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Abstract In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are
investigated in the Sun–Earth–Moon–spacecraft restricted four-body problem (RFBP). First
of all, the sphere of influence of the Earth–Moon system (SOIEM) is derived. Numerical
calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite
small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the
LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately
replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun
and the Earth–Moon barycenter act as primaries. The stable manifolds associated with the
libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the
LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can
efficiently distinguish the transit LGAorbits from the non-transit LGAorbits under the RFBP.
The former orbits can pass through the region around libration point away from the SOIEM,
but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is
defined and analyzed. According to the variant requirement of the space mission, the results
obtained can help us select the LGA orbit and the launch window.

Keywords Lunar gravity assist · Restricted three-body problem · Restricted four-body
problem · Poincaré section · Stable transit probability · Sphere of influence

1 Introduction

In the Earth–Moon system, the lunar gravity assist (LGA) has a significant effect on the
path of a spacecraft flying close to the Moon. This phenomenon has been applied to many
space missions and studied by numerous researchers (Dunham and Davis 1985; Kawaguchi
et al. 1995; Wilson and Howell 1998; Penzo 1998; Ocampo 2003; Qi and Xu 2015). How-
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ever, the previous studies about the LGA orbits were confined to the patched conic model
or the Earth–Moon–spacecraft restricted three-body problem (RTBP). The influence of the
Sun on the LGA orbits was often neglected. In this paper, we intend to investigate the
LGA orbits in the Sun–Earth–Moon–spacecraft restricted four-body problem (RFBP). In
general, the general RFBP system is time dependent; hence, some mature theories estab-
lished in the autonomous CRTBP system, such as the libration point orbit and the invariant
manifolds, will be discarded in the RFBP. One of the techniques used to approximate the
four-body dynamics, or in general the n-body problem, is the coupled restricted three-
body problem approximation: Partial orbits from different restricted problems are connected
into a single trajectory, yielding energy efficient transfers to the Moon (Koon et al. 2001),
interplanetary transfers (Dellnitz et al. 2006) or very complicated itineraries (Gomez et al.
2004). Parker (2006) used the coupled three-body model to systematically construct fami-
lies of ballistic lunar transfers. The three-body sphere of influence (3BSOI) was proposed
to assess which restricted three-body model should be adopted. Another technique used
to approximate the four-body dynamics is the bicircular model (BCM). Taking the Sun–
Earth–Moon system as an example, the BCM assumes that the Earth and the Moon are
revolving in circular orbits around the Earth–Moon barycenter (EMB); meanwhile, the
Sun and the EMB are also assumed in the circular orbits around their common center
of mass. Castelli (2012) investigated the role played by a couple of the planar circular
restricted three-body problem in the approximation of the BCM. The two restricted three-
body problems are the Earth–Moon CR3BP and the Sun–EMB CR3BP, where, in the latter
case, the Sun and the EMB act as primaries. The comparison of the mentioned systems
leads to the definition of regions of prevalence in the space where one of the restricted
problems performs, at least locally, the best approximation of the BCM and therefore it
should be preferred in designing the trajectory. Using the Lagrangian coherent structures
(LCSs) as substitutes, Qi et al. (2012) proposed the time-dependent invariant manifolds
to design the Earth–Moon transfer based on the Sun–Earth–Moon BCM. Yagasaki (2004)
constructed an Earth-to-Moon transfer with low cost and moderate flight time under the
framework of the BCM. The design problem of transfers connecting low Earth orbits with
halo orbits around libration points of the Earth–Moon CRTBP using impulsive maneuvers
was treated under the Sun–Earth–Moon BCM by Zanzottera et al. (2012). Oshima and Yanao
(2014) studied the mechanism of gravity assist in the Sun–Earth–Moon–spacecraft system
based on the BCM and the bielliptic model, respectively. Qi et al. (2014) investigated the
gravitational lunar capture by the minimum capture eccentricity under Sun–Earth–Moon
BCM. Besides, Scheeres (1998) derived a restricted Hill four-body problem and applied
it to analyzing the parameter values in the neighborhood of the Earth–Moon–Sun sys-
tem.

In this paper, the undertakenmodel consideredhere for the restricted four-bodydynamics is
the Sun–Earth–Moon planar bicircular model (PBCM). In addition, among the LGA orbits,
the orbits starting from the region near the Earth are most interesting and useful for us.
Therefore, the goal of this paper is to investigate the kinetic characters of this kind of LGA
orbits under the Sun–Earth–Moon PBCM. According to the Sun–Earth–Moon PBCM, when
the spacecraft is near the EMB, the influences of the Earth and the Moon on the LGA orbit
are dominant, but the effect of the Sun may be relatively slight. Hence, first of all, we can
approximately analyze the LGA orbits based on the Earth–Moon PCRTBP or patched conic
approach. When the spacecraft is far away from the EMB, the influence of the Sun on the
LGA orbit will increase and the gravities from the Earth and the Moon can be concentrated
at the EMB approximately. Under this circumstance, the PBCM can be regarded as the Sun–
EMBPCRTBP approximately. Based on the Sun–EMBPCRTBP, we can preliminarily apply
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Study of lunar gravity assist orbits 335

the mature theory of the invariant manifolds to analyzing the LGA orbits. Finally, using the
results of the patched model, the LGA orbits under the complete PBCMwill be investigated.

According to the discussion above, this paper is divided into five parts. In Sect. 2, we
introduce the dynamical models of our study, including the PCRTBP and the PBCM. In
Sect. 3, the LGA orbits, the sphere of the influence of the Earth–Moon system and the
influence of the Sun on the LGA orbits are investigated. In Sect. 4, the invariant manifolds
and their Poincaré sections are introduced under the framework of the Sun–EMB PCRTBP.
In Sect. 5, the LGA orbits based on the PBCM are analyzed. The patched LGA orbits and the
stable transit probability are proposed and discussed. Finally, the conclusions of this paper
are presented in Sect. 6.

2 Dynamical models

In this section, the PCRTBP and the PBCM are introduced as the dynamical models of our
study.

