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Abstract Small tidal forces in the Earth–Moon system cause detectable changes in the orbit.
Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a,
and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar
dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of
theEarth and increases obliquity.A tidal accelerationmodel is used for integration of the lunar
orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two
lunar dissipation parameters. Additional parameters come from geophysical knowledge of
terrestrial tides. When those parameters are converted to secular rates for orbit elements, one
obtains dn/dt =−25.97±0.05′′/cent2, da/dt = 38.30± 0.08mm/year, and di /dt =−0.5± 0.1
μas/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes
gives∼3×10−12/year for the latter; solving for three LLR tidal time delays without the extra
de/dt gives a larger phase lag of theN2 tide so that total de/dt = (1.50±0.10)×10−11/year. For
total dn/dt , there is≤1% difference between geophysical models of average tidal dissipation
in oceans and solid Earth and LLR results, and most of that difference comes from diurnal
tides. The geophysicalmodel predicts that tidal deceleration of Earth rotation is−1316′′/cent2
or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity
rate of 9μas/year. For evolution during past times of slow recession, the eccentricity rate can
be negative.
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1 Introduction

Tidal forces in the Earth–Moon system are 11 orders of magnitude weaker than the central
force. The forces from tidal dissipation are another order of magnitude smaller. Nevertheless,
accumulated effects of tidal dissipation cause observable changes in the lunar orbit andmajor
evolution during the lifetime of the Earth–Moon system. Tidal dissipation in the oceans and
solid Earth cause the Moon to recede from the Earth by a reported 3.81 ± 0.02 cm/year
(Williams et al. 2013, 2014a). Energy and angular momentum are transferred from terrestrial
spin to the lunar and solar orbits. Tides in the Moon decrease the recession rate by ∼1 %, but
they are more important for eccentricity rate. The current secular changes in semimajor axis
and eccentricity are part of long time orbit evolution. An accurate numerical integration of the
lunar orbit requires a model for tidal interactions between both bodies. Lunar laser ranging
(LLR) data of recent decades have accuracies from centimeters to millimeters (Samain et al.
1998; Murphy et al. 2008, 2012) and the integrated orbit that is used for analysis must be of
high quality.

Satellites in low Earth orbit are strongly affected by tides in the oceans and solid Earth. At
the lunar distance the tidal acceleration is feeble, allowing simpler tidal interaction models,
but the model must be good enough to generate secular changes in semimajor axis, mean
motion, and eccentricity along with a long period (18.6 year) modulation. The tidal model for
LLR started with one Love number for tide amplitude and one angle for a geometric rotation
of the tidal bulge (Williams et al. 1978). The next level of complexity used a Love number
and time delay pair for each of the three frequency bands of degree-two spherical harmonics:
semidiurnal (order m = 2), diurnal (m = 1), and zonal (m = 0) (Standish and Williams 2013).
This three-band approach allowed tidal accelerations for diurnal and semidiurnal tides to be
reported (Dickey et al. 1994; Williams and Boggs 2009).

This paper adds two more parameters that allow the diurnal and semidiurnal time delays
to vary with frequency. The dominant tidal components within each band are not the same for
semimajor axis and eccentricity change, so the frequency dependence allows the eccentricity
and semimajor axis rates to be more independent and realistic. The tidal potential and the
new frequency dependent model for acceleration are subjects of Sect. 2.

Degree-2 terrestrial tides can be expressed as a Fourier series containing semidiurnal,
diurnal, and long periods. An expansion of the tide raising potential is given in Sect. 3.
Geophysical knowledge of the Love numbers and phase shifts of an Earth with oceans is
discussed in Sect. 4.

To convert the tidal Love numbers and time delays into secular rates of change for mean
motion dn/dt , semimajor axis da/dt , and eccentricity de/dt , theoretical expressions are given
and evaluated in Sect. 5. Deceleration of terrestrial spin rate is given alongwith obliquity rate.
Three solutions for tidal acceleration parameters that fit lunar laser ranging (LLR) data are
given in Sect. 6. The evaluation of these rates of change for two LLR solutions is presented
in Sect. 7.

As a caution, three possible sources of unintended acceleration are described in Sect. 8.
Discussions of several points follow in Sect. 9. A summary in Sect. 10 is followed by a listing
of notation.

2 Tidal potential

The gravitational attraction of the Moon and Sun varies across the diameter of the Earth. In
the vicinity of the Earth, the two potentials can be expressed as the sum of a potential at the
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Secular tidal changes in lunar orbit and Earth rotation 91

Earth’s center and noncentral tidal potential terms W2, W3, etc. of increasing degree. Tidal
forces cause the Earth to distort and that distortion generates additional potential terms V2,
V3, etc. In this section we concentrate on the largest of the tide-raising potential terms, the
degree-2 W2, and the potential V2 arising from the degree-2 distortion.

2.1 Theory

The degree-2 tide-raising potential from the Moon or Sun at a point at radius r from the
center of the Earth is

W2 (r,�) = GM ′r2

r ′3 P2 (cos�) (1)

where G is the gravitational constant, M ′ is the mass of tide-raising body, Θ is the Earth-
centered angle between the external body and the point selected for the potential, r ′ is the
distance from the center of the Earth to the body’s center, and r < r ′. The degree-2 unnor-
malized Legendre polynomial is P2(cos Θ) = (3cos2 Θ − 1)/2. For tides raised by the
Moon, analogous third- and higher-degree tides weaken by nearly 2 orders of magnitude
(R/r ′ ≈ 1/60) per degree. For the potentials in this paper, excess mass causes a positive
potential and a stronger attraction, which is a common sign convention in dynamics and
geodesy.

The addition theorem for unnormalized degree-2 spherical harmonic functions is

P2(cos�) = P20(sin φ)P20(sin φ′) + 1

3
P21(sin φ)P21(sin φ′) cos(λ′ − λ)

+ 1

12
P22(sin φ)P22(sin φ′) cos(2λ′ − 2λ), (2)

where cos Θ = sin φ sin φ′ + cos φ cos φ′ cos(λ′ − λ), coordinates λ and φ are the
terrestrial longitude and latitude of a point, and primed coordinates refer to the tide raising
body, which may be Moon or Sun. The latitude φ of a point is referred to the equator
and its terrestrial longitude λ is with respect to the zero meridian. Since longitudes always
appear as differences in Eq. (2), we can connect terrestrial and astronomical coordinates with
λ − λ′ = α − θ − (α′ − θ )=α − α′, where right ascension α and Greenwich mean sidereal
time θ are referred to the precessing equinox. The tide raising potential on the surface r = R
can be expressed as

W2(R, λ, φ) = GM ′R2

a′3

(
a′

r ′

)3

×
[
P20(sin φ)P20(sin φ′) + 1

3 P21(sin φ)P21(sin φ′) cos(λ′ − λ)

+ 1
12 P22(sin φ)P22(sin φ′) cos(2λ′ − 2λ)

]
(3)

where a′ is the semimajor axis of the tide raising body. On the Earth, the 2,0 component gives
rise to the long period zonal tides, the 2,1 part causes diurnal tides, and the 2,2 term causes
semidiurnal tides.

For tidal distortion, first consider an Earth without oceans. For r equal to a reference
radius R to the surface, the simplest form for the potential on the surface from an elastic tidal
distortion of a spherically symmetric Earth is

V2(R,�) = k2W2(R,�), (4)

where k2 is a degree-2 Love number that depends on the elastic properties, density, and
structure of the Earth. That surface potential has the shape of a degree-2 spherical harmonic
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92 J. G. Williams, D. H. Boggs

so the external potential decreases in proportion to (R/r)3. Consequently, for an external
point at a radius r ≥ R, the potential from the tidal distortion is

V2(r,�) = k2GM ′R5

r3r ′3 P2(cos�). (5)

Now Θ is the Moon or Sun centered angle between the tide-raising body and the external
point at radius r . The gradient of Eq. (5) with respect to the unprimed coordinates gives
acceleration. For a given radius r , tidal gravity is strongest directly toward or away from the
tide-raising body where Θ is 0◦ or 180◦.

The Earth’s core-mantle boundary (CMB) is oblate and that causes the Love numbers to
be frequency dependent. Equation (3) separates the tide raising potential at Earth into three
frequency bands: the 2,0 zonal term gives long period tides, the 2,1 part causes diurnal tides,
and the 2,2 part causes semidiurnal tides. The next approximation for V2 uses three Love
numbers k20, k21, and k22 for the three tidal bands.

V2(r, λ, φ) = GM ′R5

a3a′3
(a
r

)3 (a′

r ′

)3

×
[
k20P20(sin φ)P20(sin φ′) + k21

3 P21(sin φ)P21(sin φ′) cos(λ′ − λ)

+ k22
12 P22(sin φ)P22(sin φ′) cos(2λ′ − 2λ)

]
(6)

The Earth dissipates tidal energy. Dissipation also causes the Love number to depend on
frequency and, in addition, it shifts the phase of each periodic variation in V2 caused by W2

variations. Models for the tidal response can be as simple as either one Love number and
phase shift or time delay for each of the three bands or they can be as complicated as separate
Love numbers and phase shifts for each tidal period.

The Earth’s oceans do not have simple shapes. Consequently, their tidal response is more
complicated than Eqs. (4–6) imply. On the surface with radius R, the tidal potential W2(R)

of Eq. (3) can be expanded into a periodic series. Then the resulting external potential V2
of Eq. (6) has a spherical harmonic expansion for each periodic term in the degree-2 series.
This extensive tidal expansion is necessary when modeling the motion of artificial satellites
(Petit and Luzum 2010). Owing to its distance, tidal acceleration at the Moon is small. Terms
of higher degree than 2 are too weak at the Moon to be important. Terms of degree 1 affect
the displacement between the center of mass of the whole Earth and the center of figure of
the solid surface, but do not influence the gravity field. That leaves degree-2 terms. We are
interested in secular and long period perturbations that arise from the part of the potential
that has the form of Eq. (6). Consequently, we ignore most of the ocean expansion and
combine degree-2 and order m solid Earth tides with ocean tides of the same degree, order,
and period in what follows. As a result of the oceans and the geophysics of the Earth, the Love
numbers can now depend on tidal period. Dissipation in solid Earth and oceans introduces
a frequency dependent phase shift. The variation of strength and phase of the tidal response
can be represented by complex Love numbers k2*(P), where P is period.

2.2 Integrator model for tidal acceleration

The gradient of the potential of Eq. (6) gives the tidal acceleration that is used to numerically
integrate the position of the Moon. We want a tidal model that is practical to program but
complicated enough to accommodate the accuracy of the LLR data. In Standish andWilliams
(2013), each of the three tidal bands has a separate Love number and time delay: the Moon
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Secular tidal changes in lunar orbit and Earth rotation 93

or Sun coordinates r ′, λ′, and φ′ are evaluated at three times t − τ0, t − τ1, and t − τ2. The
tidal accelerations from Moon and Sun tides are summed.

Owing to the complexity of the variation of phase lagwith respect to frequency, wemodify
the Standish and Williams algorithm used with Eq. (6) further. We have two time delays for
each of the diurnal and semidiurnal tidal bands. One we associate with daily Earth rotation
and the other we associate with the slower orbital motion. The zonal tidal band has a single
time delay. As explained by Folkner et al. (2014), we modify the position vector r′ of the
Moon or Sun differently for each order m

r′′
0 = r′(t − τ0) (7a)

r′′
m = RZ (ωEτRm)r′(t − τm) m = 1, 2, (7b)

where rotation matrixRZ rotates the tidal bulge on the Earth forward by angleωEτm , andωE

is the rotation rate. There is no τR0 for the zonal tides because zonal tides do not depend on
longitude. Consequently, the unneeded rotationmatrix form = 0would be the identity matrix.
We resolve r and r′′

m into equatorial p and p′′
m plus polar z and z′′

m vectors, respectively.

r = p + z (8)

r′′
m = p′′

m + z′′
m (9)

Then the gradient of Eq. (6) gives the acceleration of Earth and Moon; the acceleration of
the Moon with respect to the Earth is

d2r
dt2

= 3

2
GM ′ (ME + MM )

ME

(
R

r

)5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k20
r ′′5
0

⎧⎨
⎩
2z′′20 z + p′′2

0 p + r ′′2
0 r

− 5
[
2(zz′′0)

2+(pp′′
0)

2
]

2r2
r

⎫⎬
⎭

+ k21
r ′′5
1

⎡
⎣ 2

(
p · p′′

1

)
z′′
1 + 2zz′′1p′′

1

− 10zz′′1(p·p′′
1)r

r2

⎤
⎦

+ k22
r ′′5
2

⎧⎨
⎩
2
(
p · p′′

2

)
p′′
2 − p′′2

2 p

− 5
[
2(p·p′′

2)
2−(pp′′

2)
2
]

2r2
r

⎫⎬
⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

MassM ′ refers toMoon or Sun. The trigonometric functions of λ,φ, and parametersmodified
byEq. (7) are replacedwith functions ofp/r , z/r ,p′′/r ′′, and z′′/r ′′ so that conversion between
Cartesian and spherical coordinates is not necessary. Note that z = r sin φ and z′′1 are polar
components with signs, not magnitudes, so that the product zz′′1 can be positive or negative.
The tidal accelerations from the lunar and solar tides are added to the other accelerations
when integrating the lunar orbit (Folkner et al. 2014).

