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Abstract The determination of analytical expressions which, including the main pertur-
bative effects, allow the retrieval of the orbit elements of a probe represents an important
requirement in designing science trajectories. One of these perturbations is given by the third
body attraction. The case in which the perturbing body moves on a plane coincident with the
equatorial plane of the primary body has been investigated in previous studies and equations
able to provide the temporal evolution of the orbit elements have been determined and applied
to themainmoons of the Solar System. In this paper an extension of this topic has been carried
out and equations which allow the determination of the orbit evolution have been analytically
retrieved in the general case in which one or more perturbing bodies describe elliptical and
inclined orbits with respect to the equatorial plane of the primary. Then, introducing these
equations into the periodicity condition for the probe ground track, and considering the J2
and J4 effects coming from the primary body, an equation able to provide repeating ground
track orbits has been determined.

Keywords Planetary observation mission · Third body perturbation · Periodic orbit ·
Orbiting probes

1 Introduction

In general, the motion of a probe around a celestial body (primary body) is affected by
the gravitational perturbation deriving from one or more other celestial bodies and these
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perturbative effects can play a key role in designing orbits which are able to meet the mission
requirements. This concerns both the motion around planets and moons, where the dynamic
behaviour of an orbiting probe, the related stability conditions and the life times are strongly
influenced, not only by the asymmetries of the gravitational field of the primary body, but
also by the gravitational attraction of other celestial bodies. Some papers dealing with these
problems are: Allan and Cook (1964), who analysed the case of Earth satellites; Scheeres
et al. (2001), Lara and San Juan (2005), Paskowitz and Scheeres (2006), Lara and Russell
(2007), Lara et al. (2007), who studied themotion of a probe orbiting Jupiter’s natural satellite
Europa; Russell and Lara (2009), who investigated the dynamics around Enceladus.

In a space mission for planetary observation, a basic requirement which has to be fulfilled,
and which is often influenced by the gravitational attraction deriving from other celestial
bodies, lies in the possibility of obtaining cyclic observations of each zone of the celestial
body around which the probe is orbiting. Such an objective, which is often realized by
choosing high inclination orbits (possibly quasi-polar orbits) so as to guarantee an extended
latitudinal coverage of the celestial body, can be achieved if the ground tracks of probe
repeat themselves periodically (in this case the orbit is defined as periodic) (Lara 2003;
Russell 2006; Russell and Lara 2007; Ortore et al. 2012; Circi et al. 2012). To this purpose,
in Cinelli et al. (2015) the analytical determination of equations able to provide different
typologies of periodic orbits was carried out, considering the case of a perturbing body that
moves in a circular orbit lying on the equatorial plane of the primary body (as, with a good
approximation, occurs for the main moons of the Solar System: Io, Europa, Ganymede,
Callisto, Titan). These equations were retrieved by exploiting, for the perturbing body, the
expressions found in Prado (2003) and in Broucke (2003).

In this paper an extension of this topic has been carried out. In fact, starting from the
traditional expansion of the disturbing potential in Legendre polynomials up to the second
order (Allan and Cook 1964), equations which provide the temporal variations of the orbit
elements of the probe have been analytically gained. These equations allow the study of the
probe orbit evolution in the general case in which one or more perturbing bodies describe,
around the primary body, elliptical and inclined orbits. Then, introducing such equations in
the periodicity condition for the probe ground track, an equation to retrieve periodic orbits
has also been determined. Such an equation has been obtained considering, besides the third
body influence, the perturbative effects of the primary body deriving from the even zonal
harmonics up to J4.

The paper is organized as follows: Sect. 2 reports the analytical developments leading to
equationswhich provide the variations of the orbit elements; Sect. 3 reports both the analytical
developments which allow the determination of the equation providing periodic orbits and
the extension to the case of more perturbing bodies; Sect. 4 investigates the accuracy of the
results achievable by the above-mentioned equation, considering the case of Earth satellites
under the influence of the luni-solar perturbation.

2 Long-term third body effects in the non-coplanar case

As is well-known, the long-term effects related to the gravitational attraction of a third body
can be highlighted by averaging the disturbing potential on the positions of both probe and
third body in their motions with respect to the primary body. Following the mathematical
developments offered by Allan and Cook (1964), which consider the traditional expansion
in Legendre polynomials up to the second order, this double averaged disturbing potential
can be expressed by the relationship:
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Fig. 1 Positions of probe and third body with respect to the primary body
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where a is the semi-major axis of the probe orbit, e is the eccentricity of the probe orbit, n =√
μP/a3 is themeanmotion of the probe, withμP gravitational constant of the primary body,