2.1 Planar circular restricted three-body problem

In this paper, the planar circular restricted three-body problem (PCRTBP) is one of the
dynamical models we will use. The definition of this well-known model will not be repeated
here. The readers can refer to the book of Szebehely (1967) for the details of this model
and the definition of the normalized distance, mass and time units. We assume that m4,
m1, m2 and m3 represent the mass of the Sun, the Earth, the Moon and the spacecraft,
respectively. Two specific realizations of the PCR3BP are considered here. The first one
is the Earth–Moon–spacecraft PCRTBP (see Fig. 1a). In the dimensionless Earth–Moon
rotating coordinates, the origin is taken at the Earth–Moon barycenter (EMB) and the mass
parameter of the system μ = μEM = m2/(m1 + m2) = 0.01215. Hence, the Earth is placed
at (−μEM, 0) and the Moon is placed at (1 − μEM, 0). The second one is the Sun–EMB–
spacecraft PCRTBP (see Fig. 1b). In the dimensionless Sun–EMB rotating coordinates, the
origin is taken at the Sun–EMB barycenter (SEB) and the mass parameter of the system
μ = μSE = (m1 + m2)/(m1 + m2 + m4) = 3.04042 × 10−6. Correspondingly, the Sun is
placed at (−μSE, 0) and the EMB is placed at (1 − μSE, 0).

For the general PCRTBP, the equations of motion of the massless body in dimensionless
rotating coordinates in the plane of the primaries can be expressed by (Szebehely 1967)

Earth MoonO (EMB)

rm
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xEM

yEM Spacecraft

Sun EMBO (SEB)
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r2

xSE

ySE Spacecraft

(a) (b)

Fig. 1 The Earth–Moon–spacecraft PCRTBP (a) and the Sun–EMB–spacecraft PCRTBP (b) in the dimen-
sionless rotating coordinates
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ẍ − 2 ẏ = ∂�3

∂x

ÿ + 2ẋ = ∂�3

∂y
, (1)

where �3 is the effective potential

�3(x, y) = 1

2
(x2 + y2) + 1 − μ

rp1
+ μ

rp2
+ 1

2
μ(1 − μ). (2)

rp1 and rp2 denote the instantaneous distances of the massless body from the larger and the
smaller primary, respectively.

rp1 =
√

(x + μ)2 + y2

rp2 =
√

(x − 1 + μ)2 + y2. (3)

The dynamical system above is independent of the time and has the well-known Jacobi
constant (or Jacobi integrals).

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2�3(x, y). (4)

Let Ci be the Jacobi constant of the spacecraft at the libration point Li , i = 1, . . . , 5. Specif-
ically, for the Sun–EMB PCRTBP, we can calculate C1 ≈ 3.00090098, C2 ≈ 3.00089693,
C3 ≈ 3.00060808, and C4 = C5 = 3.

2.2 Planar bicircular model

The planar bicircular model (PBCM) in the restricted four-body problem (RFBP) is other
undertaken dynamical model in this paper. In this subsection, we will introduce this model
in two different rotating coordinates.

Firstly, we describe the PBCM in the dimensionless Earth–Moon rotating coordinates (see
Fig. 2). The equations of motion of the spacecraft in the PBCM are (Topputo 2013)

ẍEM − 2 ẏEM = ∂�EM
4

∂xEM

ÿEM + 2ẋEM = ∂�EM
4

∂yEM
, (5)
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Fig. 2 PBCM in the dimensionless Earth–Moon rotating coordinates
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Fig. 3 PBCM in the dimensionless Sun–EMB rotating coordinates

where �EM
4 is a modified, time-dependent effective potential

�EM
4 (xEM, yEM, t) = �EM

3 (xEM, yEM) + ms

r1(t)

−ms

ρ2 [xEM cos(ωs t) + yEM sin(ωs t)]. (6)

In Eq. (6), t is the dimensionless time, ms = m4/(m1 +m2) is the scaled mass of the Sun
and equals 3.28900541 × 105, ρ is the distance between the Sun and the EMB and equals
3.88811 × 102, and ωs is the angular velocity of the Sun in the Earth–Moon dimensionless
rotating coordinates and equals −9.25195985× 10-1. ωs t is the phase angle of the Sun, and
the present location of the Sun is (ρ cos(ωs t), ρ sin(ωs t)). Therefore, under the framework
of the PBCM, the influence of the Sun is periodic, and the period is −2π/ωs . The distance
between the Sun and the spacecraft is

r1(t) =
√

(xEM − ρ cos(ωs t))2 + (yEM − ρ sin(ωs t))2.

Secondly, we introduce the PBCM in the dimensionless Sun–EMB rotating coordinates
(see Fig. 3). The equations of motion of the spacecraft in the PBCM are

ẍSE − 2 ẏSE = ∂�SE
4

∂xSE

ÿSE + 2ẋSE = ∂�SE
4

∂ySE
, (7)

where �SE
4 is a modified, time-dependent effective potential

�SE
4 (xSE, ySE, tSE) = �SE

3 (xSE, ySE) + �(xSE, ySE, tSE), (8)

and

�(xSE, ySE, tSE) = μSE

[
μEM

rm(xSE, ySE, tSE)
+ 1 − μEM

re(xSE, ySE, tSE)
− 1

r2(xSE, ySE)

]
. (9)

� denotes the difference between the PBCM and the Sun–EMB PCRTBP, which will be
used to derive the sphere of influence of the Earth–Moon system (SOIEM) in Sect. 3.2. ωe

is the angular velocity of the Earth or Moon in the Sun–EMB rotating frame and equals
1/(ωs + 1) − 1 = 12.368266. Therefore, ωetSE is the phase angle between the Earth–Moon
line and the Sun–EMB line, and the present location of the Moon and the Earth in the Sun–
EMB rotating coordinates is, respectively, (1−μSE+ 1−μEM

ρ
cos(ωetSE), 1−μEM

ρ
cos(ωetSE))

and (1 − μSE − μEM
ρ

cos(ωetSE),−μEM
ρ

cos(ωetSE)).
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For the sake of saving space, the algorithm of the transformation between the Earth–
Moon rotating frame and the Sun–EMB rotating frame will not be described in this paper.
The detailed algorithm can be found in the book of Koon et al. (2006). Based on the models
we introduced above, we will investigate the LGA orbits using the numerical simulations. In
this paper, we adopt a variable-step Runge–Kutta integrator of order 4–5 with absolute and
relative tolerances set to 10−14.

3 Lunar gravity assist orbit

In this section, we will introduce the basic theories of the LGA and the LGA orbits starting
from the region near the Earth. Then, the sphere of influence of the Earth–Moon system
(SOIEM) and the influence of the Sun on the LGA orbit will be investigated under the
framework of the PBCM.

