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Abstract The paper deals with the problem of the existence of a normal form for a
nearly-integrable real-analytic Hamiltonian with aperiodically time-dependent perturbation
decaying (slowly) in time. In particular, in the case of an isochronous integrable part, the
system can be cast in an exact normal form, regardless of the properties of the frequency
vector. The general case is treated by a suitable adaptation of the finite order normaliza-
tion techniques usually used for Nekhoroshev arguments. The key point is that the so called
“geometric part” is not necessary in this case. As a consequence, no hypotheses on the inte-
grable part are required, apart from analyticity. The work, based on two different perturbative
approaches developed by Giorgilli et al., is a generalisation of the techniques used by the
same authors to treat more specific aperiodically time-dependent problems.

Keywords Non-autonomous Hamiltonian systems · Stability · Birkhoff normal forms ·
Aperiodic time dependence
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1 Introduction

The problem of casting an analytic nearly-integrable Hamiltonian system into normal form is
deeply related to Poincaré’s challenging problème général de la dynamique, Poincaré (1892).
Nowadays, normal forms are still one of the main technical tools used to deal with the issue
raised by Poincaré in this context.
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248 A. Fortunati, S. Wiggins

The particular case in which the unperturbed part is supposed to be linear in the actions
(isochronous case), already investigated by Birkhoff (and for this reason also known as the
Birkhoff problem) Birkhoff (1927), has a peculiar interest. The first rigorous statement con-
cerning its stability can be found in Gallavotti (1986). The possibility to cast the considered
Hamiltonian in normal form, up to some finite order1 r and to obtain, as a consequence, a
stability time estimate “à la Nekhoroshev”, is directly related to a particularly simple small-
divisors analysis: the non-resonant (Diophantine) hypothesis on the frequency vectorω of the
unperturbed system is sufficient in order to ensure the resolvability of the (standard) homolog-
ical equation arising in the normalization algorithm. An extensive bibliography on this prob-
lem goes beyond the purposes of this paper, we onlymention the recent generalisations for the
planetary problem of Pinzari (2013) and of Bambusi (2005) for infinite dimensional systems.

It is well known that the extension to the non-isochronous case requires a careful analysis
(geometric part, seeNekhoroshev 1977, 1979;Benettin andGallavotti 1986) on the regions of
the phase space in which the actions I are such that ω = ω(I ) is non-resonant (non-resonant
domains).

The problem of dealing with time-dependent perturbations without any hypothesis on the
time dependence (e.g. periodic or quasi-periodic) has peculiar technical difficulties. After
the pioneering works of Pustyl’nikov (1974) and Giorgilli and Zehnder (1992), the interest
for this class of problems has been recently renewed in Bounemoura (2013), Fortunati and
Wiggins (2014a) and subsequent papers. Examples of more general (i.e. aperiodic) non-
autonomous perturbation in the context of the Lagrangian transport theory for fluids have
been pointed out in Wiggins and Mancho (2014). Despite towards a different direction it is
worth mentioning the stochastic perturbations of the Kepler problem discussed in Cresson
et al. (2015), naturally arising in some Celestial Mechanics models.

From a technical point of view, the presence of an aperiodic time dependence, requires
a different treatment of the homological equation which takes the form of a linear PDE. A
first approach consists in keeping the terms involving the time derivative of the generating
function (also called extra-terms) in the normal form and then providing a bound for them.
This approach, originally suggested in Giorgilli and Zehnder (1992) then used in Fortunati
and Wiggins (2014a), yields a normal form result for the case a of slow time dependence.
This hypothesis provides a smallness condition for the mentioned extra-terms. Alternatively,
those terms can be removed by including them into the homological equation, which turns
out to be, in this way, a linear ODE in time. This has been profitably used in Fortunati and
Wiggins (2014b), Fortunati and Wiggins (2015a) and in Fortunati and Wiggins (2015b) but
requires (except for a particular case described in Fortunati andWiggins 2015b) an important
assumption.More precisely, it is necessary to suppose that the perturbation, as a function of t ,
belongs to the class of summable functions over the real semi-axis.2 As in (3), those functions
exhibiting a (slow) exponential decay will be used as a paradigmatic case. It will be shown
that the consequences of this assumption in the isochronous case are remarkable: the normal-
ization algorithm can be iterated an infinite number of times by means of a superconvergent
method borrowed fromKAM type arguments, see e.g. Chierchia (2009). The procedure leads
to the so-called strong normal form i.e. in which the normalized Hamiltonian has the same
form of the integrable part of the initial problem. Furthermore, no restrictions are imposed
on ω, hence flows with arbitrary frequencies persist in the transformed system.

1 It is easy to see that any attempt to consider the limit r → ∞ would imply the degeneration into a trivial
problem, (i.e. in which the allowed perturbation size reduces to zero, see also Giorgilli and Galgani 1985,
formula (46), P. 105).
2 We stress that this hypothesis is usually not satisfied in the case of periodic or quasi-periodic timedependence.
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Negligibility of small divisor effects in the normal form theory 249

As it would be likely to expect, this phenomenon has an important consequence also
in the non-isochronous case. The possibility to disregard the problems related to the small
divisors implies that the well known geography of the resonances analysis, a key step of the
Nekhoroshev theorem, is not necessary in this case and the results that can be stated are purely
“analytic”. In such away, the classical assumptions on the unperturbed part of theHamiltonian
(such as steepness, convexity etc.), are no longer required. As a common feature with the
isochronous case, the obtained normal form does not exhibit resonant terms, as these have
been annihilated in the normalization by using the time-dependent homological equation.
This implies that, in this case, the plane of fast drift (see e.g. Giorgilli 2003) degenerates to a
point. The paper uses in a concise but self-contained form, the tools developed in the above
mentioned papers of the same authors, especially of Fortunati andWiggins (2015b) in which
the concept of “family” of canonical transformations parametrised by t is introduced. The
proofs are entirely constructed by using the language and the tools of the Lie series and Lie
transform methods developed by Giorgilli et al., see e.g. Giorgilli (2003).

