → R
n, f (x, ρ, ω) = f0(x) + ρ f1(x, ω),

where

f0(x) =
⎛
⎝ v

h(v) + g(r)
0

⎞
⎠ , f1(x, ω) =

⎛
⎝ 0

τmaxω/m
−τmaxβ

⎞
⎠ .

The dynamics in Eq. (1) can be rewritten in the control-affine form

Σ : ẋ(t) = f (x(t), ρ(t), ω(t)) = f0(x(t)) + ρ(t) f1(x(t), ω(t)). (2)

2.2 L1-minimization problem

Given l ∈ N such that 0 < l ≤ n, we define the l-codimensional target submanifold

M = {x ∈ X | φ(x) = 0}, (3)

where φ : X → R
l denotes a twice continuously differentiable function of x whose expres-

sion depends on specific mission requirements. (See e.g., Eq. (30)). Given a fixed initial state
x0 ∈ X and a fixed final time t f > 0, the L1-minimization problem (Chen et al. 2016) for the
translational motion in the CRTBP consists in steering the system Σ in X by a measurable
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L1-optimality conditions 465

control (ρ(·), ω(·)) ∈ U on [0, t f ] from the initial point x0 ∈ X to a final point x f ∈ M
such that the L1-norm of control is minimized:∫ t f

0
ρ(t)dt → min. (4)

Note that minimizing the cost in Eq. (4) is equivalent to maximizing the final mass once
β > 0. Controllability of the CRTBP holds in an appropriate subregion of X (see Caillau
et al. 2012). Let tm > 0 be the minimum time to steer the system Σ by measurable controls
(ρ(·), ω(·)) ∈ U from the point x0 ∈ X to a point x f ∈ M . Then, assuming t f > tm and
assuming that the admissible controlled trajectories of Σ remain in a fixed compact set, the
existence of the L1-minimization solutions can be obtained by combining Filippov theorem
(see e.g., Agrachev and Sachkov 2004) and a suitable convexification procedure (seeGergaud
and Haberkorn 2006).

3 Necessary conditions

3.1 Pontryagin maximum principle

According to themaximumprinciple in (Pontryagin et al. 1962), if a trajectory x(·) ∈ X asso-
ciated with a measurable control u(·) = (ρ(·), ω(·)) in U on [0, t f ] is optimal, there exists
a nonpositive real number p0 and an absolutely continuous mapping t �→ p(·) ∈ T ∗

x(·)X on

[0, t f ], satisfying (p(t), p0) 	= 0 for t ∈ [0, t f ] such that, almost everywhere on [0, t f ],
there holds ⎧⎨

⎩
ẋ(t) = ∂H

∂p (x(t), p(t), p0, u(t)),

ṗ(t) = − ∂H
∂x (x(t), p(t), p0, u(t)),

(5)

and

H(x(t), p(t), p0, u(t)) = max
η(t)∈U H(x(t), p(t), p0, η(t)), (6)

where the Hamiltonian H is defined by

H(x, p, p0, u) = p [ f0(x) + ρ f1(x, ω)] + p0ρ. (7)

Moreover, the following transversality condition holds:

p(t f ) = νdφ(x(t f )), (8)

where ν ∈ (Rl)∗ is a constant vector whose elements are Lagrangian multipliers. The 4-tuple
t �→ (x(t), p(t), p0, u(t)) on [0, t f ] is called an extremal. Furthermore, an extremal is called
a normal one if p0 	= 0, and it is called an abnormal one if p0 = 0. Abnormal extremals have
been ruled out in (Gergaud and Haberkorn 2006). Thus, in this paper only normal extremals
are considered and we set p0 = −1. By virtue of the maximum condition in Eq. (6), for
every extremal (x(·), p(·), p0, u(·)) on [0, t f ], the corresponding extremal control u(·) is a
function of (x(·), p(·)) on [0, t f ]: u(·) = u(x(·), p(·)) on [0, t f ]. In the rest of the paper, we
denote by (x(·), p(·)) ∈ T ∗X and u(x(·), p(·)) ∈ U on [0, t f ] the normal extremal and the
corresponding extremal control, respectively. We denote the maximized Hamiltonian by

H(x, p) := H0(x, p) + ρ(x, p)H1(x, p),
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466 Z. Chen

where H0(x, p) = p f0(x) and H1(x, p) = p f1(x, ω(x, p)) − 1. Given the scalar pm ∈
TmR+ and the column vectors pr ∈ TrR3 and pv ∈ TvR

3 such that p = [pTr , pTv , pm], the
maximum condition in Eq. (6) implies

ω = pv/ ‖ pv ‖, if ‖ pv ‖	= 0, (9)

and {
ρ = 1, if H1 > 0,

ρ = 0, if H1 < 0.
(10)

The optimal direction of the thrust vector τ is so collinear to pv , a well known fact (“primer
vector” theory of Lawden (1963)). If the switching function H1 has only isolated zeros along
an extremal (x(·), p(·)) on [0, t f ], this extremal is called a bang-bang extremal.

Definition 1 Along a bang-bang extremal (x(·), p(·)) on [0, t f ], an arc on a finite interval
[t1, t2] ⊂ [0, t f ] with t1 < t2 is called a maximum-thrust (or burn) arc if ρ = 1; otherwise it
is called a zero-thrust (or coast) arc.

3.2 Singular solutions and chattering arcs

An arc (x(·), p(·)) on [t1, t2] ⊆ [0, t f ] with t1 < t2 is said to be a singular one if
H1(x(·), p(·)) ≡ 0 on [t1, t2]. Note that themaximum condition in Eq. (6) is trivially satisfied
for every ρ ∈ [0, 1] if H1 ≡ 0. One can compute the optimal value of ρ on singular arcs by
repeatedly differentiating the identity H1 ≡ 0 until ρ explicitly appears. It is known from
(Kelley et al. 1966) that ρ appears in dq H1/dtq only if q is an even integer; the order of the
singular arc is then defined as q/2.

Proposition 1 Given a singular extremal (x(·), p(·)) on [t1, t2] ⊆ [0, t f ] with t1 < t2,
assume ‖pv(·)‖ 	= 0 on [t1, t2]. Then, we have that the order of the singular extremal is at
least two.

Proof Since H1 ≡ 0 along a singular arc, differentiating H1 with respect to time, one obtains

0 = H01 := {
H0, H1

} = −τmax
pTv [pr + dh(v)pv]

m ‖ pv ‖ , (11)

where the {·, ·} denotes the Poisson bracket. Using Leibniz rule, Eq. (11) implies

H101 := {
H1, H01

} = 0,

H1001 := {
H1,

{
H0, H01

}}
= {− H01, H01

}+ {
H0, H101

} = 0.

