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Abstract A relative motion model for a satellite formation composed of two Earth-orbiting
spacecraft located in the geostationary ring is developed taking into account major gravita-
tional and non-gravitational forces. A previously existing model featuring perturbation due
to J2 is enhanced by the perturbations due to solar radiation pressure arising from unequal
area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to
the Sun and the Moon. The extended relative motion model is validated using several typical
formation geometries against a reference generated by numerical integration of the absolute
orbits of the two spacecraft. The results of this work can find application in future on-orbit
servicing and formation flying missions in near-geostationary orbit.

Keywords Relative motion · Solar radiation pressure (SRP) · Third-body gravitational
perturbations · Geostationary orbit · Formation flying · On-orbit servicing (OOS) · Relative
orbital elements (ROEs)

1 Introduction

As the market of satellite communication services is growing continuously, there is an ever-
increasing interest in On-Orbit Servicing (OOS) and Space Situational Awareness (SSA) in
near-geostationary orbit (GEO). A number of Phase A/B satellite mission studies have been
conducted in the last decade (Caswell et al. 2006; Kaiser et al. 2008), which demonstrates
strong demand as well as technological readiness for OOS in GEO. Potential applications of
a geostationary OOS satellite include propellant supply for Client spacecraft life extension,
provision of Attitude and Orbit Control (AOC) in case of Client AOC system malfunction,
recovery of a satellite launched into an incorrect orbit, and last but not least, active removal
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of space debris and de-orbiting of old uncooperative satellites. These considerations call
for an in-depth investigation of the dynamics of the relative motion of two spacecraft in
near-geostationary orbit.

A Relative Motion Model (RMM) was developed in D’Amico (2010) addressing secular
perturbations due to the oblateness of the Earth as well as the differential air drag. This RMM
has been employed at the German Space Operations Center (GSOC) in various Low-Earth
Orbit (LEO) formation-flying experiments, (D’Amico et al. 2012;Gaias et al. 2014;D’Amico
et al. 2013). It also forms the basis of the TanDEM-X Autonomous Formation Flying system
(Ardaens et al. 2011, 2013). The goal of the present research is to extend the available RMM
including perturbations that might be secondary in LEO but play a significant role at GEO
altitude, such as the Solar Radiation Pressure (SRP) and the third-body gravitational pull.
Due to the much longer revolution period in GEO as compared to LEO, all the OOS and
formation flying activities, such as a spiral far- or mid-range approach, or an inspection fly-
around, have a timely duration approximately 15 times longer than a corresponding activity
in LEO, bringing into foreground certain secular and long-periodic perturbations.

The effects of SRP are particularly important for communication satellites equipped with
large solar arrays. The topic of SRP affecting absolute orbits of single satellites has been
discussed often in literature, (Bryant 1961; Kozai 1963; Aksnes 1976). As to the relative
orbit, the key factor driving the differential SRP is the difference in area-to-mass ratio of the
two spacecraft. If the objective is to provide on-orbit services to various Client spacecraft
within a wide range of area-to-mass ratios, SRP becomes an important factor in approach
trajectory design and relative orbit prediction. In present work, a simple model for inertial
disturbing relative acceleration under the assumption of constant spacecraft cross-sectional
areas proves sufficient to account for major SRP-related effects.

In near-geostationary orbit and with relatively large separation in the normal and radial
directions as it can be, for instance, in the beginning of a rendezvous phase, third-body
gravitational perturbations of the Sun and the Moon are no longer negligible. Third-body
perturbations of absolute orbits have been studied intensively in the second half of the last
century. Among the major contributions are: the developments in Kaula (1962), analogous to
the well-known Linear Perturbation Theory for gravitational perturbations of non-spherical
Earth; the formalization of Kozai (1973), where the disturbing function is represented in
terms of the polar coordinates of the disturbing body and the Keplerian elements of the
satellite; the theory of Giacaglia (1974), where the perturbations due to the Moon are devel-
oped in terms of its ecliptic elements; the double-averaged analytical model of Prado (2003),
where the disturbing function is averaged over the satellites revolution period as well as the
perturbing body’s revolution period. The research on third-body perturbations in relative
orbits, however, has been so far restricted primarily to numerical investigations, (Wnuk and
Golebiewska 2005), and some analytical developments of relative perturbations based on the
absolute double-averaged model of Prado. A simplified model of Prado was used in Roscoe
et al. (2013), where the rates of the lunar perturbations in differential Keplerian elements
were obtained as well as a transformation between the osculating elements and the lunar-
averaged elements. In present research, the lunisolar secular and long-periodic gravitational
perturbations of relative orbit were investigated using the formulations from Kozai (1973)
for absolute orbits. Since the theory of Kozai delivers a single-averaged disturbing function,
no transformation to mean lunar/solar orbital elements is necessary. Thus, the obtained per-
turbations depend on the actual position of the perturbing body and therefore give insight
into the medium-term behavior of the satellite formation.