2 Setting and main results

Consider the following nearly integrable Hamiltonian

H(I, ϕ, η, t) = h(I ) + η + ε̂ f (I, ϕ, t), (1)

with (I, ϕ, η, t) ∈ G ×T
n ×R×R

+, where G ⊂ R
n and ε̂ > 0 is a small parameter, which

is the “autonomous equivalent” in the extended phase space of Hamiltonian H(I, ϕ, t) =
h(I ) + ε̂ f (I, ϕ, t).

We define, for all t ∈ R
+ := [0,+∞), the following complexified domain Dρ,σ :=

Gρ × T
n
σ × Sρ , where Gρ :=⋃I∈G �ρ(I ) and

�ρ(I ) :=
{

Î ∈C
n :| Î − I |≤ρ

}
, T

n
σ := {ϕ ∈ C

n :|�ϕ|≤σ
}
, Sρ := {η ∈ C : |�η|≤ρ} ,

with ρ, σ ∈ (0, 1). For all g : Gρ × T
n
σ × R

+ → C, write g = ∑
k∈Zn gk(I, t)eik·ϕ , then

define the Fourier norm (parametrized by t)

‖g‖ρ,σ :=
∑

k∈Zn

|gk(I, t)|ρ e|k|σ , (2)

with | · |ρ is the usual supremum norm over Gρ and |k| := ∑n
l=1 |kl |. For all w : Gρ ×

T
n
σ × R

+ → C
n we shall set ‖w‖ρ,σ := ∑n

l=1 ‖wl‖ρ,σ . The standard framework (see eg.
Benettin et al. 1984) is the space Cρ,σ , of continuous functions on Gρ × T

n
σ , holomorphic in

its interior for some ρ, σ and real on G × T
n for all3 t ∈ R

+. We shall suppose h(I ) ∈ Cρ,·
and f ∈ Cρ,σ while it is sufficient to assume that, for all I ∈ Gρ, fk(I, ·) ∈ C1(R+).

Similarly to Fortunati and Wiggins (2015b), we introduce the following

Hypothesis 2.1 (Time decay) There exists M f > 0 and a ∈ (0, 1)

‖ f (I, ϕ, t)‖ρ,σ ≤ M f e−at . (3)

Set ε := ε̂M f . We firstly state the following

Theorem 2.2 (Strong aperiodic Birkhoff) Consider Hamiltonian (1) with h(I ) := ω · I ,
under the Hypothesis2.1 and the described regularity assumptions. Then, for all a ∈ (0, 1)

3 In particular, if g ∈ Cρ,σ then |gk |ρ ≤ ‖g‖ρ,σ exp(−|k|σ) for all t ∈ R
+.
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250 A. Fortunati, S. Wiggins

there exists εa > 0 such that the following statement holds true. For all ε ∈ (0, εa], it is
possible to find 0 < ρ∗ < ρ0 < ρ and 0 < σ∗ < σ0 < σ and an analytic, canonical, ε−close
and asymptotic to the identity change of variables (I, ϕ, η) = B(I (∞), ϕ(∞), η(∞)),B :
Dρ∗,σ∗ → Dρ0,σ0 for all t ∈ R

+, casting Hamiltonian (1) into the strong Birkhoff normal
form

H (∞)
(

I (∞), ϕ(∞), η(∞)
)

= ω · I (∞) + η(∞). (4)

Hence, in the new variables, the flow with frequency ω persists for all ω, regardless of the
numerical features of this vector, i.e. more specifically, no matter if it is resonant or not. Note
that the absence of a non-resonance hypothesis on ω implies also that (4) holds also if ω has
an arbitrary number of zero components.

With a straightforward adaptation of the notational setting, the result in the general case
states as follows:

Theorem 2.3 There exist ε∗
a > 0 and r ∈ N \ {0} such that, for all ε ∈ (0, ε∗

a ] it is
possible to find an analytic, canonical, ε−close and asymptotic to the identity change of
variables (I, ϕ, η) = Nr

(
I (r), ϕ(r), η(r)

)
,Nr : Dρ̃∗,σ̃∗ → Dρ̃0,σ̃0 for all t ∈ R

+, casting
Hamiltonian (1) under the Hypothesis2.1, into the normal form of order r

H (r)
(

I (r), ϕ(r), η(r), t
)

= h
(

I (r)
)

+ η(r) + R(r+1)
(

I (r), ϕ(r), t
)

, (5)

where R(r+1) is “exponentially small” with respect to r and vanishes for4 t → +∞. More-
over, for all I (0) ∈ G one has in (1): |I (t) − I (0)| ≤ √

ερ̃0/8 for all t ∈ R
+.

Similarly to Fortunati andWiggins (2015b) (and thementioned previous papers), no lower
bounds are imposed on a so that the decay can be arbitrarily slow. The (natural) consequence
is that either εa or ε∗

a decrease with a, see (15) and (56).
We stress that, as a difference with the classical (non-autonomous) case, the stability

property following from the above stated results, is an easy consequence of (3) and it could
have been possible to show it directly from the equations of motion, by means of elementary
method, without the use of the normal form approach.

Part I

Proof of Theorem2.2

3 The normalization algorithm

Given a function G := G(I, ϕ, t), define the Lie series operator exp(LG) := Id+∑s≥1
(1/s!)Ls

G , where LG F := {F, G} ≡ Fϕ · G I − Gϕ · FI − FηGt . The aim is to construct a
generating sequence {χ( j)} j∈N, such that the formal limit

B := lim
j→∞B( j) ◦ B( j−1) ◦ . . . ◦ B(0), (6)

where B( j) := exp(Lχ( j) ) is such that B ◦ H is of the form (4). The following statement
shows that this is possible, at least at a formal level

4 See bound (54).
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Negligibility of small divisor effects in the normal form theory 251

Proposition 3.1 Suppose that for some j ∈ N Hamiltonian (1) is of the form

H ( j) = ω · I + η + F ( j)(I, ϕ, t). (7)

Then H ( j+1) := B( j) ◦ H ( j) is still of the form (7) with

F ( j+1) =
∑

s≥1

s

(s + 1)!L
s
χ( j) F ( j), (8)

provided that χ( j) solves the homological equation

χ
( j)
t + ω · χ( j)

ϕ = F ( j). (9)

Since Hamiltonian (1) is of the form (7), one can set H (0) := H with F (0) := ε̂ f . Thus,
by induction, the form (7) holds for all j ∈ N. Clearly, this does not guarantee that the objects
involved in the algorithm are meaningful for all j , as it is well known their sizes can grow
unboundedly as j increases, as a consequence of small divisors phenomena. The aim of
Sect. 4 (and in particular of Lemma4.5) is to show that this is not the case: the key ingredient
is the time decay of f .