Then, the equality, 0 = H001 + ρH101, implies H001 = 0, whose implicit equation is

H001 = τmax
pTv dg(r)pv + [pr + 2dh(v)pv]T [pr + dh(v)pv]

m ‖ pv ‖ .

A direct calculation on this equation yields

H0001 := {
H0, H001

}
= τmax

m ‖ pv ‖
{[

pTv d
2g(r)pv

]
v − pTv dg(r)[2pr + 3dh(v)pv]

− [2dg(r)pv + 3dh(r)pr + 4(dh(v))2 pv]T [pr + dh(v)pv]
}
.

123



L1-optimality conditions 467

Eventually, one has 0 = Ḣ0001 = H00001 + ρH10001. Let αi (i = 1, 2) be defined by

cos(αi ) = pTv (r − ri )

‖ pv ‖‖ r − ri ‖ ,

the explicit expression of H10001 := {H1, H0001} is therefore

H10001 = τmax

[
pTv d

2g(r)pv

]
pv

m2 ‖ pv ‖2

= 3τmax
‖ pv ‖
m2

[
μ cosα2

3 − 5 cos2 α2

‖ r − r2 ‖4 + (1 − μ) cosα1
3 − 5 cos2 α1

‖ r − r1 ‖4
]

.

Note that the term H10001 does not vanish identically on a singular extremal. So the singular
extremal is of order two according to Kelley’s definition in (Kelley et al. 1966), which proves
the proposition. 
�
This proposition for the 3-dimensional case expands the work in (Zelikin and Borisov 2003)
where the motion of the spacecraft is restricted into a 2-dimensional plane and the work in
(Robbins 1965) where the model of two-body problem (μ = 0) is considered. Note that
Kelley’s second-order necessary condition (Kelley et al. 1966) in terms of ρ on singular arcs
is H10001 ≤ 0. Let

S = {
(x, p) ∈ T ∗X | H1 = H01 = H001 = H0001 = 0, H10001 ≤ 0

}
be the singular submanifold and denote by int(S ) the interior ofS . Note that int(S ) is not
empty according to (Zelikin and Borisov 2003).

Remark 1 According to the theorems developed by Zelikin and Borisov (1994), given every
point (x, p) ∈ int(S ), there exists a one parameter family of chattering solutions of Eqs. (5–
7) passing through the point (x, p) and another one parameter family of chattering solutions
of Eqs. (5–7) coming out from the point (x, p).

Though the efficient computation of chattering solutions is an open problem (see e.g., Ghezzi
et al. 2014; Park 2013), Remark 1 gives some insights on the control structure of the L1-
minimization trajectory; there exists a chattering arc when concatenating a singular arc with
a nonsingular arc if ρ is not saturate at the instant priori to the junction time.

4 Sufficient optimality conditions for bang-bang extremals

Definition 2 [Local Optimality (Poggiolini and Stefani 2004; Agrachev et al. 2002)] Given a
fixed final time t f > 0, an extremal trajectory x̄(·) ∈ X associated with the extremal control
ū(·) = (ρ̄(·), ω̄(·)) inU on [0, t f ] is said to be a weak-local optimum in L∞-topology (resp.
a strong-local optimum in C0-topology) if there exists an open neighborhood Wu ⊆ U of
ū(·) in L∞-topology (resp. an open neighborhoodWx ⊆ X of x̄(·) inC0-topology) such that
for every admissible controlled trajectory x(·) 	≡ x̄(·) in X associated with the measurable
control u(·) = (ρ(·), ω(·)) in Wu on [0, t f ] (resp. for every admissible controlled trajectory
x(·) 	≡ x̄(·) inWx associated with the measurable control u(·) = (ρ(·), ω(·)) inU on [0, t f ])
with the boundary conditions x(0) = x̄(0) and x(t f ) ∈ M , there holds∫ t f

0
ρ(t)dt ≥

∫ t f

0
ρ̄(t)dt.

We say it is a strict weak-local (resp. strong-local) optimum if the strict inequality holds.
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468 Z. Chen

4.1 Parameterized family of extremals

Let us define by

γ : [0, t f ] × T ∗
x0X → T ∗X , γ (t, p0) = (x(t), p(t)),

the solution trajectory of Eqs. (5–7) such that (x0, p0) = γ (0, p0). For every p0 ∈ T ∗
x0X ,

we say γ (·, p0) on [0, t f ] is an extremal.

Definition 3 We define p̄0 ∈ T ∗
x0X in such a way that the extremal γ (·, p̄0) at t f satisfies

the final condition in Eq. (3) and transversality condition in Eq. (8).

Definition 4 (Parameterized family of extremals) Given the extremal γ (·, p̄0) on [0, t f ], let
P ⊂ T ∗

x0X be an open neighbourhood of p̄0, we say that the subset

F = {
(x(t), p(t)) ∈ T ∗X | (x(t), p(t)) = γ (t, p0), t ∈ [0, t f ], p0 ∈ P

}
,

is a p0-parameterized family of extremals around the extremal γ (·, p̄0) on [0, t f ].
In the sequel, the mapping,

Π : T ∗X → X , (x, p) �→ x,

will denote the canonical projection from the cotangent bundle to the state space. Local
optimality of extremals is related to fold singularities of this projection through the notion
of conjugate and focal point (see e.g., Agrachev and Sachkov 2004; Bonnard et al. 2007).

4.2 Sufficient conditions for the case of l = n

Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ], let the positive integer k ∈ N be the
number of switching times ti (i = 1, 2, · · · , k) such that 0 < t1 < t2 < · · · < tk < t f .

Assumption 1 Along the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ], each switching point
(at the switching time ti ∈ (0, t f )) is assumed to be a regular one, i.e., H1(x̄(ti ), p̄(ti )) = 0
and H01(x̄(ti ), p̄(ti )) 	= 0 for i = 1, 2, · · · , k.

