
Celest Mech Dyn Astr (2016) 126:405–432
DOI 10.1007/s10569-016-9701-4

ORIGINAL ARTICLE

Forced periodic motions by solar radiation pressure
around uniformly rotating asteroids

Xiaosheng Xin1 · Daniel J. Scheeres2 · Xiyun Hou1

Received: 3 March 2016 / Revised: 18 April 2016 / Accepted: 10 May 2016 /
Published online: 3 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Since asteroids generally have relatively weak gravity fields, solar radiation
pressure (SRP) is a major perturbation for orbits in their vicinity, which under certain circum-
stances can be even larger than the third-body gravitational perturbations. In this work, by
adopting a triaxial ellipsoid model for the asteroid and taking into account of SRP, the forced
periodic motions caused by SRP around equilibrium points are studied in the body-fixed
frame of the asteroid. For forced periodic motions around saddle equilibrium points, we find
that the SRP does not alter their stability yet does change the morphology of the associated
invariant manifolds. For forced periodic motions around center equilibrium points, different
types of orbits are identified. Their stability changes with different parameters, i.e., the aster-
oid’s shape and spin period, the latitude of the Sun, and the magnitude of SRP. Evolution
of these forced periodic motions is described in detail and some interesting phenomena are
found. Stability results found for our ideal model with the Sun at a fixed distance and lati-
tude are shown to predict stability regions in a realistic model with the Sun on inclined and
elliptic orbits. Though our work is based on the simplified triaxial ellipsoid model, similar
computation method and conclusions should also be applicable to real asteroids.

Keywords Asteroid exploration · Solar radiation pressure · Periodic orbit · Stability ·
Saddle equilibrium (SE) · Center equilibrium (CE)

1 Introduction

Over the last two decades, there have been enduring and increasing interest in asteroid explo-
ration among different countries and space agencies. Many missions have been successfully
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carried out to different asteroids with huge scientific return which has greatly enhanced
our understanding of the primordial relics preserved from the formation of the Solar System.
Back in 1991, the Galileo spacecraft en route to Jupiter flew by 951Gaspra, obtaining the first
close-up view of an asteroid (Belton et al. 1992), and then later encountered 243 Ida in 1993
(Belton et al. 1994). The Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft
rendezvoused with 433 Eros in 2000 (Yeomans et al. 2000) and became the first of its kind to
soft-land on an asteroid in 2001. The Hayabusa spacecraft made in-situ observation of 25143
Itokawa in 2005 (Fujiwara et al. 2006) and managed to return asteroid samples back to the
Earth in 2010. The Chang’e-2 spacecraft made a close flyby of 4179 Toutatis and conducted
the first space-borne observation of that asteroid in 2012 (Huang et al. 2013). The Dawn
mission (Russell et al. 2007) has successfully visited the main-belt asteroid 4 Vesta (Russell
et al. 2012) and is now orbiting around 1 Ceres. The Rosetta spacecraft (Glassmeier et al.
2007) has been observing 67P/Churyumov–Gerasimenko since 2014 (Taylor et al. 2015) and
deployed a lander onto the comet’s surface in the November of 2015 (Bibring et al. 2015).
Other future missions include the Hayabusa-2 spacecraft, which was launched in 2014 and
is currently on its way to the C-type near-Earth asteroid 1999 JU3 (Tsuda et al. 2013), the
OSIRIS-REx spacecraft, which is due to launch in 2016 and will visit the carbonaceous,
near-Earth asteroid 101955 Bennu in 2018 (Lauretta and OSIRIS-REx Team 2012), and so
on. To maximize their science return, spacecraft in these missions are usually sent to orbits
very close to the asteroids or even to the surfaces of them.

Asteroids generally have weak and irregular gravity fields (Werner and Scheeres 1996;
Scheeres 2012a) due to their small mass, irregular shape and porosity (Hilton 2002; Britt
et al. 2002; Ostro et al. 2002). Because of a lack in accurate information of an asteroid’s
gravity field, asteroidmissions usually require amapping orbit phase to gainmore knowledge
of its gravity field and topography. The subsequent close proximity observations of the
asteroid usually employ three kinds of orbits: a circum-asteroid orbit with varying altitudes at
different mission phases, such as that implemented by the Dawn spacecraft around Vesta and
Ceres (Russell et al. 2007), a powered hovering orbit, such as that adopted by the Hayabusa
spacecraft near Itokawa (Fujiwara et al. 2006), and a sun-terminator orbit, such as that
designed for the OSIRIS-REx spacecraft (Scheeres and Sutter 2013).

As a result of the weak gravity field, the perturbation caused by SRP is usually strong
and should be considered when designing these exploration orbits around asteroids. Many
previous works have been done utilizing SRP for orbit design, such as hovering orbits (Mor-
row et al. 2001; Sawai et al. 2002; Giancotti and Funase 2012) and periodic orbits (Farrés
et al. 2014; Giancotti et al. 2014; García Yárnoz et al. 2015b) obtained in the Hill model, the
heliotropic orbits considering SRP and J2 term of the asteroid gravity field (Colombo et al.
2012; Lantukh et al. 2015), the terminator orbits (Scheeres 1999, 2012b; Broschart et al.
2014), and the so-called alternating SRP-enabled orbiter trajectories (García Yárnoz et al.
2015a).

SRP also plays an important role in the dynamics of dust or boulders ejected from the
asteroid’s surface due to impact or comet nucleus surface by radial gas drag forces. Hamilton
and Burns (1992) analytically and numerically studied the orbital stability zones of small
particles around a spherical asteroid and determine that the SRP is very efficient in removing
those particles from the circumasteroidal zone. Richter and Keller (1995) presented an ana-
lytical solution for SRP acting on dust particles around a spherical body in an eccentric orbit
and applied the solution to study the evolution of particle orbits around a cometary nucleus
and their stability. Work by Fulle (1997) and Scheeres and Marzari (2000) both showed that
ejecta particles under the effect of SRP can be captured into bound orbits around asteroids
and comets that do not reimpact for a long time.
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Forced periodic motions by solar radiation pressure 407

In this paper, we focus on the dynamics of forced motion about equilibrium points of an
asteroid in presence of SRP, which could potentially have applications to both mission design
and the study of dynamical environment around asteroids.

In the case of no SRP or third-body perturbations, equilibrium points usually exist in
the body-fixed frame of a uniformly rotating asteroid. Depending on the shape and spin rate,
some asteroids may possess more than four equilibrium points (Magri et al. 2007;Wang et al.
2014), but four equilibrium points are universal due to the universal non-spherical gravity
of the 2nd-order and -degree gravitational field coefficients. Using a triaxial ellipsoid model
for the asteroid and assuming that the asteroid is rotating about its shortest axis, Scheeres
(1994) showed that the stability properties of these equilibrium points may change with the
shape and spin rate of the asteroid. While the two equilibrium points on the longest axis
(saddle equilibrium points, SE points) are always unstable, the two equilibrium points on the
intermediate axis (center equilibrium points, CE points) can be stable for ellipsoids of certain
shapes and spin rates and may become unstable when the ellipsoid becomes more elongated
or its spin rate becomes faster.

