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Abstract The strongly perturbed dynamical environment near asteroids has been a great
challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure,
and solar tide, the orbital motion actually suffers from another perturbation caused by the
gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude cou-
pling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical
extended body, the real case of the spacecraft, is actually different from that acting on a point
mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into
account GOACP besides the non-spherical gravity to improve the previous close-proximity
orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be con-
trolled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion
perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital
model can be called the attitude-restricted orbital dynamics, where restrictedmeans that the
orbital motion is studied as a restricted problem at a given attitude. In the present paper,
equilibrium points of the attitude-restricted orbital dynamics in the second degree and order
gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are
obtained: on and off the asteroid equatorial principal axis. These equilibria are different from
and more diverse than those in the classical orbital dynamics without GOACP. In the case of
a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the
equatorial plane. These results are useful for close-proximity operations, such as the asteroid
body-fixed hovering.
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1 Introduction

The strongly perturbed dynamical environment in the proximity of small asteroids has been
a great challenge for the mission design, navigation, and control. To have a thorough under-
standingof the dynamical behavior, the spacecraft dynamics about asteroids havebeen studied
broadly, including the orbital dynamics, attitude dynamics, and the gravitationally coupled
orbit–attitude dynamics (full dynamics).

Many works have focused on the orbital dynamics near asteroids, such as Scheeres (1994,
2012a, b, 2014), Hu (2002), Hu and Scheeres (2004), Liu et al. (2011a, b), Russell (2012),
Yu and Baoyin (2012a, b, 2013), Li et al. (2013), Jiang et al. (2014), Llanos et al. (2014), and
so on. It has been found that the orbital motion is strongly perturbed by the non-spherical
gravity of the asteroid, solar radiation pressure (SRP) and solar tide. Stable orbits against
these multiple perturbations should be constructed carefully with analytical approaches and
numerical tests (Scheeres 2012a, b).

Several works have studied the attitude dynamics of spacecraft around asteroids, such
as Riverin and Misra (2002), Misra and Panchenko (2006), Kumar (2008), Wang and Xu
(2013a, b), and Zhang and Zhao (2014, 2015). These results have shown that the attitude
motion is perturbed strongly by the non-spherical mass distribution and rotation of the aster-
oid, and the attitude stability domain is modified remarkably in comparison with, even totally
different from, the classical stability domain in a central gravity field.

In the close proximity of a small asteroid, due to the large ratio of the spacecraft dimen-
sion to the orbit radius, there is a significant gravitational coupling between the orbit and
attitude motions of a large spacecraft, as shown by Wang and Xu (2014a). The magnitude
of gravitational orbit–attitude coupling can be estimated by ε = ρ/r0, where ρ is the space-
craft characteristic dimension and r0 is the orbital radius (Sincarsin and Hughes 1983). For a
spacecraft (ρ ∼ 10m) around Earth, ε is order of 10−6. However, for a spacecraft around a
small asteroid, ε can be several orders of magnitude larger due to the small size of the asteroid
and the resulting small orbit radius. Therefore, the traditional spacecraft dynamics, in which
the orbit and attitude motions are treated separately, will no longer maintain a high precision.

The gravitationally coupled orbit-attitude dynamics, which can be also called the full
dynamics, has been proposed to take into account the gravitational orbit-attitude coupling
with the spacecraft modeled as an extended rigid body. The gravitationally coupled orbit–
attitude dynamics (full dynamics) of a rigid spacecraft has been studied qualitatively in a
central gravity field (Wang et al. 1991, 1992; Sanyal 2004; Teixidó Román 2010), as well
as in a J2-truncated gravity field of a small spheroid asteroid (Wang and Xu 2013c, d; Wang
et al. 2014a), and in the second degree and order gravity field of a uniformly rotating asteroid
described with the harmonic coefficients C20 and C22 (Wang and Xu 2014b; Wang et al.
2014b). These studies havemainly focused on the general qualitative properties of the system,
including the relative equilibria and their stability. The coupled orbit–attitude dynamics of a
rigid spacecraft has been used in the control and navigation of the close-proximity operations
near asteroids (Lee et al. 2014; Sanyal et al. 2014; Misra et al. 2015).