3.1 Lunar gravity assist

According to the Earth–Moon PCRTBP, the total energy of the spacecraft with respect to the
EMB inertial frame, E , can be expressed by (Qi and Xu 2015)

E = 1

2

[
(ẋ2EM + ẏ2EM) + (x2EM + y2EM)

] − ẋEMyEM + xEM ẏEM − 1 − μEM

re
− μEM

rm
. (10)

Thus, the derivative of E with respect to t is

dE

dt
= ∂�EM

3

∂xEM
yEM − ∂�EM

3

∂yEM
xEM = μEM(1 − μEM)yEM

(
1

r3e
− 1

r3m

)
. (11)

Figure 4 illustrates the distribution of dE/dt in the Earth–Moon rotating frame based on
the calculation of Eq. (11), and the right picture displays the details in the region near the
Moon. As we can see from the figure, the energy E significantly changes in the region near
the Moon. Therefore, the lunar flyby can remarkably influence the orbit, which is a useful
technique in the mission design (Qi and Xu 2015).

In the Earth–Moon rotating frame, if the motion of the perilune of the LGA orbit is
clockwise, the LGAorbit is defined as the retrogradeLGAorbit. On the contrary, if themotion

Fig. 4 Distribution of dE/dt near the Moon in the Earth–Moon rotating coordinates
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Fig. 5 Four kinds of LGA orbits: a the E-increasing prograde LGA orbit, b the E-increasing retrograde LGA
orbit, c the E-decreasing prograde LGA orbit, and d the E-decreasing retrograde LGA orbit

of the perilune of the LGA orbit is anticlockwise, the LGA orbit is defined as the prograde
LGA orbit. Figure 5a–d displays four kinds of LGA orbits: the E-increasing prograde LGA
orbit, the E-increasing retrograde LGA orbit, the E-decreasing prograde LGA orbit and the
E-decreasing retrograde LGA orbit, respectively. The middle column of the figures shows
the details of the lunar flyby. The right column of the figures displays the corresponding time
history data of E for the LGA orbits. As we can see from the figures, the energy Es of the
LGA orbits change dramatically during the lunar flyby.

The state of the perilune can be described by three variables as follows:

D: the distance between the perilune and the center of the Moon.
ψ0 : the angle between the perilune and the Earth–Moon line, counterclockwise measured.
e: the instantaneous eccentricity of the spacecraft with respect to theMoon at the perilune.

For the perilune of the LGA orbit in this paper, we require e to be larger than 1 in the
derivation, i.e., the instantaneous orbit with respect to theMoon at the perilune is a hyperbolic

123



340 Y. Qi, S. Xu

Fig. 6 Distributions of the feasible perilunes of the LGA orbits in different e and motions

orbit. Besides, D should be larger than the radius of the Moon to avoid the collision. Once
parameters D, ψ0 and e and the direction of motion are given, the LGA orbit is uniquely
specified according to the Earth–Moon PCRTBP.

In this paper, we focus on a special kind of LGA orbit from the perspective of the practical
space mission. We require that the height of the perigee of the LGA orbit, h, cannot be larger
than 10,000km. Besides, we require that E of the spacecraft must increase after the lunar
flyby. This kind of LGAorbits, such as the orbits in Fig. 5a, b, can be applied to the deep-space
mission starting from the low Earth orbit. The LGA orbits satisfying the two requirements
above can be obtained by appropriately selecting their perilunes.

Firstly, according to the research of Qi and Xu (2015), the perilune of the E-increasing
LGA orbit must be located in the region with 180◦ < ψ0 < 360◦. Secondly, for the given
perilune, h can be calculated approximately using the patched conic approach (Qi and Xu
2015); hence, the feasible perilunes also need to satisfy the requirement of h. For example,
taking into account two requirements of the perilune above, Figure 6 shows the distributions
of the feasible perilunes of the LGA orbits when e equals 1.5 and 1.7. Here, h of the orbit
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colliding with the Earth is set as 0. In the following investigation, the perilune of the feasible
LGA orbit can be obtained in the same way.

3.2 Sphere of influence of the Earth–Moon system

In the last subsection, the LGA orbit is studied under the framework of the Earth–Moon
PCRTBP and the patched conic model. However, if the undertaken model is the PBCM, the
LGA orbit will be quite different from that in the two models above. Since the PBCM is
time dependent, the moment of the perilune can affect the LGA orbit. For example, the LGA
orbits with the fixed state variables of perilune at the different moments of the perilune are
displayed in Fig. 7, where (a) and (b) are the prograde LGA orbits and the retrograde LGA
orbits, respectively. The blue solid lines represent the LGA orbits based on the Earth–Moon
PCRTBP, and the red dash lines denote the LGAorbits under the framework of the PBCM.As
we can see, when the spacecraft is near the EMB, the LGA orbits in two kinds of models are
close, whichmeans that the influence of the Sun is quite slight. Butwhen the distance between
the spacecraft and the EMB enlarges, the differences between the LGA orbits based on the
PBCM increase gradually. The influence of the Sun becomes more and more important. In
this situation, we assume that the gravities from the Earth and the Moon can be concentrated
at the EMB. Therefore, the PBCM can be regarded as the Sun–EMB CRTBP approximately.
Under the Sun–EMB CRTBP, we can apply the mature theory of the invariant manifolds to
analyzing the LGA orbits based on the PBCM.

Based on the discussion above, the first issue we should solve is to search an appropriate
region where the PBCM can be regarded as the Sun–EMB PCRTBP approximately. Accord-
ing to the Sun–EMB PCRTBP, the Jacobi constant C is the invariant. But according to the
PBCM, C defined by Eq. (4) is time variant. When the value of C changes greatly, we think
that the difference between the PBCM and the Sun–EMB PCRTBP cannot be ignored. Only
when the variation of C is quite small can we substitute the Sun–EMB PCRTBP for the
PBCM. Therefore, the variation of C can be regarded as an index to evaluate the difference
between the PBCM and the Sun–EMB CRTBP. The smaller variation of C , the Sun–EMB
PCRTBP is more approximate to the PBCM.