The developmental ephemeris (DE) tide model started with a single Love number and
time delay (Williams et al. 1978), expanded to three pairs of Love numbers and time delays
(Standish andWilliams 2013), and now has three Love numbers k2m and five time delays τR1,
τR2, and τm . It is not possible to accurately solve for all of these parameters simultaneously
from the LLR data. We will later discuss LLR solutions and parameters from tidal models.

3 Tidal series

The preceding subsection was concerned with an expression suitable for numerical integra-
tion. We now pursue analytical representations. Tidal variations occur at a variety of periods.
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94 J. G. Williams, D. H. Boggs

To consider frequency dependence, we expand the tidal potential W2 at the Earth in a semi-
analytical trigonometric series. In an analogous development, the tidal potential at the Moon
from the Earth and Sun has been presented by Williams and Boggs (2015).

The orbit of the Moon with respect to the Earth is strongly perturbed by the Sun. The
main problem of lunar theory has been the subject of considerable development. Brown’s
theory (Brown 1896) was the basis for his tables (Brown 1919). These were updated for the
ImprovedLunar Ephemeris (Eckert et al. 1954). Computermanipulation allowed the theory to
be extended (Deprit et al. 1971; Henrard 1972). More recent developments (Chapront-Touzé
1983; Chapront-Touzé and Chapront 1983; Chapront and Chapront-Touzé 1996) improved
accuracy leading to new tables (Chapront-Touzé and Chapront 1988, 1991). The periodic
series for the lunar orbit’s radius and ecliptic longitude and latitude have arguments with
linear combinations of four angles

j1 l + j2 l
′ + j3 F + j4 D. (11)

From the lunar theory, Delaunay angle l is the lunar mean anomaly (period 27.555 d), l ′
is the solar mean anomaly (365.260 d), F is the mean argument of latitude of the Moon
(27.212 d), and D is the mean elongation of the Moon from the Sun (29.531 d). These
are mean angles in the sense that polynomial expressions are used (Chapront-Touzé and
Chapront 1988; Simon et al. 1994). The polynomials have small nonlinear terms due to tidal
effects and the slowly changing heliocentric orbit. Truncated versions of the series for radius,
and ecliptic longitude and latitude are given by Chapront-Touzé and Chapront (1988) and
Chapront-Touzé and Chapront (1991). The radius is a cosine series and the longitude and
latitude are sine series. The series for radius and ecliptic longitude of the Sun require the
solar mean anomaly l ′. The solar ecliptic latitude is zero.

The plane of the Moon’s orbit is inclined by 5.145◦ to the ecliptic plane and the ascending
node Ω is measured from the equinox along the ecliptic plane to the node. The node exhibits
retrograde precession with respect to the precessing equinox with a period of 6798.38 d (18.6
year). Expressing the lunar spherical or Cartesian coordinates with respect to the equinox
introduces the mean longitude L = F+ Ω . Although small, perturbations from the oblate
Earth’s gravitational J2 also depend on the node angle Ω . The arguments of the spherical or
Cartesian coordinates involve five angles.

ζq = j1 l + j2 l
′ + j3 F + j4 D + j5Ω, (12)

where q is a sequential index to identify different terms in the series. The mean longitude of
the Sun is L ′ = L − D = F + Ω − D. Planetary perturbations introduce arguments with
planetary longitudes, but those terms are smaller than effects considered here.

Cartesian coordinates of theMoon and Sun in the ecliptic frame are rotated by the obliquity
ε to express the coordinates in the terrestrial equator frame. Six matrix functions are

Ui j =
(a
r

)3
uiu j (13)

where the ui components of unit vector r/r , pointing from the center of the Earth to theMoon
or Sun, are calculated in a coordinate frame oriented with the first axis toward the moving
equinox, the second axis 90◦ ahead in the equator plane, and the third axis normal to the
terrestrial equator. Note that (a/r)3 = U11 +U22 +U33. Multiplied by GMM R2/a3, the Ui j

will be used to compute tidal potential. TheUi j matrix elements are related to tidal variations
in the terrestrial moment of inertia matrix through

Ii j (t) = −k2ME R5

a3

[
Ui j −

(a
r

)3 δi j

3

]
(14)
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Secular tidal changes in lunar orbit and Earth rotation 95

where δi j is the Kronecker delta function.
The series used for the Fourier analysis are from Chapront-Touzé and Chapront (1988,

1991) plus Earth nutation terms. A five dimensional Fourier analysis of theUi j was evaluated
at an equally spaced grid (360◦/11) of the five angles. This Fourier analysis uses five angles,
not a time series, so there is no problem with close frequencies, e.g., l ′ (365.260 d period)
separates from 2L ′ − l ′ (365.223 d). For later convenience, the solar Ui j were added on
to the lunar Ui j with a factor of MS a3/MM a′3 ≈ 0.459, where MS is the solar mass,
MM is the lunar mass, a the lunar semimajor axis, and a′ is the solar semimajor axis. This
combination will allow one series to be used in place of two in later calculations. The largest
Ui j coefficients are given in Table 1. Index q labels the sequence of terms in the table.

The terms with arguments 2L ′, 2L ′ + l ′, l ′, and 2L ′ − l ′ come mainly from the Sun. The
rest of the terms, including mixtures of primed and unprimed angles, come mainly from
the Moon. We say “mainly” because the distance between the Sun and Earth includes the
motion of the Earth about the center of mass of the Earth–Moon system, which introduces
small effects with lunar arguments. Solar perturbations of the lunar orbit cause many lunar
terms with arguments containing D = L − L ′ and l ′. So arguments containing only L ′ and
l ′ may be thought of as from solar Keplerian origin and those with L , l, and F , apart from
F in the combination F + Ω − D = L ′, may be thought of as from lunar Keplerian origin.
Another generality, amplitudes with arguments involving l are approximately proportional
to eccentricity e and amplitudes with F , not in the combination F + Ω = L , depend on
inclination i . An implied sensitivity of a coefficient to a leading power of e or sin i depends
on the integer factor of l or F in the argument, respectively. For example, although derived
numerically, terms 3 and 4 should depend on e, terms 13 and 16 should depend on e2, terms 5
and 6 should depend on sin i (and sin ε, implied by the odd L in L ± F), and term 21 should
depend on sin2 i . The two strongest solar perturbation terms depend on 2D and 2D − l and
these combinations are found alone (terms 8 and 12) and mixed with other angles (e.g., 7
and 9) in Table 1.

When the Ui j functions are rotated by angle θ into the longitude frame of the Earth, Eq.
(3) for the tide raising potential at a surface point (R, λ, φ) becomes

W2(R, λ, φ) = GMM R2

a′3

×
⎧⎨
⎩
P20(sin φ)

[
U ′
33 − 1

2

(
U ′
11 +U ′

22

)]
+P21(sin φ)

[
U ′
13 cos(θ + λ) +U ′

23 sin(θ + λ)
]

+ 1
4 P22(sin φ)

[(
U ′
11 −U ′

22

)
cos(2θ + 2λ) + 2U ′

12 sin(2θ + 2λ)
]
⎫⎬
⎭ (15)

Angle θ is the right ascension of the Earth’s zero meridian, measured from the precessing
equinox, that increases due to the daily rotation of the Earth. The primes carried over from
Eq. (3) remind us that the W2 comes from a tide raising body.

The point mass potential at the surface of the Earth isGME /R. Dividing by that factor and
separating out the dependence on longitude λ, the Eq. (15) expression for W2(R, λ, φ) can
be represented as an unnormalized spherical harmonic expansion of the time varying tidal
gravitational potential.

CW
20 = MM

ME

(
R

a

)3 [
U33 − 1

2
(U11 +U22)

]
(16)

CW
21 = MM

ME

(
R

a

)3

[U23 sin θ +U13 cos θ ] (17)
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SW21 = MM

ME

(
R

a

)3

[U23 cos θ −U13 sin θ ] (18)

CW
22 = 1

4

MM

ME

(
R

a

)3

[2U12 sin 2θ + (U11 −U22) cos 2θ ] (19)

SW22 = 1

4

MM

ME

(
R

a

)3

[2U12 cos 2θ − (U11 −U22) sin 2θ ] (20)

Primes have been dropped since the tidal variations must come from the tide raising body.
Since we added solar Ui j onto lunar Ui j with an appropriate scaling factor, only the lunar
mass factor is needed.

Fourier analysis gives the matrix elements U11, U22, U33, and U23 as cosine series Ui j =
�Ui jq cos ζq of angle ζq of Eq. (12), whereasU12 andU13 are sine seriesUi j = �Ui jq sin ζq ,
where theUi jq are the coefficients for eachperiod Pq of theFourier series forUi j . ThenCW

2m(t)
and SW2m(t) can also be expressed with periodic series with terms CW

2mq and SW2mq . Factored

by the Love number k2mq for each period, the CW
2mq and SW2mq terms give small unnormalized

V2 gravity field coefficients C2m(t) = �k2mq CW
2mq and S2m(t) = �k2mq SW2mq in the

terrestrial frame that can be added to the static gravity field. The individual periodic terms
are

C20q = k20q
MM

ME

(
R

a

)3 [
U33q − 1

2

(
U11q +U22q

)]
cos ζq (21)

C21q = MM

ME

(
R

a

)3 {
k21q−

[
U23q −U13q

]
sin(θ − ζq)

+ k21q+
[
U23q +U13q

]
sin(θ + ζq)

}
(22)

S21q = MM

ME

(
R

a

)3 {
k21q−

[
U23q −U13q

]
cos(θ − ζq)

+ k21q+
[
U23q +U13q

]
cos(θ + ζq)

}
(23)

C22q = 1

8

MM

ME

(
R

a

)3 { k22q−
[
U11q −U22q + 2U12q

]
cos(2θ − ζq)

+k22q+
[
U11q −U22q − 2U12q

]
cos(2θ + ζq)

}
(24)

S22q = 1

8

MM

ME

(
R

a

)3 { k22q−
[
U11q −U22q + 2U12q

]
sin(2θ − ζq)

+k22q+
[
U11q −U22q − 2U12q

]
sin(2θ + ζq)

}
(25)

Except for the constant term with q = 0, each frequency in the Ui j series generates two
frequencies for each of the diurnal and semidiurnal tides. Including the zonal tides, there are
five tidal arguments mθ ± ζq with five frequencies for each Ui j argument ζq (three each for
q=0). A ± in the k2mq± subscript associates subscript 2mq– with argument mθ ′ − ζ ′

q and
2mq+withmθ ′+ζ ′

q . With dissipation, replace k2mq± with complex k2mq±* to derive the tidal
field V2 generated by the distorted Earth. Then Re(k2mq±∗) = |k2mq± ∗ |cos(χ2mq±) and
Im(k2mq±∗) = −|k2mq±∗|sin(χ2mq±), where theχ2mq± are phase shifts (lags) for each term.
Replace k2mq± in the above expressions (Eqs. 20–25) by R times complex displacement Love
number h2mq±* to get the spherical harmonic coefficients for the vertical tidal distortion of
the Earth’s surface. Phase lags χ2mq± have the same signs as the rates for argumentsmθ ±ζq .
Most arguments have positive rates and positive χ2mq±, but a few negative rates (and χ2mq±)

for zonal tides (m = 0) involve the retrograde precessing node Ω .
Values of parameters used in tidal calculations are given in Table 2. The lunar semimajor

axis comes from the inverse time averaged value 1/a = 〈1/r〉, which is different from the
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Table 2 Values of parameters
used in tidal calculations

Parameter Value

R 6378.136 km

ME /MM 81.300569

MS /ME 332946.0488

GMM 4902.80007 km3/s2

Lunar a 384399.0 km

Lunar e 0.0549

Lunar i 5.145◦
Lunar n 17325593.4′′/year
Solar a′ 149598023 km

Solar n′ 1295977.4′′/year
C /MR2 0.33070

k2 f 0.93

h2 f 1.93

average of osculating values. The first five values in the table come from theDE430 ephemeris
(Williams et al. 2013; Folkner et al. 2014). The equatorial radius is used instead of the mean
radius. The sidereal mean motions in seconds of arc per Julian year are n for the Moon and n′
for the Sun; polynomial expressions for lunar and solar angles are found in Chapront-Touzé
and Chapront (1988), Simon et al. (1994), and Chapront et al. (2002). With R/a ≈ 1/60.268
and MM /ME ≈ 1/81.3006, the coefficient (MM /ME )(R/a)3 is 5.619 × 10−8. When that
coefficient is multiplied by equatorial radius R, the factor of 0.3584 m has the dimensions of
length. These two factors scale the size of terrestrial tidal effects for gravity field coefficients
and displacements, respectively. For the Earth without oceans, the real Love numbers are
k2 ≈ 0.300 and h2 ≈ 0.608. In Petit and Luzum (2010), see Tables 6.5 for k2m* and 7.2 for
h2m* at the different tidal frequencies. Fluid Love numbers are k2 f and h2 f .