The ultimate result of this research is an extended relative motion model addressing
relative dynamics of two spacecraft in near-geostationary orbit, which allows to predict the
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Formation dynamics in geostationary ring 487

evolution of the relative orbit from epoch t to epoch t + Δt taking into account SRP as
well as third-body perturbations. The calculations require the Servicer’s absolute orbital
elements obtained, for instance, through orbit determination using ground station tracking
data, and the information on the relative orbital state at epoch t . Perturbations related to the
Sun and the Moon depend as well on the geocentric position of the perturbing body. The
absolute elements of the Client spacecraft are not required for the relative orbit prediction,
and therefore this approach can be used in design of guidance profiles towards uncooperative
targets as well as on-board a Servicer spacecraft for future OOS strategies with high level of
autonomy.

The remaining of the paper is organized as follows. Section 2 recalls the relative motion
model developed in D’Amico (2010), while Sect. 3 provides details on the extended RMM,
including Sect. 3.1 dedicated to the differential SRP and Sect. 3.2 addressing third-body grav-
itational perturbations. Several initial formation geometries are selected in Sect. 4 covering
a range of typical scenarios related to OOS and formation flying. These are used to validate
the extended RMM with respect to a reference generated by numerical integration of two
absolute orbits under full force model.

2 Preliminaries

2.1 Relative orbital elements

The relative motion of two close spacecraft in Low Earth Orbit (LEO) was characterized in
D’Amico (2010) in terms of the following set of Relative Orbital Elements (ROEs)

δα =

⎛
⎜⎜⎜⎜⎜⎜⎝

δa
δλ

δex
δey
δix
δiy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(ad − a) /a
(ud − u) + (Ωd − Ω) cos i

ex,d − ex
ey,d − ey
id − i

(Ωd − Ω) sin i

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where the non-singular elements

κ = (
a, u, ex , ey, i,Ω

)T
= (a, ω + M, e cosω, e sinω, i,Ω)T

(2)

parametrize the absolute orbit of a single satellite. Here a, e, i , Ω , ω, M are the classical
Keplerian elements. The subscript d refers to the deputy satellite, while the orbital elements
without a subscript denote the elements of the chief satellite.

The general concept of the ROEs above was inherited from the previous studies on safe
colocation of geostationary satellites (Härting et al. 1988; Eckstein et al. 1989), and adapted
to formation flight in D’Amico (2010) to parameterize the relative motion of the deputy
satellite with respect to the chief satellite. With OOS applications being the baseline scenario
of the present paper, the Client satellite is considered to be the chief satellite, while themotion
of the Servicer has to be characterized with respect to the Client. On the other hand, the orbit
of the Servicer will probably be known with better accuracy than the orbit of a possibly
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uncooperative Client. Therefore, a slightly different definition of ROEs will be used in the
remaining of the paper:

δ̃α =

⎛
⎜⎜⎜⎜⎜⎜⎝

δ̃a
δ̃λ

δex
δey
δix
δ̃iy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(as − ac) /as
(us − uc) + (Ωs − Ωc) cos is

ex,s − ex,c
ey,s − ey,c
is − ic

(Ωs − Ωc) sin is

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

where the subscripts s and c refer to the Servicer and the Client.
Compared to the original definition from D’Amico (2010), the absolute elements of the

chief (Client) satellite are substituted with the orbital elements of the deputy (Servicer)
satellite in δa, δλ and δiy where they play a role of scaling factors. For instance, rewriting the
definition from D’Amico (2010) using the subscripts s and c would give δa = (as − ac) /ac.
Simple calculations show that

δ̃a = δa − δa · δ̃a = δa + o(δa),

i.e., to the first order these definitions coincide. The same is true for the δλ and δiy , namely

δ̃λ ≈ δλ − δiy · δix = δλ + o(δα),

and

δ̃iy ≈ δiy + (δλ − δu) · δix = δiy + o(δα).

Both the RMM developed in D’Amico (2010) and the extended RMM presented in this
paper are linear in ROEs, and are only valid for near-circular orbits with δα � 1. The
error introduced by deviations in the definitions of ROEs is, however, of second order, and
therefore, the modified ROEs are subject to the same first-order dynamics as characterized
in D’Amico (2010). In the following, the symbol of tilde in δ̃{·} will be omitted.

Vectors δe = (
δex , δey

)T and δi = (
δix , δiy

)T are called the relative eccentricity and the
relative inclination vectors with magnitudes denoted by δe and δi , respectively.