When SRP or third-body perturbations are considered, the equilibrium points usually
no longer exist. Nevertheless, forced motions around the original geometrical equilib-
rium points appear. In some literature (Gómez et al. 2003; Hou and Liu 2010, 2011;
Chappaz and Howell 2015), these forced motions are called “dynamical substitutes”. For
the simplified model in this contribution, these forced motions appear as periodic orbits.
They are numerically computed and their stability properties are carefully studied. The
results show that the stability properties of the forced periodic motions around the SE
points remain unchanged with SRP, whereas the stability properties of those around the
CE points can be changed by SRP. For forced periodic motions around the CE points, by
changing the latitude of the Sun in the body-fixed frame of the asteroid as well as the
magnitude of SRP, different families of orbits are studied. Some interesting results are
obtained:

1. As the ellipsoid becomesmore elongated, fewer stable planar forced periodic orbits exist.
2. Stable planar forced periodic motions are found both for the stable and unstable CE

points with the right combination of parameters, i.e., the spin period of the asteroid and
the magnitude of SRP.

3. Two types of families of 3D forced periodic motions are identified, i.e., the “Type I”
family and “Type II” family, and they are closely related to each other. For a given
solar latitude, three forced periodic orbits may exist, two belonging to one type and the
remaining one belonging to the other.

4. Stability of those ideal orbits could translate into stability for “real” systems.

One issue worth mentioning here is that the eclipse effect of the SRP is considered in our
study and this consideration requires more efforts in computing the forced periodic motions
and their stability parameters.

The paper is organized as follows. In Sect. 2, a simple dynamical model with the SRP is
introduced by neglecting the third-body perturbation of the Sun and assuming a circular orbit
of the asteroid around the Sun. In Sect. 3, some computational details are given, including
the algorithm to deal with eclipse effect of SRP. Results for the families of forced periodic
motions are put forward together with the analysis of their stability in Sect. 4. We discuss
the results in Sect. 5 and apply those results to a more realistic model. We conclude in
Sect. 6.
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Fig. 1 Schematic illustration of
the dynamical model

ϕ

θ

2 Dynamical model

We illustrate in detail the dynamical model that our work is based on in this section.

2.1 Ellipsoidal asteroid model

A uniformly rotating triaxial ellipsoid model is adopted for the asteroid in our study. The
model is constructed in the asteroid’s body-fixed frame shown in Fig. 1. The X axis points
along the asteroid’s longest axis, the Z axis along the spin axis, which is also the shortest
axis, and the Y axis completes the right-handed system. The three semi-axes are a, b and
c, respectively, and a ≥ b ≥ c. With a taken as the length scale, the three nondimensional
semi-axes of the ellipsoid are denoted as α, which is always equal to unity, β and γ . The
time scale is taken as 1/ω in which ω = 2π/T with ω and T being the asteroid spin rate and
spin period, respectively.

The nondimensional equations ofmotion (EOMs) involving only the gravity of the asteroid
are ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẍ − 2Ẏ = ∂U

∂X

Ÿ + 2Ẋ = ∂U

∂Y

Z̈ = ∂U

∂Z

, (1)

where the effective potential U (Scheeres 1994) is defined as

U = 1

2
(X2 + Y 2) − τV (2)

V = 3

4

∫ ∞

u
φ(X, Y, Z; v)

dv

Θ(v)
(3)

Θ(v) =
√

(α2 + v)(β2 + v)(γ 2 + v) (4)

φ(X, Y, Z; v) = X2

α2 + v
+ Y 2

β2 + v
+ Z2

γ 2 + v
− 1 (5)

φ(X, Y, Z; u) = 0 (6)

τ = μ

ω2a3
. (7)
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Table 1 Values of Characteristic
Spin Periods of Asteroids of
Different Shapes

β : γ τc τr

0.9:0.6 2.58 3.16

0.8:0.6 4.50 6.44

0.7:0.6 6.45 9.98

0.6:0.6 8.34 13.47

μ = GM is the gravitational parameter of the asteroidwithG being the gravitational constant
and M being the mass of the ellipsoid. τV is the nondimensional potential of the ellipsoid.
The integral in Eq. (3) is evaluated using Carlson’s elliptic integrals (Press et al. 1992) and
its lower limit u is the largest positive real root of Eq. (6).

The parameter τ in Eq. (7) can also be written as

τ = αβγ

(
T

T0

)2

, (8)

where

T0 = 2π
√

4
3πGρ

(9)

is the period of the orbit around the surface of an arbitrary spherical body with the same
density ρ as the ellipsoid. Eq. (8) clearly shows that τ is a function of the ellipsoid’s spin
period T , and thus this nondimensional parameter is adopted to represent T in the following.
Some of the values of τ for different asteroid missions are listed in Table 2 in Appendix 1.

As studied by Scheeres (1994), the SE points are always unstable whereas the CE points
may be stable (Type I asteroid) or unstable (Type II asteroid) depending on the shape and
spin period of the asteroid. For the Type I asteroid, for motions in the equatorial plane there
are two fundamental frequencies ωlong and ωshort with ωlong < ωshort associated with the CE
points. We define “resonance spin period” τr as the spin period of a Type I asteroid when
ω : ωlong = 2 : 1 is satisfied. The importance of this spin period will be shown in Sect. 4.2.1.
As the spin rate increases, the CE points will become unstable. The “critical spin period” τc
is defined as the spin period when an asteroid would make transition from Type I to Type
II. Some values of both the resonance spin periods and critical spin periods for ellipsoids of
different shapes are listed in Table 1.

2.2 SRP model

Since the mean motion of the asteroid around the Sun is generally much smaller than the
spin rate of the asteroid, we initially neglect the asteroid’s orbital motion when studying the
dynamics around itwithin a short time interval, i.e., during this time interval the Sun’s position
is assumed “frozen” in inertial space. Therefore, in the body-fixed frame of the asteroid, the
Sun is on a circular orbit perpendicular to the asteroid’s spin axis, with constant latitude θ

and time-varying longitude ϕ = −ωt + ϕ0 with ϕ0 being the initial value as depicted in
Fig. 1. Thus, the direction vector of the Sun is

R̂s = Rs

Rs
=

⎛

⎝
lx
ly
lz

⎞

⎠ =
⎛

⎝
cos θ cosϕ

cos θ sin ϕ

sin θ

⎞

⎠ , (10)

where Rs is the position vector of the Sun and Rs = ‖Rs‖.