The zonal or long period tides involve the declination and radial motions of the Moon or
Sun. The zonal 2,0 tides slowly modulate a tidal contribution to the oblateness of the Earth.
Table 3 gives series for the zonal spherical harmonic coefficients of the tide raising potential
W2 and the productRW2 that is needed for radial tides. The precession rates of Earth satellites
are modulated by tidal changes of C20(t). The polar moment of inertia, I33 of Eq. (14), is
also modulated by C20(t) causing tidally driven variations in Earth rotation (Yoder et al.
1981; Ray and Erofeeva 2014).

The constant tide contributes a small addition to the oblate shape caused by spin. Using
a fluid Love number of k2 f = 0.93, tides cause 2.9 × 10−8 of the J2 = 1.0826 × 10−3, or
0.0027 %. For shape, the figures are 57 cm in equator to pole flattening using h2 f =1.93.
With the elastic Love number h2 increasing from 0.61 at 2 weeks period to 0.63 at 18.6
years (Petit and Luzum 2010), there are five zonal tides with amplitudes between 1 and 3
cm. The 2-week Mf tide and the 6-month Ssa tide are caused by latitude variations, whereas
the monthly Mm tide is caused by orbit eccentricity.

In the arguments of Tables 1 and 3 we use positive angles θ , L , and Ω , which are referred
to the precessing equinox. This causes terms 5 and 20 to have negative rates. The tidal
community commonly uses positive rates reversing the sign of these two arguments. Our
Doodson numbers reflect this difference, 55,545 versus 55,565 and 45,645 versus 65,465.
Since Tables 1 and 3 use cosine series, this sign difference should not cause a problem for
W2, but it should be kept in mind when applying a phase shift for V2.
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The diurnal tides involve the declinationmotion aswell as the longitude and radiusmotions
of the Moon or Sun. They have maximum size at φ = ±45◦ and are zero at the poles and on
the equator. A periodic term with argument θ − L (1.03505 d period) would be aligned with
the mean lunar direction whereas argument θ − L ′ (1 day) would be aligned with the mean
solar direction. Neither argument occurs among the diurnal tides given in Table 4 although
term 14 with argument θ − l ′ is very close to the solar day period, but does not have the
same phase. A period that is slower than 1.03505 days acts like a wave moving westward
with respect to the mean lunar longitude and a period slower than 1 day moves westward
with respect to the mean solar longitude. Equations (22) and (23) have two periodic terms for
each ζq . The largest diurnal waves have arguments θ − ζq , but smaller terms with arguments
θ + ζq are also tabulated in Table 4. Note that the maximum variation of a 2,1 periodicity is
P21(±1/

√
2) = ±1.5 times the coefficients from Eqs. (22) and (23).

Important diurnal tides include the K1 tide at 1 sidereal day (0.9973 d), the lunar O1 and
solar P1 tides, and the Q1 tide. The tide with argument θ −Ω is a sideband of the K1 tide and
the tide with argument θ − L− F is a sideband of the O1 tide. The angle between the equator
and lunar orbit planes varies between ε + i and ε − i , which gives rise to the sidebands.

The semidiurnal tides havemaximumvariation on the equator and are null at the poles. The
maximum variation of a semidiurnal periodicity is P22(0) = 3 times the tabulated coefficients
from Eqs. (24) and (25). The large M2 tide with argument 2θ − 2L (period 0.517525 d)
has two lobes aligned with the mean lunar longitude and the 0.5 day S2 tide with argument
2θ − 2L ′ follows the Sun. Waves with longer periods move westward with respect to those
two directions and shorter periods move eastward. The K2 tide occurs at half of the sidereal
rotation period and the N2 tide is also important. The semidiurnal waves with arguments
2θ − ζq dominate in Table 5; only one small term with argument 2θ + ζq is tabulated. A
longer list of tidal amplitudes is available from Hartmann and Wenzel (1995).

4 Model Love numbers for the Earth with oceans

In order to use the tidal acceleration from Eq. (10), we need to assess the influence of the
oceans as well as the underlying body of the Earth on the combined Love numbers k2*(P)

and their associated time delays. The real part of k2* is largely from the body of the Earth,
but the dissipation caused imaginary part is mainly from the oceans (Ray et al. 2001).

A geophysical assessment of Love numbers is given in Table 6. The model Love numbers
for Earth (without oceans) comes from tables in Petit and Luzum (2010) and the ocean model
is from FES2004 (Lyard et al. 2006), tabulated as Stokes parameters (ftp://tai.bipm.org/iers/
convupdt/chapter6/tidemodels/fes2004_Cnm-Snm.dat). The real and imaginary components
of k2* are given separately for the body of the Earth, the oceans, and their sum. The phase
shift for each component comes from the arctangent of the imaginary part divided by the real
part. The smaller real Love number and positive imaginary part for the body K1 tide is due
to a nearby resonance from the oblate CMB. The K1 tide is a major tide that affects Earth
rotation, but it is not important for tidal acceleration of mean longitude. The real part has a
very small influence on mean motion and precession rates.

The real and imaginary parts of the combined k2* from Table 6 are shown as circular
spots in Fig. 1. A constant time delay would cause the imaginary spots to lie along a straight
line descending from the origin, and the long period spots do trend downward, but the figure
showsmore structure with the imaginary values in the diurnal and semidiurnal bands trending
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upwardwith frequency. The downward deflection of the real k2* in the diurnal band illustrates
the CMB resonance.

To represent the tides that are important for the Moon’s orbit during an integration and
solution, we have a choice of three Love numbers and five time delays. We cannot solve for
all of these parameters so we take some values from the Table 6 geophysical model and solve
for others. During LLR solutions, we fix the three Love numbers and either two delays τ0
and τ1 or three delays τ0, τ1, and τ2. Then the tidal acceleration in longitude allows us to
solve for the remaining time delays τ2, τR1, and τR2, or else for τR1 and τR2, respectively.
The diurnal τR1 and semidiurnal τR2 delays can be separately estimated because they cause
18.6 year modulations of dn/dt as well as secular rates. This modulation occurs because the
inclination of the lunar orbit to the equator varies between ε − i and ε + i during the 18.6
year precession of the node along the ecliptic plane (Williams et al. 1978). Solutions with
three time delays are also sensitive to eccentricity rate. The most important tides for orbit
evolution are the fortnightly Mf, the diurnal O1 and Q1, and the semidiurnal M2 and N2
tides (Sect. 5.3). Consequently, we attempt to match those five tides, subject to modification
by the LLR solution. In decreasing order of importance are the M2, O1, and N2 tides for
acceleration in longitude and the N2, Q1, M2, and 2N2 tides for eccentricity rate.

For an initial estimate of time delays, we use the geophysical model of Table 6 for the
M2, N2, O1, Q1, and Mf tides as follows:

(a) For the zonal tides, we match the Mf tide with magnitude k20 = 0.335 and time delay
τ0 = 0.077 d. These values do not match the other smaller components closely. The
eccentricity rate from the Mm tide will be underestimated, but it is small compared to
the diurnal and semidiurnal values. The single time delay causes the imaginary part of
k20 to be zero at zero tidal frequency.

(b) For diurnal tides, the O1 tide is strongest for dn/dt and the Q1 tide is strongest for de/dt .
Consequently, we pick k21 = 0.320. Then time delays τ1 = −0.008 d and τR1 = 0.0110
d result from solving two equations of the form k21 sin(ωEτR1-dζq /dt τ1) = −Im(k21q*)
with the imaginary Love numbers for the O1 and Q1 entries in Table 6. The small τ1
value results from the small difference in imaginary Love numbers.

(c) TheM2 tide is strongest for semidiurnal dn/dt and the N2 tide is strongest for de/dt . With
k22 = 0.283, two equations of the form k22 sin(2ωEτR2-dζq /dt τ2) = −Im(k22q*) yield τ2
= −0.112 d and τR2 = 0.00294 d. The negative values of τ1 and τ2 reflect the increase in
their −Im(k2mq*) components with period rather than a response to the future position
of the Moon as Eq. (7) implies.
The above three choices for the real and imaginary k2* are shown as solid lines in
Fig. 1.

We have adopted the model Love numbers for solid Earth from Table 6.5 in Petit and Luzum
(2010) and the ocean model from FES2004 (Lyard et al. 2006). The long period zonal tides
are difficult to measure. The treatment by Ray and Erofeeva (2014) has larger imaginary
components thanwe have used. Since the zonal tides contribute<1%of the tidal acceleration
(Sect. 5.3) this difference is not critical, but improvement is possible.

5 Secular rates for spin, obliquity, and orbit

The gravity from the lunar and solar tidal deformations acts back on the Moon and Sun.
There results a transfer of energy and angular momentum to the lunar and solar orbits from
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106 J. G. Williams, D. H. Boggs

Fig. 1 The real and imaginary terrestrial k2* for 13 major tides from Table 6 are shown as filled circles. The
values in the long period, diurnal, and semidiurnal bands are approximated with functions shown as solid lines
for the geophysical model and dashed lines for solution D of Table 9

the Earth’s spin. A secular decrease in terrestrial spin rate and an increase in lunar distance
is a consequence of phase lags caused by tidal dissipation.

Equation (6) for the potential V2 from the tidal distortion (before introducing dissipation)
depends on products of spherical harmonic functions. An equivalent expression depends on
products of the Ui j functions. We seek the potential of Moon and Sun raised tides acting
back on the Moon and Sun. With the Ui j expressed as trigonometric series with amplitudes
Ui jq , the products will have a large number of periodic terms with sums and differences of
the frequencies in the Ui j series. Since we are interested in secular rates, we select products
of terms with the same periods that give constant argument differences (θ − θ ′ and ζq − ζ ′

q)

and zero frequencies.

V20 = GMM R5

8a3a′3
∑
q

(
1 + δq0

)
k20q

[
U11q +U22q − 2U33q

]

×
[
U ′
11q +U ′

22q − 2U ′
33q

]
cos

(
ζq − ζ ′

q

)
(26a)

V21 = 3GMM R5

4a3a′3
∑
q

(
1 + δq0

)

×
⎡
⎣ k21q−

(
U13q −U23q

) (
U ′
13q −U ′

23q

)
cos

(
θ − ζq − θ ′ + ζ ′

q

)
+k21q+

(
U13q +U23q

) (
U ′
13q +U ′

23q

)
cos

(
θ + ζq − θ ′ − ζ ′

q

)
⎤
⎦ (26b)

V22 = 3GMM R5

16a3a′3
∑
q

(
1 + δq0

)

×
⎡
⎣ k22q−

(
U11q −U22q+2U12q

) (
U ′
11q−U ′

22q+2U ′
12q

)
cos

(
2θ − ζq−2θ ′+ζ ′

q

)
+k22q+

(
U11q −U22q−2U12q

) (
U ′
11q−U ′

22q−2U ′
12q

)
cos

(
2θ+ζq − 2θ ′−ζ ′

q

)
⎤
⎦

(26c)

The Kronecker delta function δq0 compensates for fewer multiplications of sines and cosines
due to fewer independent arguments when ζ0 = ζ ′

0 = 0. Also, when q = 0 for the diurnal and
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semidiurnal potentials (K1 and K2 tides), two terms combine. The primes refer to the tides
distorting the Earth whereas unprimed parameters result from the action on the Moon and
Sun. Partial derivatives below only apply to unprimed parameters. Dissipation will originate
from the primed tide raising part and we now include a prime on θ ′ in combinations mθ ′ ±
ζ ′
q . Numerically, the linear combinations of Ui jq amplitudes enter as squares. The same
combinations enter in Eqs. (21–25).

We allow the Love number and phase to depend on tidal frequency. A ± has been added
to their subscripts to associate subscripts 2mq– with argument mθ ′ − ζ ′

q and 2mq+ with
mθ ′ + ζ ′

q . With a phase lag χ2mq±, then

k2mq± sin χ2mq± = k2mq± sin
(
mθ ± ζ2mq± − mθ ′ ∓ ζ ′

2mq±
)

= −Im
(
k2mq±∗) (27)

5.1 Earth rotation and orientation rates

The torque acting to decelerate the Earth’s rotation about its polar axis is given by the partial
derivative of potential energy MMV2 with respect to θ , TE = MM∂V2/∂θ . In V2 of Eq. (26),
we differentiate with respect to the θ in mθ ± ζ , but not the θ ′ in the mθ ′ ± ζ ′ from the
tide raising potential. Multiplying one series times another gives many periodic terms, but
for secular deceleration, a sine and cosine pair of terms with the same period multiply one
another. The main secular effects result from the lunar tides acting back on the Moon and the
solar tides acting back on the Sun. Except for the constant, K1, andK2 tides fromboth Sun and
Moon, the products of mixed solar and lunar terms mainly give periodic torques. We assume
that the core and mantle decelerate together. The tidal acceleration of the Earth’s rotation
is d2θ /dt2 ≈ dωE /dt = TE /SWC(ωE ), where TE is torque, the polar principal moment of
inertia is C(ωE ), and spin rate is ωE . Angle θ is referred to the precessing equinox, which
direction along the ecliptic plane has a small (right-handed) tide induced acceleration of order
0.2 milliarcseconds/cent2 (mas/cent2) (Williams 1994) and a larger classical acceleration of
about −2.2′′/cent2 (Hilton et al. 2006).

dωE

dt
= −3

8

GM2
M

MEa3

(
R

a

)3 ME R2

SWC(ωE )

∑
q

(
1 + δq0

)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
[
U13q −U23q

]2
k21q− sin χ21q−

+2
[
U13q +U23q

]2
k21q+ sin χ21q+

+ [
U11q −U22q + 2U12q

]2
k22q− sin χ22q−

+ [
U11q −U22q − 2U12q

]2
k22q+ sin χ22q+

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(28)

We have combined the lunar and solar Ui j functions and Eq. (26) is written for that case. If
the solar and lunarUi j had been kept separate, then we would have needed a second term that
replacedMM and a with their solar counterparts. The squares of all periodic tidal components
give deceleration of spin.