As a result, if the subsetP is small enough, the number of switching times on each extremal
γ (·, p0) ∈ F on [0, t f ] remains equal to k and the i-th switching time of the extremals
γ (·, p0) ∈ F on [0, t f ] is a smooth function of p0, i.e., the function

ti : P → R+, p0 �→ ti (p0).

is smooth by restricting P . Let

Fi = {
(x(t), p(t)) ∈ T ∗X |

(x(t), p(t)) = γ (t, p0), t ∈ (ti−1(p0), ti (p0)], p0 ∈ P
}
,

for i = 1, 2, · · · , k, k + 1 with t0 := 0 and tk+1 := t f . If the subset P is small enough,
there holds

F = F1 ∪ F2 ∪ · · · ∪ Fk ∪ Fk+1.

Let (x(·, p0), p(·, p0)) = γ (·, p0) on [0, t f ] be extremals in F . In order to avoid heavy
notations, denote by δ(·) the determinant of the matrix ∂x

∂p0
(·, p̄0) on [0, t f ], that is

δ(t) = det

[
∂x

∂p0
(t, p̄0)

]
, t ∈ [0, t f ].
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L1-optimality conditions 469

Fig. 2 A typical picture for a
fold singularity of the projection
ofF onto the state space X (see
Agrachev and Sachkov 2004)

Fig. 3 Fold singularity for the
projection around the switching
time ti (p0) on the right plot (see
Noble and Schättler 2002;
Schättler and Ledzewicz 2012)

Note that the projection of the subset Fi at a time tc ∈ (ti , ti+1) has a fold singularity if
δ(tc) = 0, as is shown by the typical picture for the occurrence of a conjugate point in Fig. 2.
If δ(·) 	= 0 on (ti , ti+1), the projection of the subsetFi restricted to the domain (ti , ti+1)×P
is a diffeomorphism (see Schättler and Ledzewicz 2012; Agrachev and Sachkov 2004). Let
us define the following condition.

Condition 1 δ(·) 	= 0 on the open subintervals (ti , ti+1) for i = 0, 1, · · · , k − 1 as well
as on the semi-open subinterval (tk, t f ].
Though this condition guarantees that both the restriction of Π(Fi ) on (ti−1, ti ) × P for
i = 1, 2, · · · , k and the restriction of Π(Fk+1) on (tk, t f ]×P are local diffeomorphisms,
it is not sufficient to guarantee that the projection of the family F restricted to the whole
domain (0, t f ] ×P is a diffeomorphism as well, as Fig. 3 shows that the flows x(t, p0) may
intersect with each other near a switching time ti (p0).

Remark 2 The behavior that the projection of F at a switching time ti is a fold singularity
can be excluded by a transversality condition established by Noble and Schättler (2002). This
condition is reduced to δ(ti−)δ(ti+) > 0 by Chen et al. (2016).

Condition 2 δ(ti−)δ(ti+) > 0 for each switching time ti for i = 1, 2, · · · , k.

If this condition is satisfied, the projection of the familyF around each switching time ti (p0)
is a diffeomorphism at least for a sufficiently small subset P (see Chen et al. 2016).
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470 Z. Chen

Remark 3 Given an extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ] such that every switching
point is regular (cf. Assumption 1) and Conditions 1 and 2 are satisfied, if the subset P
is small enough, every extremal γ (·, p0) on [0, t f ] for p0 ∈ P does not contain conjugate
points. Then, for every p0 ∈ P , we are able to construct a perturbed Lagrangian submanifold
Lp0 ⊂ T ∗X (see Chen et al. 2016, Appendix A) around the extremal γ (·, p0) on [0, t f ]
such that

(1) the projection of the Lagrangian submanifold Lp0 onto its image is a diffeomorphism;
and

(2) the domain Π(Lp0) is a tubular neighborhood of the extremal trajectory x(·, p0) =
Π(γ (·, p0)) on [0, t f ].

Then, directly applying the theory of field of extremals (cf. Agrachev and Sachkov 2004,
Theorem 17.1), one obtains the following result.

Theorem 1 [Agrachev and Sachkov (2004)] Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on
[0, t f ] such that each switching point is regular, let (ρ(·, p0), ω(·, p0)) ∈ U be the optimal
control function associated with the extremal γ (·, p0) ∈ F on [0, t f ]. Then, if Conditions 1
and 2 are satisfied and if the subsetP is small enough, every extremal trajectory x(·, p0) =
Π(γ (·, p0)) on [0, t f ] for p0 ∈ P realizes a strict minimum cost with respect to every
admissible controlled trajectory x∗(·) ∈ Π(Lp0) associated with the measurable control
(ρ∗(·), ω∗(·)) ∈ U on [0, t f ] with the same endpoints x(0, p0) = x∗(0) and x(t f , p0) =
x∗(t f ), i.e., ∫ t f

0
ρ(t, p0)dt ≤

∫ t f

0
ρ∗(t)dt,

where the equality holds if and only if x∗(·) ≡ x̄(·) on [0, t f ].
Remark 4 As a consequence of Theorem 1, one obtains thatConditions 1 and 2 are sufficient
to guarantee that the extremal trajectory x̄(·) on [0, t f ] is a strict strong-local optimum (cf.
Definition 2) if l = n.

Under Assumption 1, the projection of the familyF near the switching time ti (p0) is a fold
singularity if the strict inequality δ(ti−)δ(ti+) < 0 is satisfied (Chen et al. 2016).

Remark 5 Given the extremal γ (·, p̄0) on [0, t f ] such that each switching point is regular
(cf. Assumption 1), conjugate points can occur not only on each smooth bang arc at a time
tc ∈ (ti−1, ti ) if δ(tc) = 0 (see e.g., Agrachev and Sachkov 2004) but also at each switching
time ti if δ(ti−)δ(ti+) < 0 (see Noble and Schättler 2002).

The fact that conjugate points can occur at switching times generalizes the conjugate point
theory developed by the classical variational methods for totally smooth extremals (see
Bryson and Ho 1969; Breakwell and Ho 1965; Mermau and Powers 1976; Wood 1974).

4.3 Sufficient conditions for the case of l < n

In this subsection, we establish the sufficient optimality conditions when the dimension of
the final constraint submanifold M is not zero.

Remark 6 If l < n, to ensure that the extremal trajectory x̄(·) on [0, t f ] is a strict strong-local
optimum, in addition to Conditions 1 and 2, a further second-order condition (see e.g., Wood
1974; Brusch and Vincent 1970) is required to guarantee that every admissible controlled
trajectory x∗(·) ∈ Π(L p̄0) on [0, t f ], also verifying the boundary conditions x̄(0) = x∗(0)
and x∗(t f ) ∈ M \{x̄(t f )}, has a higher cost than the reference one.
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Fig. 4 The relationship between
N andM

Let N ⊂ X be the restriction of Π(F ) on {t f } × P , i.e.,

N = {
x ∈ X | x = Π(γ (t f , p0)), p0 ∈ P

}
.