123



410 X. Xin et al.

The potential function of the SRP is

VSRP = −ρSRP

D
, (11)

where D = ‖D‖ with D = R − Rs and R being the position vector relative to the asteroid
center and the SRP parameter is

ρSRP = σQPSRPR
2
SRP, (12)

where Q is the SRP coefficient with 1 for a perfectly absorbing surface and 2 for the case
of ideal specular reflection, PSRP = 4.56µNm−2 is the solar pressure at RSRP = 1 AU
(McInnes 1999), and σ is the effective area-to-mass ratio of the space object and is assumed
here as constant. For a space object with σ = 0.01m2 kg−1, the SRP parameter ρSRP ∼
1 × 106 km3 s−2. Since R = ‖R‖ satisfies R � Rs , the potential function of SRP can be
approximated to 2nd-order as

VSRP = V (1)
SRP + V (2)

SRP, (13)

where
V (1)
SRP = −ρSRP

R3
s

R · Rs

V (2)
SRP = ρSRP

2R3
s

[
R · R − 3(R · R̂s)

2
]
.

(14)

The potential function of the third-body gravitational perturbation of the Sun is

VSun = μs

(
1

D
− R · Rs

R3
s

)

. (15)

It can also be approximated as

VSun = − μs

2R3
s

[
R · R − 3(R · R̂s)

2
]
, (16)

where the solar gravitational parameter μs = 1.33 × 1011 km3 s−2.
Therefore

VSun

V (1)
SRP

∼ μs R

ρSRPRs

VSun

V (2)
SRP

∼ μs

ρSRP
.

(17)

For a space object with an area-to-mass ratio σ = 0.01m2 kg−1 orbiting around an asteroid
with radius of tens of kilometers, the third-body gravitational perturbation of the Sun is
approximately two orders of magnitude smaller than the first term of the SRP but much
larger than its second term. For our dynamical model, we only keep the first term of the SRP
and neglect the effect of the third-body gravitational perturbation of the Sun, although we
incorporate them later in evaluating the robustness of our results.

Hence, the simplified SRP after taking into account of the eclipse effect of the Sun is

FSRP = ν

(
∂VSRP
∂R

)T

= −νρSRP

R2
s

R̂s = νF′
SRP, (18)

where ν is the eclipse factor, which is described next.
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2.3 Eclipse model

Both the cylindrical and conical solar eclipse model were adopted in the work by García
Yárnoz et al. (2015a) and they concluded that the difference between both models is negli-
gible. However, the shadow considered in their work is projected by a spherical asteroid. In
our study we assume the cylindrical solar eclipse model and propose a method to account
for the shadow projected by an ellipsoidal asteroid.

At any given time, the half-line starting from the position of the space object R =
(X, Y, Z)T in the direction of the Sun is

⎧
⎪⎨

⎪⎩

X ′ = X + lx · s
Y ′ = Y + ly · s
Z ′ = Z + lz · s

, (19)

where s ∈ [0,+∞) is the half-line parameter. The function for the ellipsoid is

X ′2

α2 + Y ′2

β2 + Z ′2

γ 2 = 1. (20)

Combining Eqs. (19) and (20) yields the quadratic equation of s for the intersection points
of the half-line and the ellipsoid

As2 + 2Bs + C = 0, (21)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A = l2x
α2 + l2y

β2 + l2z
γ 2

B = lx X

α2 + lyY

β2 + lz Z

γ 2

C = X2

α2 + Y 2

β2 + Z2

γ 2 − 1

. (22)

The criterion for the space object to be in eclipse is that there are two real positive roots for
Eq. (21). Thus, the mathematical condition for eclipse is

ν =
{
0 D > 0 and B < 0
1 else

, (23)

where
D = B2 − AC. (24)

The eclipse factor ν can be further expressed with the two-dimensional Heaviside function
as

ν = 1 − H(D,−B). (25)

Details about the Heaviside function can be found in Bracewell (2000). Here the zero point
of the Heaviside function is undefined since D = 0 and −B = 0 cannot be satisfied at the
same time. We note that when −B = 0 is satisfied, D < 0.
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Finally, we arrive at the EOMs taking SRP into account
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẍ − 2Ẏ = ∂U

∂X
− νε cos θ cosϕ

Ÿ + 2Ẋ = ∂U

∂Y
− νε cos θ sin ϕ

Z̈ = ∂U

∂Z
− νε sin θ

, (26)

where ε = ρSRP/(ω
2aR2

s ) is the nondimensional magnitude of the SRP. Some of the values
of κ = ε × 103 for different asteroid missions are listed in Table 2 in Appendix 1. The
strength of SRP for natural bodies near the target asteroids with radius rparticle = 1mm and
the same density as the target asteroids are also listed in Table 2. For a spherical dust particle,
the area-to-mass ratio σ = 3/(4ρrparticle). Note that the values vary drastically mainly due
to the diverse physical properties of the target asteroids.

It is worth pointing out that Eq. (26) is symmetric with respect to the X −Y plane, i.e., the
asteroid’s equatorial plane. This indicates that only scenarioswith solar latitude 0◦ ≤ θ ≤ 90◦
need to be considered in our study. In addition, Eq. (26) is also symmetric about X axis when
ϕ0 = 0◦, 180◦ and symmetric about Y axis when ϕ0 = ±90◦. With these symmetries, the
dynamics about the pair of SE/CE points is the same and only one in each pair needs to be
focused on, and the state variables can be reduced when computing corresponding forced
periodic orbits.

3 Methodology

The computation algorithms to obtain the forced periodic motions together with their mon-
odromy matrices are given in this section.

3.1 Computation algorithm

With SRP taken into account, Eq. (26) becomes time-dependent and generally equilibrium
points no longer exist. However, some forced motions caused by the SRP exist. Since the Sun
follows a periodic circular orbit in our simplified model, these forced motions are actually
periodic orbits, with periods Tp commensurable with the asteroid’s spin period T . In our
work, we only focus on the specific case with Tp = T .

The state of the periodic orbit

X = (X, Y, Z , Ẋ , Ẏ , Ż)T (27)

should satisfy the periodic constraint

X(Tp + t0) = X(t0) = X0 (28)

at any arbitrary time t0. To impose the necessary phase constraint on the solutions of the
periodic orbits and take advantage of the symmetry of the dynamical system, the initial
longitude of the Sun ϕ0 is fixed to be 180◦ for the SE points and −90◦ for the CE points.

Predictor-corrector continuation algorithms are needed to solve Eq. (28). The Newton–
Raphson correction method serves as a robust corrector in our study. For the choice of
predictor, a simple version is firstly adopted. Suppose a periodic orbit that satisfies both
Eqs. (26) and (28) is known and is denoted by (X1

0, q1), whereq1 is the continuation parameter
which could be either the magnitude of the SRP ε (κ) or the solar latitude θ depending on

123



Forced periodic motions by solar radiation pressure 413

the family of forced periodic motions to be computed. For another periodic orbit (X2
0, q2)

satisfying Eqs. (26) and (28)

X2
0 = X1

0 + ΔX0 q2 = q1 + Δq, (29)

the predicted approximate correction ΔX̄0 can be obtained by solving
(

∂Φ

∂X

∣
∣
∣
∣
X1
0,q1

− I

)

ΔX̄0 + ∂Φ

∂q

∣
∣
∣
∣
X1
0,q1

Δq = 0, (30)

whereΦ is the state transitionmatrix (STM).ΔX̄0 canbeused as initial guess to substitute into
the correction procedure to compute the true valueΔX0. This predictor is straightforward and
easy to implement yet may lose track of the bifurcation branch and even fail when bifurcation
is encountered. When bifurcation occurs, a pseudo-arclength continuation method (Keller
1977) is adopted instead to obtain complete families of forced periodic motions.