k̂ is the unit vector perpendicular to the orbital plane of the probe, ê is the unit eccentricity
vector of the probe orbit, μIII is the gravitational constant of the third body, aIII is the semi-
major axis of the orbit that the third body describes with respect to the primary body, eIII is
the eccentricity of the orbit that the third body describes with respect to the primary body,
and ẐIII is the unit vector perpendicular to the orbital plane of the third body in its motion
with respect to the primary body. Once the term μIII
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has been rewritten as follows:
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with i = inclination of the probe orbit, i∗ = inclination of the orbit that the third body
describes with respect to the equatorial plane of the primary body, � = right ascension of
the ascending node (RAAN) of the probe orbit, �∗ = right ascension of the ascending node
of the perturbing body orbit (Fig. 1), Eq. 1 takes the following form:
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As is well-known, in order to determine the temporal variations of the orbit elements
of the probe, the Lagrange planetary equations, written in the form that depends on the
derivatives of the disturbing potential with respect to theKeplerian elements, can be exploited
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(Kozai 1959). To this end, the derivatives of Eq. (4) with respect to the orbit elements have
to be calculated:
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where ω is the argument of pericentre of the probe orbit and M is the mean anomaly of the
probe. Thus, by substituting Eqs. (5)–(10) in the Lagrange planetary equations the long-term
temporal variations of the orbit elements of the probe, due to the third body perturbation, can
be retrieved:
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Ṁ = n − 3
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Once considered for the third body a double averaged and approximated at second order
disturbing potential, Eqs. (11)–(16) allow the determination of the corresponding long-term
temporal variations of the probe orbit elements and of its mean anomaly in the general case
of elliptical and inclined third body orbit. It is possible to note how, while the semi-major
axis variation is null [Eq. (11)], the other variations do not depend on the RAAN. From
these equations it is possible to re-obtain the temporal variations of the orbit elements found
in Domingos et al. (2008) by assuming i∗ = 0 (case in which the third body describes an
elliptical and equatorial orbit) and in Prado (2003), Broucke (2003) by also assuming eIII = 0
(case in which the third body describes a circular and equatorial orbit).

3 Periodic orbits

The condition of periodicity on the ground track of a probe orbiting around a celestial body
can be gained by solving the following equation: mDn = RTn, where m is the revisit time
of the same area (expressed as an integer number of nodal days of the celestial body), Dn

is the nodal day of the celestial body, R is the number of revolutions of probe accomplished
with respect to the nodal line in m nodal days and Tn is the nodal period of the probe. The
nodal day of the celestial body can be expressed as Dn = 2π/(ωP − �̇), where ωP is the
angular velocity of the celestial body around its polar axis, while the nodal period of probe
can be found as Tn = 2π/(ω̇ + Ṁ).

As is well-known, the even zonal harmonics related to the traditional expansion of the
gravitational potential of the primary body entail secular perturbations on the orbit elements
involved in the periodicity condition on the ground track of probe: ω, RAAN and M (Kozai
1959). Following the mathematical developments offered by Merson (1961), and consid-
ering the zonal harmonics up to the fourth order, these variations can be expressed by the
relationships:
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where RP is the equatorial mean radius of the primary body, while J2 and J4 represent the
coefficients of the first and second even zonal harmonics respectively.

By summing the variations of the orbit elements due to the zonal harmonics J2 and J4
and to the third body, the total variations of the orbit elements involved in the periodicity
condition can be obtained:
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In particular: Eq. (20) is obtained by summing Eqs. (15) and (18); Eq. (21) is obtained by
summing Eqs. (14), (16), (17), (19). The introduced coefficients are defined as follows:
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Then, replacing Eqs. (20) and (21) in the periodicity condition mDn = RTn , it is possible
to arrive at determining an equation which allows the retrieval of repeating ground track
orbits:
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In fact, once the eccentricity, the inclination and the argument of pericentre of the orbit

probe have been selected, aswell as the number of nodal revolutions per nodal day (R/m), the
physically acceptable solution of Eq. (22) provides the semi-major axis of the corresponding
periodic orbit.

3.1 The case of several perturbing bodies

Equation (22) can be generalized taking into consideration the case of N perturbing bodies.
In fact, following the same developments as in Sect. 3, an equation formally analogous to
Eq. (22) can be retrieved, where the coefficients bT and cT (which are the ones related to the
third body effects) are now given by the sum of the contributions of the N perturbing bodies:
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The coefficientsbT i , cT i ,dT i ,m′
i ,n

′
i , eIIIi , i

∗
i represent the contributionof the i th perturbing

body.

