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Abstract The analysis of relative motion of two spacecraft in Earth-bound orbits is usually
carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is
assumed to follow a circular orbit, in which case the equations of relativemotion are governed
by the well-known Hill–Clohessy–Wiltshire equations. Circular motion is not, however, a
solutionwhen the Earth’s flattening is accounted for, except for equatorial orbits, where in any
case the acceleration term is not Newtonian. Several attempts have been made to account for
the J2 effects, either by ingeniously taking advantage of their differential effects, or by cleverly
introducing ad-hoc terms in the equations ofmotion on the basis of geometrical analysis of the
J2 perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the
next step in complexity. Relative motion about a J2-perturbed elliptic reference trajectory
is clearly a challenging problem, which has received little attention. All these problems
are based on either the Hill–Clohessy–Wiltshire equations for circular reference motion, or
the de Vries/Tschauner–Hempel equations for elliptical reference motion, which are both
approximate versions of the exact equations of relative motion. The main difference between
the exact and approximate forms of these equations consists in the expression for the angular
velocity and the angular acceleration of the rotating reference frame with respect to an
inertial reference frame. The rotating reference frame is invariably taken as the local orbital
frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions
along the primary spacecraft orbit. Some authors have tried to account for the non-constant
nature of the angular velocity vector, but have limited their correction to a mean motion
value consistent with the J2 perturbation terms. However, the angular velocity vector is also
affected in direction, which causes precession of the node and the argument of perigee, i.e.,
of the entire orbital plane. Here we provide a derivation of the exact equations of relative
motion by expressing the angular velocity of the RTN frame in terms of the state vector of
the reference spacecraft. As such, these equations are completely general, in the sense that
the orbit of the reference spacecraft need only be known through its ephemeris, and therefore
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subject to any force field whatever. It is also shown that these equations reduce to either
the Hill–Clohessy–Wiltshire, or the Tschauner–Hempel equations, depending on the level
of approximation. The explicit form of the equations of relative motion with respect to a
J2-perturbed reference orbit is also introduced.

Keywords Motion in non-inertial system · Hill–Clohessy–Wiltshire (HCW) equations ·
Tschauner–Hempel (TH) equations · J2-perturbed relative motion

1 Introduction

The integration of the equations ofmotion of a space vehicle is usually carried out in an inertial
reference system. In rare cases the integration is performed in a reference system which is
rigidly connected with the body of the Earth, and thus rotating with it. This is mainly used
to simplify the computation of the extended-body gravitational acceleration and its gradient,
which appears in the variational equations for estimation problems. There is a case, however,
in which the equations of motion are generally integrated in a non-inertial reference system,
and this is the case of the relative motion of two or more space vehicles for rendezvous or
formation flying purposes. The problemof relativemotion is nowperceived to have originated
in the 1950s with the pioneering contributions of Lawden (1954), Clohessy and Wiltshire
(1960), de Vries (1963) and Tschauner and Hempel (1964). In Celestial Mechanics, however,
the equations of relative motion have been used since perturbation theory was introduced,
which takes us back to the time of Euler. More specifically, the perturbation equations always
imply that the motion, or trajectory, of a body is known to some degree of accuracy through
what is known as a reference orbit, with respect to which we introduce a machinery to
compute perturbations—which, in fact, describe a relative orbit. The difference with the
current attitude of investigators seems to lie in the fact that whereas perturbation theory
adopts a non-realistic reference orbit, present-day problems deal with the actual physical
separation between two space vehicles.

Investigations of relative motion currently rely on two main paradigms. The simpler one
is referred to as the HCW, or Hill–Clohessy–Wiltshire equations (Hill 1878; Clohessy and
Wiltshire 1960), which assumes a circular reference orbit. Themore complicated one is the de
Vries (de Vries 1963), and the Tschauner–Hempler (Tschauner and Hempel 1964) equations,
which are formulated with respect to a Keplerian elliptical orbit. Both paradigms admit of
an analytical solution (Prussing and Conway 2012; Yamanaka and Ankersen 2002), which
is the ultimate reason for their popularity. In fact, they are the basis for many extensions to
include the effects of perturbations, most notably those associated with the oblateness of the
Earth—whose precessional effects induce relative secular drifts of themean angular elements
of a satellite pair with consequent formation disruption—and the presence of atmospheric
drag (e.g., Sengupta et al. 2007; Jiang et al. 2007; Wnuk and Golebiewska 2005).

By construction, these paradigms are approximations to the equations that describe the true
relative motion. They are approximations because they are formulated in rotating reference
systems and are not the exact transformation of the quite simple form that the equations of
relative motion assume in an inertial reference system. As a matter of fact, the non-inertial
form of the equations of relative motion is very well known, but only in a form which is not
directly usable for integration unless the angular velocity and the angular acceleration of the
non-inertial reference frame are given in terms of (functions of) the dynamical state of the
(possibly virtual) body at the origin of this frame. Some approximations are known and used
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The equations of relative motion in the orbital reference frame 217

in the literature, but they generally refer to the circular or elliptical motion paradigms, with
a few extensions to include the precessional effects of the Earth’s oblateness.

We draw special attention to the formulation of the equations of relativemotion introduced
by Kechichian (1998). This is the most thorough treatment currently available. It provides
the full equations of motion in the orbital reference frame (RF) in what may be defined
as a mixed-variable formulation, which is the prototype of many subsequent, approximate
formulations (e.g., Xu and Wang 2008; Chen and Jing 2012; Ross 2003). What we mean
by mixed-variable, or hybrid, formulation is that the equations are given for the dynamical
state expressed in Cartesian coordinates, but with all ancillary variables appearing in the
coefficients expressed as Keplerian elements of the reference orbit.

It is the purpose of this contribution to formulate the exact equations of relative motion
in general terms, i.e., under no restriction as to the character of the motion of the reference
body, nor the type of force field in which the pair of bodies revolve. The equations will
consistently be developed using only Cartesian coordinates. In the following Sections the
inertial equations of relative motion will be introduced, the orbital frame associated with the
reference body will be defined and its angular motion expressed in terms of its dynamical
state. The general equations of relative motion in the orbital frame will then be developed
and their reduction to the simple paradigms introduced above will be derived to show that the
resulting equations are identical with those already known. Finally, the full and the linearized
equations will be developed for the relative motion of a J2-perturbed orbit pair.