Proof We get exp(Lχ( j) )H ( j) = I · ω + η + F ( j)(I, ϕ, t) + Lχ( j) (ω · I + η) +
∑

s≥1(1/s!)Ls
χ( j) F ( j) +∑s≥2(1/s!)Ls

χ( j) (ω · I + η). The sum between the third and fourth
terms of the r.h.s. of the latter equation vanishes due to (9). As for the last two terms, by setting
F ( j+1) as the sum of them, one gets F ( j+1) =∑s≥1(1/s!)Lχ( j) [F ( j) + (s + 1)−1Lχ( j) (ω ·
I + η)], which immediately yields (8) by using (9). ��

The (formal) expansions χ( j) =∑k∈Zn c( j)
k (I, t)eik·ϕ and F ( j) =∑k∈Zn f ( j)

k (I, t)eik·ϕ
yield (9) in terms of Fourier components

∂t c
( j)
k (I, t) + iλ(k)c( j)

k (I, t) = f ( j)
k (I, t), (10)

with λ(k) := ω · k. The solution of (10) is

c( j)
k (I, t) = e−iλ(k)t

[

c( j)
k (I, 0) +

∫ t

0
eiλ(k)s f ( j)

k (I, s)ds

]

, (11)

where c( j)
k (I, 0) will be chosen later.

4 Convergence

The classical argument requires the construction of a sequence of nested domains
Dρ j+1,σ j+1 ⊂ Dρ j ,σ j � (I ( j), ϕ( j), η( j)), such that B j : D j+1 → D j . The resulting pro-
gressive restriction is essential in order to use standard Cauchy tools, see Proposition4.1.
The estimates found in Lemma4.2, concerning the solution of Eq. (9), will be used to prove
Lemma4.5, providing in this way the bound on F ( j) defined in Proposition3.1. This is
achieved for a suitable sequence of domains prepared in Lemma4.4 via {ρ j } and {σ j }. This
allows us to conclude that the perturbation term is actually removed in the limit (6).

The final step consists of showing that B defines an analytic map B : Dρ∗,σ∗ �
(I (∞), ϕ(∞), η(∞)) → Dρ0,σ0 � (I (0), ϕ(0), η(0)) ≡ (I, ϕ, η), where ρ∗ ≤ ρ j and σ∗ ≤ σ j

for all j ∈ N. This property is shown in Lemma4.6. As Dρ∗,σ∗ will be the domain of analyt-
icity of the transformed Hamiltonian via B, it will be essential to require that ρ∗, σ∗ > 0.
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252 A. Fortunati, S. Wiggins

4.1 Some preliminary results

Proposition 4.1 Let F, G : Gρ ×T
n
σ ×R

+ → C such that ‖F‖(1−d ′)(ρ,σ ) and ‖G‖(1−d ′′)(ρ,σ )

are bounded for some d ′, d ′′ ∈ [0, 1). Then, defining δ := |d ′ − d ′′| and d̂ := max{d ′, d ′′},
for all d̃ ∈ (0, 1 − d̂) one has for all s ∈ N \ {0}

∥
∥Ls

G F
∥
∥(

1−d̃−d̂
)
(ρ,σ )

≤ s!
e2

⎛

⎝ 2e

d̃
(

d̃ + δ̃s

)
ρσ

‖G‖(1−d ′′)(ρ,σ )

⎞

⎠

s

‖F‖(1−d ′)(ρ,σ ) , (12)

where δ̃s = δ if s = 1 and is zero otherwise.

Proof Straightforward from (Giorgilli 2003, Lemmas4.1, 4.2). ��
Lemma 4.2 Suppose that F ( j) satisfies

∥
∥F ( j)

∥
∥[σ̂ ,ρ̂] ≤ M ( j) exp(−at) for some M ( j) >

0, ρ̂ ≤ ρ and σ̂ ≤ σ . Define Cω := 1+|ω|, then for all δ ∈ (0, 1) the solution of (9) satisfies

∥
∥
∥χ( j)

∥
∥
∥

(1−δ)(ρ̂,σ̂ )
≤ M ( j)

a

( e

δσ̂

)2n
e−at ,

∥
∥
∥χ

( j)
t

∥
∥
∥

(1−δ)(ρ̂,σ̂ )
≤ Cω

M ( j)

a

( e

δσ̂

)2n
e−at .

(13)

Proof First of all, by hypothesis
∣
∣
∣ f ( j)

k (I, t)
∣
∣
∣ ≤ M ( j) exp(−|k|σ̂ − at), in particular, by

choosing c( j)
k (I, 0) := − ∫

R+ exp(iλ(k)s) f ( j)
k (I, s)ds we have that |c( j)

k (I, 0)| < +∞
for all I ∈ Gρ . Substituting c( j)

k (I, 0) in (11) one gets |c( j)
k (I, t)| ≤ ∫∞

t | f ( j)
k (I, s)|ds ≤

(M ( j)/a) exp(−|k|σ̂ − at) which yields5 the first of (13). As for the second of (13), it is
sufficient to use (10), which implies, |∂t c

( j)
k (I, t)| ≤ (M ( j)/a)(1+ |ω||k|) exp(−|k|σ̂ − at)

then proceed similarly. ��
Remark 4.3 It is immediate to notice that a hypothesis of non-resonance on ω does not
substantially improve the bounds (13). A more careful computation yields

∣
∣
∣c

( j)
k (I, t)

∣
∣
∣ ≤ M ( j) (a2 + (ω · k)2

)− 1
2 e−|k|σ j −at ,

Hence the estimate cannot be refined due to the presence of |c( j)
0 (I, t)|, no matter what the

minimum value of (ω · k) is.