4 Analytical and numerical results

To verify the accuracy of the results achievable by Eq. (22), the case of Earth satellites under
the influence of the Sun [subscript i = 1 in Eqs. (23)–(25)] and Moon [subscript i = 2 in
Eqs. (23)–(25)] has been considered in the present Section. The analytical results have been
obtained assuming, for the probe orbit, the following conditions: � = 0 and ω = 0. The
same values have been considered as initial conditions for the numerical simulations.

4.1 Preliminary analysis on the perturbing effects

As is well-known, an Earth satellite, to be significantly influenced by the third body pertur-
bation, must orbit at a considerable distance from the Earth and, at that distance, the effects
deriving from the asymmetry of the gravitational field are essentially limited to the coefficient
J2. As a matter of fact, Table 1 shows the results obtained by Eq. (22) both considering the
zonal harmonics up to J4, according to the Earth Gravitational Model 96 (Lemoine et al.
1998), and assuming J4 = 0. As for the third body perturbation, the following values for
the eccentricity and the inclination of the orbits described by the Sun (apparent motion)
and Moon, with respect to the Earth, have been considered: eIII1 = 0.01671022 (Sun),
eIII2 = 0.0554 (Moon), i∗1 = 23.44◦ (Sun) and i∗2 = 18.30◦ (Moon).

Different kinds of orbits have been taken into account. In particular, the first four cases
present the same parameters of periodicity, inclination and eccentricity (but ω = 0) as,
respectively, the constellation Cosmo-SkyMed-1 (case of Low Earth Orbit), the global posi-
tioning system (GPS), the Molniya and the Tundra orbits. The absolute differences between
the results obtained in the two cases (with and without J4) are reported in the last column of
the table. As evidence shows, in all cases of Mid and High Earth Orbit, the influence of the
coefficient J4 is very weak and can therefore be neglected.

But there are also other coefficients in the expansion of the Earth’s gravitational potential
that have the same order of magnitude as J4, like C22 and S22. The consideration of such
coefficients in the analytical developments reported inSect. 3would havegreatly increased the
complexity of the equations and would not have allowed the determination of a polynomial
equation to design periodic orbits. For this reason, their influence has been investigated
through a numerical analysis. To this purpose, Table 2 reports the results obtained numerically,
on different typologies of orbits, considering the following cases:

• Case A: EGM 96 with “J2 + J3 + J4” + luni-solar effect;
• Case B: EGM 96 with “J2 + J3 + J4, C22 and S22” + luni-solar effect;
• Case C : EGM 96 with (30 × 30) harmonics+ luni-solar effect+ solar radiation pressure

(considering a spherical satellite with a solar radiation pressure coefficient Cr = 1 and
an area-to-mass ratio = 0.02m2/kg).
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Table 1 Influence of the coefficient J4

Parameters of
periodicity

Orbit
elements

Solutions by
Eq. (22)

Solutions by Eq. (22)
with J4 = 0

Absolute
difference

m R i (◦) e a (km) a (km) |�a| (km)

16 237 97.88 0.001 6997.71 6997.72 0.023

1 2 55.00 0.001 26560.22 26560.22 8.63 × 10−5

1 2 63.43 0.741 26553.11 26553.10 0.004

1 1 63.43 0.268 42162.64 42162.64 8.74 × 10−6

1 1 15.00 0.001 42165.03 42165.03 5.83 × 10−5

1 1 15.00 0.100 42165.06 42165.06 5.83 × 10−5

1 1 15.00 0.250 42165.20 42165.20 5.72 × 10−5

3 2 23.44 0.001 55249.22 55249.22 1.92 × 10−5

3 2 23.44 0.100 55249.22 55249.22 1.93 × 10−5

3 2 23.44 0.250 55249.24 55249.24 1.97 × 10−5

2 1 45.00 0.001 66927.02 66927.02 8.62 × 10−6

2 1 45.00 0.100 66926.97 66926.97 9.01 × 10−6

2 1 45.00 0.250 66926.71 66926.71 1.14 × 10−5

2 1 63.43 0.001 66927.74 66927.74 4.24 × 10−6

2 1 63.43 0.100 66927.66 66927.66 4.35 × 10−6

2 1 63.43 0.250 66927.26 66927.26 5.02 × 10−6

Table 2 Influence of the coefficients C22 and S22 (numerical solutions)

Parameters of
periodicity

Orbit
elements

A B Absolute dif-
ference B−A

C Absolute
difference
C−B

C

m R i (◦) e a (km) a (km) |�a| (km) a (km) |�a| (km) �e

1 15 98.00 0.001 6949.09 6949.09 0.00 6949.02 0.07 0.003

1 2 55.00 0.001 26561.80 26562.41 0.61 26562.65 0.24 0.001

3 2 23.44 0.001 55246.35 55246.08 0.27 55246.13 0.05 0.001

2 1 45.00 0.001 66922.73 66922.71 0.02 66922.69 0.02 0.001

2 1 45.00 0.100 66923.22 66922.94 0.28 66922.83 0.11 0.003

2 1 63.43 0.001 66926.48 66926.46 0.02 66926.50 0.04 0.001

2 1 63.43 0.100 66926.92 66926.56 0.36 66926.45 0.11 0.003

The results show how the influence of the coefficients C22 and S22 (as well as the one
related to the solar radiation pressure) is rather weak (marked differences have been obtained
at geosynchronous altitude because of the well-known resonance phenomenon associated
with the elliptical shape of the Earth’s equator).