The mapping p0 �→ x(t f , p0) on a sufficiently small subset P is a diffeomorphism if
δ(t f ) 	= 0, which indicates that the subsetN is an open neighborhood of x̄(t f ) if Condition
1 is satisfied. Thus, in the case of l < n, the subsetM ∩N \{x̄(t f } is not empty if δ(t f ) 	= 0.
(See Fig. 4.) For every sufficiently small subset P , let us define by Q ⊆ P a subset of all
p0 ∈ P satisfying Π(γ (t f , p0)) ∈ M ∩ N , i.e.,

Q = {
p0 ∈ P | Π(γ (t f , p0)) ∈ M ∩ N

}
.

Note that for every p0 ∈ Q there holds x0 = Π(γ (0, p0)) and Π(γ (t f , p0)) ∈ M .

Remark 7 For every p0 ∈ Q, the extremal trajectory x(·, p0) = Π(γ (·, p0)) on [0, t f ] is an
admissible controlled trajectory of the L1-minimization problem.

Definition 5 Given the reference extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ] and ε > 0 small
enough, we define by y : [−ε, ε] → M ∩N , η �→ y(η) a twice continuously differentiable
curve on M ∩ N such that y(0) = x̄(t f ).

Lemma 1 Given the reference extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ] such that each
switching point is regular (cf. Assumption 1) and Conditions 1 and 2 are satisfied, let l < n.
Then, if the subset P is small enough, for every smooth curve y(·) ∈ M ∩ N on [−ε, ε],
there exists a smooth path η �→ p0(η) on [−ε, ε] in Q such that y(·) = Π(γ (t f , p0(·))) on
[−ε, ε].
Proof Note that the mapping p0 �→ x(t f , p0) restricted to the subsetQ is a diffeomorphism
under the hypotheses of the lemma. One concludes using the inverse function theorem. 
�
Definition 6 Define a path λ : [−ε, ε] → T ∗

y(·)X , η �→ λ(η) in such a way that
(y(·), λ(·)) = γ (t f , p0(·)) on [−ε, ε]. Then, for every ξ ∈ [−ε, ε], we define by J :
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[−ε, ε] → R, ξ �→ J (ξ) the integrand of the Poincaré-Cartan form pdx − Hdt along
the extremal lift (y(·), λ(·)) on [0, ξ ], i.e.,

J (ξ) =
∫ ξ

0
λ(η)y′(η) − H(y(η), λ(η))

dt f
dη

dη, ξ ∈ [−ε, ε]. (12)

Proposition 2 In the case of l < n, given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ]
such that each switching point is regular (cf. Assumption 1) and Conditions 1 and 2 are
satisfied, assume ε > 0 is small enough. Then, the extremal trajectory x̄(·) on [0, t f ] is a
strict strong-local optimum if and only if there holds

J (ξ) > J (0), ξ ∈ [−ε, ε]\{0}, (13)

for every smooth curve y(·) ∈ M ∩ N on [−ε, ε].

Proof Let us first prove that, under the hypotheses of this proposition, Eq. (13) is a suffi-
cient condition for strict strong-local optimality. Denote by x∗(·) in Π(L p̄0) on [0, t f ] an
admissible controlled trajectory with boundary conditions x∗(0) = x̄(0) and x∗(t f ) ∈ M ∩
N \{x̄(t f )}. Let (ρ∗(·), ω∗(·)) ∈ U and (ρ(·, p0), ω(·, p0)) ∈ U on [0, t f ] be the measur-
able control and the optimal control associated with x∗(·) and x(·, p0) on [0, t f ], respectively.
According to Definition 5 and Lemma 1, for every final point x∗(t f ) ∈ M ∩ N \{x̄(t f )},
there must exist a ξ ∈ [−ε, ε]\{0} and a smooth path p0(·) ∈ Q associated with the
smooth curve y(·) ∈ M ∩ N on [−ε, ε] such that y(0) = x̄(t f ) = Π(γ (t f , p0(0)))
and y(ξ) = x∗(t f ) = Π(γ (t f , p0(ξ))). Since the trajectory x∗(·) on [0, t f ] has the same
endpoints as the extremal trajectory x(·, p0(ξ)) = Π(γ (·, p0(ξ))) on [0, t f ], according to
Theorem 1, one obtains

∫ t f

0
ρ∗(t)dt ≥

∫ t f

0
ρ(t, p0(ξ))dt, (14)

where the equality holds if and only if x∗(·) ≡ x(·, p0(ξ)) on [0, t f ]. Note that the four paths
(x0, p0(·)) on [0, ξ ], γ (·, p̄0) on [0, t f ], (x(·, p0(ξ)), p(·, p0(ξ))) = γ (·, p0(ξ)) on [0, t f ],
and (y(·), λ(·)) on [0, ξ ] constitute a closed curve on the family F . Since the integrand of
the Poincaré-Cartan form pdx − Hdt is closed on F (see Agrachev and Sachkov 2004;
Schättler and Ledzewicz 2012; Chen et al. 2016), one obtains

J (ξ) +
∫ t f

0

[
p̄(t) ˙̄x(t) − H(x̄(t), p̄(t))

]
dt

=
∫ t f

0

[
p(t, p0(ξ))ẋ(t, p0(ξ)) − H(x(t, p0(ξ)), p(t, p0(ξ)))

]
dt

+
∫ ξ

0

[
p0(η)

dx0
dη

− H(x0, p0(η))
dt0
dη

]
dη, (15)

where t0 = 0. Since x0 is fixed, one obtains

∫ ξ

0

[
p0(η)

dx0
dη

− H(x0, p0(η))
dt0
dη

]
dη = 0
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for every ξ ∈ [−ε, ε]. Then, taking into account Eq. (7), a combination of Eq. (15) with
Eq. (14) leads to∫ t f

0
ρ̄(t)dt =

∫ t f

0

[
p̄(t) ˙̄x(t) − H(x̄(t), p̄(t))

]
dt

= −J (ξ) +
∫ t f

0

[
p(t, p0(ξ))ẋ(t, p0(ξ)) − H(x(t, p0(ξ)), p(t, p0(ξ)))

]
dt

= −J (ξ) +
∫ t f

0
ρ(t, p0(ξ))dt

≤ −J (ξ) +
∫ t f

0
ρ∗(t)dt. (16)

Since J (0) = 0, Eq. (13) implies that the strict inequality∫ t f

0
ρ̄(t)dt <

∫ t f

0
ρ∗(t)dt, (17)

holds if ξ 	= 0 or x∗(t f ) 	= x̄(t f ). For the case of x∗(t f ) = x̄(t f ), Eq. (17) is satisfied as well
according to Theorem 1, which proves that Eq. (13) is a sufficient condition. Let us finally
prove that Eq. (13) is a necessary condition. Assume Eq. (13) is not satisfied; there exists a
smooth curve y(·) ∈ M ∩ N on [−ε, ε] and a ξ ∈ [−ε, ε]\{0} such that J (ξ) ≤ J (0) = 0.
Then, according to Eq. (16), one obtains∫ t f

0
ρ̄(t)dt ≥

∫ t f

0
ρ(t, p0(ξ))dt.