To start the Newton–Raphson correction algorithm, an initial guess for the state of the
forced periodic motion can be provided by the linear solution to the EOMs. When the SRP is
small, the forced periodic motion should be close enough to the equilibrium point. Therefore,
the state of the forced periodic motion can be written as

X̄ = (XE + ξ, YE + η, ZE + ζ, ξ̇ , η̇, ζ̇ )T , (31)

where (XE , YE , ZE )T is the position of the equilibrium point and (ξ, η, ζ )T is the corre-
sponding small deviation. The small deviation can be obtained from the variational equations

⎧
⎪⎨

⎪⎩

ξ̈ − 2η̇ = lξ − νε cos θ cosϕ

η̈ + 2ξ̇ = mη − νε cos θ sin ϕ

ζ̈ = nζ − νε sin θ

, (32)

where

l = ∂2U

∂x2

∣
∣
∣
E

m = ∂2U

∂y2

∣
∣
∣
E

n = ∂2U

∂z2

∣
∣
∣
E

(33)

are evaluated at the equilibrium point. One particular solution is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ = (A1 cosϕ + B1 sin ϕ) cos θ

η = (A2 cosϕ + B2 sin ϕ) cos θ

ζ = C sin θ

ξ̇ = (−A1 sin ϕ + B1 cosϕ) cos θ

η̇ = (−A2 sin ϕ + B2 cosϕ) cos θ

ζ̇ = 0

(34)

with the coefficients ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = m − 1

lm + l + m − 3
νε

B2 = l − 1

lm + l + m − 3
νε

A2 = B1 = 0

C = νε

n

(35)

when the condition lm + l + m − 3 �= 0 is satisfied.
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3.2 Stability evaluation

We analyze the stability of the forced periodic motion by evaluating the eigenvalues of the
associated monodromy matrix. For a periodic orbit, the monodromy matrix is defined as
the STM mapped over one period (Scheeres 2012a) and, due to the time periodic dynamical
system it will not generically have unity eigenvalues. The differential equation for STMΦ6×6

is
Φ̇6×6 = A6×6Φ6×6, (36)

where

A6×6 =
(

03×3 I3×3

G3×3 + K3×3 J3×3

)

(37)

with

G3×3 =
⎛

⎝
Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎞

⎠ (38)

being the matrix of second-order partial derivatives of the effective potential of the ellipsoid
U with respect to the position vector R,

K3×3 = ∂FSRP

∂R
, (39)

J3×3 =
⎛

⎝
0 2 0

−2 0 0
0 0 0

⎞

⎠ , (40)

and I3×3 being the identity matrix.
As our SRP model Eq. (18) shows, SRP is related to the direction vector of the Sun R̂s

which is only a function of time. Therefore, when the eclipse factor ν takes values of 0
or 1, K3×3 = 0. However, on the boundary of the eclipse, the eclipse factor ν defined by
Eq. (25) is dependent on the position vector R, which results in K3×3 �= 0. This requires an
additional term Φ3×6(t∗) to be added at the time of eclipse boundary crossing time t∗ during
the integration of STM. Neglecting this additional term results in error in the computation of
the monodromymatrix and the corresponding eigenvalues. Since the perturbation magnitude
of the SRP is large for motions around asteroids, this error is large and should be treated with
care. The expression forΦ3×6(t∗) can be given analytically and detailed derivation is carried
out in Appendix 2.

After obtaining the monodromy matrix, stability of the forced periodic motions can be
studied by analyzing the corresponding eigenvalues. For stable forced periodic motions the
modulus of all eigenvalues should be equal to unity, while for unstable ones the modulus of
at least one eigenvalue should be greater than one.

4 Forced periodic motions and stability

For our dynamical model, there are five free parameters, i.e., the ellipsoid shape parame-
ters β and γ , the spin period of the ellipsoid represented by τ , the nondimensional SRP
parameter ε (κ) that is adopted to represent the magnitude of the SRP, and the latitude of
the Sun θ . Different combinations of parameters would produce distinct dynamical environ-
ments, resulting in diverse families and properties of forced periodic motions. This requires
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Forced periodic motions by solar radiation pressure 415

a large parameter space to be explored. To save space, we only present some selected
results.

4.1 Forced periodic motions about the SE points

For the case without SRP, motions around the SE points are unstable. There are stable and
unstable invariant manifolds associated with the SE points or orbits around them (Herrera-
Sucarrat et al. 2014). The incorporation of the SRP destroys the equilibrium points but doesn’t
change the stability property of the forced periodic motions. Similarly, we can compute
the invariant manifolds associated with the forced periodic orbits. Figure 2 shows a planar
periodic orbit about the SE point for solar latitude θ = 0◦ and its corresponding unstable and
stable manifold trajectories both with an integration time of 8τ .

For the dynamical model without the SRP, Herrera-Sucarrat et al. (2014) have studied
the behaviour of the invariant manifolds of various SE points and related periodic orbits and
their possible impact regions on the ellipsoidal asteroid. In addition, the invariant manifolds
are used to design asteroid rendezvous and landing trajectory from a Lyapunov orbit around
the SE point. When the SRP is taken into account, dynamics of invariant manifolds origi-
nating from periodic orbits of the forced motions should be different, and the same design
method can be employed to find asteroid rendezvous and landing trajectories, which could
be a subject for future study.

4.2 Forced periodic motions about the CE points

In the present work, we mainly focus on the forced periodic motions of the CE points. We
first study the families of planar forced periodic motions for solar latitude θ = 0◦. Then we
extend our study to families of 3D force periodic motions with θ �= 0.
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Fig. 2 A planar forced periodic orbit about the SE point (upper panel) and the corresponding unstable and
stable manifold trajectories both with an integration time 8τ (lower panels). The black cross symbol denotes
the SE point in the case without SRP
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4.2.1 Planar forced periodic motions

Given an asteroid with certain shape (β and γ ) and spin period (τ ), a family of planar forced
periodic motions exist around the CE points. Each member in the family corresponds to a
given magnitude of SRP κ . A sample of planar forced periodic motions of the same family
are shown in Fig. 3. The forced motions are periodic orbits which all lie in the equatorial
plane of the ellipsoid. As κ increases the amplitudes of the forced periodic motions become
larger, and eventually the forced periodic motion will collide with the ellipsoid.