Multiplied by the semi-major axis, ROEs allow a convenient representation of the ideal
relative in-plane and out-of-plane motion. Namely, under the assumptions of near-circular
orbits and δα � 1, the relative motion is bounded, if the offset in the semi-major axes aδa is
zero. In the orbital plane, the Servicer circumscribes with respect to the Client an ellipse with
semi-major axis 2aδe in along-track direction and semi-minor axis aδe in radial direction,
whereas the amplitude of the oscillation in the direction orthogonal to the orbital plane is
equal to aδi (see, for instance, Fig. 2.2 in D’Amico 2010). The average relative offsets in the
along-track and radial directions are equal to aδλ and aδa, respectively.

Along with the definition in Eq. (3) a set of differences

Δκ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Δa
Δu
Δex
Δey
Δi
ΔΩ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

as − ac
us − uc

ex,s − ex,c
ey,s − ey,c
is − ic

Ωs − Ωc

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)
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is used in auxiliary computations. The relations between δα and Δκ are straightforward

δa = Δa/as δλ = Δu + ΔΩ cos is
δex = Δex δey = Δey

δix = Δi δiy = ΔΩ sin is .

(5)

All the absolute orbital elements that appear in the following refer to those of the Servicer
satellite, therefore the subscript s is dropped.

2.2 Unperturbed relative motion and the Earth oblateness terms

Under the assumptions of the Hill-Clohessy-Wiltshire (HCW) equations governing unper-
turbed relative motion (Clohessy and Wiltshire 1960), the only relative element changing
with time is the relative mean longitude aδλ. Namely, if the semi-major axis offset aδa is not
zero, the Servicer is drifting with respect to the Client with a rate of -3πaδa per revolution.
At the same time, main secular perturbations of the almost-bounded relative motion resulting
from the Earth equatorial bulge can be summarized as a rotation of the relative eccentricity
vector aδe, and in case δix �= 0, a vertical drift of the relative inclination vector aδi and an
additional drift of the relative mean argument of longitude aδλ.

A detailed analysis of the unperturbedmotion and the perturbations due to J2 can be found
in D’Amico (2010). Motivated by the future Autonomous Vision Approach Navigation and
Target Identification (AVANTI) experiment (Gaias et al. 2014), this model was revisited in
Gaias et al. (2015) where perturbations arising from non-zero aδa were derived and included
into the model. The final form of the available relative motion model as formulated in Gaias
et al. (2015) is recalled below:

aδα(t + Δt) = (
ΦHCW (κ,Δt) + Φ J2 (κ,Δt)

) · aδα(t), (6)

where the sum of the state transition matrices

ΦHCW =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
− 3

2nΔt 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Φ J2 = nΔt

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
− 21

4 γ H(η + 1) 0 0 0 − 3
2γ sin 2i(3η + 4) 0

0 0 0 −ϕ′ 0 0
0 0 ϕ′ 0 0 0
0 0 0 0 0 0

− 21
4 γ sin 2i 0 0 0 3γ sin2 i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

describes the evolution of ROEs in the time span ofΔt under the influence of the oblate Earth.

Here, η = √
1 − e2, H = 3 cos2 i − 1, ϕ′ = 3

2γ
(
5 cos2 i − 1

)
, γ = J2

2

(
RE
a

)2
1

(1−e2)
2 ,

J2 ≈ 1.082 · 10−3, while n is the Servicer mean motion, κ are the Servicer non-singular
orbital elements from Eq. (2), and RE is the Earth equatorial radius.

For the sake of completeness, the following linear mapping obtained in Section 2.2.1 of
D’Amico (2010) based on the equivalence between the ROEs and the integration constants
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490 S. Spiridonova

in the HCW equations is recalled below providing a transformation between the ROEs and
the components of the relative position and velocity vectors in the orbital frame:

(
δrRTN
δvRTN

)
= A · aδα, (7)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 − cos u − sin u 0 0
0 1 2 sin u −2 cos u 0 0
0 0 0 0 sin u − cos u
0 0 n sin u −n cos u 0 0

−1.5n 0 2n cos u 2n sin u 0 0
0 0 0 0 n cos u n sin u

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the orbital RTN reference frame is formed by the coordinate axes pointing in zenith
direction (radial), along-track in-flight direction (tangential), and the direction orthogonal to
the orbital plane (normal), with the origin of the reference frame located at the Client satellite.

3 Extended relative motion model

The complete extendedmodel of relativemotion in near-geostationary orbit can be formulated
as

aδα(t + Δt) = (
ΦHCW (κ,Δt) + Φ J2 (κ,Δt)

) · aδα(t)

+ aΔδαSRP(κ, δα(t), rSun,Δt)

+ aΔδαSun(κ, δα(t), rSun,Δt)

+ aΔδαMoon(κ, δα(t), rMoon,Δt).