According to Eqs. (4) and (7), the derivative of C with respective to the time tSE based on
the PBCM can be expressed by

(a) (b)
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Fig. 7 Influence of the moment of the perilune: a prograde LGA orbits and b retrograde LGA orbit
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dC

dtSE
= −2 (ẋSE ẍSE + ẏSE ÿSE) + 2

d�SE
3

dtSE

= −2ẋSE

(
2 ẏSE + ∂�SE

4

∂xSE

)
− 2 ẏSE

(
−2ẋSE + ∂�SE

4

∂ySE

)
+ 2

d�SE
3

dtSE

= −2

(
ẋSE

∂�SE
4

∂xSE
+ ẏSE

∂�SE
4

∂ySE

)
+ 2

d�SE
3

dtSE
. (12)

Based on Eq. (8),

d�SE
4

dtSE
= d�SE

3

dtSE
+ d�

dtSE

= ẋSE
∂�SE

4

∂xSE
+ ẏSE

∂�SE
4

∂ySE
+ ∂�SE

4

∂tSE
. (13)

Therefore,

dC

dtSE
= −2

(
d�SE

3

dtSE
+ d�

dtSE
− ∂�SE

4

∂tSE

)
+ 2

d�SE
3

dtSE

= −2

(
d�

dtSE
− ∂�SE

4

∂tSE

)
= −2

(
d�

dtSE
− ∂�

∂tSE

)
. (14)

Taking the integral for both sides over the time tSE, we can derive
∫ C∗

C
dC = −2

∫ �∗

�

d� + 2
∫ t∗

t

∂�

∂tSE
dtSE (15)

or

C∗ − C = 2� − 2�∗ + 2
∫ t∗

t

∂�

∂tSE
dtSE. (16)

Circi and Teofilatto (2001) pointed out that the integral in Eq. (16) depends on the actual
trajectory, not only on the initial/final point, and hence it cannot be estimated a priori. Of
course, the faster the spacecraft crosses the lunar region of influence the smaller the value
of the integral is. If the spacecraft reaches its perilune soon (so the local eccentricity turns
out to be bigger than 1), the integral in Eq. (16) can be neglected. For the LGA orbits we
investigate in this paper, e of the perilune has been required to be larger than 1 in Sect. 3.1.
Hence, the integral in Eq. (16) can be removed. Then, Eq. (16) can be rewritten

C∗ − C = 2� − 2�∗. (17)

The gravities of the Earth and the Moon are more approximate to the gravity of the EMB, if
the spacecraft is farther away from the EMB. Based on Eq. (9), if we letC∗ denote the Jacobi
constant located at infinite, the corresponding �∗ tends to 0. Then, at a certain position of
the LGA orbit, the relationship of the Jacobi constant C and the corresponding � can be
obtained by

C∗ − C = 2� (18)

As mentioned before, if the difference between C and C∗ is quite small, the PBCM can be
regarded as the Sun–EMB CRTBP in the corresponding region. Consequently, we present a
criterion to estimate difference between C and C∗ as follows.
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Fig. 8 Distribution of 2�/3 in the Earth–Moon rotating frame

∣∣∣∣
C∗ − C

C∗

∣∣∣∣ ≤ 10−5, i.e.,

∣∣∣∣
2�

C∗

∣∣∣∣ ≤ 10−5, (19)

where� is time variant in the Sun–EMB rotating frame.However, in the Earth–Moon rotating
frame, � is time independent and only depends on the position. Hence, we can describe the
regions satisfying above criterion in the Earth–Moon rotating frame. In Eq. (19),C∗ depends
on the LGA orbit, but for the LGA orbits investigated in this paper, we can estimateC∗ in the
range of [C4,C1] ≈ [3, 3.0009]. Therefore, we might as well let C∗ equal 3. Figure 8 shows
the distribution of 2�/3 in the Earth–Moon rotating frame. There are two circular dash lines
centered at the EMB in this figure. The radius of the inner one is 1 − μEM (379,734.2km),
i.e., the distance between the Moon and the EMB. The radius of the outer one is 200,000km
larger than that of the inner one, i.e., 579,734.2km.

In this paper, the regions dissatisfying the criterion of Eq. (19) are defined as the regions
of influence of the Earth–Moon system, where the gravities from the Earth and the Moon
cannot be concentrated at the EMB approximately. The dark red and the dark blue regions
in Fig. 8 are the regions of influence of the Earth–Moon system. Apparently, these regions
are not a circular region. However, it should be noted that in the Sun–EMB rotating frame,
the regions of influence of the Earth–Moon system rotate about the EMB, i.e., the dark red
and the dark blue regions in Fig. 8 rotate about the origin (EMB). Hence, the circular region
covered by the rotating dark red and the dark blue regions about the origin are defined as the
sphere of influence of the Earth–Moon system (SOIEM). We find that the dark red and the
dark blue regions are all located inside the outer circular dash line. That is to say that the
variation of C is quite slight when the spacecraft is located outside the outer circular dash
line. Hence, in this paper, the sphere centered at the EMB with the radius of 579734.2km is
considered to be the SOIEM for the LGA orbits. Outside the SOIEM, we can substitute the
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Sun–EMB PCRTBP for the PBCM to analyze the LGA orbits. Figure 9 displays six prograde
LGA orbits in the Sun–EMB rotating frame. The inner circle is the Moon’s orbit and the
outer circle is the SOIEM. The red lines denote the LGA orbits based on the PBCM, and the
blue lines represent the LGA orbits based on the Sun–EMB PCRTBP. We find that outside
the SOIEM, the six blue orbits are very close to the corresponding red orbits, which testifies
the adequacy of the SOIEM.

Figure 10 displays a LGA orbit in the Sun–EMB rotating frame. When the LGA orbit
flies out of the SOIEM, there exists a intersection point (denoted by the red dot), which can
be located by the phase angle α, counterclockwise measured. The direction of motion of the
LGA orbit at the intersection point can be indicated by the angle β, clockwise measured.
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Fig. 11 Influence of the Sun on the LGA orbits

Therefore, (α, β) reflects the geometric property of the LGA orbit on the SOIEM. According
to the definitions above, the range of α is [0, 360◦], and the range of β is [0, 180◦].
3.3 Influence of the Sun

Comparing the PBCM with the Earth–Moon PCRTBP, the only difference between them is
that the influence of Sun is included in the PBCM. Therefore, if the influence of the Sun
on the LGA orbits can be analyzed in detail, the characters of the LGA orbits based on the
PBCMwill be clear. According to the analysis in the last subsection, the influence of the Sun
on the LGA orbits can be divided into two portions by the SOIEM.

For the portion of the LGA orbit outside the SOIEM, we intend to investigate the influence
of the Sun in the next two sections in detail, so in this subsection, only an example is given to
show the effect of the Sun on theLGAorbits. Figure 11 displays a cluster progradeLGAorbits
with the same state variables of perilune (D = 2164.4 km, ψ0 = 213.96◦ and e = 1.3291)
at different moments of the perilune t . Since t is various, the influence of the Sun on the LGA
orbits is also different. As we can see from the figure, the influence of the Sun is remarkable,
especially for the portion outside the SOIEM: Some LGA orbits fly away from the SOIEM
along different directions, but some return to the SOIEM. This phenomenon is explained in
Sect. 5.