By restricting P , we have Π(F ) ⊂ Π(L p̄0). Therefore, the extremal trajectory
Π(γ (·, p0(ξ))) in Π(L p̄0) is an admissible trajectory of the L1-minimization problem (cf.
Remark 7), which proves the proposition. 
�
Proposition 3 Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ] such that each switching
point is regular (cf. Assumption 1) and Conditions 1 and 2 are satisfied, let l < n. Then, if
ε > 0 is small enough, the inequality J ′′(0) ≥ 0 (resp. the strict inequality J ′′(0) > 0) for
every smooth curve y(·) ∈ M ∩ N on [−ε, ε] is a necessary condition (resp. a sufficient
condition) for the strict strong-local optimality of the extremal trajectory x̄(·) on [0, t f ].
Proof Since the final time t f is fixed, Eq. (12) is reduced as

J (ξ) =
∫ ξ

0
λ(η)y′(η)dη.

Taking derivative of J (ξ) with respect to ξ yields

J ′(ξ) = λ(ξ) · y′(ξ). (18)

Note that λ(0) = p̄(t f ). Taking into account Eq. (8), for every smooth curve y(·) ∈ M ∩N
on [−ε, ε], we have J ′(0) = λ(0)y′(0) = 0 since y′(0) is a tangent vector of the submanifold
M at x̄(t f ). Then, according to Proposition 2, this proposition is proved. 
�
Definition 7 Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ], denote by ν̄ ∈ (Rl)∗ the
vector of the Lagrangian multipliers of this extremal such that

p̄(t f ) = ν̄dφ(x̄(t f )).
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Proposition 4 In the case of l < n, given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ]
such that each switching point is regular (cf. Assumption 1), assume Conditions 1 and 2 are
satisfied. Then, the inequality J ′′(0) ≥ 0 (resp. strict inequality J ′′(0) > 0) is satisfied for
every smooth curve y(·) ∈ M ∩ N on [−ε, ε] if and only if there holds

ζ T

{
∂pT (t f , p̄0)

∂p0

[
∂x(t f , p̄0)

∂p0

]−1

− ν̄d2φ(x̄(t f ))

}
ζ ≥ 0 (resp. > 0),

for every tangent vector ζ ∈ Tx̄(t f )M \{0}.

Proof Differentiating J ′(ξ) in Eq. (18) with respect to ξ yields

J ′′(ξ) = λ′(ξ)y′(ξ) + λ(ξ)y′′(ξ). (19)

Then, differentiating φ(y(ξ)) with respect to ξ yields

d

dξ
φ(y(ξ)) = dφ(y(ξ))y′(ξ) = 0,

d2

dξ2
φ(y(ξ)) = [d2φ(y(ξ))y′(ξ)]y′(ξ) + dφ(y(ξ))y′′(ξ) = 0. (20)

Since (x̄(t f ), p̄(t f )) = (y(0), λ(0)), according to the definition of the vector ν̄ inDefinition 7,
one immediately has λ(0) = ν̄dφ(y(0)). Thus, multiplying ν̄ on both sides of Eq. (20) and
fixing ξ = 0, we obtain

ν̄
d2φ(y(0))

dξ2
= λ(0)y′′(0) + ν̄

[
d2φ(y(0))y′(0)

]
y′(0)

= λ(0)y′′(0) + [
y′(0)

]T [
ν̄d2φ(y(0))

]
y′(0)

= 0.

Substituting this equation into Eq. (19) yields

J ′′(0) = λ′(0)y′(0) − [
y′(0)

]T [
ν̄d2φ(y(0))

]
y′(0). (21)

Note that we have

y′(ξ) = dx(t f , p0(ξ))

dξ
= ∂x(t f , p0(ξ))

∂p0

[
p′
0(ξ)

]T
,

[
λ′(ξ)

]T = dpT (t f , p0(ξ))

dξ
= ∂pT (t f , p0(ξ))

∂p0

[
p′
0(ξ)

]T
. (22)

Since the matrix
∂x(t f ,p0(ξ))

∂p0
is nonsingular if Condition 1 is satisfied, we have

[
p′
0(ξ)

]T =
[

∂x(t f , p0(ξ))

∂p0

]−1

y′(ξ).

Substituting this equation into Eq. (22) yields

[
λ′(ξ)

]T = ∂pT (t f , p0(ξ))

∂p0

[
∂x(t f , p0(ξ))

∂p0

]−1

y′(ξ).
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Substituting again this equation into Eq. (21) and taking into account p̄0 = p0(0) and x̄(t f ) =
y(0), we eventually get that for every smooth curve y(·) ∈ M ∩ N on [−ε, ε] there holds

J ′′(0) = [
y′(0)

]T {∂pT (t f , p̄0)

∂p0

[
∂x(t f , p̄0)

∂p0

]−1

− ν̄d2φ(x̄(t f ))
}
y′(0).

Note that the vector y′(0) can be an arbitrary vector in the tangent space Tx̄(t f )X \{0}, which
proves the proposition. 
�

Condition 3 Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ], let

ζ T

{
∂pT (t f , p̄0)

∂p0

[
∂x(t f , p̄0)

∂p0

]−1

− ν̄d2φ(x̄(t f ))

}
ζ > 0,

be satisfied for every vector ζ ∈ Tx̄(t f )M \{0}.

Then, as a combination of Propositions 3 and 4 , we obtain the following result.

Theorem 2 Given the extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ] such that every switching
point is regular (cf. Assumption 1), let l < n. Then, if Conditions 1, 2, and 3 are satisfied,
the extremal trajectory x̄(·) on [0, t f ] realizes a strict strong-local optimum.
Consequently, in the case of l < n, Conditions 1, 2, and 3 are sufficient to guarantee a
bang-bang extremal with regular switching points to be a strict strong-local optimum. In next
section, the numerical implementation for these three conditions will be derived.