4.2 A suitable sequence of domains

Lemma 4.4 Let {d j } j∈N be a (real valued) sequence such that 0 ≤ d j ≤ 1/6. Consider, for
all j ∈ N, the following sequences

ε j+1 := K a−1d−τ
j ε2j ,

(
ρ j+1, σ j+1

) := (1 − 3d j
) (

ρ j , σ j
)
, (14)

with K > 0 and τ := 2n + 3. Then, for all 0 < ρ0 ≤ ρ, 0 < σ0 ≤ σ and ε0 ≤ εa where

εa ≤ aK −1(2π)−2τ , (15)

it is possible to construct {d j } j∈N such that (ρ∗, σ∗) = (1/2)(ρ0, σ0), in particular they are
strictly positive. Furthermore lim j→∞ ε j = 0.

5 Recall (2), then use the inequality
∑

k∈Zn exp(−δ|k|σ̂ ) ≤ (eδ−1σ̂−1)2n . Its variant
∑

k∈Zn (1 +
|ω||k|) exp(−δ|k|σ̂ ) ≤ Cω(eδ−1σ̂−1)2n is used to obtain the second of (13).
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Negligibility of small divisor effects in the normal form theory 253

Proof Choose ε j := ε0( j + 1)−2τ (so that lim j→∞ ε j = 0 by construction). By the first of
(14) one gets

d j = (ε0K a−1)
1
τ ( j + 2)2/( j + 1)4, (16)

hence, by (15), d j ≤ π−2( j+1)−2. This implies
∑

j≥0 d j ≤ 1/6 and then, trivially, d j ≤ 1/6

for all j ∈ N. Now we have6 ln� j≥0(1 − 3d j ) =∑ j≥0 ln(1 − 3d j ) ≥ −6 ln 2
∑

j≥0 d j =
− ln 2, hence lim j→∞ ρ j = ρ0� j≥0(1 − 3d j ) ≥ ρ0/2 =: ρ∗. Analogously σ∗ := σ0/2. ��
4.3 Bounds on the formal algorithm

Lemma 4.5 There exists K = K (ρ0, σ0) > 0 such that, if ε ≤ εa where εa satisfies (15),
then

∥
∥
∥F ( j)

∥
∥
∥

(ρ j ,σ j )
≤ ε j e

−at , (17)

for all j ∈ N. Hence, the transformed Hamiltonian B ◦ H is in the form (4).

Proof By induction. Note that (17) is true for j = 0 setting ε0 := ε. The condition on ε

ensures the validity of Lemma4.4. Hence, supposing (17), by Lemmas4.2 and 4.4, we get
∥
∥
∥χ( j)

∥
∥
∥

(1−d j )(ρ j ,σ j )
≤ ε j (e/σ∗)2na−1d−2n

j e−at . (18)

By (8) and Proposition4.1 with d ′ = d j , d ′′ = 0 and d̃ = d j (the condition d j ≤ 1 − d j

holds as d j ≤ 1/6)
∥
∥
∥F ( j+1)

∥
∥
∥

(1−2d j )(ρ j ,σ j )
≤
∑

s≥1

1

s!
∥
∥
∥Ls

χ( j) F ( j)
∥
∥
∥

(1−2d j )(ρ j ,σ j )
≤ 2−1�

∥
∥
∥F ( j)

∥
∥
∥

(ρ j ,σ j )
, (19)

where7

� := 2ε j nCω (e/σ∗)τ ρ−1∗ a−1d−2n−2
j e−at ≤ 1/2 (20)

is a sufficient condition for the convergence of the operator exp(Lχ( j) ), from which∑
s≥1 �s ≤ 2�. Hence, by (19), (20), then by (18) one gets (use also σ∗, ρ∗, d j < 1)

∥
∥
∥F ( j+1)

∥
∥
∥

(1−2d j )(ρ j ,σ j )
≤ ε2j nCω(e/σ∗)τ ρ−1∗ a−1d−τ

j e−at . (21)

The latter is valid a fortiori in D(1−3d j )(ρ j ,σ j ).

In conclusion, by choosing K := nCω(e/σ∗)τ ρ−1∗ = 2τ+1nCω(e/σ0)τ ρ
−1
0 , from the first

of (14), we have that (17) is satisfied for j → j + 1. Furthermore, by the first of (14),
condition (20) yields 1 ≥ 4ε j K d j a−1d−τ

j e−at = 4d j (ε j+1/ε j )e−at . The latter is trivially
true for all t ∈ R

+ by the monotonicity of ε j and as d j ≤ 1/6. Furthermore this implies

� ≤ 2d j e
−at . (22)

Hence exp(Lχ( j) ) is well defined for all j ∈ N. ��
In this way the value of εa mentioned in the statement of Theorem2.2 is determined once
and for all.

6 Use the inequality ln(1 − x) ≥ −2x ln 2, valid for all x ∈ [0, 1/2].
7 The reason for using nCω in the definition of � will be clear in the proof of Lemma4.6.
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254 A. Fortunati, S. Wiggins

4.4 Estimates on the transformation of coordinates

Lemma 4.6 The limit (6) exists, it is ε−close to the identity and satisfies
∣
∣
∣I (∞) − I

∣
∣
∣ ,
∣
∣
∣η(∞) − η

∣
∣
∣ ≤ (ρ0/6) e−at ,

∣
∣
∣ϕ(∞) − ϕ

∣
∣
∣ ≤ (σ0/6) e−at , (23)

in particular it defines an analytic map B : Dρ∗,σ∗ → Dρ0,σ0 and H (∞) is an analytic
function on Dρ∗,σ∗ for all t ∈ R

+.

Proof Let us start with I . Note that
∥
∥Lχ( j) I ( j+1)

∥
∥

(1−2d j )(ρ j ,σ j )
≤ n(ed jρ j )

−1

∥
∥χ( j)

∥
∥

(1−d j )(ρ j ,σ j )
by a Cauchy estimate [see (Giorgilli 2003, Lemma 4.1)], so that the pres-

ence of n in (20) is justified. Hence use Proposition4.1 with F ← Lχ( j) I ( j+1), s ← s − 1,

obtaining
∥
∥
∥Ls

χ( j)ϕ
( j+1)

∥
∥
∥

(1−3d j )(ρ j ,σ j )
≤ e−2s!�sρ0. This implies

|I ( j+1) − I ( j)| ≤ e−2
∑

s≥1

(1/s!)
∥
∥
∥Ls

χ( j) I ( j+1)
∥
∥
∥

(1−3d j )(ρ j ,σ j )
≤ 2−1�ρ0 ≤ d jρ0e−at ,

by (22). In particular |I ( j+1) − I ( j)| is ε− close to the identity by (16) for all j ∈ N, hence
|I (∞) − I | ≤∑ j≥0 |I ( j+1) − I ( j)| is. It is now sufficient to recall