Besides, we find that for the given LGA orbit (the state variables of the perilune are
fixed except the moment of the perilune), when the moment of perilune t changes at regular
intervals in the period [0,−2π/ωs], α correspondingly changes at regular intervals in the
period [0, 2π]. And there exists an exactly corresponding relationship between t and α.
Therefore, for the given LGA orbits, we can substitute α for t as a state variable of the
perilune. This substitution will be used directly in the following parts and not be explained
again.
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For the portion of the LGA orbit inside the SOIEM, we discuss the influence of the Sun
by the numerical methodology. As mentioned in the last subsection, we consider that inside
the SOIEM, the influence of the Sun on the LGA orbits is slight, such as the examples in
Fig. 7. In this subsection, we quantitatively analyze the influence of the Sun.

First of all, we discuss the effect of Sun on the perigee of the LGA orbits. According to
the LGA orbits in Fig. 11, the plot of height of the perigee h versus α is displayed in Fig. 12.
As we can see from the figure, except the orbits colliding with the Earth, the amplitude of h
is less than 300 km. The influence of the Sun on the perigee is quite small.

Since SOIEM is the interface to distinguish the influence of the Sun, it is significant to
investigate the influence of the Sun at the intersection points between the LGA orbits and
the SOIEM. Besides, for the portion of the LGA orbits inside the SOIEM, the intersection
points are farthest away from the EMB, so the influence of the Sun is greatest at that point. If
the influence of the Sun at the intersection points is in an acceptable range, we can conclude
that the influence of the Sun on the LGA orbits inside the SOIEM is quite small.

The orbital state of the intersection points in Fig. 11, such as the angle β and Jacobi
constant C , can be calculated. Figure 13a, b shows the plots of β versus α and C versus α,
respectively. In a period of α, we find that the amplitude of β, �β, is smaller than 1◦. The
change of C is also quite small, and the amplitude �C < 2 × 10−5.

In order to examine the influence of the Sun at the intersection points, we can calculate
more �β and �C for different LGA orbits. For the sake of space, we only display the results
of the LGA orbits with e = 1.5 in Figs. 14 and 15. It is noted that only the perilunes of the
LGA orbits with C < C1 ≈ 3.0009 at the intersection points are displayed in Figs. 14 and
15, because the trends of the LGA orbits with C ≥ C1 are predictable: They cannot fly away
from the Earth–Moon system and will return to the SOIEM. From Figs. 14 and 15, we find
that for the feasible LGA orbits with e = 1.5, �β < 1◦ and �C < 4 × 10−5. Therefore,
we conclude that inside the SOIEM, the influence of the Sun on the feasible LGA orbits is
slight. The changes of β and C for different α at the intersection points are quite small. This
conclusion is used in Sect. 5.
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4 Sun–EMB stable manifolds and Poincaré section

In the last subsection, we mentioned that outside the SOIEM, the PBCM can be regarded
as the Sun–EMB CRTBP approximately to analyze the LGA orbits. In this section, we will
review some theories based on the Sun–EMB PCRTBP.

The Lyapunov periodic orbit (LPO) around L1 or L2 is an important result of the PCRTBP
(Szebehely 1967). The LPOs based on Sun–EMB PCRTBP with different C are displayed
in the Sun–EMB rotating frame in Fig. 16. The inner circle is the Moon orbit and the outer
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Fig. 16 LPOs with different C in the Sun–EMB rotating frame

circle is the SOIEM. With the decrease of C , the scale of the LPO increases. As we can
see from Fig. 16, some LPOs can enter the SOIEM. However, according to the analysis in
Sect. 3.2, C of the LPO inside the SOIEM will be distinctly changed by the Earth–Moon
system, which leads to the destruction of the LPO. Therefore, there exists a critical C for L1

or L2 under the PBCM: If C is smaller than this value, the corresponding LPO will enter the
SOIEM and be heavily destroyed. In this paper, C̃1 and C̃2 denote the critical C of L1 and
L2, respectively. Numerical calculation shows C̃1 = 3.00034839 and C̃2 = 3.00035320.

The stable manifold associated with the LPO is another important theory of the PCRTBP
(Koon et al. 2006). As mentioned before, the Earth–Moon system can remarkably change the
Jacobi constant of the Sun–EMB PCRTBP inside the SOIEM. Therefore, the investigation
of the stable manifolds also should be limited in the region outside the SOIEM. Taking
the SOIEM as the section surface, we can obtain the intersection points between the stable
manifolds and the SOIEM. The information of section points can be denoted by the angles α

and β, i.e., the Poincaré section of the stable manifolds can be described in the coordinates
of (α, β). Since the Poincaré section can reduce the dimension of the stable manifolds, it
is an effective tool for us to understand the geometric properties of the PCRTBP system.
Figure 17a, b displays the stable manifolds associated with the LPOs outside the SOIEM
when C = 3.00085 and 3.00080, respectively. The red lines and the blue lines denote the
stable manifolds associated with the LPO around L1 and L2, respectively. Figure 18a, b is the
Poincaré sections corresponding to Fig. 17a, b in the coordinates of (α, β). In the Poincaré
sections, the red section points and the blue section points stem from the stable manifolds
associated with the LPO around L1 and L2, respectively. Note that, in the calculation of the
stable manifolds, if the number of revolution that the spacecraft performs about the EMB
along the stable manifold is equal or greater than 1, the corresponding manifold will be
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Fig. 18 Poincaré sections with a C = 3.00085 and b C = 3.00080 in the coordinates of (α, β)

discarded, because the flight time of this kind of trajectory is too long to be acceptable in
practice.