The numerical simulations have been executed by theRunge–Kutta–Fehlberg 7(8) integra-
tor. In these simulations the positions of the Sun and Moon have been determined according
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to the ephemerides of these celestial bodies (DE421). The numerical values of the orbit
elements have been retrieved according to the following steps:

1. once e, i, ω and R/m are selected, Eq. (22) provides the initial value of semi-major
axis (with eIII1 = 0.01671022, eIII2 = 0.0554, i∗1 = 23.44◦, i∗2 = 18.30◦). Given that
the double averaging procedure, executed on the disturbing potential, eliminates the
short-term effects (which, being function of the instantaneous position of the third body,
consist of oscillations occurring around the corresponding long-term variation) this initial
condition will represent a sort of mean value (long-term variation) for the semi-major
axis;

2. the variations �̇, ω̇, Ṁ , associated with the periodicity condition, are numerically com-
puted (using the above-mentioned EGM 96);

3. the mean values of nodal day and nodal period are obtained and, with these values, the
periodicity condition (mDn = RTn) is evaluated;

4. the precise value of semi-major axis which makes the periodicity condition satisfied is
iteratively found (the iterative cycle involves points 2–4);

5. the solution corresponding to the gained value of semi-major axis is numerically propa-
gated (over a long time) to verify the stability of the proposed trajectory. In this regard,
the last column of Table 2 shows the maximum variations of eccentricity (�e) that have
been obtained, after 1year, for the solutions belonging to Case C . The weak variations
observed over the entire range of altitudes confirm the good stability of the solutions
(similar results have been obtained for the variations of orbit inclination).

4.2 Effect of the lunar orbit inclination

Once established that, for satellites orbiting at an altitude higher than three Earth’s radii
(where the luni-solar perturbation starts to significantly influence their motion), the only
considerable effects associated with the asymmetry of the Earth’s gravitational field are
limited to the harmonic J2, it is also important to evaluate the influence of the Moon’s orbit
inclination on the results deriving from Eq. (22). To this end, Table 3 reports the values
obtained in the cases of minimum (i∗2 = 18.28◦) and maximum (i∗2 = 28.58◦) inclination for
the orbital plane of the Moon (eIII1 = 0.01671022, eIII2 = 0.0554, i∗1 = 23.44◦, J4 = 0).
Also in this case, several kinds of orbits have been taken into consideration.

The results of Table 3 highlight how the effects related to the Moon’s orbit inclination
become important only at very high altitudes.

4.3 Comparison between analytical and numerical results

To investigate the accuracy of the results coming from Eq. (22), a comparison with numerical
results, obtained following the procedure described in Sect. 4.1 (points 1–5), has been carried
out. Table 4 reports the results of this comparison, assuming eIII1 = 0.01671022, eIII2 =
0.0554, i∗1 = 23.44◦, i∗2 = 18.30◦ and considering two kinds of analytical solutions:

1. solutions gained by Eq. (22) without considering the gravitational attraction of the Sun
and Moon (dT = 0), where |�a| represents the absolute difference with respect to the
numerical results;

2. solutions gained by Eq. (22) (|�a| is the difference with respect to the numerical results).

As evidence shows, the results obtained by Eq. (22) are close to the ones retrieved by
numerical simulations (last column of Table 4). In fact, at i = 15◦ and i = 63.43◦ the
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differences are <1.3km, while at mid inclination these differences moderately increase (up
to 4.29km).

5 Conclusions

Taking into consideration the general case of one or more disturbing bodies moving around a
primary body in elliptical and inclined orbits, the mathematical developments to analytically
retrieve equations able to provide the variations of the orbit elements of the probe have been
presented. Then, including the main perturbative effects related to the asymmetry of the
gravitational field of the primary body, these equations have been exploited to gain periodic
orbits. Considering the case of Earth satellites influenced by the luni-solar perturbation,
the results retrieved by such an equation have been compared with the ones deriving from
numerical simulations and the differences obtained have highlighted the accuracy of the
analytical solutions.
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