2 The equations in the inertial frame

Consider the Earth and two objects S (the primary) and S1 (the secondary) in orbit around
it. We adopt an inertial, geocentric reference frame {i, j,k} , where the unit vectors i, j, k
form a right-handed triad. Under the assumption that the mass of each object is so small as to
make their mutual gravitational interaction negligible, the equations of motion of each body
in the framework of Newtonian mechanics is

r̈ = N(r;μ) + P(r, ṙ, t; σ ), (1)

which shows that the acceleration is the sum of a Newtonian termN(r;μ) and a perturbation
term P(r, ṙ, t; σ ) depending on the position r, the velocity ṙ, and possibly the time t. The
Newtonian term is simply the point-mass acceleration, or

N = −μ
r
r3

, (2)

where μ = G(M + m) is the two-body gravitational parameter with M the mass of the
Earth and m the mass of the object. The perturbation P(r, ṙ, t; σ ) contains acceleration
terms associated with non-central gravitational effects, including the tides, due to the mass
distribution of the real Earth, the presence of external bodies such as the Sun, the Moon, and
the planets, as well as any non-conservative accelerations due to surface interactions such as
atmospheric drag, solar radiation pressure, etc. The set of model parameters describing these
interaction terms has been explicitly represented with the vector σ .

In practical applications the perturbation term of greatest interest is that due to the oblate-
ness of the Earth as described by the second zonal harmonic coefficient J2. The acceleration
due to J2 is (Kaplan 1976)

PJ2 = −3

2

μ

a2e
J2

(ae
r

)4 {
2(r̂ · k)k + [

1 − 5(r̂ · k)2
]
r̂
}

, (3)
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where ae is a scale parameter associated with the specific value of J2, usually taken as an
average equatorial radius of the Earth, k is the unit vector along the symmetry axis of the
Earth, which coincides with the third axis of the inertial reference frame adopted, and r̂ is
the unit vector in the radial direction out of the origin to the field point occupied by the body.
In the case of atmospheric drag the perturbation is

PD = −1

2
δ(r)CD(ṙ − ωe × r)2, (4)

where δ(r) is the local atmospheric density, CD the drag coefficient, ωe the angular velocity
of the Earth (no-wind assumption) so that the expression in parenthesis is the velocity of the
spacecraft with respect to the atmosphere.

The equations of relative motion in the inertial frame are simply obtained by differencing
the equations of motion of the two bodies. If we define the separation vector Δr as the
difference r1 − r between the position vectors r and r1 of S and S1, respectively, then

Δr̈ = r̈1 − r̈ = ΔN(r, r1;μ) + ΔP(r, r1, ṙ, ṙ1, t; σ ) (5)

where
ΔN(r, r1;μ) = N(r1;μ) − N(r;μ), (6)

and
ΔP(r, r1, ṙ, ṙ1, t; σ ) = P(r1, ṙ1, t; σ ) − P(r, ṙ, t; σ ). (7)

For high accuracy computations the Encke formulation can be used, which entails express-
ing the differential Newtonian acceleration in the form (Battin 1999)

ΔN = − μ

r3
{ f (q)r + [ 1 + f (q)]Δr} , (8)

where

q = − (2r + Δr) · Δr
(r + Δr) · (r + Δr)

, (9)

f (q) = q
3(1 + q) + q2

1 + (1 + q)3/2
. (10)

3 The equations in the RTN frame

Assume now that the orbit of the primary is known, i.e., that its state vector and associated
functionals (e.g., its acceleration) are known, or can be computed. Introduce the orbital
reference frame {r̂, t̂, n̂} defined by the three unit vectors respectively in the radial, the
transverse and the normal directions. These are easily computed from available information
as1

r̂ = r/r, (11)

t̂ = n̂ × r̂, (12)

n̂ = r × ṙ/ |r × ṙ| . (13)

Note that the normal direction is parallel to the angular momentum vector—thus normal to
the instantaneous orbital plane,—and that the transverse direction is perpendicular to both
the normal and radial directions, thus completing a right-handed triad.

1 The caret sign ˆwill be used to indicate vectors of unit length.
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The equations of relative motion in the orbital reference frame 219

The orbital RF, also known as the RTN, or Hill reference frame, is naturally associated
with the orbit of a point particle, as we are assuming our orbiting bodies to be. The RTN
frame must not be confused with the Frenet–Serret frame associated with a space curve, or
trajectory. The fundamental difference between the two frames is that while the Frenet–Serret
frame is defined by intrinsic geometric properties of the curve, like its osculating plane, its
center of curvature, etc., the RTN frame has its radial axis forced to be constantly directed
to the origin of the inertial RF where the trajectory of the primary is described. In general,
the inertial RF is centered at the approximate center of force, which normally is at the center
of mass of the Earth. The RTN RF is a non-inertial RF and is ideally suited to model local
relative dynamics.

In order to write the equations of motion of body S1 in the RTN frame of the primary
it is necessary to have an expression for its inertial acceleration r̈1 as determined by an
observer fixed in, or comoving with, the RTN axes associated with body S. Let us introduce
new notation to indicate the relative position vector between S and S1 by defining ρ = Δr.
It is well known that in a non-inertial reference frame the inertial acceleration of S1 can
be expressed as the sum of its acceleration ρ̈ as measured in the non-inertial frame, the
(translational) acceleration r̈ of the origin S of the frame, plus three terms associated with
the rotation of the non-inertial axes. This leads to the expression2

r̈1 = r̈ + ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ), (14)

where the third term 2ω × ρ̇ on the r.h.s. is known as the Coriolis acceleration, the fourth
term ω̇ × ρ is the Eulerian acceleration and the final term ω × (ω × ρ) is the centripetal
acceleration. Here the axial vector ω is the angular velocity of the RTN frame with respect
to the inertial frame and ω̇ the corresponding angular acceleration.