In Fig. 17a, when C = 3.00085, since the tubes of stable manifolds are narrow, the entire
stable manifolds can intersect the SOIEM on their first pass, yielding the closed Poincaré
sections in Fig. 18a. However, in Fig. 17b, when C decreases to 3.00080, the scale of the
stable manifold tubes is wide enough that not all of the stable manifolds can intersect the
SOIEM on their first pass. Hence, the Poincaré sections intersect the axis β = 0◦ and become
open (see Fig. 18b). Some fractions of stable manifolds pass over the SOIEM and intersect
the SOIEM in the region of the section points belonging to other libration point. Therefore,
some isolated section points (the red points in Fig. 18b) belonging to L1 appear at the left
side near the open Poincaré sections belonging to L2; meanwhile, some isolated section
points (the blue points in Fig. 18b) belonging to L2 also appear at the left side near the
open Poincaré sections belonging to L1. In this paper, the closed or open Poincaré sections,
stemming from the intersection between the SOIEM and the stable manifolds on their first
pass, are defined as the primary sections. The isolated Poincaré sections, stemming from the
intersection between the SOIEM and some stable manifolds overflying the SOIEM on their
first pass, are defined as the subordinate sections.
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Fig. 20 Distribution of the Poincaré sections with different C in the coordinates of (α, β)

According to the discussion above, we infer that only when the primary sections are open
will the subordinate sections appear. Numerical computation indicates that C = 3.00083000
is the critical value to determine the primary sections of L1 closed or open: IfC is larger than
this value, the primary section of L1 is closed; otherwise, the primary section is opened. In
this paper, C∗

1 denotes this critical value of L1. In the same way, the critical value of L2 can
also be calculated C∗

2 = 3.00082863. Figure 19 shows the critical primary sections of L1

(the red section) and L2 (the blue section).
Furthermore, we can obtain the Poincaré sections of the stable manifolds with different

C using the numerical method. Figure 20 is the distribution of the Poincaré sections with
different C in the coordinates of (α, β), where the different colors denote the different values
ofC . Based on the previous discussion, the left dark red region belongs to the primary sections
of L1, while the right dark red region belongs to the primary sections of L2. Besides, due to the
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Fig. 21 Contour map of the Poincaré sections with different C

periodicity of the angle α, the leftmost red region also belongs to the primary sections of L2.
The subordinate sections of L1 are located at the left side closed to the primary sections of L2,
and the subordinate sections of L2 are located at the left side closed to the primary sections
of L1. Figure 21 is the contour map of the Poincaré sections with different C , where we can
observe the positions of the subordinate sections more clearly. We find that the subordinate
sections are very close to left side of the primary sections, and some subordinate sections are
even mingled with the primary sections with different C . Therefore, if the orbit is located in
those jumbled regions, the motion will be quite sensitive to the initial condition. The small
deviation will bring about the motion in different directions (toward L1 or L2). Therefore,
those regions are regarded as the chaotic areas, which demonstrate the dynamical complexity
of the PCRTBP.

5 LGA orbit based on the PBCM

In this section, the stable manifolds and the Poincaré sections of the Sun–EMB PCRTBP
will be applied to investigating the LGA orbits based on the PBCM. In addition, the patched
LGA orbits and the stable transit probability will be presented and studied.

5.1 LGA orbit and stable manifolds

As mentioned previously, outside the SOIEM, the stable manifolds can be applied to investi-
gating the character of the LGA orbits and predicting their motion. In this subsection, we take
two kinds of LGA orbits (the prograde and retrograde LGA orbits) as example to introduce
how to apply the stable manifolds to the LGA orbits based on the PBCM.

Firstly, we investigate a prograde LGAorbit based on the PBCM. The state variables of the
perilune are fixed: D = 1796.7 km, ψ0 = 206.6131◦ and e = 1.2967. The influence of the
Sun on β of the prograde LGA orbit illustrates in Fig. 22: The black solid line overlapping the
distribution of the Poincaré sections denotes the change curve of β versus α. As we can see
from the figure, the change of β is very small, which is in accord with the discussion in Sect.
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Fig. 22 Integrated picture of the prograde LGA orbit on the SOIEM

3.3. The numerical calculation indicates that β remains around 58.22◦, and the amplitude
�β < 1◦. Then, we display the influence of the Sun on C of the LGA orbits on the SOIEM.
The lower part of Fig. 22 illustrates the change curve of C versus α. The black horizontal
line corresponds to the mean value ofC , C̄ = 3.000804. The numerical calculation indicates
that the amplitude ofC is quite small:�C = 2.0135×10−5. Therefore, even for different α,
we assume that the Jacobi constants of the LGA orbits on the SOIEM equal C̄ . The Poincaré
sections of the stable manifolds with C = C̄ are indicated by the black points in Fig. 22.
Since C̄ < C∗

2 , we can obtain two open primary sections and two branches of subordinate
sections. Hence, there exist six intersection points between the curve of β and the Poincaré
sections: four intersection points on the primary sections and two intersection points on the
subordinate sections. If all of the Jacobi constants of the LGA orbits on the SOIEM strictly
equal C̄ , the six values of α corresponding to the above intersection points can be regarded as
the phase angles where the LGA orbits are spliced with the stable manifolds on the SOIEM.
Unfortunately, as we can see from Fig. 22, C changes for different α, i.e., the six values of
α are not the real patched angles. However, because �C is quite small, we consider that the
real patched angles are located in the neighborhood of the six values of α. Therefore, the six
values of α can be regarded as the initial guesses for searching the real patched angles. In
order to improve the efficiency of the searching problem, we can use the curve of C versus
α to determine the orientations of the real patched angles relative to the initial points. For
example, in Fig. 22, we can easily obtain six values of C corresponding to the six initial
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Fig. 23 Six real patched points in the coordinates of (α, β)

value of α using the curve of C versus α. If the value of C is smaller than C̄ , the real patched
angle α will be located at theC-decreasing side of the corresponding intersection point in the
distribution of the Poincaré section (the upper part of Fig. 22). On the contrary, if the value
of C is larger than C̄ , the real patched angle α will be located at the C-increasing side of the
corresponding intersection point in the distribution of the Poincaré section. In the lower part
of Fig. 22, the red arrows indicate the orientations of the real patched angles relative to the
corresponding initial values of α. The relative orientations can improve the efficiency of the
searching problem.

In Fig. 22, the information of the LGA orbit on the SOIEM, such as the change curve of β

versus α and the change curve of C versus α, is handily integrated into the distribution of the
Poincaré sections. Therefore, Fig. 22 is named the integrated picture of the prograde LGA
orbit on the SOIEM. Using the information of this integrated picture comprehensively, we
propose a simple and intuitive method to search patched points of the prograde LGA orbits
and the stable manifolds.

Figure 23 displays the six real patched points obtained by the searching problem. The two
patched points on the primary section of L1 are, successively, defined as Point 1 and Point
2 in the anticlockwise direction. The two patched points on the primary section of L2 are,
successively, defined as Point 3 and Point 4 in the anticlockwise direction. The patched points
on the subordinate sections of L1 and L2 are defined as the Point 6 and Point 5, respectively.
As we can see, Points 1 and 5 and Points 3 and 6 are located in the chaotic areas.