5 Numerical implementation for sufficient optimality conditions

In this section, we assume that the reference extremal (x̄(·), p̄(·)) = γ (·, p̄0) on [0, t f ]
is computed by applying necessary conditions, which means that the final time t f and the
switching time ti are known before testing sufficient conditions. In accordance with Defini-
tion 7, the vector ν̄ of Lagrangian multipliers in Condition 3 can be computed by

ν̄ = p̄(t f )dφT (x̄(t f ))
[
dφ(x̄(t f ))dφT (x̄(t f ))

]−1
. (23)

Definition 8 We define by C ∈ R
n×(n−l) a full-rank matrix such that its columns form a

basis of the tangent space Tx̄(t f )M .

One immediately gets that Condition 3 is satisfied if and only if there holds

CT

{
∂pT (t f , p̄0)

∂p0

[
∂x(t f , p̄0)

∂p0

]−1

− ν̄d2φ(x̄(t f ))

}
C � 0. (24)

The matrix C can be computed by a simple Gram-Schmidt process once the explicit expres-
sion of the matrix dφ(x̄(t f )) is derived. Thus, it amounts to compute the matrix ∂x

∂p0
(·, p̄0)

on [0, t f ] and the matrix ∂pT

∂p0
(·, p̄0) at t f in order to test Conditions 1, 2, and 3 .

It follows from the classical results about solutions to ODEs that the extremal trajectory
(x(t, p0), p(t, p0)) and its time derivative are continuously differentiable with respect to p0
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on [0, t f ]. Thus, taking derivative of Eq. (5) with respect to p0 on each segment (ti , ti+1),
we obtain⎡

⎣ d
dt

∂x
∂p0

(t, p̄0)

d
dt

∂pT

∂p0
(t, p̄0)

⎤
⎦ =

[
Hpx (x̄(t), p̄(t)) Hpp(x̄(t), p̄(t))

−Hxx (x̄(t), p̄(t)) −Hxp(x̄(t), p̄(t))

]⎡
⎣ ∂x

∂p0
(t, p̄0)

∂pT

∂p0
(t, p̄0)

⎤
⎦ . (25)

Since the initial point x0 is fixed, one can obtain the initial conditions as

∂x

∂p0
(0, p̄0) = 0n,

∂pT

∂p0
(0, p̄0) = In, (26)

where 0n and In denote the zero and identity matrix of Rn×n , respectively. Note that the two

matrices ∂x
∂p0

(·, p̄0) and ∂pT

∂p0
(·, p̄0) are discontinuous at each switching time ti . Comparing

with (Schättler and Ledzewicz 2012; Noble and Schättler 2002; Chen et al. 2016), the update

formulas for the two matrices ∂x
∂p0

(·, p̄0) and ∂pT

∂p0
(·, p̄0) at each switching time ti can be

written as

∂x

∂p0
(ti+, p̄0) = ∂x

∂p0
(ti−, p̄0) − �ρi f1(x(ti ), ω(ti ))dti ( p̄0), (27)

∂pT

∂p0
(ti+, p̄0) = ∂pT

∂p0
(ti−, p̄0) + �ρi

∂ f1
∂x

(x(ti ), ω(ti )p
T (ti )dti ( p̄0), (28)

where �ρi = ρ(ti+) − ρ(ti−). Up to now, every requested quantity but dti ( p̄0) can be
explicitly computed. For every p0 ∈ P there holds

H1(x(ti (p0), p0), p(ti (p0), p0)) = 0. (29)

Taking into account Ḣ1(x(t), p(t)) = H01(x(t), p(t)) and differentiating Eq. (29) with
respect to p0 yields

0 = H01(x(ti , p0), p(ti , p0))dti (p0) + p(ti , p0)
∂ f1
∂x

(x(ti , p0), ω(ti , p0))
∂x(ti , p0)

∂p0

+ f T1 (x(ti , p0), ω(ti , p0))
∂pT (ti , p0)

∂p0
.

By virtue of Assumption 1, there holds H01(x̄(ti ), p̄(ti )) 	= 0 for i = 1, 2, · · · , k. Thus,
we obtain

dti ( p̄0) = −
[
p(ti , p̄0)

∂ f1
∂x

(x(ti , p0), ω(ti , p0))
∂x(ti , p̄0)

∂p0

+ f T1 (x(ti , p̄0), ω(ti , p̄0))
∂pT (ti , p̄0)

∂p0

]/
H01(x̄(ti ), p̄(ti )).

Therefore, in order to compute the two matrices ∂x
∂p0

(·, p̄0) and ∂pT

∂p0
(·, p̄0) on [0, t f ], it is

sufficient to choose the initial condition in Eq. (26), then to numerically integrate Eq. (25)
and to use Eqs. (27) and (28) when a switching point is encountered.

According to (Chen et al. 2016), given every bang-bang extremal γ (·, p̄0) on [0, t f ], δ(·)
is a constant on zero-thrust arcs. Hence, to check optimality, it suffices to test the zero of δ(·)
on each maximum-thrust arc and to test the non-positivity of δ(ti−)δ(ti+) at each switching
time ti .
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6 Orbital transfer computation

In this section, we consider the three-body problem defined by Earth, Moon and a spacecraft.
Since the orbits of the Earth and the Moon around their common centre of mass are nearly
circular (the eccentricity is around 5.49 × 10−2), and since the mass of a spacecraft is
negligible compared with that of the two celestial bodies, the CRTBP is valid (see Szebehely
1967). The physical parameters corresponding to the Earth-Moon system are μ = 1.2153×
10−2, d∗ = 384, 400.00 km, and t∗ = 3.7521 × 105 seconds (or 4.3427 days). The initial
mass of the spacecraft is specified as m∗ = 500 kg, the maximum thrust of the spacecraft
engine is 1.0 N,

τmax = 1.0
t2∗

m∗d∗
,

so that the initial maximum acceleration is 2.0× 10−3 m2/s. The spacecraft initially evolves
on a circular geosynchronous Earth orbit (GEO) lying on the XY -plane such that the radius
of the initial orbit is rg = 42, 165.00 km. When the spacecraft moves to the point on X -axis
between the Earth and the Moon, i.e., ‖ r(0) ‖= rg/d∗ −μ, we start to control the spacecraft
to reach a circular orbit around the Moon with radius rm = 13, 069.60 km such that the
L1-norm of control is minimized at the fixed final time t f = 38.46 days. Accordingly, the
initial state x0 = (r0, v0,m0) is given as

r0 = (rg/d∗ − μ, 0, 0)T , v0 = (0, vg, 0)
T , and m0 = 500/m∗,

where vg is the non-dimensional velocity taking the value such that, without any control, the
spacecraft moves freely on the GEO, and an explicit expression of the function φ in Eq. (3)
is