The gravitationally coupled orbit–attitude motions of small celestial bodies has been stud-
ied in the full two body problem (F2BP), i.e., two rigid bodies orbiting each other interacting
through the mutual gravitational potential (Scheeres 2004, 2006, 2009; Fahnestock and

123



Orbital dynamics and equilibrium points around an asteroid 267

Scheeres 2008; McMahon and Scheeres 2013; Woo et al. 2013). Notice that although the
orbit–attitude coupling has been adopted in the dynamics of high area-to-mass ratio space
debris (Früh et al. 2013) and the relative dynamics of spacecraft (Segal andGurfil 2009), these
couplings have different physical origins, and should not be confused with the gravitational
orbit–attitude coupling.

Although the gravitationally coupled orbit–attitude dynamics has been proposed and stud-
ied, if from the viewpoint of orbital dynamics, the gravitational orbit–attitude coupling of
the spacecraft actually causes another orbital perturbation to the Kepler two-body problem
besides the non-spherical gravity of the asteroid, SRP and solar tide. This gravitational orbit–
attitude coupling perturbation (GOACP) depends on the spacecraft attitude and has its origin
in the fact that the gravity acting on a non-spherical extended body, the real case of the
spacecraft, is actually different from that acting on a point mass, the model of the spacecraft
in the orbital dynamics. In this paper, we will show that GOACP and the non-spherical terms
of the asteroid’s gravity are both second-order terms of the gravitational force. Because of
the dynamical sensitivity, GOACP needs to be considered for a large spacecraft.

Due to GOACP, the previous close-proximity orbital dynamics, in which only the non-
spherical gravity is considered, will no longer have a high precision for a large spacecraft. If
GOACP is neglected, as an unmodeled perturbation, it will degenerate the control accuracy,
and fuel will be needed to null out its effect. If it is taken into account, the dynamics will be
revealed better, and the fuel consumption will be more effective. That is, fuel can be saved
by considering GOACP.

Therefore, we intend to take into account GOACP in the close-proximity orbital dynamics
besides the non-spherical gravity. Since GOACP depends on the spacecraft attitude, we
assume that the spacecraft is controlled ideally to a given attitude with respect to the asteroid,
and then we focus on the orbital motion perturbed by the non-spherical gravity and GOACP
with the given attitude. This new orbital model can be called the attitude-restricted orbital
dynamics, where restricted means that the orbital motion is studied as a restricted problem
at a given attitude.

The traditional spacecraft dynamics and the attitude-restricted orbital dynamics are two
different approximations of the exact spacecraft motion. In the former, the spacecraft is
first treated as a point mass in the orbital dynamics and the attitude motion is treated as a
restricted problem on the predetermined orbit, whereas, in the latter, the spacecraft attitude
is first given and the orbital motion is treated as a restricted problem at the predetermined
attitude. The traditional dynamics is applicable when the spacecraft is small in comparison
with the orbital radius andGOACP is negligible, such as aroundEarth, planets, and other large
celestial bodies. The attitude-restricted orbital dynamics is applicable near a small asteroid
or comet when GOACP is significant and the attitude can be controlled ideally.

Besides providing a more precise orbital model, the attitude-restricted orbital dynamics
is also reasonable from the viewpoint of space engineering. Notice that the gravity gradient
torque caused by the asteroid is small and can be well stabilized by using the attitude control
system. In space engineering, a strong control of the spacecraft attitude against exterior
perturbations can be achieved at the cost of electricity, which can be generated by solar panels,
whereas the orbital control is much weaker, and the natural orbital dynamics need to be fully
utilized for the purpose of saving fuel, since the fuel is more limited than the electricity.