(8)

The changes in ROEs occurred during Δt under the influence of SRP and third bodies are
denoted in Eq. (8) by aΔδαSRP and aΔδαSun/Moon, respectively. The following subsections
are dedicated to the derivation of these components, which constitutes the main result of this
paper.

3.1 Differential SRP perturbations

To take SRP into account the simplest model (Montenbruck and Gill 2000) is used according
to which the perturbing acceleration is

δ r̈ = −P�CR
AR

m

r�
r3�

AU2, (9)

where P� ≈ 4.56 × 10−6Nm−2 is the constant of the solar radiation pressure, CR accounts
for the mean reflectivity of the surface, AR is the spacecraft cross-sectional area assumed
constant, Astronomical Unit AU ≈ 1.4960 × 108 km, m is the mass of the spacecraft, and
r� is the relative position vector of the spacecraft with respect to the Sun. The symbol δ in
front of r̈ implies here that this acceleration is of perturbational character, yet absolute.

Given the large distance to the Sun as compared to the distance between the satellites it
suffices to assume that the distance to the Sun and the unit direction-to-the-Sun vector are
the same for both spacecraft. In this way, the differential SRP coefficient

DR = CRs

ARs

ms
− CRc

ARc

mc
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is the only parameter of influence, and the relative perturbing acceleration is approximated
as

Δδ r̈ = −P�DR
r�
r3�

AU2. (10)

The corresponding increments of the relative velocity and position in the Earth-centered
inertial reference system (ECI) are

ΔδvECI ≈ Δδ r̈ · Δt, ΔδrECI ≈ Δδ r̈ · Δt2

2
.

The above vectors can be transformed to the RTN reference frame,

ΔδvRTN = RECI2RTNΔδvECI, ΔδrRTN = RECI2RTNΔδrECI,

where

RECI2RTN =
⎛
⎝

eRT

eT T

eN T

⎞
⎠

and eR , eT and eN are the unit vectors of the orbital coordinate frame expressed in the ECI
frame.

Given the linear nature of the relation from Eq. (7), it allows to compute the perturbing
component in ROEs from Eq. (8):

aΔδαSRP = A−1
(

ΔδrRTN
ΔδvRTN

)
.

During the spring and autumn eclipse periods, satellites in near-geostationary orbit pass
once per day through the Earth shadow. Shadow transitions are incorporated into the SRP
model of the extended RMM based on the assumption that the eclipses occur simultaneously
for the two satellites. A conical shadowmodel fromMontenbruck and Gill (2000) is applied,
where the perturbing relative accelerationΔδ r̈ in scaled with the corresponding illumination
factor provided by a dedicated shadow function.

3.2 Differential third-body perturbations

The following Lagrange equations apply for the perturbations in the non-singular absolute
orbital elements κ (e.g. Ustinov 1967).

dδa

dt
= 2

na

∂R

∂u

dδex
dt

= η

na2

(
∂R

∂ey
+ ex

1 + η

∂R

∂u

)
+ ey cot i

na2η

∂R

∂i

dδey
dt

= η

na2

(
∂R

∂ex
− ey

1 + η

∂R

∂u

)
− ex cot i

na2η

∂R

∂i

dδi

dt
= cot i

na2η

(
ex

∂R

∂ey
− ey

∂R

∂ex
+ ∂R

∂u

)
− csc i

na2η

∂R

∂Ω

dδΩ

dt
= csc i

na2η

∂R

∂i

dδu

dt
= − 2

na

∂R

∂a
+ η

1 + η

1

na2

(
ey

∂R

∂ey
+ ex

∂R

∂ex

)
− cot i

na2η

∂R

∂i
,

(11)
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where η =
√
1 − e2x − e2y and R is the so-called disturbing function or perturbing potential

such that F = μ

2a
+ R, where F is the total force function, i.e

F = V + R − T = μ

r
+ R − v2

2
= μ

2a
+ R,

V and T being the undisturbed potential and the kinetic energy respectively.
In the above, δ{·} refers to the perturbations in the absolute orbital elements from Eq. (2),

and not to the relative orbital elements from Eq. (3).
In Kozai (1973), the disturbing function for lunar and solar gravitational perturbations

of absolute near-geostationary orbits was expressed as a function of the classical Keplerian
elements of the satellite and the polar coordinates of the Sun and the Moon. To separate the
secular and long-periodic terms from the short-periodic terms, the disturbing function was
averaged in Kozai (1973) with respect to the mean anomaly of the satellite.