∑
j≥0 d j ≤ 1/6 in order

to conclude.
The argument for ϕ is analogous while the variable η requires a slight modification. In

particular, as one needs to set F ← Lχ( j)η = −χ
( j)
t , the use of the second of (13) requires

the contribution of Cω in (20).
In conclusion, the obtained composition of analytic maps is uniformly convergent in any

compact subset ofDρ∗,σ∗ . This implies thatB is analytic onDρ∗,σ∗ by theWeierstraß Theorem
and hence the image of H via B is an analytic function in the same domain. ��

5 Further perturbation examples

In this section we consider two alternative examples of perturbation. The main purpose is to
show that the hypothesis of summability in time over the semi-axis is the only key requirement
for the argument beyond the proof of Theorem2.2.

In particular, we shall firstly consider a decay which is assumed to be quadratic in time,
while in the second example a perturbation exhibiting a finite number of (differentiable)
bumps is examined. The procedure is fully similar, with the exception of some bounds that
will be explicitly given below.

5.1 Quadratic decay

Let us suppose that (3) is modified as

‖ f (I, ϕ, t)‖ρ,σ ≤ M f (t + 1)−2.

In the same framework, it is immediate to show that the analogous of Lemma4.2 yields the
following estimates

∥
∥
∥χ( j)

∥
∥
∥

(1−δ)(ρ̂,σ̂ )
≤ M ( j) (eδ−1σ̂−1)2n

(t + 1)−1,

∥
∥
∥χ

( j)
t

∥
∥
∥

(1−δ)(ρ̂,σ̂ )

≤ M ( j)Cω

(
eδ−1σ̂−1)2n

(t + 1)−1.
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Negligibility of small divisor effects in the normal form theory 255

Clearly, in this case, the integration has led to a “loss of a power” in the decay. This is
harmless as, by (19),

∥
∥F ( j+1)

∥
∥

(1−2d j )(ρ j ,σ j )
= O(F j )O(χ( j)) + h.o.t. and then F ( j+1) ∼

(t + 1)−3 ≤ (t + 1)−2 so that the scheme can be iterated.8

The rest of the proof is analogous provided that the term e−at is replaced with 1 in the
remaining estimates.

5.2 Differentiable bumps

Let L ∈ N \ {0} and h > 0. Consider an increasing sequence {tl}l=1,...,L ∈ R
+ such that

tl+1 − tl > 2h, then the following function

ξl(t) :=
{ (

al/h4
)
[(t − tl + h) (t − tl − h)]2 t ∈ [tl − h, tl + h]

0 otherwise

where al ∈ R. Considering a function f̃ (I, ϕ) ∈ Cρ,σ , we set as

f (I, ϕ, t) := f̃ (I, ϕ)

L∑

l=1

ξl(t).

In such case we find

∥
∥
∥χ( j)

∥
∥
∥

(1−δ)(ρ̂,σ̂ )
≤ 2AM ( j)h

(
eδ−1σ̂−1)2n

,

∥
∥
∥χ

( j)
t

∥
∥
∥

(1−δ)(ρ̂,σ̂ )
≤ M ( j)Cω

(
eδ−1σ̂−1)2n

,

with A :=∑L
l=1 |al |. The remainingpart of the proof is straightforwardwith the obviousmod-

ifications. In particular, as for the proof of Lemma4.5, one finds K = 2nCω(e/σ∗)τ h Aρ−1∗ .

Part II

Proof of Theorem2.3

In order to simplify the notation, we shall use (ρH , σH ) in place of (ρ, σ ) and (ρ, σ ) in place
of (ρ̃0, σ̃0) from now on.

6 Formal algorithm

As in Giorgilli (2003), we write Hamiltonian (1) in the form

H(I, ϕ, η, t) = H0(I, η) + H1(I, ϕ, t) + H2(I, ϕ, t) + . . .

8 A similar (and even stronger) phenomenon could have been noticed in the original setting. Namely,

suppose by induction that
∥
∥
∥F( j)

∥
∥
∥
(ρ j ,σ j )

≤ ε j exp(−a j t). By Lemma4.2 and (19), one finds that
∥
∥
∥F( j+1)

∥
∥
∥
(ρ j+1,σ j+1)

≤ ε j+1 exp(−2a j t) and so on. This leads to a remarkable rate of decay (a j = 2 j a)

but not to a substantial improvement of the estimates and of the threshold (15) of εa , as these are uniform in j .
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where

H0(I, η) := h(I ) + η, Hs(I, ϕ, t) :=
∑

k∈�s

fk(I, t)eik·ϕ,

where �s := {k ∈ Z
n : (s − 1)N ≤ |k| < s N } and N ∈ N \ {0} is meant to be determined.

Given a sequence of functions {χ(s)}s≥1 : Cρ,σ → C, the Lie transform operator is defined
as

Tχ :=
∑

s≥0

Es, Es :=

⎧
⎪⎨

⎪⎩

Id s = 0
1

s

s∑

j=1

jLχ( j) Es− j s ≥ 1 . (24)

Let r ∈ N \ {0} to be determined. A finite generating sequence of order r , denoted with χ [r ],
is such that χ(s) ≡ 0 for all s > r . Our aim is to determine it in such a way the effect of
H1, . . . , Hr is removed, i.e.