Because of GOACP, the phase space of attitude-restricted orbital dynamics will be dif-
ferent from and more complicated than that of previous close-proximity orbital dynamics.
In the present paper, we will give a qualitative study of attitude-restricted orbital dynamics.
Equations of motion will be obtained and equilibrium points will be investigated as well.
These equilibrium points will not only give a basic picture of the phase space, but also pro-
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Fig. 1 The spacecraft moving
around a small asteroid

vide potential applications for the asteroid close-proximity operations, such as the asteroid
body-fixed hovering.

2 Statement of problem

As described by Fig. 1, the problem we studied here is the motion of a rigid spacecraft B
around a small asteroid P . Body-fixed reference frames of the asteroid and spacecraft are
given by SP = {u, v,w} and SB = {i, j , k} with O and C as their origins, respectively. The
origin of SP is fixed at the asteroid mass center, and the coordinate axes are chosen to be
aligned along the principal moments of inertia. The moments of inertia of the asteroid are
assumed to satisfy

IP,zz > IP,yy, IP,zz > IP,xx . (1)

The second degree and order gravity field of the asteroid can be represented by the har-
monic coefficients C20 and C22 with other harmonic coefficients vanished, since the origin
of SP is fixed at the mass center and the coordinate axes are aligned along the principal
moments of inertia. C20 and C22 can be defined by (Hu and Scheeres 2004)

C20 = − 1

2Ma2e

(
2IP,zz − IP,xx − IP,yy

)
< 0, C22 = 1

4Ma2e

(
IP,yy − IP,xx

)
, (2)

where M and ae are the asteroid’s mass and mean equatorial radius, respectively.
It is assumed that the asteroid is rotating uniformly around itsmaximum-moment principal

axis, i.e., w-axis, with the angular velocity ωT . Also SB is attached to the mass center of the
spacecraft and coincides with the principal axes frame.

The attitude of the spacecraft is described with respect to SP by A

A = [
α,β, γ

]T
, (3)

where vectors α, β, and γ are coordinates of u, v, and w expressed in SB , respectively. A is
also the coordinate transformationmatrix from SB to SP . The position vector of the spacecraft
with respect to the asteroid mass center O expressed in SP is given by r = [x, y, z]T .
r̄ = [x̄, ȳ, z̄]T is the unit vector along r . The mass of the spacecraft is denoted by m, and the
inertia tensor I is denoted by

I = diag
{
Ixx , Iyy, Izz

}
, (4)

with the moments of inertia Ixx , Iyy , and Izz .

123



Orbital dynamics and equilibrium points around an asteroid 269

3 Equations of motion and perturbations

The equations of orbital motion expressed in the asteroid frame that is uniformly rotating
around the maximum-moment principal axis is given by (Scheeres 2012b)

r̈ + 2ωT × ṙ + ωT × ωT × r = αs/c, (5)

where αs/c is the acceleration of the spacecraft and ωT = [0, 0, ωT ]T .
In the attitude-restricted orbital dynamics, the asteroid’s non-spherical gravity andGOACP

are considered. The perturbations caused by SRP and solar tide are neglected. According to
Wang et al. (2014b),αs/c expressed in the asteroid frame can be obtained through a coordinate
transformation from SB to SP

αs/c = αKepler + αNSG + αOAC. (6)

In Eq. (6), αKepler is the Kepler two-body acceleration

αKepler = − μ

r2
r̄, (7)

where μ = GM, and G is the gravitational constant; αNSG is the perturbation acceleration of
the asteroid’s non-spherical gravity truncated on the second-order

αNSG = 3μ

2r4
{[

τ0
(
1 − 5z̄2

) − 10τ2
(
x̄2 − ȳ2

)]
r̄ + 2τ0 z̄e3 + 4τ2 (x̄e1 − ȳe2)

}
, (8)

where τ0 = a2eC20, τ2 = a2eC22, e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , and e3 = [0, 0, 1]T ; αOAC

is the acceleration caused by GOACP truncated on the second-order

αOAC = 3μ

2r4

{[
5r̄T A

(
I
m

)
AT r̄ − tr

(
I
m

)]
r̄ − 2A

(
I
m

)
AT r̄

}
. (9)

Here it deserves our special attention that, from the viewpoint of two bodies interacting
through theirmutual gravitational potential, the forcemodel given byEq. (6) is a second-order
approximation of the full gravitational force. That is, αs/c in Eq. (6) contains the zeroth-
order term αKepler , caused by the interaction between the zeroth-order mass distributions
of the asteroid and spacecraft, i.e., their masses, the second-order term αNSG, caused by
the interaction between the zeroth-order mass distribution of the spacecraft and the second-
order mass distribution of the asteroid, i.e., C20 and C22, and the second-order term αOAC,
caused by the interaction between the zeroth-order mass distribution of the asteroid and the
second-order mass distribution of the spacecraft, i.e., the moments of inertia.