Recall that a similar relationship exists between velocities. In fact, the inertial velocity ṙ1
of S1 is the sum of the velocity ρ̇ of S1 as measured by S plus the velocity ṙ of the origin, or
of S itself, and the velocity ω × ρ due to the rotation of the non-inertial axes, so that

ṙ1 = ṙ + ρ̇ + ω × ρ. (15)

The equations of motion of S1 can then be written in the RTN reference frame with origin
at S by replacing the relative inertial acceleration r̈1 − r̈ as provided by (14) into Eq. (5) to
yield

ρ̈ + 2ω × ρ̇ + ω̇ × ρ + ω × (ω × ρ) = ΔN + ΔP, (16)

where the forcing terms ΔN and ΔP are given respectively by Eqs. (6) and (7). In order
to integrate these equations it is necessary to express the angular velocity and the angular
acceleration in terms of the state variables.

3.1 The angular velocity

The angular velocity of the moving axes defining the RTN reference frame can be obtained
from simple kinematical considerations. First compute the time rate of change of each of the
unit vectors defining the axes. From (11) we find

2 Note that whileΔr = ρ,we have thatΔṙ �= ρ̇ andΔr̈ �= ρ̈ since the time derivatives are taken by observers
fixed with respect to different reference frames, the first of which is inertial, the other non-inertial. Rather
than using two different notations for the time derivative, we use the common expedient of using two different
symbols for the vector being differentiated in the two different reference frames.
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d r̂
dt

= ṙ
r

− r
r2

ṙ

= 1

r

[
ṙ − (ṙ · r̂)r̂]

= 1

r

[
(ṙ · t̂)t̂ + (ṙ · n̂)n̂

]

= 1

r
(ṙ · t̂)t̂, (17)

where the last step follows from the fact that by construction the normal unit vector is
perpendicular to the osculating orbital plane. Then from (13), using the definition of the
angular momentum

h = r × ṙ, (18)

follows

d n̂
dt

= r × r̈
|r × ṙ| − r × ṙ

|r × ṙ|2
d

dt
|r × ṙ|

= 1

|h|
{
r × r̈ − [

n̂ · (r × r̈)
]
n̂
}

= 1

h

{
(r̂ · r × r̈)r̂ + (t̂ · r × r̈)t̂ + (n̂ · r × r̈)n̂ − (n̂ · r × r̈)n̂

}

= 1

h
(t̂ · r × r̈)t̂

= 1

h
(r̈ · t̂ × r)t̂

= − r

h
(r̈ · n̂)t̂. (19)

Then, from (12),

d t̂
dt

= d n̂
dt

× r̂ + n̂ × d r̂
dt

= − r

h
(r̈ · n̂) t̂ × r̂ + 1

r
(ṙ · t̂)n̂ × t̂

= r

h
(r̈ · n̂)n̂ − 1

r
(ṙ · t̂)r̂. (20)

Collecting results, we finally have that the time rates of change of the three unit vectors
of the mobile axes are given by the formulae

d r̂
dt

= 1

r
(ṙ · t̂)t̂,

d t̂
dt

= r

h
(r̈ · n̂)n̂ − 1

r
(ṙ · t̂)r̂,

d n̂
dt

= − r

h
(r̈ · n̂)t̂.

(21)

Now we also know from (15) that the inertial time derivative of a vector fixed in the
moving trihedron can be obtained as the result of a vector product with the angular velocity,
i.e., for the three vectors at hand as
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d r̂
dt

= ω × r̂, (22)

d t̂
dt

= ω × t̂, (23)

d n̂
dt

= ω × n̂. (24)

If we now left-multiply vectorially each time derivative of a vector by the vector itself and
do so on both sides of each of the preceding equations we obtain

r̂ × d r̂
dt

= r̂ × (ω × r̂) = (ω · t̂)t̂ + (ω · n̂)n̂, (25)

t̂ × d t̂
dt

= t̂ × (ω × t̂) = (ω · r̂)r̂ + (ω · n̂)n̂, (26)

n̂ × d n̂
dt

= n̂ × (ω × n̂) = (ω · r̂)r̂ + (ω · t̂)t̂. (27)

Summing these three equations and solving for ω leads to

2ω = r̂ × d r̂
dt

+ t̂ × d t̂
dt

+ n̂ × dn̂
dt

. (28)

This can now be rewritten using the expressions for the times rate of change of the unit
vectors given by (21) as

2ω = 1

r
(ṙ · t̂)(r̂ × t̂) + r

h
(r̈ · n̂)(t̂ × n̂) − 1

r
(ṙ · t̂)(t̂ × r̂) − r

h
(r̈ · n̂)(n̂ × t̂), (29)

which leads finally to expressing the angular velocity vector as

ω = r

h
(r̈ · n̂)r̂ + 1

r
(ṙ · t̂)n̂ (30)

in terms of functions of the dynamical state and the instantaneous acceleration acting on the
origin of the RTN reference frame, i.e., on body S. Note that the angular velocity has no
transverse component, as required by the constraint that the radial axis of the RTN frame
always be directed to the origin of the inertial RF. Thus,

ω = ωr r̂ + ωn n̂, (31)

with

ωr = r

h
(r̈ · n̂), (32)

ωn = 1

r
(ṙ · t̂). (33)

3.2 The angular acceleration

The angular acceleration can be computed by taking directly the time derivative of Eq. (30),
or from

2ω̇ = r̂ × d2 r̂
dt2

+ t̂ × d2 t̂
dt2

+ n̂ × d2 n̂
dt2

, (34)
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which follows from (28). Less labor is required with the first option. The result is

ω̇ = r

h

[
ṙ

r
(r̈ · n̂) − 2

r

h
(r̈ · t̂)(r̈ · n̂) + (

...
r · n̂)

]
r̂

+ 1

r

[
(r̈ · t̂) − 2

ṙ

r
(ṙ · t̂)

]
n̂.