H (r) := Tχ [r] H = H0 + R(r+1)(I, ϕ, t), (25)

where the remainder R(r+1) contains H>r and a moltitude of terms produced during the
normalization, which Fourier harmonics lie on �>r . The smallness of the remainder is an
immediate consequence of the decay property of the coefficients of an analytic function. The
procedure is standard: condition (25), with the use of (24), yields a well known diagram
which s−th level9 is of the form

Es := Es H0 +
s−1∑

l=1

Es−l Hl + Hs = 0, (26)

if s = 2, . . . , r and E1H0 + H1 = 0 if s = 1. As sum of all the “non-normalised” levels, the
remainder easily reads as

R(r+1) =
∑

s>r

Es . (27)

Bywriting the first term of (26) in the form Es = Lχ(s) +∑s−1
j=1( j/s)Lχ( j) Es− j and using the

manipulation described in (Giorgilli 2003, Chapter 5), one obtains a remarkable cancellation
of the contribution of H0. In this way, the generating sequence is determined as a solution of

LH0χ
(s) = �s, �s :=

⎧
⎪⎨

⎪⎩

H1 s = 1

Hs +
s−1∑

j=1

j

s
Es− j H j s ≥ 2 . (28)

A formal expansion of χ( j) and of �s :=∑k∈Zn ψ
(s)
k (I, t)eik·ϕ yields for all s = 1, . . . , r

∂t c
(s)
k (I, t) + i(ω(I ) · k)c(s)

k (I, t) = ψ
(s)
k (I, t), k ∈ �s, (29)

where, as usual, ω(I ) := ∂I h(I ).

Remark 6.1 As a substantial difference with the isochronous case, the function ω(I ) is a
complex valued vector as I ∈ Gρ . In this way the exponent λ(k)t appearing in formula (11)

9 Namely, those terms of the diagram which Fourier harmonics belong to �s .
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Negligibility of small divisor effects in the normal form theory 257

is no longer purely complex. More precisely, one finds a term of the form exp((ωC (I ) · k)t),
having denoted ω(I ) = ωR(I ) + iωC (I ), ωR,C (I ) ∈ R

n . The size of this term cannot be
controlled without a cut-off on k. By restricting the analysis on the levels �s and using the
fact that |ωC (I )| → 0 as ρ → 0, a loss “of part of time decay” at each step (see Lemma7.1)
will be the key ingredient to overcome this difficulty. The mentioned elements are clear
obstructions to the limit r → ∞.

7 Convergence

7.1 Set-up and some preliminary results

The use of the analytic tools requires the usual construction of a sequence of nested domains.
We shall choose, for all s = 1, . . . , r , the rule

ds := d(s − 1)/r, (30)

with d ∈ (0, 1/4]. Clearly ds < d for all s = 1, . . . , r . Consider also the monotonically
decreasing sequence of non-negative real numbers {as} defined as follows

as+1 := as(2r − s)/(2r), a1 := a. (31)

Given the analyticity domain of H expressed by (ρH , σH ), set σ := σH /2. Now consider
the function �(ρ) := supI∈Gρ

|ωC (I )|, clearly �(0) = 0. From now on we shall suppose
that ρ satisfies the following condition

4r N�(ρ) ≤ a. (32)

The analyticity10 of h(I ) implies the existence of Ch ∈ [1,+∞) such that the value of ρ can
be determined as

ρ := min
{
ρH , a(4r NCh)−1} , (33)

once r and N will be chosen.
The scheme is constructed in such a way one can set (ρ̃∗, σ̃∗) := (1 − d)(ρ, σ ).
As a consequence of Hypothesis2.1 and of the standard properties of analytic functions,

one has

‖Hm‖ρ,σ ≤ Fhm−1e−at , m ≥ 1, (34)

with F := εF̃ , where [see (Giorgilli 2003, Lemma 5.2)] F̃ := [(1 + exp(−σ/2))/(1 −
exp(−σ/2))]n and

h := exp(−Nσ/2). (35)

Lemma 7.1 Suppose that ‖�s‖(1−ds )(ρ,σ ) ≤ M (s) exp(−ast), for some M (s) > 0. Then the
solution of (28) satisfies

4a
∥
∥
∥χ(s)

∥
∥
∥

(1−ds+1/2)(ρ,σ )
, 4
∥
∥
∥∂tχ

(s)
∥
∥
∥

(1−ds+1/2)(ρ,σ )
≤ Cr M (s)e−as+1t , (36)

where Cr := 22n+4(r/d)n.

10 Obviously, �(ρ) ≡ 0 for all ρ in the case of an isochronous system, so that (32) would impose no
restrictions on ρ.
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Proof Use (29). Similarly to Lemma4.2, we choose c(s)
k (I, 0) := − ∫

R+ exp(−(ω(I ) ·
k)τ )ψ

(s)
k (I, τ )dτ . Note that |c(s)

k (I, 0)| ≤ M (s) exp(−(1 − ds)|k|σ)
∫
R+ exp(|ωC (I )||k| −

a)τ )dτ < +∞ on �s by (32). By using again (32) one gets

|c(s)
k (I, t)| ≤ M (s)e−(1−ds )|k|σ e

as s
4r t
∫ ∞

t
e

as

(
s−4r
4r

)
τ
dτ ≤ 4

a
M (s)e−(1−ds )|k|σ e−as(1− s

2r )t .

(37)

The first of (36) is easily recognised11 by (31). The second of (36) follow from (37) and from
(29). ��
Lemma 7.2 Let A, �, τ > 0 and consider the real-valued sequences {κs}s≥1 and {γl}l≥0

defined as

κs := Aτ s−1 + �

s−1∑

j=1

τ j−1κs− j , γl := �

l∑

j=1

τ j−1γl− j , (38)

where κ1 and γ0 are given. Define � := τ + �, then for all s ≥ 2 and l ≥ 1

κs = (�κ1 + τ A) �s−2, γl = γ0��l−1. (39)

Proof We shall denote with (38a) and (38b) the first and the second of (38), respectively.
The same for (39). Let us suppose for a moment that (39a) is proven, then choose A = �γ0
and κ1 = �γ0 = γ1. By substituting in (39a) one immediately gets (39b). Hence we need
only to prove (39a).

For this purpose we use the well-known generating function method (see e.g. Wilf 2006).
Namely, define g(z) :=∑∞

n=1 wnzn , multiply each equation obtained from (38a) by zs as s
varies, then “sum” all the equations. This leads to g(z) = [1−�z]−1(κ1(z −τ z2)+ Aτ z2) =
(1+ �z + �2z2 + . . .)(κ1(z − τ z2) + Aτ z2) = κ1z + (�κ1 + τ A)

∑
n≥2 �n−2zn , which is

the (39a). ��
7.2 Bounds on the generating function

Proposition 7.3 For all s ≤ r , the following estimate holds

‖χs‖(1−ds+1/2)(ρ,σ ) ≤ (4a)−1CrβsFe−as+1t , (40)

where the sequence {βs}s=1,...,r ∈ R
+ is determined by the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βs = hs−1 + �

s

s−1∑

j=1

jθs− j

θl = �

l

l∑

j=1

jβ jθl− j

(41)

with {θl}l=0,...,r−1 ∈ R
+ and

� := 16nr2CrF(ad2ρσ)−1, (42)

under the conditions12 β1 = θ0 = 1.