Re-writing the averageddisturbing function fromKozai (1973) in termsof the non-singular
elements from Eq. (2) gives

R = n′2a2
(
a′

r ′

)3

β ·
{
1

16

(
3 cos2 δ(2 − sin2 i) + 6 sin2 i sin2 δ − 4 − 6 sin i sin 2δ

× sin(Ω − α) + 3 sin2 i cos2 δ cos(2Ω − 2α)
) (

2 + 3e2x + 3e2y
)

+ 15

8

(
cos2 δ

×
[(

e2x − e2y
)
cos(2Ω − 2α) − 2exey sin(2Ω − 2α)

]
+ sin i sin 2δ

[(
e2x − e2y

)

× sin(Ω − α) + 2exey cos(Ω − α)
])

− 15

32

(
a

a′

) (
a′

r ′

) (
2 cos δ

(
5 cos2 δ − 4

)

×
[
ex cos(Ω − α) − ey sin(Ω − α)

]
+ 4 sin i sin δ

(
5 cos2 δ − 2

)
ey − 5 sin i

× sin 2δ cos δ
[
ex sin(2Ω − 2α) + ey cos(2Ω − 2α)

])
+ 3

64

(
a

a′

)2 (
a′

r ′

)2 (
35

× cos4 δ − 40 cos2 δ + 8 − 10 sin i sin 2δ
(
7 cos2 δ − 4

)
sin(Ω − α)

)
− 105

128

(
a

a′

)3

×
(
a′

r ′

)3 (
21 cos4 δ − 28 cos2 δ + 8

)
cos δ

(
ex cos(Ω − α) − ey sin(Ω − α)

)}
,

where the motion of the perturbing body — the Sun or the Moon — is parametrized by the
geocentric distance r ′, right ascension α, and declination δ. These parameters can be found
from the geocentric rectangular coordinates

x ′ = r ′ cos δ cosα

y′ = r ′ cos δ sin α

z′ = r ′ sin δ.
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In the development of R, primed quantities n′ and a′ denote the mean motion and the semi-
major axis of the perturbing body, while

β =
⎧⎨
⎩

1 for the Sun
m′

m + m′ for the Moon
,

where m is the mass of the Earth and m′ is the mass of the Moon.
According to the Lagrange equations in Eq. (11), the rates of the absolute perturbations

are non-linear functions of the absolute orbital elements κ , which can be shortly written as

δκ̇ = F (κ) . (12)

Provided that F is differentiable at point κ ∈ R
6 and assuming that the separation between

the satellites is small, we can approximate linearly the rates of the differential perturbations
as

Δδκ̇ ≈ JF · Δκ, (13)

where JF is the Jacobian matrix of the system of equations in Eq. (12), i.e.

JF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂δȧ

∂a

∂δȧ

∂u
. . .

∂δȧ

∂Ω
∂δu̇

∂a

∂δu̇

∂u
. . .

∂δu̇

∂Ω
...

...
. . .

...

∂δΩ̇

∂a

∂δΩ̇

∂u
. . .

∂δΩ̇

∂Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the disturbing function R has been averaged over the satellite’s revolution period,
∂R

∂u
= 0 and δȧ = 0, the first line as well as the second column in JF contain only zeros.

Moreover, R being a polynomial in a, the entries in the first column of JF are by factor O(a)

smaller than the remaining non-zero terms.
Following Eq. (13), the Lagrange equations are differentiated to find the rates of the dif-

ferential perturbations in u, ex , ey , i and Ω:

Δδu̇ ≈
{

− 2

na

∂2R

∂a2
+ η

1 + η

1

na2

(
ey

∂2R

∂a∂ey
+ ex

∂2R

∂a∂ex

)
− cot i

na2η

∂2R

∂a∂i
+ 2

na2

×∂R

∂a
− 2η

1 + η

1

na3

(
ey

∂R

∂ey
+ ex

∂R

∂ex

)
+ 2 cot i

na3η

∂R

∂i

}
· Δa +

{
− 2

na

∂2R

∂a∂ex

+ η

1 + η

1

na2

(
ey

∂2R

∂ex∂ey
+ ex

∂2R

∂e2x
+ ∂R

∂ex

)
− ex

η (1 + η)2

1

na2

(
ey

∂R

∂ey
+ ex

× ∂R

∂ex

)
− ex

η3

cot i

na2
∂R

∂i
− cot i

na2η

∂2R

∂ex∂i

}
· Δex +

{
− 2

na

∂2R

∂a∂ey
+ η

1 + η

1

na2

×
(
ex

∂2R

∂ex∂ey
+ ey

∂2R

∂e2y
+ ∂R

∂ey

)
− ey

η (1 + η)2

1

na2

(
ey

∂R

∂ey
+ ex

∂R

∂ex

)