Figure 24 shows the patched LGAorbits corresponding to the six patched points in Fig. 23,
where the red lines denote the LGA orbit based on the PBCM and the blue lines represent
the stable manifolds based on the Sun–EMB PCRTBP. Figure 24a displays the patched
LGA orbits corresponding to the Points 2 and 4, which are named after Orbits 2 and 4,
respectively. Similarly, in Fig. 24b, the patched LGA orbits corresponding to the Points
1, 3, 5 and 6 are named after Orbits 1, 3, 5 and 6, respectively. As we can see from the
figures, Orbits 2 and 4, Orbits 1 and 3 and Orbits 5 and 6 seem symmetrical about the
EMB. Besides, we find that although Point 1 and Point 5 are very close, Orbit 1 and Orbit
5 are quite different and move toward different directions. The same situation occurs when
it comes to Orbit 3 and Orbit 6. Therefore, we conclude that the motions of Orbits 1, 3,
5 and 6 in the chaotic areas are more sensitive to the initial condition than those of Orbits
2 and 4.
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Fig. 24 Patched LGA orbits corresponding to the six patch points in Fig. 23

Next, we analyze the roles of the patched orbits for the LGA orbits based on the PBCM.
Figure 23 shows that the patched LGA orbits between Point 1 and Point 2 are located inside
the stable manifolds tube of L1, and the patched LGA orbits between Point 3 and Point 4
are located inside the stable manifolds tube of L2. According to the theory of the stable
manifolds (Koon et al. 2006), the patched LGA orbits between Point 1 and Point 2 are the
transit orbits through L1, and the patched LGA orbits between Point 3 and Point 4 are the
transit orbits through L2. Based on the analysis in Sect. 3.2, the PBCM can be regarded
as the Sun–EMB CRTBP approximately outside the SOIEM. Therefore, we speculate that
the conclusions above based on the patched model can still be applicable in the complete
PBCM, i.e., under the complete PBCM, the LGA orbits between Point 1 and Point 2 are the
transit orbits passing through L1, and the LGA orbits between Point 3 and Point 4 are the
transit orbits passing through L2. In Fig. 25a, the blue orbits are Orbits 1–4, and the green
orbits are the LGA orbits based on the complete PBCM. As we can see from the figure, the
LGA orbits between Orbit 1 and Orbit 2 can transit the region near L1 and fly to the interior
region of the Sun; meanwhile, the LGA orbits between Orbit 3 and Orbit 4 can transit the
region near L2 and fly to the exterior region of the Sun. Those results are in accord with our
speculation.

Besides, based on the theory of stable manifolds, the orbits outside the stable manifolds
tube are the non-transit orbits. However, because of the existence of the subordinate sections,
not all the patched LGAorbits between Point 4 and Point 1 or the patched LGAorbits between
Point 2 and Point 3 are located outside the stable manifolds tubes. Some orbits located in the
chaotic areas are inside the manifolds tubes. We speculate that the conclusions above based
on the patched model can still be applicable in the complete PBCM, i.e., under the complete
PBCM, not all the LGA orbits between Point 4 and Point 1 or the LGA orbits between Point
2 and Point 3 are the non-transit orbits, and some located in the chaotic areas will be the
transit orbits. Figure 25b displays the LGA orbits between Orbit 4 and Orbit 1 and the LGA
orbits between Orbit 2 and Orbit 3 based on the complete PBCM. Similarly, in this figure, the
blue lines denote Orbits 1–4. The red lines and the green lines represent the non-transit orbits
and transit orbits, respectively. In this figure, we find that most of the LGA orbits between
Orbit 4 and Orbit 1 or between Orbit 2 and Orbit 3 are the non-transit orbits and can return
to the SOIEM. But there are still a few transit orbits, which can pass through the regions
near L1 or L2. Those transit orbits are close to Orbit 1 or Orbit 3, located in the chaotic
areas.
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Fig. 25 Roles of the patched LGA orbits for the LGA orbits based on the PBCM
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Fig. 26 LGA orbits in the chaotic areas

Figure 26 illustrates the motion of the LGA orbits in the chaotic areas in detail, where
the red lines and green lines are the non-transit orbits and transit orbits, respectively. Fig-
ure 26a shows the LGA orbits located in the chaotic areas near Orbits 1 and 5. From this
picture, we find that there exist some transit orbits passing through the regions of L2 in the
small neighborhood of Orbit 5. Meanwhile, in the small neighborhood of Orbit 1, few LGA
orbits can pass through regions of L1. Since the transit orbits and the non-transit orbits are
concentrated in a narrow region, the motion will be quite sensitive to the initial condition.
The small deviation will bring about the motion in different directions. The same conclu-
sions are also applicable to the LGA orbit in the chaotic areas near Orbits 3 and 6 (see Fig.
26b).

Secondly, we investigate a retrograde LGA orbit based on the PBCM. The state variables
of the perilune are fixed: D = 3343.1 km, ψ0 = 322.8968◦ and e = 1.4603. Similarly,
we apply the integrated picture of the retrograde LGA orbit on the SOIEM to searching
the patched points (see Fig. 27). In the distribution of the Poincaré sections, the black solid
line denotes the change curve of β versus α. The numerical calculation indicates that β

remains around 55.67◦ and the amplitude �β ≈ 1◦. The lower part of Fig. 27 illustrates
the change curve of C versus α. The black horizontal line corresponds to the mean value of
C , C̄ = 3.000872. The numerical calculation indicates that the amplitude of C is also quite
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Fig. 27 Integrated picture of the retrograde LGA orbit on the SOIEM

small, �C = 1.8928× 10−5. The Poincaré sections of the stable manifolds with C = C̄ are
denoted by the black points in Fig. 27. Since C̄ > C∗

1 , we can obtain two closed primary
sections in the figure. Hence, there exist four intersection points between the curve of β and
the primary sections. In the lower picture of Fig. 27, the red arrows indicate the orientations
of the real patched angles relative to the corresponding initial values of α. Using the method
we propose, the four patched points can be obtained by the searching problem easily, which
are denoted by the white dot in Fig. 27.

Figure 28 shows the patched LGA orbits corresponding to the four patched points in
Fig. 27, where the red lines denote the LGA orbit based on the PBCM and the blue lines
denote the stable manifolds based on the Sun–EMB PCRTBP.