(35)

Notice that, as in the case of the angular velocity, the angular acceleration has no component
in the transverse direction. We can also write for ease of use

ω̇ = ω̇r r̂ + ω̇n n̂, (36)

with

ω̇r = r

h

[
ṙ

r
(r̈ · n̂) − 2

r

h
(r̈ · t̂)(r̈ · n̂) + (

...
r · n̂)

]
, (37)

ω̇n = 1

r

[
(r̈ · t̂) − 2

ṙ

r
(ṙ · t̂)

]
. (38)

It is amatter of some interest that the angular acceleration involves the third time derivative
of position, or what is known as the jerk. This can be computed by taking the time derivative
of the acceleration as

...
r = ∂ r̈

∂t
+ (∇rr̈) ṙ + (∇ṙ r̈) r̈, (39)

where the operator ∇ represents the gradient with respect to the indicated subscript (in the
following, the lack of an index on this operator will implicitly mean that the gradient is to
be taken with respect to the position r). Equation (39) shows that the time rate of change of
the acceleration can occur intrinsically through the time variation of the parameters defining
the force field, or simply because the body changes its position in the field because of its
motion, or through a change of its velocity in the case of a dissipative force field (i.e., a force
depending on the velocity), or through any combination of these three reasons.

Note that the partial derivative of the acceleration with respect to the time can be computed
from the acceleration model used on the r.h.s. of Eq. (1) as

∂ r̈
∂t

= ∂ N(r;μ)

∂μ

dμ

dt
+ ∂ P(r, ṙ, t; σ )

∂σ

dσ

dt
. (40)

In general, these time variations are due to changes in the mass or the mass distribution of
the bodies involved, which is the reason for having earlier introduced the model parameters.

In the case of constant mass distributions and conservative fields, the radial component
of the angular acceleration can be written as

ω̇r = r

h

[
ṙ

r
(r̈ · n̂) − 2

r

h
(r̈ · t̂)(r̈ · n̂) + n̂T (∇ r̈)ṙ

]
. (41)

It should be observed that the acceleration r̈ appearing in the expressions for the angular
velocity and the angular acceleration can be effectively reduced to the disturbing acceleration
P since the Newtonian term N has no transverse nor normal components and therefore
contributes nil to the expressions. This is also true for the quadratic form appearing in the
radial component of the angular acceleration (41). This implies that the angular velocity and
the angular acceleration have no radial components if the force is central.
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3.3 The equations of relative motion in the RTN frame

Now that we have the expressions for the angular velocity and acceleration in terms of the
dynamical state variables and functions thereof, we can proceed to compute the terms in the
non-inertial expression of the acceleration as they appear in Eq. (16). We only need to focus
on the centripetal acceleration term and use the identity

ω × (ω × ρ) = (ω · ρ) ω − ω2ρ, (42)

with

ω2 = 1

r2
(ṙ · t̂)2 +

( r

h

)2
(r̈ · n̂)2, (43)

to find

ω × (ω × ρ) =
[
1

h
(ṙ · t̂)(n̂ · ρ) +

( r

h

)2
(r̈ · n̂)(r̂ · ρ)

]
(r̈ · n̂) r̂

+
[
1

r2
(ṙ · t̂)(n̂ · ρ) + 1

h
(r̈ · n̂)(r̂ · ρ)

]
(ṙ · t̂) n̂

−
[
1

r2
(ṙ · t̂)2 +

( r

h

)2
(r̈ · n̂)2

]
ρ. (44)

Performing the required substitutions in (14) we find that the inertial acceleration Δr̈ of
S1 can be expressed in terms of the relative position vector ρ and velocity ρ̇ in the RTN frame
as

Δr̈ = ρ̈ + 2
1

r
(ṙ · t̂)(n̂ × ρ̇) + 2

r

h
(r̈ · n̂)(r̂ × ρ̇)

+
{

− 2

r2
(ṙ · r̂)(ṙ · t̂) + 1

r
( r̈ · t̂)

}
(n̂ × ρ)

+
{[

1

h
(ṙ · r̂) − 2

( r

h

)2
(r̈ · t̂)

]
(r̈ · n̂) + r

h
n̂T (∇ r̈)ṙ

}
(r̂ × ρ)

+
[
1

r2
(ṙ · t̂)(n̂ · ρ) + 1

h
(r̈ · n̂)(r̂ · ρ)

]
(ṙ · t̂)n̂

+
[
1

h
(ṙ · t̂)(n̂ · ρ) +

( r

h

)2
(r̈ · n̂)(r̂ · ρ)

]
(r̈ · n̂)r̂

−
[
1

r2
(ṙ · t̂)2 +

( r

h

)2
(r̈ · n̂)2

]
ρ. (45)

Introduce the following variables to indicate the scalar coefficients appearing in this equa-
tion

A = 1

r2
(ṙ · t̂)2, (46)

B =
( r

h

)2
(r̈ · n̂)2, (47)

C = 1

h
(ṙ · t̂)(r̈ · n̂), (48)

D =
[
1

h
(ṙ · r̂) − 2

r2

h2
(r̈ · t̂)

]
(r̈ · n̂) + r

h

[
n̂T (∇ r̈)ṙ

]
, (49)

E = − 2

r2
(ṙ · r̂)(ṙ · t̂) + 1

r
(r̈ · t̂), (50)
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L = 2
1

r
(ṙ · t̂), (51)

M = 2
r

h
(r̈ · n̂), (52)

and note that they are all expressed in terms of the dynamical state and the acceleration of
the reference body S. The evaluation of these coefficients is easily done when the dynamical
variables are available in the inertial reference frame and use is made of the definitions (11),
(12) and (13) of the RTN unit vectors.