− ey
η3

cot i

na2
∂R

∂i
− cot i

na2η

∂2R

∂ey∂i

}
· Δey +

{
− 2

na

∂2R

∂a∂i
+ η

1 + η

1

na2

(
ey

∂R

∂ey∂i
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+ ex
∂R

∂ex∂i

)
− cot i

na2η

∂2R

∂i2
+ csc2 i

na2η

∂R

∂i

}
· Δi +

{
− 2

na

∂2R

∂a∂Ω
+ η

1 + η

1

na2

×
(
ey

∂2R

∂ey∂Ω
+ ex

∂2R

∂ex∂Ω

)
− cot i

na2η

∂2R

∂i∂Ω

}
· ΔΩ

Δδėx ≈
{

η

na2
∂2R

∂a∂ey
+ ey cot i

na2η

∂2R

∂a∂i
− 2

a

dδex
dt

}
Δa +

{
− ex
na2η

∂R

∂ey

+ η

na2
∂2R

∂ex∂ey
+ exey cot i

na2η3
∂R

∂i
+ ey cot i

na2η

∂2R

∂ex∂i

}
Δex +

{
− ey
na2η

∂R

∂ey

+ η

na2
∂2R

∂e2y
+

(
1 − e2x

)
cot i

na2η3
∂R

∂i
+ ey cot i

na2η

∂2R

∂ey∂i

}
Δey +

{
η

na2
∂2R

∂ey∂i

− ey csc2 i

na2η

∂R

∂i
+ ey cot i

na2η

∂2R

∂i2

}
Δi +

{
η

na2
∂2R

∂ey∂Ω
+ ey cot i

na2η

∂2R

∂i∂Ω

}
ΔΩ

Δδėy ≈
{

η

na2
∂2R

∂a∂ex
− ex cot i

na2η

∂2R

∂a∂i
− 2

a

dδey
dt

}
Δa +

{
− ex
na2η

∂R

∂ex

+ η

na2
∂2R

∂e2x
−

(
1 − e2y

)
cot i

na2η3
∂R

∂i
− ex cot i

na2η

∂2R

∂ex∂i

⎫⎬
⎭Δex +

{
− ey
na2η

∂R

∂ex

+ η

na2
∂2R

∂ex∂ey
− exey cot i

na2η3
∂R

∂i
− ex cot i

na2η

∂2R

∂ey∂i

}
Δey +

{
η

na2
∂2R

∂ex∂i

+ ex csc2 i

na2η

∂R

∂i
− ex cot i

na2η

∂2R

∂i2

}
Δi +

{
η

na2
∂2R

∂ex∂Ω
− ex cot i

na2η

∂2R

∂i∂Ω

}
ΔΩ

Δδi̇ ≈
{

cot i

na2η

(
ex

∂2R

∂a∂ey
− ey

∂2R

∂a∂ex

)
− csc i

na2η

∂2R

∂a∂Ω
− 2

a

dδi

dt

}
· Δa

+
{
ex cot i

na2η3

(
ex

∂R

∂ey
− ey

∂R

∂ex

)
+ cot i

na2η

(
∂R

∂ey
+ ex

∂2R

∂ex∂ey
− ey

∂2R

∂e2x

)

− ex csc i

na2η3
∂R

∂Ω
− csc i

na2η

∂2R

∂ex∂Ω

}
· Δex +

{
ey cot i

na2η3

(
ex

∂R

∂ey
− ey

∂R

∂ex

)

+ cot i

na2η

(
ex

∂2R

∂e2y
− ∂R

∂ex
− ey

∂2R

∂ex∂ey

)
− ey csc i

na2η3
∂R

∂Ω
− csc i

na2η

∂2R

∂ey∂Ω

}

× Δey +
{

− csc2 i

na2η

(
ex

∂R

∂ey
− ey

∂R

∂ex

)
+ cot i

na2η

(
ex

∂2R

∂ey∂i
− ey

∂2R

∂ex∂i

)

+ csc i cot i

na2η

∂R

∂Ω
− csc i

na2η

∂2R

∂i∂Ω

}
· Δi +

{
cot i

na2η

(
ex

∂2R

∂ey∂Ω
− ey

∂2R

∂ex∂Ω

)

− csc i

na2η

∂2R

∂Ω2

}
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ΔδΩ̇ ≈ csc i

na2η

{(
∂2R

∂a∂i
− 2

a

∂R

∂i

)
· Δa +

(
ex
η2

∂R

∂i
+ ∂2R

∂ex∂i

)
· Δex

+
(
ey
η2

∂R

∂i
+ ∂2R

∂ey∂i

)
· Δey +

(
∂2R

∂i2
− cot i

∂R

∂i

)
· Δi + ∂2R

∂i∂Ω
· ΔΩ

}
.

The explicit formulas for the first and second partial derivatives of the disturbing potential
R are provided in the Electronic Supplement.