By using the simple version of the predictor-corrector continuation algorithm introduced
in Sect. 3.1 and the magnitude of the SRP κ as continuation parameter, we obtain a series
of families of planar forced periodic motions for ellipsoids with γ = 0.6, β taking values
0.9, 0.8, 0.7 and 0.6, and different spin periods. We evaluate the stability of each one of
the forced periodic orbits and show the results as stability maps in Fig. 4. Different colors
indicate planar forced periodic motions with different planar and vertical stability conditions.
Red is for the planar and vertically unstable forced periodic motions, blue for the planar and
vertically stable ones, yellow for the planar unstable but vertically stable ones, and green for
the planar stable but vertically unstable ones. The white is for the forced periodic motions
that collide with the ellipsoid. It has to be pointed out that the zigzag-shaped boundaries of
the colored regions are due to the limited sampling of parameters.

Three interesting phenomena are evident in the stability maps.

1. Smooth transition of different colored regions is evident. As β becomes smaller, the red
region starts to appear (top right panel in Fig. 4), then extends to the lower left of the
map, with some part of its intersection with the yellow and blue region turning into green
region (bottom left panel in Fig. 4), and eventually dominates the stability map together
with the green region (bottom right panel in Fig. 4). This indicates that as the ellipsoid
becomes more elongated, while the structure of the planar stability of the planar forced
periodic motions remains qualitatively unchanged for the values we study, the vertically
unstable region enlarges and the vertical stability is more affected and finally destroyed.
It is interesting that though the forced periodic motions are restricted in the equatorial
plane, the vertical stability can be greatly influenced by SRP.

2. The stable regions are strongly influenced by certain resonant term of SRP. The bottoms
of each gap in the stable regions, which are coincident with the grey lines with circles in

Fig. 3 A family of planar forced
periodic motions. The black plus
symbol represents the CE point in
the case without SRP and the
same denotations apply in the
following figures
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Fig. 4 Stability maps of planar forced periodic motions for ellipsoids of different shapes. Red is for the planar
and vertically unstable forced periodic motions, blue for the planar and vertically stable ones, yellow for the
planar unstable but vertically stable ones, and green for the planar stable but vertically unstable ones. The
white is for the forced periodic motions that collide with the ellipsoid. The grey lineswith triangles and circles
denote the location of the critical spin period τc and resonance spin period τr on the horizontal axis of each
ellipsoid, respectively

the stability maps, lie at the resonance spin periods τr of the ellipsoids. However, other
resonant terms do not seem to play a role here.

3. In the case of no SRP, the CE points corresponding to ellipsoids with spin periods τ < τc
on the left of the grey lines with triangles are all unstable. However, the existence of blue
regions on the left of those lines indicate that the inclusion of SRP could make certain
motions around unstable CE points become stable. In fact, these stable forced periodic
motions gain their stability via the generalized Hopf bifurcation (Seydel 2010).

Careful examination of the evolution of the eigenvalues of themonodromymatrices shows
that bifurcations are common. Whenever the vertical stability changes, vertical bifurcation
branch of the planar forced periodicmotionswith non-zero Z -axis position vector component
appears. An example is shown in Fig. 5. The bifurcation branch starts at κ = 127 and all the
vertical branch of the forced periodic motions corresponding to κ < 127 can be obtained
by using pseudo-arclength continuation method. Due to the symmetry pointed out earlier,
symmetric orbits with respect to the X − Y plane exist. Similarly, planar bifurcations may
give rise to the period-doubling forced periodic orbits, which we do not consider in this
study.
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Fig. 5 Vertical bifurcation branch corresponding to the family of planar forced periodic motions in Fig. 3

4.2.2 3D forced periodic motions

In the case where the latitude of the Sun θ �= 0, the forced periodic motions are generally
not restrained to lie in the equatorial plane of the asteroid. Due to the symmetry with respect
to the ellipsoid’s equatorial plane, we only consider cases with solar latitude in the range
0◦ < θ ≤ 90◦. Given an asteroid with certain shape (β and γ ) and spin period (τ ) in
presence of certain magnitude of SRP κ , different families of 3D forced periodic motions
may exist. Each member in the same family corresponds to a given solar latitude θ .

Intuitively, these 3D forced periodic motions can be obtained by continuation from the
corresponding planar forced periodic motions taking the latitude of the Sun θ as the contin-
uation parameter. Families of 3D forced periodic motions computed in this way are called
“Type I” families. For β : γ = 0.8 : 0.6 τ = 4.0 κ = 70, this whole family is obtained and
represented by the blue characteristic curve (maximum value of z-component zmax versus
solar latitude θ ) in Fig. 6. It is obvious from the figure that this Type I family of 3D forced
periodic motions exists for the whole range of solar latitudes and remain stable for solar lat-
itudes up to ∼4◦. There is also a stable interval for solar latitudes between ∼22◦ and ∼46◦.
When the Sun is right above the ellipsoid (θ = 90◦), the forced periodic motion shrinks to a
single point. It is worth mentioning that as the solar latitude increases, the eclipse conditions
of the dynamical substitutes also change from partial shadow to no shadow. This transition
causes the little dip shown in the blue characteristic curve.

However, for larger SRP strength, Type I families of forced periodic motions may no
longer exist for solar latitude higher than a certain value. This is clearly shown in Fig. 7 by
the blue characteristic curve of the Type I family with κ = 97. This of course does not mean
that the forced periodic orbits do not exist for high solar latitude.

To find forced periodic motions for higher solar latitude in the case κ = 97, continuation
procedure starting from the solar latitude θ = 90◦ downward is adopted instead.Asmentioned
before, when θ = 90◦, the 3D forced periodic motion degenerates to be a single point near
the corresponding CE point. The approximate initial state can be given by Eq. (34). For large

123



Forced periodic motions by solar radiation pressure 419

Fig. 6 Characteristic curves of
3D forced periodic motions. The
blue line is for the Type I family
and the red line for the Type II
family. The solid and dashed
lines represent forced periodic
motions that are stable and
unstable, respectively, and the
same denotations apply in the
following figures
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Fig. 7 Characteristic curves of
3D forced periodic motions. The
blue line is for the Type I family
and the red line for the Type II
family
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magnitudes of SRP such as κ = 97, a new family of 3D forced periodic motions can be
obtained in this way and is called “Type II” family. The whole family is represented by the
red characteristic curve in Fig. 7. In fact, we can continue from the members with small solar
latitudes belonging to the Type II family for κ = 97 and compute the forced periodic motions
of the same family for other smaller magnitudes of SRP, e.g., κ = 70, which is shown by the
red characteristic curve in Fig. 6.

It should be noted that when the solar latitude θ = 90◦ the equilibrium point generally
exists. It is located where the gravity force of the asteroid, the centrifugal force, and the SRP
balance. It coincides with the CE point when the SRP is zero. The equilibrium point belongs
to the Type I family when SRP is small and the Type II family when SRP is large. The critical
value of SRP for this transition to occur depends on the parameters of the asteroid and an
example is given later in Fig. 12.