At long time scales, the Earth’s shape is close to hydrostatic equilibrium with a moment
of inertia tensor that depends on a spherical component plus an oblate component that is
proportional to ω2

E . A slower spinning Earth is both less oblate, depending on the degree-2
fluid Love number in Table 2, and its radius shrinks, depending on a degree-0 coefficient
(Yoder et al. 1981). With d[C(ωE )ωE ]/dt = SWC(ωE )dωE /dt , the factor SW = 1.005 allows
for the small dependence of the moment of inertia on spin rate.
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108 J. G. Williams, D. H. Boggs

The factors for spin change from each imaginary Love number are tabulated in Table 7.
Multiply the tabulated values by k2mq± sin χ2mq± = −Im(k2mq±*) for each periodic term.
The M2 tide dominates the deceleration of Earth rotation, but the S2, K1, and O1 tides are
also major contributors. The zonal tides do not affect rotation about the polar axis.

Most of the Earth’s current −0.468′′/year decrease of obliquity is due to motion of the
ecliptic plane rather thanmotion of the equator plane. Still, space referenced obliquity change
can evolve through higher time derivatives. However, a small space referenced obliquity rate
of−0.268mas/year is caused by lunar torques on the Earth’s static figure; the lunar orbit plane
precesses along a plane that is slightly offset from the ecliptic plane (Williams 1994). The
tidal torque on the Earth is−MMr×∇V2. One can compute the contribution of tidal torques
to secular obliquity rate by dividing the torque component about the Earth’s Y axis (in the
equator plane 90◦ ahead of the equinox direction) by the Earth’s angular momentum CωE ,
dε/dt = (MM /CωE ) (u1∂V2/∂u3 − u3∂V2/∂u1), where the potential comes from Eq. (26).
This angular momentum approximation is not quite the same as solving the Euler equations
for the body’s dε/dt , but it is close for small perturbations. Selecting the secular terms, the
contribution from each spherical harmonic component summed over each periodic tidal term
is

dε20
dt

= −3

4

GM2
M

MEa3

(
R

a

)3 ME R2

CωE

∑
q

(
1 + δq0

)
U13q

[
U11q +U22q − 2U33q

]
k20q sin χ20q

(29a)

dε21
dt

= 3

4

GM2
M

MEa3

(
R

a

)3 ME R2

CωE

∑
q

(
1 + δq0

)

×
[ (

U11q −U33q +U12q
) (
U13q −U23q

)
k21q− sin χ21q−

− (
U11q −U33q −U12q

) (
U13q +U23q

)
k21q+ sin χ21q+

]
(29b)

dε22
dt

= 3

8

GM2
M

MEa3

(
R

a

)3 ME R2

CωE

∑
q

(
1 + δq0

)

×
[ (

U13q −U23q
) (
U11q −U22q + 2U12q

)
k22q− sin χ22q−

− (
U13q +U23q

) (
U11q −U22q − 2U12q

)
k22q+ sin χ22q+

]
(29c)

Unlike most periodic tides, the K1 and K2 tidal terms do not split up with multiple phases,
hence the Kronecker delta function δq0. The zonal term from q = 0 can be ignored. The
above secular expressions are valid with our combined lunar and solar Ui j . For separate
lunar and solarUi j , originally in each expression the firstUi j combination was unprimed and
the second was primed, one 1/a3 was primed, and one mass factor was primed. For secular
terms from solar Ui j , the M2

M is replaced with M2
S and 1/a6 is replaced with solar 1/a’6.

The contributions from each tidal component are tabulated in Table 7. The table shows that
the K1, O1, and M2 tides give the largest obliquity rates. The M2 and O1 tides give positive
rates while the K1 tide causes a negative rate. Consequently, the total rate can depend on the
details of dissipation vs. period. The constant, K1, and K2 tides (q = 0) may be thought of as
arising from a ring of mass in the ecliptic plane. Shifting the phase of a corresponding tidal
ring causes small torques about the −Y and −Z axes.

In Table 7 arguments containing L+F are related to 2L terms (Mf, O1, andM2) modified
by the precessing inclined lunar orbit plane and arguments withΩ are similarly related to the
constant, K1, andK2 terms.Althoughmany terms are nearlyKeplerian, termswith arguments
containing 2D and 2D − l come from solar perturbations of the lunar orbit.
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5.2 Lunar orbit rates

Lagrange’s form of the perturbation equations gives secular rates for n, a, e, and i as functions
of ∂V2/∂l, ∂V2/∂ω, and ∂V2/∂Ω , where ω is argument of perigee. With two finite masses,
the relative acceleration has a factor of 1 + MM /ME . For first order perturbations, we take the
partialswith respect to themean angles l,ω, andΩ in the tidal arguments using L = Ω+ω+l,
F = ω + l, and D = L − L ′. For the tide caused lunar secular semimajor axis rate

da

dt
= naSA

2

MM

ME

(
R

a

)5∑
q

jMq

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
2

[
U11q +U22q − 2U33q

]2
k20q sin χ20q

+3
[
U23q −U13q

]2
k21q− sin χ21q−

−3
[
U23q +U13q

]2
k21q+ sin χ21q+

+ 3
4

[
U11q −U22q + 2U12q

]2
k22q− sin χ22q−

− 3
4

[
U11q −U22q − 2U12q

]2
k22q+ sin χ22q+

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(30)

Integer jMq is the sum of integers multiplying monthly angles l, F , and D in the angle ζq .
For example, the Mf, O1, Oo1 and M2 terms have jMq = 2 and the Q1 and N2 terms have
jMq = 3. The K1, K2 and pure solar terms like Ssa, P1, and S2 are excluded by jMq = 0.

In lunar theory it is possible to modify Kepler’s third law to include most of the effect of
the mean attraction of the Sun.

G (ME + MM ) = n2a3
(
1 + n′2

2n2

)
(31)

The values of the semimajor axis and sidereal mean motion are given in Table 2; neither one
is the mean value of the osculating element. At first order, the tabulated value of a is larger
than its mean osculating value by a factor of 1 + n′2/2n2 whereas sidereal n is smaller than
its mean osculating value by the factor 1 − n′2/n2. The ratio of solar to lunar sidereal mean
motions is n′/n = 1/13.3687 so n′2/2n2 = 0.0028. Perturbations of secular semimajor axis
and mean motion rates are connected through the derivative of Eq. (31).

dn

da
= −3n

2a

(
1 + n′2

2n2

)
(32)

The perturbed secular rates for dn/dt and da/dt in Table 7 should be multiplied by the
k2mq sin χ2mq value for each period. When constructing the table, theUi j are evaluated with
the R and a parameters in Table 2, but the n and a parameters that appear in the differential
equations need to be adjusted. The differential Eq. (30) for da/dt is corrected by the factor SA
= 1 + 2n′2/n2 = 1.0112. Then the dn/dt differential equationwould have a factor of the product
SN = 1 + 5n′2/2n2 = 1.0140. The second order perturbations (tidal vs. solar perturbations)
are probably the largest source of error in the conversion of the imaginary Love numbers into
the secular rates for dn/dt and da/dt . The error would be some uncertain fraction of n′2/n2
= 0.0056. We can get some idea of the conversion accuracy by comparing the three results
for a simple model. Williams et al. (1978) presented an early tidal acceleration model for
a geometrical bulge rotated by a small angle θ . With the foregoing SN factor, the 1978
expression for dn/dt in ”/cent2 is −1954 k2θ . The same acceleration model in Chapront-
Touzé and Chapront (1988) gave −1957 k2θ , and the numerical expressions of this paper
give −1961 k2 θ ′′/cent2. Although there are differences in the three derivations, we adopt
a conversion error of 0.15 % for dn/dt and da/dt , which is about n′2/4n2.

The secular perturbations for tidal eccentricity and inclination rates are also given in
Table 7. In Eq. (30) replace a SA jMq with SE [ jMq (1 − e2) − jWq

√
(1 − e2)]/2e to get

de/dt , where the integer factor jWq of ω is the sum of integer multipliers of F and D in ζq .
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To get di /dt replace with SE [ jWq cos i − jΩq ]/[2sin i
√

(1 − e2)], where jΩ is the integer
factor for Ω in a tidal argument.

de

dt
= nSE
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(34)

Both differential equations are factored by SE = 1 + n′2/2n2 = 1.0028. For the eccentricity e
and inclination i we use the values in Table 2. The osculating eccentricity varies by tens of
percent due to solar perturbations and an appropriate characteristic value is unclear and may
vary with the term. Consequently, we suggest that the conversion for eccentricity rate may
be uncertain by several percent. We divide the constant part of the product of U functions
by a constant eccentricity, but a more accurate procedure would have divided the full secular
plus periodic series from the product of U functions by the osculating eccentricity before
extracting the secular rates.

Some terms occur as opposing pairs: Table 7 shows that M1 and J1 (arguments θ ± l) are
opposites for all perturbations except spin and obliquity rate, whereas terms with arguments
L + F and L − F = Ω have opposing effects in inclinations. Other pairings of coefficients
can be recognized in Table 1, e.g., terms 17 and 18 (2L+l±2D), and also 19 and 20 (Ω ±l).
Such pairs arise when the product of two trigonometric functions give functions with sums
and differences of the two arguments.

In addition to low order perturbations of n, a, e, and i , there are second order perturba-
tions that cause accelerations of longitude of perigee � and node Ω . The solar perturbations
dominate the precession rates of these two elements and these rates depend on n, e, and i . The
tidal rates for n, e, and i will cause accelerations of� and nodeΩ . The partial derivatives are
given by Chapront-Touzé and Chapront (1983) and Chapront-Touzé and Chapront (1988).
The dominant partials of these accelerations are with respect to dn/dt , −0.014818 for accel-
eration of ω̄ and 0.003746 for Ω . Although our paper reports tidal acceleration of (sidereal)
mean longitude dn/dt , the tidal acceleration of mean anomaly is dl/dt ≈ 1.0148 dn/dt and
the acceleration of argument of latitude is dF /dt ≈ 0.9963 dn/dt .

Tides only weakly affect the annual orbit of the Earth–Moon system about the Sun. In
Eq. (30), lunar parameters can be replaced with solar parameters. Then secular changes of
semimajor axis and mean longitude are

da′

dt
= 0.019(k2 sin χ)P1 + 0.112(k2 sin χ)S2 mm/year (35)
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a′ dn′

dt
= −0.182(k2 sin χ)P1 − 1.055(k2 sin χ)S2 mm/year2 (36)

With the lagged components (k2 sin χ)P1 = −Im(k2*)P1 = 0.0170 and (k2 sin χ)S2 =
−Im(k2*)S2 = 0.0184 from Table 6, one gets da′/dt = 2.4 μm/year and a′dn′/dt = −23
μm/year2. After ±1 decade, the affect on the solar longitude component is −1 mm.

5.3 Tidal rates from model Love numbers

Applying the model Love numbers of Table 6 to the perturbation factors of Table 7 yields the
results for dωE /dt , dε/dt , dn/dt , de/dt , anddi /dt inTable 8.The sumof the diurnal components
for deceleration of spin gives−189′′/cent2, the semidiurnal sum is−1136′′/cent2, and the total
is −1325′′/cent2. The tidal contribution to the obliquity rate is very small at 9 μas/year. For
dn/dt the zonal tides cause +0.15′′/cent2, diurnal tides cause −3.74′′/cent2, and semidiurnal
tides produce −22.83′′/cent2. The terrestrial total is −26.42′′/cent2. The N2 tide dominates
the eccentricity rate followed by the Q1 andM2 contributions. The inclination change is very
small. In addition to the table, tides on the Moon contribute a small positive acceleration to
dn/dt and negative eccentricity rate. For terrestrial tides, the ratio of deceleration of rotation
to orbital deceleration is 50.1. Christodoulidis et al. (1988) predicted a ratio of 49. Although
the ratios of 50.6 for diurnal and 49.7 for semidiurnal decelerations are similar, the zonal ratio
is zero and there is no single ratio that is consistent across all components. Earth rotation in
seconds of arc can be converted to seconds of UT1 by dividing by −15.043′′/s.

Wenote that a decreasing polarmoment of inertia also causes the spin rate to change (Yoder
et al. 1983), which causes the measured deceleration to be less than the tidal deceleration
(Stephenson and Morrison 1995). Polar moment changes are proportional to J2 changes
(Yoder et al. 1983; Cheng et al. 2013).