The roles of the patched orbits for the LGA orbits based on the PBCM are displayed in
Fig. 29. In this figure, the blue lines denoteOrbits 1–4. Since there are no subordinate sections,
the patched LGA orbits between Points 4 and 1 and the patched LGA orbits between Points
2 and 4 are rigorously outside the stable manifolds tube, belonging to the non-transit orbits
of the patched model. Figure 29 indicates that the corresponding LGA orbits based on the
complete PBCM are still the non-transit orbits (denoted by the red lines). On the other hand,
the patched LGA orbits between Points 1 and 2 and the patched LGA orbits between Points 2
and 3 are inside the stable manifolds tube, belonging to the transit orbits based on the patched
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Fig. 28 Patched LGA orbits corresponding to the four patched points in Fig. 27

model. Figure 29 indicates that the corresponding LGA orbits (denoted by the green) based
on the complete PBCM can still transit the regions near L1 or L2.

Based on the two examples above, we find that the Poincaré section of the stablemanifolds
is an effective tool to analyze the motion of the LGA orbits based on the PBCM. The patched
trajectories can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits
based on the PBCM. The LGA orbits inside the primary sections are the transit orbits. If
there are no the subordinate sections, the LGA orbits outside the primary sections are the
non-transit orbits. If there exist the subordinate sections, most of the LGA orbits outside the
primary sections are the non-transit orbits, and only in the narrow region near the subordinate
sections, the LGA orbits are the transit orbits. Based on the results above, we can easily select
the LGA orbit according to the requirement of the actual space mission. For example, for
the Earth–Moon transfer, we should select the non-transit LGA orbits outside the primary
sections. For the interplanetary missions, we recommend using the transit LGA orbits inside
the primary sections.

5.2 Stable transit probability

In this subsection, we investigate the transit LGA orbits based on the PBCM. According to
the research in the last subsection, the LGA orbits inside the primary section are transit orbits
and their directions of the transit are certain and straightforward. Some LGA orbits near the
subordinate sections are the transit orbits, but they are distributed in the narrow chaotic areas.
Their motions are quite sensitive to the initial condition. Besides, we find that the flight time
of the transit LGA orbits near the subordinate sections is apparently longer than that of the
transit LGA orbits inside the primary sections. In summary, the transit LGA orbits inside
the primary sections possess substantial advantages over those near the subordinate sections.

123



358 Y. Qi, S. Xu

0.99 0.995 1 1.005 1.01

-8

-6

-4

-2

0

2

4

6

8

x 10
-3

x
SE

y SE

Fig. 29 Roles of the patched LGA orbits for the LGA orbits based on the PBCM

Hence, in this subsection, we focus on the former. The transit LGA orbits inside the primary
sections are defined as the stable transit LGA orbits.

For a given LGA orbit (the state variables of the perilune are fixed except the moment of
the perilune), its probability to become a stable transit LGA orbit during a Sun–Earth–Moon
period can be expressed by

Stable Transit Probability = Stable Transit Window

Sun–Earth–Moon Period
.

In this paper, the stable transit probability is denoted as η. The stable transit window can be
measured by the total width of the primary sections in the coordinates of (α, β). The Sun–
Earth–Moon period just equals to the period of α. Therefore, we can obtain the approximate
expression of η as follows.

η = α2 − α1 + mod(α4 − α3, 360◦)
360◦ , (20)

where αi , i = 1, 2, 3, 4, denote the phase angles of the patched points in the primary
sections. For example, Fig. 30a, b displays the distributions of the stable transit win-
dow for the prograde LGA orbits and the retrograde LGA orbits in the last subsection,
respectively.

Based on Eq. (20), we can calculate the distribution of η for different perilunes of the
LGA orbits in the Earth–Moon rotating coordinates. Figure 31 shows the distributions of η

for the prograde LGA orbits and the retrograde LGA orbits when e equals to 1.5 and 1.7.
As we can see from the figures, in the Earth–Moon rotating coordinates, η increases from
0 to 1 in the anticlockwise (or prograde) direction for the prograde LGA orbits, but for the
retrograde LGA orbits, η increases from 0 to 1 in the clockwise (or retrograde) direction. It
should be noted that in the numerical calculation, according to the distribution of the Poincaré
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Fig. 30 Stable transit windows for (a) the prograde LGA orbits and (b) the retrograde LGA orbits

section (see Fig. 30), if C of the LGA orbits on the SOIEM is larger than 3.0009, we define
η = 0; if C of the LGA orbits on the SOIEM is smaller than 3.0000, we define η = 1. The
distributions of η can help us choose the appropriate perilune of the LGA orbit based on the
launch window of the deep-space mission.

6 Conclusion

In this paper, the lunar gravity assist (LGA) orbits starting from the Earth were treated under
the framework of the Sun–Earth–Moon PBCM.

First of all, using the Jacobi constantC of the Sun–EMBPCRTBP, we derived the SOIEM,
which is centered at the EMB with the radius of 579734.2 km. The numerical calculation
indicated that inside the SOIEM, the influence of the Sun on the LGA orbits is quite slight.
Even on the SOIEM, the influence of the Sun on the LGA orbits is small. For example, when
e = 1.5, �β < 1◦ and �C < 4 × 10−5.
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Fig. 31 Distributions of η for the prograde LGA orbits and the retrograde LGA orbits when e = 1.5 and 1.7

However, outside the SOIEM, the influence of the Sun on the LGA orbits cannot be
neglected.We can substitute the Sun–EMBPCRTBP for the PBCMapproximately to analyze
the LGA orbits. According to the Sun–EMB PCRTBP, the stable manifolds associated with
the LPOs and their Poincaré sections on the SOIEMwere investigated. Based on our research,
we found that when C is larger than 3.00083000, the Poincaré sections of L1 and L2 are two
closed primary sections; when C is smaller than 3.00082863, the Poincaré sections of L1

and L2 include two open primary sections and two branches of isolated subordinate sections.
The subordinate sections are located in the chaotic areas.

Using the integrated picture of the LGA orbit on the SOIEM, we proposed a simple and
intuitive method to obtain the patched LGA orbits: The portions inside the SOIEM are the
LGA orbits based on the PBCM; the portions outside the SOIEM are the stable manifolds
based on the Sun–EMB PCRTBP. According to our study, these patched LGA orbits can
efficiently predict the trends of the LGAorbits based on the PBCM.The LGAorbits inside the
primary sections are the transit orbits. If there are no the subordinate sections, the LGA orbits
outside the primary sections are non-transit orbits. If there exist the subordinate sections,
most of the LGA orbits outside the primary sections are the non-transit orbits, and only in
the narrow region near the subordinate sections, the LGA orbits are the transit orbits. Finally,
based on the results above, we proposed the stable transit probability η and obtained the
distribution of η for different perilunes of the LGA orbits by numerical method.

According to variant deep-space mission, such as the Earth–Moon transfer and the inter-
planetary missions, the results of this paper can be applied to selecting the LGA orbit and
the launch window.
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