Comparing Figs. 6 and 7, it is obvious that three forced periodic orbits may exist for
the same solar latitude, two of which belong to the same family (either Type I or Type II)
due to the bifurcation of the fold points type (Seydel 2010). In addition, shown from those
three figures, forced periodic motions of Type II family are generally unstable when the solar
latitude θ is close to 0◦ or 90◦, whereas forced periodic motions of Type I family can be
stable for solar latitudes from 0◦ up to several degrees or more depending on the choice of
parameters.
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Fig. 8 A Type I family of 3D forced periodic motions for β : γ = 0.8 : 0.6 τ = 4.0 κ = 70
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Fig. 9 A Type II family of 3D forced periodic motions for β : γ = 0.8 : 0.6 τ = 4.0 κ = 70. zsmall
max denotes

the forced periodic motions corresponding to the lower branch of the red line with smaller values of zmax and

z
big
max denotes the forced periodic motions corresponding to the upper branch of the red line with larger values
of zmax in Fig. 6

We show some members of the two families of forced periodic motions for the cases
β : γ = 0.8 : 0.6 τ = 4.0 with κ = 70 and κ = 97 respectively in Figs. 8, 9, 10 and 11. It is
worth noting that the periodic orbits of the forced motions of Type II family normally have
figure-eight shape which could extend to the polar region of the ellipsoid. In addition, the
Type II family generally has larger zmax than that of the Type I family, especially for lower
solar latitude. These features distinguish the Type II family from the Type I family.
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the forced periodic motions corresponding to the lower branch of the blue line with smaller values of zmax
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Fig. 11 A Type II family of 3D forced periodic motions for β : γ = 0.8 : 0.6 τ = 4.0 κ = 97

Detailed computation also shows that both the Type I and Type II families of the forced
periodic motions are common for ellipsoids of different shapes and spin periods. Moreover,
we find that these two families are related to each other as we gradually change themagnitude
of the SRP, which is shown in Fig. 12. Clearly, the characteristic curves of the two families
break and reconnect with one another as the SRP increases from κ = 77.1 to κ = 77.6. This
kind of phenomena is quite common among studies of other dynamical systems, such as the
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Fig. 12 Evolution of characteristic curves for Type I and Type II family of forced periodic motions as the
magnitude of the SRP changes

study of planar Lyapunov families around collinear libration points in the circular restricted
three-body problem (CRTBP) by Hou and Liu (2009).

5 Discussion

Based on the simplified model we have obtained families of forced periodic motions around
asteroids and studied their stability properties. As pointed out by Scheeres et al. (2000),
the study of stability of periodic orbit families can be a useful approach to the stability
characterization of orbits about an asteroid. The stability of the forced periodic motions can
be directly related to the expected stability properties of the neighboring motions, and can
even provide knowledge of stability for motions in the real dynamical model.

Compared with the real dynamical model around an asteroid, the simplified model in our
work neglects the following perturbations: (1) non-ellipsoidal gravity terms caused by the
real shape of the asteroid; (2) the third-body perturbation from the Sun; (3) higher order terms
of the SRP; (4) the orbital motion of the asteroid around the Sun.

In our work, we use a triaxial ellipsoid to simulate the shape and the gravity of an asteroid,
but the real case is much more complicated than a triaxial ellipsoid. Generally, for motions
very close to the asteroid, specific treatment should be made for each individual asteroid.
It is hard to reach a general conclusion if details of each asteroid are considered. So in this
work we neglect these details and simply use the triaxial ellipsoid model to get some general
conclusions. Besides, with more efforts, the method in this work (i.e., computing the forced
periodic motions and the stability parameters) can be generalized to a real asteroid. In the
same sense, since our study only focuses on the natural dynamics of forced periodic motions
around asteroids, discussions of those practical aspects that involve spacecraft operations and
control, such as changes in effective area-to-mass ratio, are left out in our work.

As for the third-body perturbation of the Sun and the higher order terms of SRP, as we
already pointed out at the beginning of this work, they are much smaller than the term consid-
ered for the SRP in this work and will not qualitatively change our conclusions. What is more
impactful are the changing solar latitude and varying distance from the Sun due to the real
asteroid’s orbital motion. These factors do affect the dynamics of the forced periodicmotions.
However, our conclusions obtained from the simplifiedmodel can provide guidance in under-
standing the effect of these factors. This is verified by the following numerical simulations.
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5.1 Real dynamical model

We construct a more realistic model that incorporates the higher order terms of SRP, the
third-body perturbation of the Sun, and the orbital motion of the asteroid.

The nondimensional EOMs in the asteroid-centered inertial frame is given by

r̈ = −τ

(
∂V

∂ r

)T

−
(
ψ1 r̂s + ψ2 d̂

)
+ νψ3 d̂, (41)

where V and τ are already given in Eqs. (3) and (7), respectively, and

r̂s = rs
rs

d̂ = d
d

(42)

with d = r − rs , r and rs being the position vectors of the space object and the Sun relative
to the center of the asteroid in the inertial frame, respectively, rs = ‖rs‖ and d = ‖d‖. The
nondimensional parameters are defined as

ψ1 = μs

ω2ar2s
ψ2 = μs

ω2ad2
ψ3 = ρs

ω2ad2
. (43)

Note that the three terms on the right side of Eq. (41) represent the gravitational force of
the asteroid, the perturbation of the Sun, and SRP, respectively. Since V is evaluated in the
body-fixed frame of the asteroid, the computation of the gravitational force of the asteroid in
the inertial frame also involves coordinate transformation from the body-fixed frame to the
inertial frame.

From the perspective of the asteroid, the Sun is in circular motion about it with the latitude
θ and longitude ϕ computed from

sin θ = sin i sin ũ (44)

and

ϕ = ϕ1 + ϕ0 sin ϕ1 = tan θ

tan i
cosϕ1 = cos ũ

cos θ
, (45)

where i is the obliquity between asteroid’s orbital plane and its equatorial plane and ũ is the
argument of latitude of the Sun.