The total tidal obliquity rate from Table 8 is 9.2 μas/year. The M2 and O1 tides give
positive rates for dε/dt while the K1 rate is negative. The rates from the diurnal tides nearly
cancel at 1.0μas/year, whereas the semidiurnal tides contribute a positive rate of 8.9μas/year.
Zonal tides cause −0.7 μas/year. Previously, an obliquity rate of 24 μas/year was computed
by Williams (1994) who assumed that a conserved component of spin angular momentum
was normal to the ecliptic plane. This approximation assumed that the tidal forces are in the
ecliptic plane. However, phase shifts for the rotating Earth cause small out-of-plane forces
that violate the assumption. A positive obliquity rate from the M2 tide was derived by Kaula
(1964). An obliquity rate of 11.5 μas/year was derived by Mignard (1981) for a 10 min time
delay. A 9.63 μas/year rate was computed by Krasinsky (1999). Rubincam (2016) noted that
the semidiurnal tide with a positive obliquity rate acts opposite a negative diurnal rate. His
obliquity rate would be a few μas/year positive.

The IAU theory for precession and obliquity (Hilton et al. 2006) uses observed values for
the precession andobliquitymotionof the equatorwith respect to space to set the J2000values.
Although theWilliams (1994) tidal obliquity rate was used for part of the time dependence in
the IAU theory, with the total rate specified it (or any other tidal rate) only slightly affects the
derivation of the higher degree polynomial coefficients. The total theoretical obliquity rate is
−268 μas/year from orbit orientation (Williams 1994) plus 9.2 μas/year from tides yielding
−259 μas/year. A rate of −252.4 μas/year was determined by VLBI (Mathews et al. 2002)
and corrected to −257.5 μas/year by Capitaine et al. (2003), allowing for the displacement
of the equinox from the origin of the IAU right ascension and declination. The latter rate was
used by Hilton et al. for the IAU2006 precession theory. There is good agreement between
the theoretical and observed values. For time scales >10,000 year, the −268 μas/year is
variable taking either sign whereas the 9 μas/year is secular, albeit subject to variation due
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Table 8 Secular rates for dωE /dt , dε/dt , dn/dt , de/dt , and di /dt using the imaginary part of the model Love
numbers from Table 6

Tide Argument dωE /dt
′′/cent2 d ε/dt μas/year dn/dt ′′/cent2 de/dt 10−12/year di /dt μas/year

Mf 2L 0 −0.5 0.11 0.01 0

Ssa 2L ′ 0 0 0 0 0

Mm l 0 0 0.01 −0.41 0

Mtm 2L + l 0 0 0.01 −0.08 0

L + F 0 0 0.02 0 −0.04

Other Zonal 0 0 0 −0.01 0.02

K1 θ −94.5 −9.5 0 0 0

O1 θ − 2L −74.4 8.8 −3.41 −0.18 −0.1

P1 θ − 2L ′ −11.6 1.4 0 0 0

Q1 θ − 2L − l −2.8 0.3 −0.19 2.21 0

M1 θ − l −0.4 0 −0.01 0.32 0

J1 θ + l −0.4 0 0.01 −0.28 0

θ − L − F −2.7 0 −0.12 −0.01 0.3

θ − Ω −1.7 0 0 0 −0.2

Other Diurnal −0.5 0 −0.02 0.04 0

K2 2θ −11.1 −1.1 0 0 0

M2 2θ − 2L −925.7 8.4 −21.15 −1.10 −0.4

S2 2θ − 2L ′ −148.0 1.3 0 0 0

N2 2θ − 2L − l −43.7 0.4 −1.50 17.19 0

2θ − L − F −1.3 −0.1 −0.03 0 0.1

2θ − Ω −1.0 0 0 0 −0.1

2θ − 2L − 2D + l −1.6 0 −0.05 −0.62 0.2

2θ − 2L − 2D −1.2 0 −0.05 0 0.1

L2 2θ − 2L + l −0.6 0 −0.01 −0.26 0

2θ − 2L ′ − l ′ −0.5 0 0 0 0

2N2 2θ − 2L − 2l −0.8 0 −0.04 0.64 0

Other Semidiurnal −0.2 0 −0.01 0.07 0

The orbital perturbations from tides on the Moon are not included

to the changing phases of the O1, K1, and M2 tides. For evolutionary times, only the latter
accumulates.

The decreasing terrestrial spin has a tidal power drain of CωE dωE /dt . There is also tidal
energy dissipation from the zonal tides; that energymust come from the lunar orbit rather than
spin. Hence, there is a positive dn/dt (negative da/dt) for zonal tides in Table 8. The power
going into the lunar orbit is (GMEMM /2a2) da/dt and the power deposited in the solar orbit
is [G(ME +MM )MS /2a′2] da′/dt . The power difference between spin and orbit is dissipated.
With themodel values fromTable 8, terrestrial tides extract an average 3.78×1012 watts from
the Earth’s rotation while depositing 1.22 × 1011 watts in the lunar orbit and ∼1.4 × 1010

watts in the solar orbit so that 3.64× 1012 watts is dissipated. Examination of the imaginary
parts of the Love numbers in Table 6 shows that ∼95 % of the energy dissipation is in the
oceans and ∼5 % is in the solid Earth.
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6 LLR solutions

The Lunar Laser Ranging (LLR) experiment measures the time of flight of a laser pulse
fired from an observatory on the Earth toward a retroreflector on the Moon and bounced
back to the observatory. It is convenient to multiply these time-of-flight observations by the
speed of light and call them ranges. Data are processed fromMcDonald Observatory, Texas;
Observatoire de la Côte d’Azur, France (Samain et al. 1998); Haleakala Observatory, Hawaii;
Apache Point Observatory, NewMexico (Murphy et al. 2008, 2012); and Matera, Italy. LLR
data are available from the International Laser Ranging Service archive at http://ilrs.gsfc.
nasa.gov/. There are five target retroreflector arrays on the Moon. These flat arrays of corner
cubes are located at the Apollo 11, 14, and 15 landing sites and on the Lunokhod 1 and 2
rovers. The Apollo 15 array at the Hadley site is the largest; it provides the strongest returned
signal and the majority of ranges. See reviews by Dickey et al. (1994) and Murphy (2013)
for further descriptions.

In addition to the terrestrial and lunar tidal time delays of this paper, the weighted least
squares fits of LLR data include solution parameters for ranging station coordinates, reflector
coordinates, initial conditions for the integration of the lunar orbit and rotation,G(ME+MM ),
Earth orientation including precession rate, obliquity rate, and nutation, lunar tidal potential
time delay τM and displacement Love number h2M , dissipation at its core-mantle boundary
(CMB), and other parameters. The lunar orbit in lunar and planetary ephemeris DE430
(Williams et al. 2013; Folkner et al. 2014) resulted from analysis of 18,548 lunar ranges from
March 1970 to December 2012. Table 9 tabulates the Love number and time delay values
used for DE430 and two new solutions of this paper. Tabulated quantities with uncertainties
are fit. Lunar Love number k2M comes from GRAIL determinations (Konopliv et al. 2013;
Lemoine et al. 2013; Williams et al. 2014b). Dissipation at the lunar CMB depends on LLR
solution parameter KV /CM , where the torque between the fluid and mantle is proportional
to KV and the polar moment isCM (Williams et al. 2001). Lunar τM and KV /CM are mainly
determined by effects on the physical librations (Williams et al. 2001) and they are highly
correlated (−0.998) in solutions because they both contribute to a large term in the pole
direction. A linear combination, 1.2 × 10−7τM + KV /CM ≈ 2.9 × 10−8, is determined
better than the separate parameters. The τM and KV /CM determinations separate fairly well
from the terrestrial time delays during solutions; the diurnal and semidiurnal correlations are
moderate for solution D.

New solutions analyze 20,218 lunar ranges from March 1970 to September 2015. Since
DE430was created there havebeen improvements to the lunar and terrestrialmodels including
tidal displacements, tidally driven UT1 and polar motion variations, atmospheric delay, and
lunar tidal effects on lunar physical librations (Williams and Boggs 2015). As a consequence
of model improvements and new data, the rms residuals/uncertainties of the weighted least
squares fits are reduced by ∼5 % since DE430 was created. For solutions A and B, three
fixed terrestrial Love numbers and time delays are taken from Sect. 4. Solution A did not
solve for an extra de/dt whereas solution B did. Solution C solves for τ2 instead of an extra
de/dt . Solution D iterated the fits and integrations and then fixed τ2 at −0.200 d. Tide and
dissipation related parameters are presented for solutions B and D in Table 9. In Fig. 1, the
dependence of Love number on tidal frequency is shown for solution B with solid lines while
the dependence for solution D is indicated with dashed lines.

The uncertainties produced by the least squares procedure depend on the choice of solution
parameters. Solution B with an extra de/dt gives a significant value and a 0.6 % better fit than
solution A without it. Solution C that solves for τ2 instead of solution B’s extra de/dt is an
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Table 9 Tide related Love numbers and time delays used for DE430 and new LLR solutions

Parameter DE430 New solution B New solution D

k20 0.335 0.335 0.335

τ0 0.064 d 0.077 d 0.077 d

k21 0.320 0.320 0.320

τR1 0.00736 ± 0.00030 d 0.01021 ± 0.00028 d 0.01024 ± 0.00028 d

τ1 −0.044 d −0.008 d −0.008 d

k22 0.320 0.283 0.283

τR2 0.002535 ± 0.000025 d 0.002882 ± 0.000028d −0.00037 ± 0.00124d

τ2 −0.100 d −0.113 d −0.200 ± 0.033 d

Lunar k2M 0.024059 0.024059 0.02422

Lunar τM 0.0958 ± 0.0109 d 0.115 ± 0.021 d 0.120 ± 0.021 d

Lunar KV /CM (1.637 ± 0.135) × 10−8/d (1.58 ± 0.26) × 10−8/d (1.44 ± 0.25) × 108 /d

Extra de/dt 0 (3.43 ± 1.27) × 10−12/year 0

equally acceptable fit that allows the N2 perturbation to absorb the extra rate, but the resulting
N2 phase shift of 7.6◦ deviates from the geophysically based 6.5◦ in Table 6. The DE430
solution, without an extra de/dt , results in a smaller lunar delay τM , a larger KV /CM , and
smaller uncertainties for both. Like DE430, solution A (not shown) also has a smaller τM and
a larger KV /CM . The correlation between τR1 and τR2 is −0.908 for DE430 and −0.672 for
solution B; over all solutions increasing one delay is partly compensated by decreasing the
other so that the total dn/dt changes little. The uncertainties in Table 9 include the effects of
correlations. The uncertainties shown for solution D come from solution C to better represent
realistic uncertainties. Changing τ2 also caused τM and KV /CM to change. When selecting
τ2 we considered the consistency of τM with other lunar tidal dissipation parameters that are
sensitive to monthly dissipation (Williams and Boggs 2015); solution D with solution C’s
uncertainty has k2M /Q = (6.7±1.1)×10−4. Some DE430 lunar parameter uncertainties are
smaller than those of the new solutions because of a smaller set of solution parameters.

Our partial derivative for extra eccentricity rate follows from approximate semianalytical
expressions.

r ≈ a

[
1 + 1

2
e2 − e cos l − 0.175e cos (2D − l) − 0.077 cos (2D)

]
(37)

r = a [e − cos l − 0.175 cos (2D − l)]
de

dt
t (38)

The perturbed radius is r and t is the time elapsed since a reference time. Our partial
derivative uses the two periodic terms in Eq. (38), but not the constant ae de/dt t term.
During discussions with D. Pavlov (private communication 2015) we discovered that our
former analytical partial was deficient by a factor of two. Consequently, our previously
reported values and uncertainties for extra de/dt (Williams and Boggs 2009; Williams et al.
2014a) should be divided by two. Since the physical cause of the extra de/dt was unspecified,
it was not present in our past numerically integrated ephemerides. Adjusting τ2 would allow
future ephemerides to include the extra eccentricity rate.

The LLR solutions also give the obliquity motion with respect to space. Solution D finds
an Earth rotation rate about the direction of zero right ascension and declination of 284 ±
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34μas/year. With the small correction for the displacement of the equinox in Capitaine et al.
(2003), this gives an obliquity motion with respect to space of −288± 34μas/year, agreeing
within its uncertainty with the theoretical value (Sect. 5.3) and theVLBI value adopted for the
IAU2006 precession (Hilton et al. 2006). The rates from DE430 and solution B are similar.

7 Tidal rates from LLR solutions

When the tidal parameters of Table 9 are used with the acceleration model of the numerical
integrations, then the tidal influences are implicit in the resulting ephemeris. However, we
would like to know the tide induced changes in lunar mean motion n, semimajor axis a,
eccentricity e, and inclination i . For that, we use the numerical theory from Sect. 5. The
theory for element rates from tides on the Moon is presented in Sect. 8 of Williams et al.
(2001). The resulting tidal changes are given in Table 10.Overall, tides on theMoon and zonal
tides on Earth tend to shrink the orbit and its eccentricity whereas diurnal and semidiurnal
tides tend to expand the orbit and eccentricity. The M2 tide accounts for 81 % of the change
in semimajor axis whereas the N2 tide dominates the eccentricity change. In decreasing order
of importance are the M2, O1, and N2 tides for dn/dt and da/dt whereas for eccentricity rate
the N2, anomalistic lunar tide, Q1, and M2 tides are important. Inclination change is very
small.