The relations in Eq. (5) are applied to obtain from the above formulas the rates of the
perturbations in ROEs. In particular, the change in the second component of the relative
inclination vector corresponding to the time span Δt can be derived following

Δδiy,Sun/Moon = Δ(sin iΔΩ) ≈
(
cos i

di

dt
ΔΩ + sin iΔδΩ̇

)
Δt,

Analogously, for the relative mean longitude

ΔδλSun/Moon = Δ(Δu + cos iΔΩ) ≈
(

Δδu̇ − sin i
di

dt
ΔΩ + cos iΔδΩ̇

)
Δt,

while the change in the remaining ROEs is estimated according to

Δδex,Sun/Moon ≈ Δδėx · Δt, Δδey,Sun/Moon ≈ Δδėy · Δt,

Δδix,Sun/Moon ≈ Δδi̇ · Δt.

4 Numerical validation

In this section, several test runs covering some typical scenarios related to on-orbit servicing
are performed, giving an insight into the accuracy of the extended model and the magnitudes
of the involved perturbations. In the following, the model of J2-perturbed relative motion
from Gaias et al. (2015) is referred to as RMMHCW+J2 . The extension of RMMHCW+J2
containing SRP perturbations is denoted by RMMHCW+J2+SRP, while the complete relative
motion model is denoted by RMMHCW+J2+SRP+3B.

Table 1 provides the parameters adopted for the two hypothetical spacecraft. As the Ser-
vicer might be carrying additional fuel and/or replacement units for the Client spacecraft, it
was assumed that the mass of the Servicer is 70 % higher than the Clients mass.

Three Initial Formation Geometries (IFGs) were selected for evaluation of the extended
model performance. The initial osculating elements of the Servicer and the Client are sum-
marized in the upper part of Table2, while the corresponding initial ROEs are provided in the
lower part of Table2. The initial osculating elements of the Client spacecraft are assumed to
be the same for the three initial formation geometries, i.e. only the initial osculating elements
of the Servicer vary to allow different formation configurations.Moreover, selected initial for-
mation geometries are tagged with three different epochs to illustrate seasonal effects related
to the motion of the Moon around the Earth and the motion of the Earth around the Sun.

Table 1 Spacecraft parameters
CR (–) AR (m2) Mass (kg)

Servicer 1.2 40.0 1700

Client 1.2 40.0 1000
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Table 2 Initial conditions of absolute and relative orbits

a0 (km) e0 (–) i0 (◦) Ω0 (◦) ω0 (◦) M0 (◦)

Initial osculating elements of the Client and the Servicer

Client 42166.0085 1.236e−4 4.349e−2 270.7 160.0 148.5

Dec. 23 Servicer 42165.9785 1.209e−4 4.335e−2 270.6 157.1 151.6

June 30 Servicer 42166.0085 1.258e−4 4.361e−2 270.7 160.4 148.2

May 10 Servicer 42166.0085 1.241e−4 4.349e−2 270.9 159.4 149.0

aδa0 (m) aδλ0 (m) aδe0x (m) aδe0y (m) aδi0x (m) aδi0y (m)

Initial formation geometries

IFG1 Dec. 23 −30.0 −3500.0 200.0 200.0 −100.0 −100.0

IFG2 June 30 0.0 0.0 −100.0 0.0 90.0 0.0

IFG3 May 10 0.0 0.0 0.0 60.0 0.0 70.0
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Fig. 1 Errors for IFG1 of different RMM configurations: previously existing RMMHCW+J2 (light grey),
extension RMMHCW+J2+SRP(dark grey), complete final RMMHCW+J2+SRP+3B (black)

In the context of On-Orbit Servicing, IFG1 initializes an approach trajectory with a con-
stant relative drift rate of about 280m per orbit starting from a hold point 3.5km away in
anti-flight direction. For the sake of formations’ safety, anti-parallel relative eccentricity and
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Fig. 2 Errors for IFG2 of different RMM configurations: previously existing RMMHCW+J2 (light grey),
extension RMMHCW+J2+SRP(dark grey), complete final RMMHCW+J2+SRP+3B (black)

inclination vectors are selected so that the Servicer performs additionally a Client-centered
elliptical motion in the plane perpendicular to the flight direction. In the presence of large
along-track errors, this so-called eccentricity and inclination vector separation allows a pas-
sive collision risk prevention (Montenbruck et al. 2006). The second case, IFG2, represents a
bounded relative orbit with horizontal anti-parallel relative eccentricity and inclination vec-
tors, whereas IFG3 features vertical parallel aδe and aδi of somewhat smaller magnitude.
The last two relative orbits represent the case, where the Servicer performs a Client-centered
motion in both the orbital plane and the plane orthogonal to the flight direction. Such a
geometry could be used, for instance, for inspection purposes to establish the cause of targets
malfunctioning or for identifying a suitable docking area.