5.2 Effect of orbital obliquity

If we consider the asteroid’s circular orbital motion and its obliquity i , the Sun’s latitude is
no longer fixed in the body-fixed frame of the asteroid. When the Sun is in the asteroid’s
equatorial plane, θ = 0◦; when the Sun passes the upper or lower culmination point, the Sun’s
latitude θ reaches its maximum value (θmax = i for prograde motion and θmax = 180◦− i for
retrogrademotion) or itsminimumvalue (θmin = −i for progrademotion and θmin = i−180◦
for retrograde motion). However, due to the fact that the spin period of the asteroid is usually
much smaller than its orbital period, during a short time interval (e.g., several spin periods), the
Sun’s latitude can still be taken as constant and the stability properties of the forced periodic
motions we have obtained in this study should therefore be applicable. This indicates that
as long as there exist a series of forced periodic motions for solar latitudes in the range
0◦ ≤ |θ | ≤ θ∗ in our simplified model, these forced periodic motions may remain stable
in the real dynamical model with the obliquity i ≤ θ∗ for prograde orbital motion and
180◦ − i ≤ θ∗ for retrograde orbital motion.
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Fig. 13 Stable region within which all the integrated trajectories of the forced periodic motions lie. These
periodic orbits belong to the Type I family of the 3D forced periodic motions for the case β : γ = 0.8 : 0.6
τ = 4.0 κ = 70 θs = 3◦. The trajectories are integrated for 1year, and the orbit obliquity i = 4◦

To verify our conclusions, we take the forced periodic orbits in the Type I family which
are stable for solar latitudes 0◦ ≤ |θ | ≤ θ∗ and integrate them in the inertial frame for 1year
by using the Eq. (41) with the obliquity fixed to i = θ∗ and ũ changing with time from
0◦ to 360◦. If the integrated trajectories of the periodic orbits for solar latitudes θ ≤ θs do
not collide with the ellipsoid during the time and stay within certain finite region, we are
confident that these forced periodic motions are indeed stable over the timespan of 1year.
Nominally θs is not equal to θ∗ due to the discrepancy between our simplified model and the
real model. Here we only need to focus on the cases corresponding to the prograde motion,
i.e., i < 90◦.

For the case β : γ = 0.8 : 0.6 τ = 4.0 κ = 70, forced periodic motions in the Type I
family are stable for θ∗ = 4◦ (see Fig. 6). The stable region of all the stable forced periodic
motions for θs = 3◦ with i = 4◦ is shown in the rotating frame in Fig. 13. This result clearly
supports our conclusions. However, when the obliquity i > 4◦, the forced periodic motions
lose their stability and the integrated trajectories may collide with the ellipsoid in the end,
which is shown in Fig. 14 as an example for the forced periodic orbits of θ = 3◦ with i = 5◦.
The trajectory impacts the ellipsoid within 0.3year. This is easy to understand. Since for
this case θmax = 5◦ > θ∗, the perturbation of SRP destabilizes the forced periodic motions
around the asteroid during the period when i > 4◦, which is corroborated by the fact that no
stable forced periodic motions exist for solar latitudes between ∼4◦ and ∼22◦ shown by the
blue characteristic curve in Fig. 6.

In addition, it needs to be pointed out that stable region could also exist about the equi-
librium points of an asteroid for obliquity i taking values as large as tens of degrees. For the
case β : γ = 0.8 : 0.6 τ = 6.2 κ = 50, as shown in Fig. 15, forced periodic motions of
the Type I family are stable for θ∗ = 15◦. It is therefore reasonable to expect that in the real
model these periodic orbits should be stable for fairly large orbit obliquity, which is exactly
what is shown in Fig. 16 for the stable region of the forced periodic orbits for θs = 10◦ with
i = 15◦.
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Fig. 14 The integrated trajectory of the periodic orbit of θ = 3◦ that collides with the ellipsoid for the case
β : γ = 0.8 : 0.6 τ = 4.0 κ = 70. The orbit obliquity i = 5◦, and the impact time is less than 0.3year

Fig. 15 Characteristic curves of
3D forced periodic motions. The
blue line is for the Type I family
and the red line for the Type II
family
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5.3 Effect of orbital eccentricity

Another issue when considering the asteroid’s orbital motion is the orbital eccentricity e. It’s
easy to understand that the SRP reaches its maximum when the asteroid is at its perigee and
its minimum at the apogee, and that the variation is dependent on the value of eccentricity.
In order for the forced periodic motions to remain stable around an asteroid with elliptical
orbital motion, the eccentricity should not exceed a certain value. For the case of stable planar
forced periodic motions, suppose the upper and lower bound of the SRP for a certain family
is κmax and κmin (the blue region in Fig. 4), the maximum eccentricity emax is constrained
by the relation

emax =
√

κmax − √
κmin√

κmax + √
κmin

. (46)

For an asteroid with orbital eccentricity e ≤ emax , there should exist stable forced periodic
motions in the simplifiedmodel that remain stable in the realmodel as long as they are ensured
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Fig. 16 Stable region within which all the integrated trajectories of the forced periodic motions lie. These
periodic orbits belong to the Type I family of the 3D forced periodic motions for the case β : γ = 0.8 : 0.6
τ = 6.2 κ = 50 θs = 10◦. The trajectories are integrated for 1year, and the orbit obliquity i = 15◦

to experience SRP of magnitude κ in the range κmin ≤ κ ≤ κmax during the revolution of
the asteroid.

We illustrate this with the numerical simulation of the planar forced periodic motions for
the case β : γ = 0.8 : 0.6 τ = 5.4 as an example. The upper and lower bound of the SRP
for the forced periodic motions to be stable is κmax ∼ 38 and κmin ∼ 0. The maximum
eccentricity is, therefore, emax ∼ 0.5.

We choose eccentricity e = 0.4 such that the magnitude of SRP is κp ∼ 38 at perigee and
κa ∼ 7 at apogee. The corresponding stable planar forced periodic motions of κ in the range
7 ≤ κ ≤ 38 are integrated in the inertial frame for 1year by using Eq. (41) with obliquity
fixed i = 0◦ and ũ changing with time for a total of 360◦. The initial position of the asteroid
in its orbit is chosen dependent on each planar forced periodic motion of κ that is integrated
such that the magnitude of SRP at that point is exactly κ . The results show that for planar
forced periodic motions of ∼7 ≤ κ ≤ ∼14, all the integrated trajectories lie within the blue
region shown in the rotating frame in Fig. 17, which proves that these forced periodic motions
can remain stable in the real model considering the elliptical orbital motion of the asteroid.
Moreover, the stable region seems well bounded by the corresponding planar forced periodic
motions of κ = 38. In addition, it needs to be pointed out that the integrated trajectories of
the planar forced periodic motions of ∼0 ≤ κ∼7 could also remain within the blue region
in the real model given the same range of SRP and orbital eccentricity.

Other planar forced periodic motions of ∼14 < κ < ∼38 collide with the asteroid in less
than 1year as an example for κ = 15 shows in Fig. 18. It is evident that once the integrated
trajectorywanders out of the region enclosed by the planar forced periodicmotions of κ = 38,
it quickly inflates in amplitude and impacts with the asteroid in the end.We speculate that this
phenomenon is closely related to the stability widths of the planar forced periodic motions
in the real model and the detailed analysis requires further study.