We can now write the inertial acceleration difference as

Δr̈ = ρ̈ − (A + B)ρ + D r̂ × ρ + E n̂ × ρ + L n̂ × ρ̇ + M r̂ × ρ̇

+ [
C(n̂ · ρ) + B(r̂ · ρ)

]
r̂ + [

A(n̂ · ρ) + C(r̂ · ρ)
]
n̂. (53)

Introducing the coordinates (ξ, η, ζ ) for the position ρ of S1 in the RTN reference frame
allows us to write the position, the velocity and the acceleration of S1 as

ρ = ξ r̂ + ηt̂ + ζ n̂, (54)

ρ̇ = ξ̇ r̂ + η̇t̂ + ζ̇ n̂, (55)

ρ̈ = ξ̈ r̂ + η̈t̂ + ζ̈ n̂. (56)

These lead to the useful expressions

r̂ × ρ = ηn̂ − ζ t̂ (57)

r̂ × ρ̇ = η̇n̂ − ζ̇ t̂ (58)

n̂ × ρ = ξ t̂ − ηr̂ (59)

n̂ × ρ̇ = ξ̇ t̂ − η̇r̂ (60)

for the various terms appearing in the acceleration formula (53).
Thus

Δr̈ = (ξ̈ − Aξ − Eη + Cζ − L η̇)r̂

+ (η̈ + Eξ − (A + B)η − Dζ + L ξ̇ − M ζ̇ )t̂

+ (ζ̈ + Cξ + Dη − Bζ + M η̇)n̂ (61)

We can now write the equations of relative motion (16) in the RTN frame as

ρ̈ = (Aξ + Eη − Cζ + L η̇)r̂
− [

Eξ − (A + B)η − Dζ + L ξ̇ − M ζ̇
]
t̂

−(Cξ + Dη − Bζ + M η̇)n̂
+ΔN + ΔP + T,

(62)

where we have added a thrust acceleration term T to account for possible controls applied to
spacecraft S1. Component-wise, these equations take the form

ξ̈ = Aξ + Eη − Cζ + L η̇ + (ΔN)ξ + (ΔP)ξ + Tξ ,

η̈ = −Eξ + (A + B)η + Dζ − L ξ̇ + M ζ̇ + (ΔN)η + (ΔP)η + Tη,

ζ̈ = −Cξ − Dη + Bζ − M η̇ + (ΔN)ζ + (ΔP)ζ + Tζ .

(63)
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Alternatively, the same equations can be put in matrix form as

d

dt

(
ρ

ρ̇

)
=

(
0 I
H K

) (
ρ

ρ̇

)
+

(
0

ΔN + ΔP

)
+

(
0
T

)
, (64)

where 0 and I are respectively the null and the identity matrix of order 3, and the matrices H
and K have been defined as

H =
⎛
⎝

A E −C
−E A + B D
−C −D B

⎞
⎠ , (65)

K =
⎛
⎝

0 L 0
−L 0 M
0 −M 0

⎞
⎠ . (66)

These equations are exact, in the sense that no approximation has been made in deriving
them. They are completely equivalent to the equations of motion (5) written in the inertial
system.

For higher numerical accuracy, recall that the Newtonian differential acceleration term
should be computed according to the Encke formulation given in Eq. (8). In this case

ΔN = − μ

r3
{
f (q) r r̂ + [ 1 + f (q)]ρ

}
, (67)

and the auxiliary variable q can be computed in the RTN frame as

q = −[(2r + ξ)r̂ + ηt̂ + ζ n̂] · (ξ r̂ + ηt̂ + ζ n̂)

[(r + ξ)r̂ + ηt̂ + ζ n̂]2 = − (2r + ξ)ξ + η2 + ζ 2

(r + ξ)2 + η2 + ζ 2 (68)

while f (q) is still given by Eq. (10). Then the RTN components of the Newtonian differential
acceleration are given explicitly by

(ΔN)ξ = − μ

r3
{ f (q) r + [ 1 + f (q)] ξ} , (69)

(ΔN)η = − μ

r3
[ 1 + f (q)] η, (70)

(ΔN)ζ = − μ

r3
[ 1 + f (q)] ζ (71)

for use within equations (63).
Equation (62), or equivalently their forms (63) and (64), are obviously non-linear. In

fact, although linear terms appear, they are simply due to the non-inertial components of
the acceleration which are the result of the application of linear operators—functions of
the angular velocity operator—the nonlinearity creeps in through the differential Newtonian
acceleration, as explicitly shown by Eq. (67), given the nonlinearity of both q = q(ρ) and
f (q). These equations are fully written in Cartesian coordinates. The motion of the two
spacecraft is obtained through the integration of a 12th-order system of ODE’s constituted
by Eqs. (1) and (62). Integration of the former set of equations provides the dynamical
state vector, and functions thereof, of spacecraft S in the inertial reference frame that are
required for the simultaneous integration of the latter set of ODE’s, which provides the
relative dynamical state vector directly in the RTN reference frame.
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4 Approximate formulations

In many cases it is not advisable, nor necessary, to integrate the exact equations of motion.
When the differential accelerations are small and the relative motion is sought over short
intervals of time, a linearized set of equations may be used. In the following we first derive a
linearized set of equations through a first-order expansion of both the differential Newtonian
and perturbation terms.We then show that undermore restrictive assumptions these linearized
equations reduce to twowell-known sets of equationswhich are widely used tomodel relative
motion. We will end with a critical analysis of the terms of use of these equations.

4.1 Linearization

It is usual to adopt an approximate formulation for the differential Newtonian term which is
obtained by a first order expansion about the position of the primary body S. In this case we
have that ΔN = ∇N(r1 − r), or

ΔN = μ

r5

(
3r rT − r2I

)
ρ, (72)

and the matrix form of the equations of relative motion in the RTN RF simplifies to

d

dt

(
ρ

ρ̇

)
=

(
0 I

G + H K

)(
ρ

ρ̇

)
+

(
0

ΔP

)
+

(
0
T

)
, (73)

where
G = ∇N = μ

r3

(
3r̂ r̂T − I

)
(74)

is the gravity gradient matrix. In the RTN frame this takes the form

G|RTN =
⎛
⎝

2g 0 0
0 −g 0
0 0 −g

⎞
⎠ , (75)

where g = μ/r3 is the absolute value of the Newtonian gravity gradient at the origin S of
the Hill frame. In component form the equations of motion are now

ξ̈ = (2g + A)ξ + Eη − Cζ + L η̇ + (ΔP)ξ + Tξ ,

η̈ = −Eξ + (A + B − g)η + Dζ − L ξ̇ + M ζ̇ + (ΔP)η + Tη,

ζ̈ = −Cξ − Dη + (B − g)ζ − M η̇ + (ΔP)ζ + Tζ .