11 Use the inequality
∑

|k|≥(s−1)N exp(−δ|k|σ) ≤ exp(−Nδn(s − 1)σ )(
∑+∞

m=0 exp(−δmσ))n ≤ (2/δ)n ,
where in this case δ := d

s+ 1
2

− ds = d/(2r).

12 From a “computational” point of view, first compute θ1 then proceed with βs , θs for all s = 2, . . . , r.
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Negligibility of small divisor effects in the normal form theory 259

First of all note that by (24) and (34), one has ‖�1‖(1−d1)(ρ,σ ) ≤ F exp(−a1t) and
‖E0Hm‖(1−d)(ρ,σ ) ≤ Fhm−1 exp(−a1t) (recall (31)). Hence, given by s ≤ r , we can sup-
pose by induction to know β1, . . . , βs−1 and θ̃0,m, . . . , θ̃s−2,m , for all m ≥ 1, with β1 = 1
and θ̃0,m = hm−1, such that the the following bounds hold for all j = 1, . . . , s − 1 and
l = 0, . . . , s − 2

∥
∥� j

∥
∥

(1−d j )(ρ,σ )
≤ β jFe−a j t , (43a)

‖El Hm‖(1−dl+1)(ρ,σ ) ≤ θ̃l,mFe−al+1t , (43b)

By (43a) and Lemma7.1, the bound (40) holds with j in place of s. Hence by Proposition4.1
with G = χ( j), F = Es− j−1Hm then d̂ = max j=1,...,s−1{d j+1/2, ds− j } = ds−1/2 and
finally d̃ := ds − ds−1/2 = d/(2r), one has (by setting δ = 0)

∥
∥Lχ( j) Es− j−1Hm

∥
∥

(1−ds )(ρ,σ )
≤ 8r2(ed2ρσ)−1

∥
∥χ( j)

∥
∥

(1−d j+1/2)(ρ,σ )∥
∥El− j H0

∥
∥

(1−dl− j+1/2)(ρ,σ )

≤ �Fβ jγl− j e−al+1t

(44)

where the property a j+1 + al− j+1 ≥ al+1 has been used. Recalling (24), we have that (43b)
holds also for l = s − 1, where

θ̃l,m = �

l

l∑

j=1

jβ j θ̃l− j,m . (45)

Furthermore, it is easy to show from the latter that θ̃l,m = hm−1θ̃l,1 in such a way, defined
θl := θ̃l,1 onegets θ̃l,m = hm−1θl , and then the secondof (41), provided θ0 = 1. In conclusion,
by using (34), and the second of (41) in the definition of �s as in (28), we get that (43a) is
satisfied if βs is defined as in the first of (41). Bound (40) follows from Lemma7.1.

Proposition 7.4 The sequence βs defined by (41) satisfies

βs ≤ τ s−1/s, (46)

for s = 1, . . . , r , if

τ := eh, � ≤ h/(2r2). (47)

Proof The property (46) is trivially true for s = 1, hence let us suppose it for j = 1, . . . , s−1
and proceed by induction with τ to be determined. Define θ̃l := θl(β j )|β j =τ j−1/j , then

θ̂l := θ̃l/ l, obtaining θ̂l = �
∑l

j=1 τ j−1θ̂l− j . Clearly θl ≤ θ̃l ≤ θ̂l/ l, furthermore θ0 =
θ̃0 = θ̂0 = 1. Hence, by Lemma7.2 we have

θl ≤ ��l−1/ l. (48)

Now choose τ, � as in (47). By using (34) and (48) in the first of (41) one gets that (46) is
satisfied simply by checking that the inequality

y(s) := s + (s − 1)

2r2

(

e + 1

2r2

)s−1

≤ es−1 (49)

holds true for all13 s = 1, . . . , r . ��
13 Clearly (49) holds for s ≤ r if y(r) ≤ exp(r − 1) for all r ≥ 3 (let it be directly checked for r = 1, 2).
Hence set r = n + 1 and prove that y(r)r=n+1 ≤ exp(n) for all n ≥ 2, conclusion that is immediate as one
can find that y(n) ≤ n + 1 + 3en/(4n).
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260 A. Fortunati, S. Wiggins

7.3 Estimates on the coordinates transformation

From now on we shall suppose that h and ε are chosen in such a way

8eh ≤ 1 (50a)

2r2� ≤ √
εh (50b)

In particular, by definition and by (47), this immediately implies that

4� ≤ 1 (51)

As in Giorgilli (2003) it is used that, despite the generating sequence is finite, one can use
the bound obtained from 7.3

∥
∥
∥χ(s)

∥
∥
∥

(1−d)(ρ,σ )
≤ (4a)−1CrFβse−ar+1t , (52)

with βs satisfying (46) for all s, as it would be, trivially, β>r = 0.

Proposition 7.5 Define (I (r), ϕ(r), η(r)) := Tχ [r](I, ϕ, η). Then the following estimates hold
∥
∥
∥I − I (r)

∥
∥
∥

(1−d)(ρ,σ )
,

∥
∥
∥η − η(r)

∥
∥
∥

(1−d)(ρ,σ )
≤ dρ

8
e−ar+1t ,

∥
∥
∥ϕ − ϕ(r)

∥
∥
∥

(1−d)(ρ,σ )
≤ dσ

8
e−ar+1t . (53)

Proof Let us start from the variable I . Firstly, note that
∥
∥I − Tχ [r] I

∥
∥

(1−d)(ρ,σ )
≤

∑
s≥1 ‖Es I‖(1−d)(ρ,σ ). In addition

‖E1 I‖(1−d2)(ρ,σ ) =
∥
∥
∥∂ϕχ(1)

∥
∥
∥

(1−d2)(ρ,σ )
≤ 2nr(edσ)−1

∥
∥
∥χ(1)

∥
∥
∥

(1−d3/2)(ρ,σ )

≤ DσF exp(−ar+1t),

with Dσ := nrCr/(2dσa) by Prop. 7.3. Hence suppose ‖El I‖(1−dl+1)(ρ,σ ) ≤ Ful exp
(−ar+1t) for all l = 1, . . . , s − 1 with u1 = Dσ and proceed by induction.