φ(x f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 ‖ r(t f ) − [1 − μ, 0, 0]T ‖2 − 1

2 (rm/d∗)2

1
2 ‖ v(t f ) ‖2 − 1

2v
2
m

vT (t f ) · (r(t f ) − [1 − μ, 0, 0]T )

rT (t f ) · 1Z
vT (t f ) · 1Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

where 1z = [0, 0, 1]T denotes the unit vector of the Z -axis of the rotating frame OXY Z and
vm is the non-dimensional velocity taking the value such that the spacecraft, once steered to
a point x f with φ(x f ) = 0, will freely move on the final circular orbit around the Moon with
radius rm .

We consider the constant mass model, β = 0, since this model captures the main features
of the original problem (see Chen et al. 2016; Caillau et al. 2012; Caillau andDaoud 2012). In
this case, the massm is a constant parameter instead of a state in the system Σ , so x = (r, v)

and p = (pr , pv). First, we compute the extremal (x̄(·), p̄(·)) on [0, t f ]. We search a zero
of the shooting function corresponding to a two-point boundary value problem (Pan et al.
2013). A simple shooting method does not allow one to solve this problem because one does
not know a priori the structure of the optimal control. Moreover, the numerical computation
of the shooting function and its differential may be intricate, as the function may not even
be differentiable (typically at points corresponding to a change in the structure of the control
strategy, that is a change in the number of switchings, here).We use a regularization procedure
in (Caillau et al. 2012) that smoothes the controls discontinuities and get an energy-optimal
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trajectory first, then use a homotopy method to find the real trajectory with a bang-bang
control. Note that both the initial point x0 and the final constraint submanifold M lie on the
XY -plane, in order that the whole trajectory lies on the XY -plane as well. Fig. 5 illustrates
the (non-dimensional) profile of the position vector r along the computed extremal trajectory.
The profiles of ρ, ‖ pv ‖, and H1 with respect to time are shown in Fig. 6; we can see that
the number of maximum-thrust arcs is 15 with 29 switching points and that the regularity
condition in Assumption 1 at every switching point is satisfied. Since the extremal trajectory
is computed thanks to necessary conditions, one has to check sufficient optimality conditions
to make sure that it is at least locally optimal. According to what has been developed in
Sect. 4, it suffices to check if Conditions 1, 2, and 3 are satisfied. Using Eqs. (25–28), one can
compute δ(·) on [0, t f ]. In order to have a clear view, the profile of δ(·) on [0, t f ] is rescaled
by sgn(δ(·)) ∗ |δ(·)|1/12 (see Fig. 7). We can see that there exist no sign changes at switching
points, and no zeros on smooth bang subarcs. Thus, Conditions 1 and 2 are satisfied along
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Fig. 5 Non-dimensional profile of the position vector r of the L1-minization trajectory in the rotating frame
OXY Z . The thick curves are the maximum-thrust arcs, while the thin curves are the zero-thrust ones. The
bigger dashed circle and the smaller one are the initial and final circular orbits around the Earth and the Moon,
respectively
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Fig. 6 Profiles of ρ, ‖ pv ‖, and H1 with respect to time along the L1-minimization trajectory
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Fig. 8 Let X (ξ) and Y (ξ) be the projection of the position vector r(ξ) on X - and Y -axis of the rotating frame
OXY Z , respectively, and let Vx (ξ) and Vy(ξ) be the projection of the velocity vector v(ξ) on X - and Y -axis of
the rotating frame OXY Z , respectively. The figure plots the profiles J (ξ) with respect to X (ξ), Y (ξ), Vx (ξ),
and Vy(ξ). The dots on each plot denote (J (0), y(0))

the computed extremal. To check Condition 3, differentiating φ(·) in Eq. (30) yields

dφ(x̄(t f )) =
[
r(t f ) − [1 − μ, 0, 0]T 03×1 v(t f ) 1Z 03×1

03×1 v(t f ) r(t f ) − [1 − μ, 0, 0]T 03×1 1Z

]T
, (31)
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and

d2φ1(x̄(t f )) =
(
I3 03
03 03

)
, d2φ2(x̄(t f )) =

(
03 03
03 I3

)
,

d2φ3(x̄(t f )) =
(
03 I3
I3 03

)
, d2φ4(x̄(t f )) = d2φ5(x̄(t f )) = 06,

whereφi (·) : X → R, x �→ φi (x) for i = 1, 2, · · · , l are the elements of the vector-valued
function φ(x). Then, substituting the values of x̄(t f ) and p̄(t f ) into Eq. (23), the vector ν̄

can be computed. With the exception of the matrix C , all quantities in Eq. (24) are obtained.
One can use a Gram-Schmidt process to compute the matrix C associated with the matrix in
Eq. (31). Substituting numerical values into Eq. (24), we eventually obtain

CT

{
∂pT (t f , p̄0)

∂p0

[
∂x(t f , p̄0)

∂p0

]−1

− ν̄d2φ(x̄(t f ))

}
C ≈ 0.5292 � 0.

Thus, Condition 3 is satisfied. Fig. 8 shows the profile of J (·) with respect to y(·) ∈ M ∩N
in a small neighbourhood of x̄(t f ). One can clearly see that J (·) > J (0) on [−ε, ε]\{0}.
All the conditions in Theorem 2 are satisfied, So the computed L1-minimization trajectory
realizes a strict strong-local optimum in C0-topology.