For the performance evaluation of the extended RMM, a numerical integration with a
full force model – including Earth gravity field of degree and order 10, SRP, gravitational
potential of the Sun and the Moon, and the solid Earth tides – was performed for the absolute
orbits of the Client and the Servicer. At this point, the GRACE gravity model GGM01S as
implemented in the flight dynamics library routines of GSOC/DLRwas used, while the initial
osculating elements as summarized in Table2 provided the starting points of integration.
Finally, a time-series of reference ROEs was built based on the two time-series of osculating
elements obtained independently for the Client and the Servicer.
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Fig. 3 Errors for IFG3 of different RMM configurations: previously existing RMMHCW+J2 (light grey),
extension RMMHCW+J2+SRP(dark grey), complete final RMMHCW+J2+SRP+3B (black)

Figures1, 2 and 3 show the errors of various RMMconfigurations calculated as differences
between the modeled and the reference time-series of ROEs for the three selected initial
formation geometries. Having a look at the general character of the SRP and third-body
perturbations, it can be noticed that SRP results in short-periodic perturbations in aδa, aδλ,
aδix and aδiy . At the same time, in the relative eccentricity components aδex and aδey ,
the effects of SRP are mainly of long-periodic nature. On the other hand, the third-body
perturbations produce significant drifts both in the relative eccentricity and in the relative
inclination components, whereas their short-periodic effects are less prominent. As Figs. 1,
2 and 3 demonstrate, the complete extended model RMMHCW+J2+SRP+3B accounts for all
the major short- and long-periodic effects of SRP as well as for the drifts in the relative
eccentricity and inclination vector components due to the third-body perturbations.

It is important to note that the former model RMMHCW+J2 requires special initial con-
ditions to avoid non-zero error offsets. Since the periodic perturbations due to SRP make
the affected orbital elements increase along one half-orbit, and decrease along the other
half-orbit, the instantaneous initial relative element will be either higher or lower than the
average value, depending on where the point of initialization is located along the orbit. In
order to have a zero-mean error with the former model, an averaging of the initial osculating
elements over the periodic effects of SRP should be performed before they are provided as
input for RMMHCW+J2 . The general problem of choosing the correct initial conditions when
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using RMMHCW+J2 was addressed in Gaias et al. (2015) on the example of the J2 periodic
perturbations in LEO formations.

Contrary to that, the extended RMM can account for the varying SRP effects from t to
t + Δt along the satellite orbit, thus, no averaging of the initial conditions is required prior
to ROEs initialization for RMMHCW+J2+SRP and RMMHCW+J2+SRP+3B, i.e., the osculating
orbital elements can be used directly as they would come from absolute orbit determination
(in a real scenario).

5 Conclusions

This work addresses a novel topic of formation dynamics in near-geostationary orbit. For the
first time, a dedicated relative motion model is developed for two spacecraft located in the
geostationary ring. An already existing model for LEO satellite formations including secular
perturbations due to Earth equatorial bulge constitutes the foundation for the new extended
relative motion model. In the context of on-orbit servicing and formation flying in GEO, long
revolution periods lead to extensive timely duration of any proximity operation requiring a
certain number of relative orbits. Thus, various secular and long-periodic perturbations,which
are negligible in LEO, have a major influence on the evolution of the relative geometry in
GEO. In particular, the new model addresses perturbations of the relative orbit due to the
solar radiation pressure, as well as secular and long-periodic perturbations due to third-
body gravitational potential of the Sun and the Moon. The modeling of the differential solar
radiation pressure is based on the difference in area-to-mass ratios of the two spacecraft, while
the developments of the third-body perturbations are based on the single-averaged disturbing
potential of Kozai (1973). Explicit expressions are provided describing the evolution of ROEs
from epoch t to the next epoch t + Δt , allowing a step-wise prediction of the relative orbit
over time.

A simulation encompassing three typical formation geometries is performed for valida-
tion of the new extended model against the reference relative orbital elements build from
numerically integrated absolute orbits of two hypothetical spacecraft. The results of the val-
idation prove that all secular and long-periodic error drifts in relative orbital elements result
eliminated, and, therefore, the newmodel achieves high accuracy even on the tenth day of sim-
ulation time. Thus, the developed relative motion model can be incorporated into guidance,
navigation and control algorithms on-board the Servicer spacecraft for support of autonomous
relative orbit determination and fuel-efficient formation keeping maneuver planning up to
several weeks in advance. The suggested relative motion model contributes to the general
understanding of how the solar radiation pressure and the third-body gravitational potential
might affect relative motion and, in particular, gives an insight into formation dynamics in
near-geostationary orbit for the potential use of future on-orbit servicing missions.
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