At the end of Table 10 there are two sets of uncertainties. The first set is intended to describe
a realistic (not formal) internal uncertainty based on the LLR least squares fits. For DE430
the internal uncertainties should apply to the numerically integrated ephemeris, which also
has a systematic 2×10−12/year eccentricity rate error. However, we see that adjusting τ2 has
altered the rates by more than the expected uncertainties. Consequently, a dynamical model
giving de/dt is not identical to an analytical de/dt . Most of the uncertainties for eccentricity
and inclination rates come from tides on the Moon. The second line of uncertainties includes
the estimated error of converting the tidal solution parameters to mean element rates as
discussed in Sect. 5.2.

A summary of secular rates is presented in Table 11 for the geophysical model of Table 6,
ephemeris DE430, and new LLR solutions B and D of Table 9. Solution B has dn/dt and
da/dt close to the DE430 values, but the magnitudes of da/dt and dn/dt are slightly larger
for solution D and de/dt is larger due to the effect of the altered τ2 on the N2 contribution.
Note that the smaller DE430 lunar τM absorbed about 1/3 of the extra rate found for solution
B in Table 9.

When the terrestrial dn/dt and da/dt rates in Tables 10 and 11 are compared with rates
from the geophysical model (Tables 8, 11), we find that the geophysical model has 1.0 %
larger magnitudes for DE430 and solution B and is 0.7 % larger than solution D. These
differences are compatible with an earlier comparison by Williams and Boggs (2009). Most
of the difference comes from the diurnal contribution, that geophysical value is 7 to 9 %
larger than the LLR values. Since we have put the LLR and geophysical results through the
same conversion, the differences should not be significantly affected by conversion error.

Previously reported DE430 secular rates (Williams et al. 2013, 2014a) were computed
from an analytical theory based on a precessing elliptical orbit. Periodic solar perturbation
terms were ignored. Those previous rates were different by 0.08′′/cent2 for dn/dt and −0.12
mm/year for da/dt , partly due to the missing solar perturbation terms with arguments 2θ −
2L − 2D + l and 2θ − 2L − 2D.
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Table 11 Summary of secular rates for a geophysical model, ephemeris DE430, and two recent LLR solutions

Source dn/dt ′′/cent2 da/dt mm/year de/dt 10−12/year di /dt μas/year

Geophys. model

Zonal 0.15 −0.22 −0.49 −0.03

Diurnal −3.74 5.52 2.10 0.08

Semidiurnal −22.83 33.68 15.92 −0.10

Earth total −26.42 38.98 17.53 −0.05

DE430

Zonal 0.12 −0.18 −0.32 −0.04

Diurnal −3.44 5.08 2.24 0.06

Semidiurnal −22.81 33.64 16.12 −0.06

Earth total −26.13 38.54 18.04 −0.04

Moon tide 0.21 −0.31 −4.55 −0.33

Moon CMB 0.02 −0.03 0 −0.08

Total −25.90 38.20 13.50 −0.45

Solution B

Zonal 0.15 −0.22 −0.38 −0.05

Diurnal −3.48 5.14 1.93 −0.01

Semidiurnal −22.84 33.69 16.13 −0.06

Earth total −26.17 38.60 17.68 −0.12

Moon tide 0.25 −0.37 −5.44 −0.40

Moon CMB 0.02 −0.03 0 −0.08

Extra de/dt 3.43

Total −25.90 38.21 15.67 −0.59

Solution D

Zonal 0.15 −0.22 −0.38 −0.05

Diurnal −3.49 5.15 1.94 −0.01

Semidiurnal −22.91 33.78 19.19 0.03

Earth total −26.25 38.71 20.74 −0.02

Moon tide 0.26 −0.39 −5.72 −0.42

Moon CMB 0.02 −0.02 0 −0.07

Total −25.97 38.30 15.02 −0.51

For±10 year from a reference time, the tidal perturbation in longitude is−0.13′′ or−0.24
km. The monthly effect in radius is a factor of e smaller giving ±13 m, or somewhat more
with solar perturbations. Since the LLR data for the last 20 year are fit with 1–2 cm scatter,
the Eq. (10) tide model in the numerically integrated ephemeris represents the perturbation
to ≤0.15 %, which is compatible with the stated uncertainties. The two τR solution values
are negatively correlated such that an increase in one tidal acceleration component tends to
be compensated by a decrease in the other. Consequently, the total uncertainty can be less
than the uncertainties of the individual components.

There is a comparison value of dn/dt from independent software based on series expan-
sions: Chapront et al. (2002) found an acceleration of −25.858′′/cent2 using the tidal
acceleration model of Williams et al. (1978). The difference of only 0.4 % is encourag-
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ing. Their terrestrial eccentricity rate was 15 × 10−12/year, 17 % less than the DE430 value
and 28% less than our solution D, but with only a single terrestrial tidal acceleration parame-
ter in their solution, de/dt was not independent of dn/dt . Also, Chapront et al. did not include
tides on the Moon, which omission coincidently results in the correct total de/dt value. An
LLR tidal solution by Aleshkina (2002) with the 1978model and the foregoing−1957 k2 θ

conversion would give −25.6′′/cent2 for the terrestrial contribution; the questionable lunar
contribution is perhaps 0.1 % more. With modern terrestrial and lunar models for tides, a
recent LLR solution gives dn/dt = −25.90′′/cent2 (Pavlov et al. 2016), close to the DE430
and solution B values.

We prefer solution D since it accounts for the eccentricity rate. Including conversion
uncertainty, its secular rates are dn/dt =−25.97±0.05′′/cent2, da/dt = 38.30±0.08mm/year,
de/dt = (15.0± 1.0) × 10−12/year, and di /dt = −0.5± 0.1μas/year. The tidal accelerations
of longitude of perigee � and node Ω are 0.383′′/cent2 and −0.101′′/cent2, respectively.

Adjusting the Table 8 results to match the LLR diurnal and semidiurnal dn/dt , tidal
deceleration of Earth rotation is dωE /dt = −1316′′/cent2, or 87.5 s/cent2 for angle-like UT1-
AT, so that the length of day increases by 2.395ms each century.AlthoughLLR is not sensitive
to the S2 contribution, which is ∼11 % of the total, we include that contribution. Krasinsky
(1999) calculated a dωE /dt value that is 11 % less than our estimate due to use of an earlier
smaller dn/dt . We note that there are historical nontidal changes in Earth rotation (Yoder
et al. 1983; Stephenson and Morrison 1995; Cheng et al. 2013) due to a slowly decreasing
moment of inertia. The tide-caused obliquity rate is predicted to be very small; it is much
less than nontidal contributions.

8 Avoiding inadvertent accelerations

This section cautions that it is possible to get an erroneous acceleration of the Moon, or
another synchronous body, by modeling approximations that involve the literal angles for
L , l, or F . It is also possible for a small lunar orientation error to grow when integrating
backward with CMB dissipation.

Newhall et al. (1983) described an erroneous acceleration in orbital longitude that became
apparent during a long integrationwhen the forcemodel included a lunar gravity field thatwas
oriented by a trigonometric series for physical librations. The lunar C22 gravity coefficient
caused an acceleration of the form

d2L

dt2
≈ K 2L , (39)

where θM = LS − π is the model orientation of the longitude of C22 by a series for mean
longitude LS , which includes polynomial and periodic terms. The difference between the
real mean longitude and the series representation is L = L − LS . An initial error in the
constant term in the LS polynomial will grow exponentially with an e-folding time of 1/K
when integrated forward or backward. The expression for K is

K = 2n
R

a

√
3C22F220G200, (40)

where G200 = 1 − 5e2/2 + · · · and F220 = 3[1+cos(i + I )]2/4 (Kaula 1966) and the tilt of
the lunar equator plane to the ecliptic plane is i + I = 6.7◦. For the Moon, 1/K = 93 year.
Linear and quadratic errors in the LS polynomial would also grow exponentially.
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The forgoing problemmotivated us to integrate the physical librations along with the orbit
(Newhall et al. 1983). The free mode for longitude libration about synchronous rotation is
oscillatory with a 2.9 year period (Rambaux and Williams 2011). Since 2.9 year <<93 year,
the equations of motion do not have an instability when orbit and orientation are integrated
together. The Moon’s synchronous rotation follows slow variations (periods >>2.9 year) of
orbit longitude including the tidal acceleration. See Newhall et al. for further details.

Can a similar problem arise if the terrestrial tides are represented with an analytical series
in the integration model? As a rough approximation we write

d2L

dt2
∝ sin (2L − 2LS − χ) (41)

where LS is the angle L approximated by a polynomial and χ is a phase shift. Then with
L = L − LS

d2L

dt2
≈ − sin (2L) cot χ

dn

dt
(42)

With tidal dn/dt = −26′′/cent2 and a phase shift of 0.077 radians, the error L has an expo-
nential growth forward or backward with an e-folding time of 1750 year. Long integrations
would have an instability in the equations of motion. Although the e-folding time will depend
on the nature of the analytical model, such an instability would affect integrations longer than
about one millennium. Integrations with tides represented by series should be accurate for
the length of the LLR data span, e.g., the IERS case in Pavlov et al. (2016).

In addition to tidal dissipation, the model of the JPL integrator includes energy dissipation
between the moving fluid and the solid mantle at the lunar core-mantle boundary (CMB)
(Williams et al. 2001; Standish and Williams 2013; Folkner et al. 2014). Dissipation causes
damping of the free libration modes when integrating forward (Williams et al. 2001), but
exponential growth when integrating backward. Also, dissipation causes most free libration
amplitudes to dampwith 104 to 106 year times scales. Thesemodes are periodic. One rotation
mode connected to CMB dissipation damps with a century time scale. It acts in a secular
manner. Owing to coupling through the lunar C22, the orbit is also corrupted for times
exceeding a century. To avoid problems with the backward integration, a long forward and
backward integration DE431 excluded CMB damping in the LLR solution and integration
(Folkner et al. 2014) despite degradation of the rms residual during the LLR fit. For modern
lunar data analysis, ephemeris DE430 with CMB damping has been our lunar standard since
2013 (Williams et al. 2013; Folkner et al. 2014). The integration starts in 1969. From a
comparison between DE430 and DE431, the longitude difference is <0.1′′ at 1800, <0.2′′ at
1600, and∼0.3′′ at 1550. Unlike the forgoing differences that have both signs, the differences
going forward appear to be quadratic with time growing by <0.02′′/cent2. These errors in
the lunar orbit should be considered when analyzing older accurate data with DE431.

9 Comments

In the absence of dissipation, there is little to cause secular changes the lunar semimajor axis
(Poisson’s theorem). Nevertheless, there is a classical acceleration in lunar mean longitude
and rate of change of mean motion due mainly to the secular change in the eccentricity of
the solar orbit; Chapront-Touzé and Chapront (1983, 1988) give 12.1′′/cent2 with respect to
the J2000 equinox. There are also classical accelerations of longitude of perigee and node:
−76.9′′/cent2 and 12.8′′/cent2, respectively. The tidal accelerations of the three angles add
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on to the classical accelerations. For motions with respect to the precessing equinox, an
acceleration of −2.2′′/cent2 should be subtracted.

Dissipation laws for tides in theMoon have been discussed byWilliams andBoggs (2015).
The time delay and Maxwell viscosity laws were poor matches to dissipation over a spread
of lunar tidal periods. The best performing laws had a peak at a few months. The use of a
time delay model in the integrator is only justified by convenience of implementation. By
dividing the terrestrial dissipation into three frequency bands and using a variable delay for
two of them, our tidal acceleration model in the integrator minimizes many problems with
the time delay approach. Tides in the Moon are more of a problem since the three degree-2
and order-m components do not give separate frequency bands and the frequency spread is
similar to zonal tides on the Earth. The amount of lunar energy dissipation is strongest for
monthly periods so the time delay approach should be adequate for the orbit, but the effect of
dissipation on the physical librations with their wide spread of periods presents a problem.
See Williams and Boggs for the affected libration expressions that require special treatment.
There may be a wide variety of dissipation behavior in various exoplanets; see the discussion
in Henning et al. (2009) and references therein.

An unmodeled extra or anomalous eccentricity rate of 3× 10−12 /year has been a puzzle.
It is reduced from earlier larger values (Williams and Boggs 2009; Williams et al. 2014a) to
its present size from improved tidal modeling and correction of a missing factor of 2 in its
partial derivative. The extra rate would be removed if the phase of the N2 tide were increased.
A study of the influence of two tidal acceleration models on de/dt is given by Pavlov et al.
(2016). Although it is possible to construct a hypothetical radial acceleration that causes
a secular eccentricity rate (Iorio 2011), searches for gravitational physics or cosmological
causes of eccentricity rate have not been fruitful (Iorio 2011, 2014). A geophysical cause is
a welcome explanation.