(76)

At the same time the differential perturbation term ΔP should also be linearized, since
‖ΔP‖ � ‖ΔN‖. Then

ΔP ∼= ∇P ρ =

⎛
⎜⎜⎜⎝

∂Pξ

∂ρ

∂Pη

∂ρ

∂Pζ

∂ρ

⎞
⎟⎟⎟⎠

⎛
⎝

ξ

η

ζ

⎞
⎠ =

⎛
⎜⎜⎜⎝

∂Pξ

∂ξ
ξ + ∂Pξ

∂η
η + ∂Pξ

∂ζ
ζ

∂Pη

∂ξ
ξ + ∂Pη

∂η
η + ∂Pη

∂ζ
ζ

∂Pζ

∂ξ
ξ + ∂Pζ

∂η
η + ∂Pζ

∂ζ
ζ

⎞
⎟⎟⎟⎠ (77)

and

ξ̈ = (2g + A)ξ + Eη − Cζ + L η̇ + ∇ρPξ ρ + Tξ ,

η̈ = −Eξ + (A + B − g)η + Dζ − L ξ̇ + M ζ̇ + ∇ρPη ρ + Tη,

ζ̈ = −Cξ − Dη + (B − g)ζ − M η̇ + ∇ρPζ ρ + Tζ .

(78)
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or, after resolving components, we find the linearized equation of relative motion in the RTN
reference frame to be

ξ̈ =
(
2g + A + ∂Pξ

∂ξ

)
ξ+

(
E+ ∂Pξ

∂η

)
η−

(
C − ∂Pξ

∂ζ

)
ζ + L η̇ + Tξ ,

η̈ = −
(
E − ∂Pη

∂ξ

)
ξ+

(
A + B − g+ ∂Pη

∂η

)
η+

(
D+ ∂Pη

∂ζ

)
ζ −L ξ̇+M ζ̇ +Tη,

ζ̈ = −
(
C− ∂Pζ

∂ξ

)
ξ−

(
D− ∂Pζ

∂η

)
η+

(
B−g+ ∂Pζ

∂ζ

)
ζ − M η̇ + Tζ .

(79)

These are the linearized equations that describe the relative motion between two non-
interacting spacecraft, each subject to the same force field. As with their full counterparts,
these equations are expressed using Cartesian coordinates and the motion of the spacecraft
pair implies the integration of a 12th order system of ODE’s constituted by either Eqs. (76),
(78), or (79), and Eq. (1).

4.2 Reduction to circular reference orbit

In the case of the primary S in circular orbit of radius r = R the equations of motion simplify
considerably. In fact, with the absolute value of the radial gravity gradient, the acceleration
and the transverse component of velocity respectively given by

g = μ

R3 = n2 (80)

r̈ = − μ

R2 r̂ = −n2R r̂, (81)

ṙ · t̂ = nR (82)

and since from the gravity gradient (74), now simplified to

G = ∇ r̈ = μ

R3

(
3r̂ r̂T − I

)
= n2

(
2r̂r̂T − t̂t̂

T − n̂n̂T
)

, (83)

follows that the quadratic form

n̂T (∇ r̈)ṙ = n2n̂T
(
2r̂ r̂T − t̂t̂

T − n̂n̂T
)
ṙ = −n2

(
n̂ · ṙ) = 0, (84)

we find that the auxiliary quantities (46)–(52) simplify to

A = n2, (85)

L = 2n, (86)

B = C = D = E = M = 0. (87)

Therefore the Eq. (76) take the form

ξ̈ − 2nη̇ − 3n2ξ = Pξ + Tξ

η̈ + 2nξ̇ = Pη + Tη

ζ̈ + n2ζ = Pζ + Tζ

(88)

which are identical to theHill–Clohessy–Wiltshire (HCW ) equations (Clohessy andWiltshire
1960; Prussing and Conway 2012) forced by the additional modelling of the non-Newtonian
force field and the thrust acceleration component. In these equations the perturbation P (and
of course the thrust T) are to be computed at ρ, since they both act on S1.

123



228 S. Casotto

4.3 Reduction to Keplerian reference orbit

In the case of S following a general Keplerian orbit the equations of motion in the RTN
frame simplify less dramatically. In this case we have

ṙ · r̂ = ṙ , (89)

ṙ · t̂ = r θ̇ , (90)

where θ represents the true anomaly. The term involving the full gravity gradient is still zero,
as indicated by Eq. (84), since the dyadic structure of the quadratic form does not change. In
fact, since n̂T (∇N)ṙ = 0, as was proved above, we can write in general that

n̂T (∇ r̈)ṙ ≡ n̂T (∇P)ṙ, (91)

Equation (49) can be modified accordingly and ∇ r̈ replaced with ∇P in its last term. Recall
that Eq. (49) remains valid only under conditions of constant mass distributions and conser-
vative fields, as previously remarked.