Generally, the existence of stable regions in the real model is dependent on the parameters
of the asteroid and the space object, which hence requires a case by case study. Scheeres et al.
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Fig. 17 Stable region of the
integrated trajectories of the
stable planar forced periodic
motions of ∼7 ≤ κ ≤ ∼14 for
the case β : γ = 0.8 : 0.6
τ = 5.4. The orbit eccentricity
e = 0.4 and the trajectories are
integrated for 1year. The red line
represents the planar forced
periodic motion of κ = 38
obtained in the simplified model

Fig. 18 The integrated trajectory
of the stable planar forced
periodic motions of κ = 15 for
the case β : γ = 0.8 : 0.6
τ = 5.4. The orbit eccentricity
e = 0.4. The trajectory collides
with the asteroid in 0.8year. The
red line represents the planar
forced periodic motion of κ = 38
obtained in the simplified model

(2002) reviewed the dynamics of ejecta around an asteroid with a classification of surface
ejecta in terms of their fate. With different perturbative forces acting together, a class of
long-term stable orbits for those ejecta can exist about the asteroid. The stable regions for the
forced periodic motions obtained in our study could be a likely place for ejecta to stay for an
extended period of time. Moreover, for space exploration application, these forced periodic
motions may serve as spacecraft observation trajectories around an asteroid.

6 Conclusions

In the presence of SRP, the dynamical equations of a small body in the body-fixed frame of a
uniformly rotating asteroid becomes non-autonomous and the equilibrium points no longer
exist. Nevertheless, special orbits are forced to exist by the SRP. They are called forced
periodic motions in this work. With reasonable simplifications of the dynamical model, i.e.,
triaxial ellipsoid model for the asteroid, neglecting the asteroid orbital motion in the inertial
frame, lowest order approximation of SRP, and no third-body perturbation, we compute
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these forced periodic motions around the equilibrium points in this simplified model. They
appear as periodic orbits with the same period as the SRP. Their stability parameters are also
computed via the monodromy matrix. Special treatment is given to the monodromy matrix
when dealing with the eclipse of SRP, which is usually unnecessary for dynamics around
major celestial bodies but critical to our study.

We find that for the SE points, the SRP does not alter the stability of the forced periodic
motions yet does change themorphology and dynamics of the associated invariant manifolds.
For the CE points, both planar and 3D forced periodic motions are obtained. Important
conclusions include:

1. Stability conditions of the planar forcedperiodicmotions for four representative ellipsoids
are obtained, which are well illustrated by the stability map in Fig. 4. As the ellipsoid
becomes more elongated, smooth transition of regions with different stability properties
are observed and the stable region shrinks. The vertical stability of the planar forced
periodic motions is more affected and finally destroyed by the elongation while the
structure of the planar stability remains qualitatively unchanged for the values we study.
In addition, the stable region is influenced by the resonance between the fundamental
frequency of the CE point and that of the SRP.

2. Stable planar forced periodic motions are found both for the stable and unstable CE
points with the right combination of parameters, i.e., the spin period of the asteroid and
the magnitude of SRP.

3. Two types of families of 3D forced periodic motions are identified, i.e., the Type I and
Type II. For a given solar latitude, three forced periodic orbits may exist, two belonging
to one type and the remaining one belonging to the other. These two types of fami-
lies are related to each other, which are shown clearly by their respective characteristic
curve.

4. Given certain combination of parameters, forced periodic motions of the Type I family
can be stable for solar latitudes up to tens of degrees in our simplified model. Numerical
simulations based on the real model taking into account of the asteroid’s orbital motion
are carried out and the conclusion is verified. The results show that stable regions can exist
in the real model for orbital obliquity as large as tens of degrees and orbital eccentricity
∼0.4 for certain asteroid. These results provide insights into the dynamics of asteroid’s
ejecta as well as trajectory design for asteroid missions.

Though our work is based on the simplified triaxial ellipsoid model, the conclusions can
be referenced for motions around real asteroids. Also, the method in this work can be plainly
generalized to real asteroids.
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Appendix 1: Table of τ and κ for selected asteroid missions

See Table 2.
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Table 2 Nondimensional values of target asteroids’ spin periods and SRP strengths on spacecraft and natural
bodies for different asteroid missions

Mission NEARa Dawnb Hayabusac OSIRIS-RExd

Target asteroid Eros Vesta Itokawa Bennu

Rs (AU) 1.46 2.36 1.32 1.13

a (km) 20 280 0.25 0.25

β : γ 0.28:0.26 0.97:0.78 0.54:0.41 0.97:0.90

T (h) 5.27 5.34 12.13 4.30

ρ (g cm−3) 2.67 3.46 1.90 1.26

τ 0.6 6.8 5.7 1.9

S/C σ (m2 kg−1) 0.018 0.045 0.030 0.014

κ (ε × 103) 1.7 × 10−2 1.2 × 10−3 15.3 1.2

Natural body σ (m2 kg−1) 0.281 0.217 0.395 0.595

κ (ε × 103) 2.7 × 10−1 5.9 × 10−3 200 52

a Yeomans et al. (2000), Zuber et al. (2000), Cheng (1997)
b Russell et al. (2012), Thomas et al. (2011)
c Fujiwara et al. (2006), Kawaguchi et al. (2006)
d Lauretta et al. (2015), Broschart et al. (2013)

Appendix 2: Derivation of Φ3×6(t∗)

We first break STM Φ6×6 into a partitioned matrix

Φ6×6 =
(

Φ1
3×6

Φ2
3×6

)

. (47)

Integrating Eq. (36) for one period we get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ1
3×6(t0, Tp + t0) =

∫ Tp+t0

t0
Φ2

3×6dt

Φ2
3×6(t0, Tp + t0) =

∫ Tp+t0

t0

(
G3×3 · Φ1

3×6 + J3×3 · Φ2
3×6

)
dt + Φ3×6(t

∗).
(48)

The integration can be carried out numerically except for

Φ3×6(t
∗) =

∫ Tp+t0

t0
K3×3 · Φ1

3×6dt (49)

which can be given in analytical form.
Recall that only the eclipse factor ν is a function of the position vector R, hence

K3×3 = ∂FSRP

∂R
= F′

SRP ·
[

−∂H(D,−B)

∂R

]

. (50)

According to the properties of Heaviside function H(x, y) and Delta Dirac function δ(x),
which are explained in detail by Bracewell (2000) in Ch. 4 & 5,

d

dx
H(x, y) = δ(x)H(y), (51)
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and ∫ b

a
δ [g(x)] f (x)dx =

∑

i

f (xi )

|g′(xi )| (52)

where g(xi ) = 0, g′(xi ) �= 0 and xi ∈ (a, b).
Therefore, Eq. (49) becomes

Φ3×6(t
∗) =

∫ Tp+t0

t0
F′
SRP ·

[

−δ(D)H(−B)
∂D
∂R

− δ(−B)H(D)
∂(−B)

∂R

]

Φ1
3×6dt

=
2∑

i=1

F′
SRP(t

∗
i ) ·

⎡

⎣−
∂D
∂R

∣
∣
t∗i

|Ḋ(t∗i )|

⎤

⎦ · Φ1
3×6(t

∗
i , t0).

(53)

This indicates that Φ3×6(t∗) needs to be calculated at each of the eclipse boundary crossing
time t∗i and added to STM during the integration process. Nominally, when eclipse occurs,
two eclipse boundary crossings are expected and the summation is evaluated twice.
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