A rapidly spinning solid planet with a fluid core has a resonance in its tidal distortion
due to the oblate CMB. A tidal resonance will exist in the diurnal band. For the Earth, the
resonance is offset from 1 cycle per sidereal day by 1/(14 months). This puts it near the K1
tide at the sidereal day period; Table 6 and Fig. 1 shows the effect on the Love number. There
are weaker tides, e.g., ψ 1 with argument θ + l ′, closer to the resonance.

The evolving Earth–Moon system provides an example of tidal evolution that is relevant
to other solar system bodies and exoplanets beyond. The Earth with its oceans is a slowly
varying source of tidal dissipation. The continents move at a few cm/year, comparable to
lunar tidal recession. Consequently, the ocean basins change shape and the strengths of
the zonal, diurnal, and semidiurnal tides change. The present widely separated Pacific and
Atlantic oceans couple to the 2,2 tides more strongly than a hemispheric (degree 1) ocean
shape would. Poliakow (2005) calculates that the M2 tidal dissipation has varied by a factor
of eight during the past 570 million years with the present lunar tidal evolution faster than
the past interval. With the adjusted N2 phase, the present negative de/dt from the Moon is
∼1/4 of the positive terrestrial rate. Therefore, we infer that the total eccentricity rate can be
negative when terrestrial dissipation is very low and positive when it is high. Because of the
changing oceans, the rate of evolution of all orbit elements and Earth orientation parameters
will vary by large amounts.

For times that are long compared to the separation of the continents, evolution slows down
as the semimajor axis increases. The ocean response has a complicated set of resonances.
Dissipation in the oceans depends on the placement of the resonant frequencies with respect
to the rotation rate; a past faster spinning Earth was less effective with a larger Q (Webb
1982; Hansen 1982; Bills and Ray 1999). Finally, we note that tidal dissipation in the body
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of the Earth and Moon will depend on their thermal evolution, which is fastest during their
early history (Meyer et al. 2010).

What can be improved? The internal accuracy of dn/dt , da/dt , and de/dt will improve as
the LLR data span gets longer. The computations for the conversion of tidal parameters into
de/dt can be improved. The SW correction in Eq. (26) could be improved with a better value
for the long time (zero shear strength) spherical component. This paper has restricted itself
to secular changes. There are long period terms that we have not explored. We no longer
recommend the idealized model of Williams et al. (1978), but that paper indicates that there
are 18.6 year terms in longitude of a few milliarcsecond size that are big enough to be useful.
These long period terms should be present in our integrations; presumably they allow the
separation of the diurnal and semidiurnal tides during fits of LLR data.

10 Summary

The degree-2 tidal potential at the Earth that arises from the gravitational attraction of the
Moon and Sun is discussed in Sect. 2. Expressed as a tide raising potential, the tidal forces
cause a deformation of the Earth that induces an additional tidal potential. At its simplest,
this responding potential is equal to the tide raising potential multiplied by Love number
k2. To approximate a complicated Earth, the potential is expressed with spherical harmonic
functions and the k2 factor is split up into k2m , where m is the spherical harmonic order 0, 1,
or 2. To allow for dissipation, time delays τm can be introduced.

Thenumerical integration of the lunar orbit requires tide caused accelerations. Thegradient
of the responding potential with three Love numbers and three time delays has been used in
the past (Standish and Williams 2013), but we introduce more flexibility by setting up three
separate time delays for orbit and two for Earth rotation. The terrestrial phase shifts depend
on tidal period and the two extra delays allow the diurnal and semidiurnal tidal phase lags
to vary linearly with frequency. The resulting tidal acceleration that is presented by Eq. (10)
is used in the JPL programs that integrate the orbits of the Moon and planets (Folkner et al.
2014).

The accuracy and time span of the lunar laser ranging (LLR) data have improved over
the past 46 year. Consequently, the tidal acceleration model for our numerical integration of
the lunar orbit (Folkner et al. 2014) has become more sophisticated. Our tidal acceleration
model combines the effect of ocean tides with Earth tides. Although much less sophisticated
than the tidal model needed for lower Earth satellites (Petit and Luzum 2010), integrations
with Eq. (10) are able to fit the last 20 year of LLR data at the 1–2 cm accuracy level.

Separate from a practical tidal model for the numerical integration program, a more ana-
lytical approach is given in Sect. 3. Fourier series for the tidal potential are developed. Series
for a set of related matrix functionsUi j (t) are given in Table 1. The series for the tidal poten-
tial expressed as terrestrial gravitational C2m(t) and S2m(t) are computed from the Ui j

in Eqs. (21–25) and given in Tables 3, 4 and 5. The C2m and S2m in the Earth’s rotating
frame are useful because the distortions of the Earth and oceans respond to the frequencies
in the rotating frame. The Love numbers and time delays can be represented as functions of
tidal period P with a complex k2m*(P).

There are measurements of the larger Earth and ocean tidal components and geophysical
models for the smaller ones. Model values of k2m*(P) are presented in Table 6 of Sect. 4
for a selection of major components. For numerical integrations, the choice of three Love
numbers and three time delays are partly based on the table.
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Converting the Love number and time delay parameters to the familiar secular dn/dt ,
da/dt , and de/dt is separate from both the numerical integration and data fitting. Section 5
presents the conversion equations and Table 7 gives their numerical evaluations. Apart from
the internal error for secular tidal rates, the equations for conversion of rates come with their
own uncertainties. For dn/dt and da/dt that uncertainty is estimated to be ∼0.15 %, but for
de/dt it is likely several percent.

The geophysical parameters in Table 6 are combined with conversion Table 7 to derive
model values of dn/dt , da/dt , and de/dt for each terrestrial component. These secular tidal
rates are tabulated in Table 8 of Sect. 5.3 along with model rates for rotation dωE /dt =
−1325′′/cent2 and obliquity dε/dt = 9 μas/year.

The DE430 solution (43 year span) and two new (45 year) LLR solutions are presented in
Table 9 and discussed in Sect. 6. As a result of the geophysical model in Table 6, one Love
number and several delays have changed since the earlier work. One new solution adds an
extra de/dt ≈ 3 × 10−12/year of unspecified origin and another adjusts an additional time
delay; both improve the fits. The extra de/dt is absorbed by increasing the phase of the N2
tide in the last solution.

The LLR Love numbers and time delays are converted into secular rates in Sect. 7 and the
contributions of components are presented in Table 10. A summary is given in Table 11 for the
geophysical model, DE430, and two new solutions. Including both LLR fit and conversion
uncertainties, the preferred new solution gives secular rates dn/dt = −25.97 ± 0.05′′/cent2,
da/dt = 38.30 ± 0.08 mm/year, de/dt = (15.0 ± 1.0) × 10−12/year, and di /dt = −0.5 ±
0.1μas/year. Decreasing the Table 8 result to better match the LLR solution for dn/dt , the
computed tidal deceleration of Earth rotation is dωE /dt = −1316′′/cent2 or 87.5 s/cent2 for
UT1-AT so that the length of day increases 2.395 ms each century. Note that there is also a
sizable non-tidal acceleration of Earth rotation (Stephenson and Morrison 1995).

In Sect. 8 we describe how to avoid several possible sources of false acceleration from
the model in the integrator. Generally, for long time fidelity the acceleration model should
not include an analytical expression for the lunar longitude when orienting the Moon or
computing tides. Also, dissipation at the lunar core mantle boundary causes a growing error
when integrating backward.

The LLR tidal dissipation results provide a test of the geophysical information on dissipa-
tion. Compared to the information in Sect. 4 and Tables 6 and 11, the LLR and geophysical
results for tidal energy dissipation disagree by ≤1 %, but most of that difference is in the
diurnal dissipation, which is 7–9% smaller for the LLR results. The detected eccentricity rate
can be accommodated by increasing the phase of the N2 tide. During the past evolution of the
orbit, the eccentricity rate may have been negative during times of low terrestrial dissipation
(Sect. 9).
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Appendix

List of symbols

a Semimajor axis of lunar orbit
a′ Semimajor axis of solar orbit
C Moment of inertia
C2m Gravity field coefficients
D Mean elongation of Moon from Sun
e Eccentricity of lunar orbit
F Lunar mean argument of latitude
G Gravitational constant
h2 Vertical Love number
i Lunar inclination to ecliptic plane
k2 Potential Love number
KV Parameter for dissipation at lunar CMB
l Lunar mean anomaly
l ′ Solar mean anomaly
L Lunar mean longitude
L ′ Solar mean longitude
m Order
ME Mass of Earth
MM Mass of Moon
MS Mass of Sun
M ′ Mass of external body
n Sidereal mean motion of Moon
n′ Sidereal mean motion of Sun
P Period
P2m Associated Legendre polynomial
q Index for different periods in Fourier series
r Distance from center of Earth to body
R Radius of Earth
S Scaling parameters near unity
S2m Gravity field coefficient
t Time
ui Unit vector from Earth to external body
Ui j Functions (a/r)3uiu j

Ui jq Periodic term of Ui j

V2 Potential from tidal distortion
W2 Tide raising potential
α Right ascension
ε Obliquity
 Small difference
C2m Degree-2 tidal gravity field coefficients
S2m Degree-2 tidal gravity field coefficients
Θ Earth-centered angle between an external body and a selected point
ϑ Rotation angle between precessing equinox and zero longitude
λ Terrestrial longitude
τ0 Zonal time delay
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τ1 Diurnal time delay for orbit
τ2 Semidiurnal time delay for orbit
τR1 Diurnal time delay for rotation
τR2 Semidiurnal time delay for rotation
τM Time delay for tides on Moon
χ Phase lag
ω Lunar mean argument of perigee
ωE Spin rate of Earth
Ω Lunar mean node
� Lunar longitude of perigee Ω+ω

ζ Angular argument

References

Aleshkina, E.Y.: Lunar numerical theory and determination of parameters k2, δM from analysis of LLR data.
Astron. Astrophys. 394, 717–721 (2002). doi:10.1051/0004-6361:20021149

Bills, B.G., Ray, R.D.: Lunar orbital evolution: a synthesis of recent results. Geophys. Res. Lett. 26, 3045–3048
(1999). doi:10.1029/1999GL008348

Brown, E.W.: An introductory treatise on the lunar theory. Cambridge University Press, Cambridge (1896)
Brown, E.W.: Tables of the motion of the Moon. Yale University Press, New Haven (1919)
Capitaine, N., Wallace, P.T., Chapront, J.: Expressions for IAU 2000 precession quantities. Astron. Astrohys.

412, 567–586 (2003). doi:10.1051/0004-6361:20031539
Chapront, J., Chapront-Touzé, M.: Lunar motion: theory, and observations. Celesti. Mech. Dyn. Astron. 66,

31–38 (1996). doi:10.1007/BF00048821
Chapront-Touzé, M.: Perturbations due to the shape of the Moon in the lunar theory ELP 2000. Astron.

Astrophys. 119, 256–260 (1983)
Chapront-Touzé, M., Chapront, J.: The lunar ephemeris ELP 2000. Astron. Astrophys. 124, 50–62 (1983)
Chapront-Touzé, M., Chapront, J.: ELP 2000–85: a semi-analytical lunar ephemeris adequate for historical

times. Astron. Astrophys. 190, 342–352 (1988)
Chapront-Touzé, M., Chapront, J.: Lunar Tables and Programs from 4000 B. C. to A. D. 8000. Willmann-Bell,

Richmond (1991)
Chapront, J., Chapront-Touzé, M., Francou, G.: A new determination of lunar orbital parameters, precession

constant and tidal acceleration from LLR measurements. Astron. Astrophys. 387, 700–709 (2002)
Cheng, M., Tapley, B.D., Ries, J.C.: Deceleration in the Earth’s oblateness. J. Geophys. Res. 118, 740–747

(2013). doi:10.1002/jgrb.50058
Christodoulidis, D.C., Smith, D.E., Williamson, R.G., Klosko, S.M.: Observed tidal breaking in the

Earth/Moon/Sun system. J. Geophys. Res. 93, 6216–6236 (1988). doi:10.1029/JB093iB06p06216
Deprit, A., Henrard, J., Rom, A.: Analytical lunar ephemeris: Delaunay’s theory. Astron. J. 76, 269–272 (1971)
Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., et al.: Lunar laser ranging: a

continuing legacy of the Apollo program. Science 265, 482–490 (1994). doi:10.1126/science.265.5171.
482

Eckert, W.J., Jones, R., Clark, H.K.: Construction of the lunar ephemeris, in Improved Lunar Ephemeris 1952–
1959. A Joint Supplement to the American Ephemeris and the (British) Nautical Almanac. U. S. Naval
Observatory, U. S. Government Printing Office, pp. 283–363 (1954)

Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides
DE 430 andDE431. The Interplanetary Network (IPN) Progress Report 42-196, Feb 15, 2014, Jet Propul.
Lab., Pasadena, Calif. (2014). http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf

Hansen, K.S.: Secular effects of oceanic tidal dissipation on the Moon’s orbit and the Earth’s rotation. Rev.
Geophys. Space Phys. 20, 457–480 (1982). doi:10.1029/RG020i003p00457

Hartmann, T., Wenzel, H.-G.: The HW95 tidal potential catalogue. Geophys. Res. Lett. 22, 3553–3556 (1995).
doi:10.1029/95GL03324