Since the first-order mass distribution parameters of the asteroid and spacecraft, i.e., their
products of inertia, are all vanished in the principal axes frames SP and SB , in αs/c, there is
not a second-order term caused by the interaction between the first-order mass distributions
of the bodies. In αs/c, there are not first-order terms either, which, if exist, would be caused
by the interaction between the first-order mass distribution of one body and the zeroth-order
mass distribution (mass) of the other body.

In themodel,GOACPαOAC, which is associatedwith the central gravity term (zeroth-order
mass distribution) of the asteroid and the second-order mass distribution of the spacecraft, is
the dominant term of the full GOACP. Here, the full GOACP can be defined as the difference
of the gravitational force on an extended spacecraft versus that on a point mass spacecraft.
Actually, there are higher-order terms of GOACP, which are associated with higher-order
gravity terms of the asteroid or higher-order mass distribution parameters of the spacecraft,
but their effect is much weaker than that of αOAC.
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As stated above, from the viewpoint of two bodies interacting through themutual potential,
the non-spherical gravity αNSG and GOACP αOAC are actually both second-order terms. The
difference between them is which body is treated as a point mass and which body is treated
as an extended body with the second-order mass distribution: in αNSG, the spacecraft and
asteroid are treated as a point mass and an extended body, respectively, whereas, in αOAC, it
is the opposite case.

As shown by Eqs. (8) and (9), the ratio of GOACP to the asteroid non-spherical gravity
is order of (ρ/ae)2, determined by the relative dimension of the spacecraft with respect to
the asteroid. Usually, ρ is smaller than ae, therefore in the previous close-proximity orbital
dynamics only αNSG is considered and αOAC is neglected. However, as ρ increases, GOACP
will increase at the rate of ρ2. In this paper, as stated before, what we intend is to include
αOAC for large spacecraft.

Notice that if SRP and solar tide are considered, because of the asteroid’s rotation, the
solar position is changing with time in the asteroid body-fixed frame, and the existence
of equilibrium points may be much more complicated. In this study, we will focus on the
equilibrium points under perturbations of only the non-spherical gravity and GOACP. The
effects of SRP and solar tide can be assessed numerically in future studies.

GOACP αOAC depends on the parameter I/m of the spacecraft, which can be described by
three parameters: themass distribution parametersσx andσy , and the characteristic dimension
ρ. σx and σy are defined as

σx =
(
Izz − Iyy

Ixx

)
, σy =

(
Izz − Ixx

Iyy

)
, (10)

which have the following range

− 1 ≤ σy ≤ 1, −1 ≤ σx ≤ 1. (11)

Bounds of σy and σx are determined by the properties of the moments of inertia of a rigid
body: Ixx + Iyy > Izz , Ixx + Izz > Iyy , and Iyy + Izz > Ixx .

The characteristic dimension ρ, which is an estimation but not the real value, is defined
by (Wang et al. 2014a)

1

2
ρ2 = Ixx

m
. (12)

As shown above, Ixx/m describes the spacecraft characteristic dimension, and σx and σy

describe its non-spherical mass distribution. These are two basic elements of the gravitational
orbit–attitude coupling, which will be more significant with a larger ratio of the characteristic
dimension to the orbital radius or with a more non-spherical mass distribution.