7 Conclusion

In this paper, the Pontryaginmaximumprinciple is first used to derive theHamiltonian system
associatedwith theL1-minimization problem for the translationalmotionof a spacecraft in the
CRTBP, showing that the optimal control canbebang-bangor singular. The singular extremals
are of at least order two, revealing the existence of the Fuller (or chattering) phenomenon.
To establish sufficient optimality conditions in the bang-bang case, a parameterized family
of extremals is constructed. We obtain that conjugate points (focal points if one considers a
genuine submanifold target) may occur not only on maximum-thrust arcs between switching
times but also at switching times. Directly applying the theory of field of extremals, we
obtain that the disconjugacy conditions (cf. Conditions 1 and 2) are sufficient to guarantee
that an extremal is locally optimal if the endpoints are fixed. When the dimension of the
final constraint submanifold is not zero, we establish a further second-order condition (cf.
Condition 3) that is sufficient for the strict strong-local optimality of a bang-bang extremal
if the disconjugacy conditions are satisfied. In addition, the numerical implementation of
these optimality conditions is derived. Finally, an example of transferring a spacecraft from a
circular orbit around the Earth to an orbit around theMoon is computed in the CRTBPmodel.
The second-order sufficient optimality conditions developed in this paper are tested to show
that the computed extremal realizes a strict strong-local optimum. The sufficient optimality
conditions for problems with free final time will be considered in a future work.

Acknowledgments The author is funded by China Scholarship Council (Grant No. 201306290024).

References

Agrachev, A.A., Sachkov, Y.L.: Control Theory from theGeometric Viewpoint, Encyclopedia ofMathematical
Sciences, vol. 87. Springer, Berlin (2004)

123



L1-optimality conditions 481

Agrachev, A.A., Stefani, G., Zezza, P.: Strong optimality for a bang-bang trajectory. SIAM J. Control Optim.
41(4), 1991–2041 (2002)

Bonnard, B., Caillau, J.B., Trélat, E.: Second-order optimality conditions in the smooth case and applications
in optimal control. ESAIM Control Optim. Calc. Var. 13(2), 207–236 (2007)

Breakwell, J.V., Ho, Y.C.: On the conjugate point condition for the control problem. Int. J. Eng. Sci. 2, 565–579
(1965)

Brusch, R.G., Vincent, T.L.: Numerical implementation of a second-order variable endpoint condition. AIAA
J. 8(12), 2230–2235 (1970)

Bryson, A., Ho, Y.: Applied Optimal Control. Blaisdell, Waltham (1969)
Caillau, J.B., Daoud, B.: Minimum time control of the restricted three-body problem. SIAM J. Control Optim.

50(6), 3178–3202 (2012)
Caillau, J.B.,Daoud,B.,Gergaud, J.:Minimumfuel control of the planar circular restricted three-bodyproblem.

Celest. Mech. Dyn. Astron. 114, 137–150 (2012)
Chen, Z., Caillau, J.B., Chitour, Y.: L1-minimization for mechanical systems. SIAM J. Control Optim. 54(3),

1245–1265 (2016)
Flies, M., Hazewinkel, M. (eds.): Envelopes, Conjugate Points and Optimal Bang-Bang Extremals. In: Pro-

ceedings 1985 Paris Conference on Nonlinear Systems, Reidel Publishers, Dordrecht, the Netherlands
(1987)

Gergaud, J., Haberkorn, T.: Homotopy method for minimum consumption orbital transfer problem. ESAIM
Control Optim. Calc. Var. 12, 294–310 (2006)

Ghezzi, R., Caponigro, M., Piccoli, B., Trélat, E.: Regularization of chattering phenomena via bounded vari-
ation controls. In: NetCo 2014, Tours, France (2014)

Kelley, H.J., Kopp, R.E., Moyer, A.G.: Singular Extremals, Optimization-Theory and Applications, vol. 1.
Academic Press, New York (1966)

Kupka, I.: Geometric theory of extremals in optimal control problems i: the fold and Maxwell case. Trans.
Am. Math. Soc. 299(1), 225–243 (1987)

Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworth, London (1963)
Marchal, C.: Chattering arcs and chattering controls. J. Optim. Theory Appl. 11(5), 441–486 (1973)
Mermau, P.M., Powers, W.F.: Conjugate point properties for linear quadratic problems. J. Math. Anal Appl.

55, 418–433 (1976)
Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech.

Dyn. Astron. 105(1–3), 61–74 (2009)
Noble, J., Schättler, H.: Sufficient conditions for relative minima of broken extremals in optimal control theory.

J. Math. Anal. Appl. 269, 98–128 (2002)
Ozimek,M.T., Howell, K.C.: Low-thrust transfers in the earth-moon system, including applications to libration

point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010)
Pan, B., Chen, Z., Lu, P., Gao, B.: Reduced transversality conditions for optimal space trajectories. J. Guid.

Control Dyn. 36(5), 1289–1300 (2013)
Park, C.: Necessary conditions for the optimality of singular arcs of spacecraft trajectories subject to multiple

gravitational bodies. Adv. Space Res. 51, 2125–2135 (2013)
Poggiolini, L., Stefani, G.: State-local optimality of a bang-bang trajectory: a hamiltonian approach. Syst.

Control Lett. 53, 269–279 (2004)
Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal

processes (K. N. Trirogoff, Trans. from the Russian). In: Neustadt, L. W. (ed.). Interscience Publishers,
London (1962)

Robbins, H.M.: Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 3(6), 1094–1098 (1965)
Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem.

SIAM J. Appl. Dyn. Syst. 6(3), 576–596 (2007)
Sarychev, A.V.: The index of second variation of a control system. Matematicheskii Sb. 41, 338–401 (1982)
Schättler, H., Ledzewicz, U.: Geometric Optimal Control: Theory, Methods, and Examples. Springer, Berlin

(2012)
Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, Cambridge (1967)
Wood, L.J.: Second-order optimality conditions for the Bolza problem with endpoints variable. J. Aircr. 11(4),

212–221 (1974)
Zelikin, M.I., Borisov, V.F.: Theory of Chattering Control with Applications to Astronautics, Robotics, Eco-

nomics, and Engineering. Birkhäuser, Basal (1994)
Zelikin, M.I., Borisov, V.F.: Optimal chattering feedback control. J. Math. Sci. 114(3), 1227–1344 (2003)
Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular

restricted three-body problem. J. Guid. Control Dyn. 38(8), 1501–1510 (2015)

123


	L1-optimality conditions for the circular restricted three-body problem
	Abstract
	1  Introduction
	2 Definitions and notations
	2.1 Dynamics
	2.2 L1-minimization problem

	3 Necessary conditions
	3.1 Pontryagin maximum principle
	3.2 Singular solutions and chattering arcs

	4 Sufficient optimality conditions for bang-bang extremals
	4.1 Parameterized family of extremals
	4.2 Sufficient conditions for the case of l=n
	4.3 Sufficient conditions for the case of l<n

	5 Numerical implementation for sufficient optimality conditions
	6 Orbital transfer computation
	7 Conclusion
	Acknowledgments
	References