Theboundof El I canbe treated in the samewayof (43b)with thedifference that in this case
the term Lχ(l) I appearing in El I needs to be bounded separately by using (40) and a Cauchy

estimate. This leads to ul = βl Dσ + �/ l
∑l−1

j=1 jβ j ul− j . By using the same procedure used

in the proof of Proposition7.4 for θl one gets ul ≤ (Dσ / l)�l−1. The required bound easily
follows as F∑s≥1 us ≤ 2FDσ ≤ �dρ ≤ √

εdρ/8, where the second inequality follows
from (51) and the last one from (50b) then from (50a). The procedure for the variables ϕ and
η is similar. The analyticity of the transformationNr := T −1

χ [r] easily follows from the bounds
(53) and the invertibility of the Lie transform operator, see Giorgilli (2003). ��
7.4 Bound on the remainder

Proposition 7.6 Define A := 10F̃ then for all r ≥ 1
∥
∥
∥R(r+1)

∥
∥
∥

(1−2d)(ρ,σ )
≤ εAe−(r+ar+1t). (54)

Proof Define (ρ′, σ ′) := (1 − d)(ρ, σ ). Now recall (27) and suppose by induction, for all
l = 1, . . . , s − 1, m = 0, . . . , s − 2 with s ∈ N

‖El H0‖(1−(l/s)d)(ρ′,σ ′) ≤ Fεl exp(−ar+1t),

‖Em Hn‖(1−(m/s)d)(ρ′,σ ′) ≤ Fζm,n exp(−ar+1t). (55)
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Negligibility of small divisor effects in the normal form theory 261

Indeed one can set ζ0,n = hn−1 and ε1 = β1 = 1 as Lχ(1) H0 = −�1 by (28). We
stress that, despite based on the same computations, the argument is conceptually differ-
ent from the previous estimates as s ∈ (r,+∞) and the use of δ in (12) plays here a
key role. More precisely, use Proposition4.1 with G = χ( j) and F = Es− j H0 hence
d ′′ = 0 then d̂ = d ′ = δ = d(s − j)/s from which d̃ = ( j/s)d . This leads to∥
∥Lχ( j) Es− j H0

∥
∥

(1−d)(ρ′,σ ′) ≤ �(s/j)β jεs− j exp(−ar+1t), implying14 that the first of (55)

holds for l = s provided εs = βs + �
∑s−1

j=1 β jεs− j = �s−1, the latter by Lemma7.2.

This implies
∥
∥
∑s

l=1 Es−l Hl
∥
∥

(1−d)(ρ′,σ ′) ≤ F(s + 1)�s−1 exp(−ar+1t) by using (34) and

the trivial bound h ≤ �. Similarly one finds ζs,n = hn−1�s−1, hence

(Fe−ar+1t)−1 R(r+1) ≤
∑

s>r

(2 + s)�s−1 = �r
(

r + 3

1 − �
+ 1

1 − �2

)

≤ 2(r + 4)�r ,

by (51). Noticing that D(1−2d)(ρ,σ ) ⊂ D(1−d)2(ρ,σ ), the bound (54) easily follows from (51)

and from the simple inequality (r + 4)er ≤ 5(4r ). ��

7.5 Choice of the parameters

Let us discuss a possible choice of the parameters in such a way the convergence conditions
are satisfied. More precisely by (35), condition (50a) holds if N = �2σ−1(1 + 3 log 2)�,
where �·� denotes the rounding to the greater integer. This implies that h ≥ 1/(16e), hence
(50b) holds if 25er2� ≤ √

ε. Hence, recalling (32) and (42), this condition is achieved by
choosing (see also Giorgilli and Galgani 1985)

r :=
⌊(

ε∗
a

ε

) 1
2γ
⌋

,
√

ε∗
a := a2dn+2ρH σ 2

22n+19enChF̃
, (56)

where15 γ = 5+n and �·� denotes the rounding to the lower integer. The condition ε ≤ ε∗
a , as

in the statement of Theorem2.3, clearly ensures that r ≥ 1. The final value of ρ is determined
with (33).

Let us write the usual bound |I (t) − I (0)| ≤ |I (t) − I (r)(t)| + |I (r)(t) − I (r)(0)| +
|I (r)(0)− I (0)|. The first and third term of the r.h.s. are bounded by

√
εdρ/8 by (53). As for

the second one, from the equations of motion İ (r) = −∂ϕ H (r) = −∂ϕR(r+1), furthermore∥
∥∂ϕR(r+1)

∥
∥

(1−2d)(ρ,σ )
≤ εA(edσ)−1 exp(−(r + ar+1t)) by a Cauchy estimate and by (54).

Hence
∣
∣
∣I (r)(t) − I (r)(0)

∣
∣
∣ ≤ εA(edσ)−1e−r

∫ t

0
e−ar+1sds ≤ εA(adeσ)−1(2/e)r , (57)

as ar+1 = a(2r − 1)(2r − 2) . . . (r)/(2r)r > a2−r .

Remark 7.7 The bound (57) is the key difference with the standard Nekhoroshev theorem,
despite a normal form of finite order. The remainder, which is bounded by a constant in the
classical Nekhoroshev estimate and then produces a linearly growing bound for the quantity

14 The use of (12) with δ = 0 would have given (s/j)2 instead of (s/j), producing in this way a troublesome
factorial in the estimates.
15 Note that the threshold ε∗

a takes into account of the condition (33) as we have used the obvious lower bound
ρ ≥ aρH (4r NCh)−1, immediate from (33).
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|I (r)(t) − I (r)(0)|, is now summable over R+. Hence, a restriction to exponentially large
times is no longer necessary.

It is immediate from (57) that for all ε ≤ ε∗
a one has |I (r)(t) − I (r)(0)| ≤ 2ε∗

a A(ade2σ)−1

which is clearly smaller than
√

εdρ/4 by (56). Hence |I (t) − I (0)| ≤ √
εdρ/2.
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