Henning, W.G., O’Connell, R.J., Sasselov, D.D.: Tidally heated terrestrial exoplanets: viscoelastic response
models. Astrophys. J. 707, 1000–1015 (2009). doi:10.1088/0004-637X/707/2/1000

Henrard, J.: Analytic lunar ephemeris: a report. Publication of the department of mathematics. University of
Namur, Belgium (1972)

123

http://dx.doi.org/10.1051/0004-6361:20021149
http://dx.doi.org/10.1029/1999GL008348
http://dx.doi.org/10.1051/0004-6361:20031539
http://dx.doi.org/10.1007/BF00048821
http://dx.doi.org/10.1002/jgrb.50058
http://dx.doi.org/10.1029/JB093iB06p06216
http://dx.doi.org/10.1126/science.265.5171.482
http://dx.doi.org/10.1126/science.265.5171.482
http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
http://dx.doi.org/10.1029/RG020i003p00457
http://dx.doi.org/10.1029/95GL03324
http://dx.doi.org/10.1088/0004-637X/707/2/1000


128 J. G. Williams, D. H. Boggs

Hilton, J.L., Capitaine, N., Chapront, J., Ferrandiz, J.M., Fienga, A., Fukushima, T., et al.: Report of the
international astronomical union division I working group on precession and the ecliptic. Celesti. Mech.
Dyn. Astron. 94(3), 351–367 (2006). doi:10.1007/s10569-006-0001-2

Iorio, L.: On the anomalous secular increase in the eccentricity of the orbit of the Moon. Mon. Not. R. Astron.
Soc. 415, 1266–1275 (2011). doi:10.1111/j.1365-2966.2011.18777.x

Iorio, L.: An empirical explanation of the anomalous increases in the astronomical unit and the lunar eccen-
tricity. Astron. J. 142(68), 1–3 (2011b). doi:10.1088/0004-6256/142/3/68

Iorio, L.: The lingering anomalous secular increase in the eccentricity of the orbit of theMoon: further attempts
of explanation of cosmological origin. Galaxies 2(2), 259–262 (2014). doi:10.3390/galaxies2020259

Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–685
(1964). doi:10.1029/RG002i004p00661

Kaula, W.M.: Theory of Satellite Geodesy. Dover Publications Inc, Mineola, New York, p. 124. (1966)
Konopliv, A.S., Park, R.S., Yuan, D.-N., Asmar, S.W., Watkins, M.M., Williams, F.G., et al.: The JPL lunar

gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res. 118,
1415–1434 (2013). doi:10.1002/jgre.20097

Krasinsky, G.A.: Tidal effects in the Earth–Moon system and the Earth’s rotation. Celesti. Mech. Dyn. Astron.
75, 39–66 (1999). doi:10.1023/A:1008381000993

Lemoine, F.G., Goossens, S., Sabaka, T.J., Nicholas, J.B., Mazarico, E., Rowlands, D.D., et al.: High-degree
gravity models from GRAIL primary mission data. J. Geophys. Res. Planets 118, 1676–1698 (2013).
doi:10.1002/jgre.20118

Lyard, F., Lefevre, F., Letellier, T., Francis,O.:Modeling the global ocean tides:modern insights fromFES2004.
Ocean Dyn. 56, 394–415 (2006). doi:10.1007/s10236-006-0086-x

Mathews, P.M., Herring, T.A., Buffet, B.A.: Modeling of nutation and precession: New nutation series for
non-rigid Earth and insights into the Earth’s interior. J. Geophys. Res. 107 (B4), ETG 3-1–ETG 3-26
(2002). doi:10.1029/2001JB000390

Meyer, J., Elkins-Tanton, L., Wisdom, J.: Coupled thermal-orbital evolution of the early Moon. Icarus 208,
1–10 (2010). doi:10.1016/j.icarus.2010.01.029 Corrigendum to Coupledthermal-orbital evolution of the
early Moon. doi:10.1016/j.icarus.2010.12.008

Mignard, F.: The lunar orbit revisited, III. Moon Pl. 24, 189–207 (1981). doi:10.1007//BF00910608
Murphy Jr., T.W., Adelberger, E.G., Battat, J.B.R., Carey, L.N., Hoyle, C.D., LeBlanc, P., et al.: APOLLO:

The Apache point observatory lunar laser-ranging operation: instrument description and first detections.
Publ. Astron. Soc. Pacific 120, 20–37 (2008). doi:10.1086/526428, arXiv:0710.0890 [astro-ph]

Murphy Jr., T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., et al.:
APOLLO: millimeter lunar laser ranging. Class. Quantum Grav. 29, 184005 (2012). doi:10.1088/
0264-9381/29/18/184005

Murphy, T.W.: Lunar laser ranging: the millimeter challenge. Rep. Prog. Phys. 76, 076901 (2013). doi:10.
1088/0034-4885/76/7/076901

Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102, a numerically integrated ephemeris of the Moon and
planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983)

Pavlov, D.A., Williams, J.G., Suvorkin, V.V.: Determining parameters of Moon’s orbital and rotational motion
from LLR observations using GRAIL and IERS-recommended models. Submitted to Celest. Mech. Dyn.
Astron. (2016) (in press)

Petit, G., Luzum, B.: IERS Conventions (2010). IERS Tech. Note 36, pp. 179, Verlag des Bundesamts für
Kartographie und Geodäsie, Frankfurt am Main (2010). http://www.iers.org/TN36/

Poliakow, E.: Numerical modeling of the paleotidal evolution of the Earth-Moon system. In: Proceedings
of International Astronomical Union Colloquium 197. Dynamics of Populations of Planetary Systems.
August–September 2004, Belgrade. Edited by Knezevic, Z., Milani, A., Cambridge Univ. Press, pp. 445–
452 (2005). doi:10.1017/S174392130400897X

Rambaux, N., Williams, J.G.: The Moon’s physical librations and determination of their free modes. Celesti.
Mech. Dyn. Astron. 109, 85–100 (2011). doi:10.1007/s10569-010-9314-2

Ray, R.D., Eanes, R.J., Lemoine, F.G.: Constraints on energy dissipation in the Earth’s body tide from satellite
tracking and altimetry. Geophys. J. Int. 144, 471–480 (2001). doi:10.1046/j.1365-246x.2001.00356.x

Ray, R.D., Erofeeva, S.Y.: Long-period tidal variations in the length of day. J. Geophys. Res. Solid Earth 119,
1498–1509 (2014). doi:10.1002/2013JB010830

Rubincam,D.P.: Tidal friction in the Earth–Moon system and Laplace planes: Darwin redux. Icarus 266, 24–43
(2016). doi:10.1016/j.icarus.2015.10.024

Samain, E., Mangin, J.F., Veillet, C., Torre, J.-M., Fridelance, P., Chabaudie, J.E., et al.: Millimetric lunar laser
ranging at OCA (Observatoire de la Côte d’Azur). Astron. Astrophys. Suppl. Ser. 130, 235–244 (1998).
doi:10.1051/aas:1998227

123

http://dx.doi.org/10.1007/s10569-006-0001-2
http://dx.doi.org/10.1111/j.1365-2966.2011.18777.x
http://dx.doi.org/10.1088/0004-6256/142/3/68
http://dx.doi.org/10.3390/galaxies2020259
http://dx.doi.org/10.1029/RG002i004p00661
http://dx.doi.org/10.1002/jgre.20097
http://dx.doi.org/10.1023/A:1008381000993
http://dx.doi.org/10.1002/jgre.20118
http://dx.doi.org/10.1007/s10236-006-0086-x
http://dx.doi.org/10.1029/2001JB000390
http://dx.doi.org/10.1016/j.icarus.2010.01.029
http://dx.doi.org/10.1016/j.icarus.2010.12.008
http://dx.doi.org/10.1007//BF00910608
http://dx.doi.org/10.1086/526428
http://arxiv.org/abs/0710.0890
http://dx.doi.org/10.1088/0264-9381/29/18/184005
http://dx.doi.org/10.1088/0264-9381/29/18/184005
http://dx.doi.org/10.1088/0034-4885/76/7/076901
http://dx.doi.org/10.1088/0034-4885/76/7/076901
http://www.iers.org/TN36/
http://dx.doi.org/10.1017/S174392130400897X
http://dx.doi.org/10.1007/s10569-010-9314-2
http://dx.doi.org/10.1046/j.1365-246x.2001.00356.x
http://dx.doi.org/10.1002/2013JB010830
http://dx.doi.org/10.1016/j.icarus.2015.10.024
http://dx.doi.org/10.1051/aas:1998227


Secular tidal changes in lunar orbit and Earth rotation 129

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., Laskar, J.: Numerical expressions
for precession formulae and mean elements for the Moon and planets. Astron. Astrophys. 282, 663–683
(1994)

Standish, E.M., Williams, J.G.: Orbital ephemerides of the Sun, Moon, and planets. Chapter 8. In: Urban, S.,
Seidelmann, P.K. (eds.) Explanatory Supplement to theAstronomical Almanac, 3rd edition, pp. 305–345.
University Science Books, Mill Valley, CA (2013). http://iau-comm4.jpl.nasa.gov/XSChap8.pdf

Stephenson, F.R., Morrison, L.V.: Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990. Philos.
Trans. R. Soc. 351, 165–202 (1995). doi:10.1098/rsta.1995.0028

Webb, D.J.: Tides and the evolution of the Earth–Moon system. Geophys. J. R. Astron. Soc. 70, 261–271
(1982). doi:10.1111/j1365-246X.1982tb06404.x

Williams, J.G., Sinclair, W.S., Yoder, C.F.: Tidal acceleration of the Moon. Geophys. Res. Lett. 5, 943–946
(1978). doi:10.1029/GL005i011p00943

Williams, J.G.: Contributions to the Earth’s obliquity rate, precession, and nutation. Astron. J. 108, 711–724
(1994). doi:10.1086/117108

Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body
and molten core. J. Geophys. Res. 106, 27933–27968 (2001). doi:10.1029/2000JE001396

Williams, J.G., Boggs, D.H.: Lunar core andmantle.What does LLR see? In: Proceedings of 16th International
Workshop on Laser Ranging, SLR—the Next Generation, October 2008, Poznan, Poland, ed. Stanislaw
Schillak, pp. 101–120 (2009). http://www.astro.amu.edu.pl/ILRS_Workshop_2008/index.php

Williams, J.G, Boggs, D.H., Folkner,W.M.: DE430 Lunar Orbit, Physical Librations, and Surface Coordinates.
IOM335-JW,DB,WF-20130722-016, July 22, 2013, Jet Propul. Lab., Pasadena, Calif. (2013). http://naif.
jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf

Williams, J.G., Turyshev, S.G., Boggs, D.H.: The past and present Earth-Moon system: the speed of light
stays steady as tides evolve. Planet. Sci. 3, 2 (2014a). doi:10.1186/s13535-014-0002-5. http://www.
planetary-science.com/content/3/1/2

Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D.-N., Lemoine, F.G., et al.: Lunar interior
properties from the GRAIL mission. J. Geophys. Res. Planets 119, 1546–1578 (2014b). doi:10.1002/
2013JE004559

Williams, J.G., Boggs, D.H.: Tides on the Moon: theory and determination of dissipation. J. Geophys. Res.
Planets 120(4), 689–724 (2015). doi:10.1002/2014JE004755

Yoder, C.F., Williams, J.G., Sinclair, W.S., Parke, M.E.: Tidal variations of Earth rotation. J. Geophys. Res.
86, 881–891 (1981). doi:10.1029/JB086iB02p00881

Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J., Tapley, B.D.: Secular variation of Earth’s
gravitational harmonic J2 coefficient from Lageos and the nontidal acceleration of Earth rotation. Nature
303, 757–762 (1983). doi:10.1038/303757a0

123

http://iau-comm4.jpl.nasa.gov/XSChap8.pdf
http://dx.doi.org/10.1098/rsta.1995.0028
http://dx.doi.org/10.1111/j1365-246X.1982tb06404.x
http://dx.doi.org/10.1029/GL005i011p00943
http://dx.doi.org/10.1086/117108
http://dx.doi.org/10.1029/2000JE001396
http://www.astro.amu.edu.pl/ILRS_Workshop_2008/index.php
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf
http://dx.doi.org/10.1186/s13535-014-0002-5
http://www.planetary-science.com/content/3/1/2
http://www.planetary-science.com/content/3/1/2
http://dx.doi.org/10.1002/2013JE004559
http://dx.doi.org/10.1002/2013JE004559
http://dx.doi.org/10.1002/2014JE004755
http://dx.doi.org/10.1029/JB086iB02p00881
http://dx.doi.org/10.1038/303757a0

	Secular tidal changes in lunar orbit and Earth rotation
	Abstract
	1 Introduction
	2 Tidal potential
	2.1 Theory
	2.2 Integrator model for tidal acceleration

	3 Tidal series
	4 Model Love numbers for the Earth with oceans
	5 Secular rates for spin, obliquity, and orbit
	5.1 Earth rotation and orientation rates
	5.2 Lunar orbit rates
	5.3 Tidal rates from model Love numbers

	6 LLR solutions
	7 Tidal rates from LLR solutions
	8 Avoiding inadvertent accelerations
	9 Comments
	10 Summary
	Acknowledgments
	Appendix
	References