Then the coefficients (46)–(52) simplify to

A = θ̇2, (92)

E = −2
ṙ

r
θ̇ , (93)

L = 2θ̇ , (94)

B = C = D = M = 0 (95)

and we have

ξ̈ = (2g + A)ξ + Eη + L η̇ + Pξ + Tξ , (96)

η̈ = −Eξ + (A − g)η − L ξ̇ + Pη + Tη, (97)

ζ̈ = −gζ + Pζ + Tζ . (98)

Recalling that g = μ/r3, these equations can also be written in the form

ξ̈ −
(
2

μ

r3
+ θ̇2

)
ξ + 2

ṙ

r
θ̇η − 2θ̇ η̇ = Pξ + Tξ

η̈ − 2
ṙ

r
θ̇ ξ −

(
θ̇2 − μ

r3

)
η + 2θ̇ ξ̇ = Pη + Tη

ζ̈ + μ

r3
ζ = Pζ + Tζ

(99)

which are the de Vries equations (de Vries 1963). If we again stipulate that the orbit of the
reference body be circular, then as before ṙ = 0, θ̇ = n, and μ/r3 = n2, and the de Vries
equations reduce to the HCW equations, as expected. The de Vries equations, through the
application of the Nechville transformation (Nechville 1926)

ξ = r ξ̃ , η = r η̃, ζ = r ζ̃ , (100)

h dt = r2dθ, (101)
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can be reduced to an alternate form, known as the Tschauner–Hempel equations,which read
(Tschauner and Hempel 1964)

ξ̃ ′′ − 2η̃′ − 3
r

p
ξ̃ = Pξ + Tξ ,

η̃′′ + 2ξ̃ ′ = Pη + Tη,

ζ̃ ′′ + ζ̃ = Pζ + Tζ ,

(102)

where p is the semilatus rectum of the reference orbit. Here the independent variable is the true
anomaly so that the prime signs indicate differentiation with respect to θ . Notice how these
equations, while retaining the same form of the HCW equations, represent a generalization
to a non-circular, Keplerian reference orbit of those equations, to which they reduce when
the variable ratio r/p becomes unity.

4.4 Critique

The restriction of the linearized equations (76) to the case of a Keplerian reference orbit
needs to be analyzed in some detail. In particular, it must be kept in mind that in their original
form equations (76) describe the relative motion of two physical objects subject to exactly the
same force field. Now, since Keplerian orbits naturally develop only in a strictly Newtonian
field, the non-Newtonian pertubationP does not affect themotion of the reference body S and
should for consistency be deleted from the force field—which means that it is inconsistent to
keep it, as we have done, in the HCW equations (88) or the de Vries equations (99), except
for very special cases like a circular equatorial orbit in a purely zonal field. Considerations
along similar lines have been made by Ross (2003). However, the term as we have written it,
appears in these equations in full, not just through its differential action with respect to body
S as indicated in equations (76). This makes the equations consistent, in the sense that they do
describe relative motion, but only with respect to a virtual center, which cannot be occupied
by a physical body (unless the body is itself controlled). The true relative motion can still
be modelled with the use of the HCW or the de Vries equations, but they should be applied
to each of the bodies involved—while clearly keeping the vitual center the same—and the
results differenced. Clearly, this procedure has some drawbacks since its apparent simplicity
makes it harder, for instance, to implement relative navigation techniques.

5 Comparison with previous work

It is of interest to examine if the equations of relative motion given here are equivalent
to the equations of motion as formulated by other authors. As it was mentioned earlier,
previous authors have adopted a mixed system of variables—i.e., a combination of Cartesian
coordinates andKeplerian elements—to express the equations of relativemotion with respect
to elliptical, possibly precessing, orbits. The difference is found in their expressions for the
angular velocity and the angular acceleration, which are invariably given in terms of rates
and accelerations of the angular Keplerian elements of the orbit of the reference body. In
particular, the radial and normal components of the angular velocity are given as (Kechichian
1998; Chen and Jing 2012)
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ωr = Ω̇ sin i sin u + di

dt
cos u, (103)

ωn = u̇ + Ω̇ cos i, (104)

where Ω is the longitude of the ascending node, i is the inclination and u = θ + ω is the
argument of latitude. We will show that these expressions are equivalent to those found here,
Eqs. (32) and (33). There are two methods to carry out the proof. One is based on kinematics,
the other on dynamics. It may be of interest to examine both.

5.1 Dynamical method

Let us first address the dynamical method. Consider the radial componentωr . Since r̈ · n̂ = N
is the normal component of the disturbing acceleration, so that ωr = (r/h)N, we need to
show that

r

h
N = Ω̇ sin i sin u + di

dt
cos u. (105)

But this follows immediately if we consider the Lagrange planetary equations (LPE) for the
inclination and the longitude of the node in their Gaussian form (Kaplan 1976)

di

dt
= r

h
cos u N, (106)

dΩ

dt
= r sin u

h sin i
N, (107)

isolate the quantity (r/h)N on the r.h.s. of each, multiply through the first by cos2 u, the
second by sin2 u and sum side by side.

Consider now the normal component ωn which we write as
1

r
(ṙ · t̂) = 1

r

(
ṙ r̂ + h

r
t̂
)

· t̂ = h

r2
, (108)

where the use of the Keplerian decomposition of the velocity is legal in view of the fact that
the components are to be expressed in terms of osculating elements, which also appear in
the LPE. In order to prove that the expressions (33) and (104) are equivalent we thus need to
show that

h

r2
= du

dt
+ dΩ

dt
cos i. (109)

To this end consider the LPE for the true anomaly and the argument of perigee ω (not to
be confused with the absolute value of the angular velocity) in their Gaussian form (Kaplan
1976)

dθ

dt
= h

r2
+ p

he

[
cos f R −

(
1 + r

p

)
sin f T

]
, (110)

dω

dt
= p

he

[
− cos f R +

(
1 + r

p

)
sin f T

]
− r

h
cot i sin u N. (111)

Substituting (107) into (111) and using the result to replace the term in square bracket of
equation (110) leads immediately to the result (109).

5.2 Kinematical method

Another way of proving (103) and (104) is to write the angular velocity vector in terms of its
components along the third inertial axis k, the nodal vector N = k̂ × n̂, and the normal axis
n̂ as
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ω = Ω̇ k̂ + di

dt
N̂ + u̇ n̂, (112)

where N̂ = N/|N|. Recall that the nodal vector has a length equal to the sine of the inclination,
|N| = sin i . Then the components of ω along the RTN axes can be obtained as

ωr = ω · r̂
=

(
Ω̇ k̂ + di

dt
N̂ + u̇ n̂

)
· r̂

= Ω̇ (k̂ · r̂) + di

dt
(N̂ · r̂). (113)

But the direction cosines between the two reference frames show that k̂ · r̂ = sin i sin u and
N̂ · r̂ = cos u, which, upon substitution into the preceding equation, proves the validity of
(103). Similarly, for the normal component we find

ωn = ω · n̂
=

(
Ω̇ k̂ + di

dt
N̂ + u̇ n̂

)
· n̂

= Ω̇ (k̂ · n̂) + u̇, (114)

which, on recalling that k̂ · n̂ = cos i, proves the validity of (104).
The kinematical method is also employed by Kechichian (1998) and appears to be orig-

inally due to Breakwell (1974). As a side note, the transverse component of the angular
velocity can be obtained by the projection of (112) as

ωt = Ω̇ (k̂ · t̂) + di

dt
(N̂ · t̂). (115)

But we know that ωt = 0, so, recalling that k̂ · t̂ = sin i cos u and that N̂ · t̂ = − sin u, it
follows that

Ω̇ sin i cos u = di

dt
sin u. (116)

This same relationship between the time derivatives of the longitude of the node and the
inclination also follows from the Gauss form of the LPE’s: it is sufficient to eliminate (r/h)N
between (106) and (107).

6 The linearized equations of motion in the presence of the oblateness
perturbation

From the expression of the oblateness perturbation (3) we find the gradient with respect to
the position to be given by

∇rPJ2 = −3

2

μ

a3e
J2

(ae
r

)5 {
2kkT − 10(r̂ · k)

(
kr̂T + r̂kT

)

+ [
1 − 5(r̂ · k)2

] − 5
[
1 − 7(r̂ · k)2

]
r̂r̂T

}
(117)

In order to adapt this dyadic expression for immediate use in RTN frame coordinates, it is
expedient to replace the unit vector k with its expression
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k = kr r̂ + kt t̂ + kn n̂ (118)

in the RTN basis,3 where

kr = k · r̂, kt = k · t̂, kn = k · n̂, (119)

are direction cosines directly computable from information available from the numerical
integration of the inertial motion of S. Note that in inertial coordinates kr = z/r, kt =
(hx y − hyx)/hr, and kn = hz/h. The gravity perturbation gradient can thus be expressed
as a dyadic in the RTN basis as

∇PJ2 = K
{
4

(
1 − 3k2r

)
r̂r̂T − (

1 − 5k2r + 2k2t
)
t̂t̂
T − (

1 − 5k2r + 2k2t
)
n̂n̂T

+ 8kr kt
(
r̂t̂

T + t̂r̂
T
)

+ 8kr kn
(
r̂n̂T + n̂r̂T

)
− 2kt kn

(
t̂n̂

T + n̂t̂
T
)}

, (120)

where the function K has been defined as

K = 3

2

μ

a3e
J2

(ae
r

)5
. (121)

The equations of relative motion for the J2-perturbed case can now be easily written
down. We first need to complete the expression for the angular acceleration by including
the quadratic form appearing in the expression (49) of the D coefficient. Making use of
expression (120) and accounting for the identity (91) we find

n̂T (∇PJ2)ṙ = K
[
8kr kn(r̂ · ṙ) − 2kt kn(t̂ · ṙ) − (

1 − 5k2r + 2k2n
)
(n̂ · ṙ)

]
, (122)

since the Newtonian part of the acceleration contributes nil, as was already shown above.
This expressions, of course, must be used in the equations of relative motion even when the
perturbation term is not linearized. The linearization can easily be carried out by forming
the term ∇P ρ appearing in (7). By multiplying (120) and (54) we obtain the linearized J2
acceleration as

∇PJ2ρ = K
{[

4
(
1 − 3k2r

)
ξ + 8kr ktη + 8kr knζ

]
r̂

+ [
8kr ktξ − (

1 − 5k2r + 2k2t
)
η − 2kt knζ

]
t̂

+ [
8kr knξ − 2kt knη − (

1 − 5k2r + 2k2n
)
ζ
]
n̂
}

, (123)

which is conveniently expressed in the RTN basis.
The full, linearized equations of relative motion including the differential effects of J2

can then be written as

ξ̈ = [
2g + A − 4K (1 − 3k2r )

]
ξ + (E + 2Kkrkt )η

+(2Kkrkn − C)ζ + L η̇ + Tξ

η̈ = (18Kkrkt − E)ξ + {
A + B − g + K

[
(1 − 5k2r ) − 2k2t

]}
η

+(D − 2Kktkn)ζ − L ξ̇ + M ζ̇ + Tη

ζ̈ = (18Kkrkn − C)ξ − [D + 2Kktkn] η
+{

B − g + K
[
(1 − 5k2r ) − 2k2n

]}
ζ − M η̇ + Tζ

(124)

3 Note also that
kt = k · t̂ = k · n̂ × r̂ = r̂ · k × n̂ = N · r̂,

where N is the nodal vector. Thus, the projection of k onto the transverse direction is equal to the radial
projection of the nodal vector.
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where the quantities A, B, C, D, L and M have been defined in Eqs. (46) through (52).
Equations (124) are the specialized version ofEqs. (78) or (79) for the case of the J2 oblateness
perturbation.

7 Conclusions

Aderivation of the equations of relativemotion for two non-mutually interacting spacecraft in
Earth orbit has been presented in the orbital reference frame. These equations are subject to no
other restriction, and they are valid for any force field describing their motion. This has been
done by application of straightforward expressions derived for the angular velocity and the
angular acceleration of the orbital reference frame associated with the reference spacecraft.
It has been shown that these two vectors can be expressed in terms of the dynamical state
vector of the reference body, without recourse to the time rates of change of its angular
orbital elements. This leads to a novel, self-contained formulation of the 12th order set of
the equations of motion of the spacecraft pair based on Cartesian coordinates. A linearized
formulation of these equations has also been derived, which reduces to the well-known Hill–
Clohessy–Wiltshire equations or to the de Vries, or the Tschauner–Hempel equations when
the reference spacecraft is respectively in a circular or elliptical Keplerian orbit. An explicit
form of the linearized equations has been derived for the case of Keplerian orbits perturbed
by the Earth’s J2 zonal harmonic.
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