4 Equilibrium points

Equilibrium points means that the spacecraft is staying stationary in the asteroid body-fixed
frame. That is to say, the spacecraft is on a stationary orbit. Since the asteroid is rotating
uniformly around its w-axis, the trajectory of the spacecraft in the inertial space is a circle
perpendicular to the asteroid’s rotational axis.
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4.1 Equilibrium and stability conditions

4.1.1 Equilibrium conditions

Equilibrium conditions can be easily obtained by setting r̈ = 0 and ṙ = 0 in the equations
of motion (5)

ωT × ωT × r = αs/c, (13)

which actually means that the gravitational force acting on the spacecraft balances the cen-
trifugal force of the circular orbital motion. By using Eqs. (6)–(9), the equilibrium condition
(13) can be written as

ωT × ωT × r = − μ

r2
r̄ + 3μ

2r4
{[

τ0
(
1 − 5z̄2

) − 10τ2
(
x̄2 − ȳ2

)]
r̄ + 2τ0 z̄e3 + 4τ2 (x̄e1 − ȳe2)

}

+ 3μ

2r4

{[
5r̄T A

(
I
m

)
AT r̄ − tr

(
I
m

)]
r̄ − 2A

(
I
m

)
AT r̄

}
. (14)

4.1.2 Stability conditions

The stability of equilibrium points is an important qualitative property. To study the stability,
we need to linearize the orbital dynamics Eq. (5) at the equilibrium point re. Equation (5)
can be rewritten as

d

dt

[
ṙ
r

]
=

[−2ωT ê3 −ω2
T ê3 ê3

E 0

] [
ṙ
r

]
+

[
αs/c

0

]
, (15)

where E is the 3 × 3 identity matrix, and the hat map ∧ is

ê3 =
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ . (16)

ṙ and r can be written in terms of variations δ ṙ and δr as

ṙ = 0 + δ ṙ, r = re + δr. (17)

Then, the linearized equation near re is given by

d

dt

[
0 + δ ṙ
re + δr

]
=

[−2ωT ê3 −ω2
T ê3 ê3

E 0

] [
0 + δ ṙ
re + δr

]
+

⎡

⎣αs/c
∣∣
e + ∂αs/c

∂ r

∣∣∣∣
e
δr

0

⎤

⎦ . (18)

According to equilibrium conditions at re
[
0
0

]
=

[−2ωT ê3 −ω2
T ê3 ê3

E 0

] [
0
re

]
+

[
αs/c

∣∣
e

0

]
, (19)

the variation equation near re can be obtained

d

dt

[
δ ṙ
δr

]
=

⎡

⎣−2ωT ê3 −ω2
T ê3 ê3 + ∂αs/c

∂ r

∣∣∣∣
e

E 0

⎤

⎦
[

δ ṙ
δr

]
. (20)
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The linear stability is determined by the system matrix of the linearized system

D (re) =
⎡

⎣−2ωT ê3 −ω2
T ê3 ê3 + ∂αs/c

∂ r

∣
∣∣
∣
e

E 0

⎤

⎦ , (21)

all the eigenvalues ofwhich are required to have a non-positive real part for the linear stability.
Since the system is conservative, there is only even terms in the characteristic polynomial of
D(re), and the eigenvalues will be symmetrical with respect to both the real and imaginary
axes. Then, the linear stability requires all the eigenvalues of D(re) to be purely imaginary.

Notice that D(re) is determined by the angular velocity ωT and the gradient of αs/c.
According to Eqs. (6)–(9), the gradient of αs/c can be derived as

∂αs/c

∂ r
= − μ

r3

(
E − 3r̄ r̄T

)

− 3μ

2r5

{
5r̄T A

(
I
m

)
AT r̄ − tr

(
I
m

)
+τ0

(
1 − 5z̄2

)
−10τ2

(
x̄2− ȳ2

)}{
7r̄ r̄T −E

}

− 3μ

r5

{[
tr

(
I
m

)
− τ0

]
r̄ r̄T + A

(
I
m

)
AT − τ0e3e

T
3 − 2τ2

(
e1e

T
1 − e2e

T
2

)}

− 15μ

r5

{
−A

(
I
m

)
AT r̄ r̄T − r̄ r̄T A

(
I
m

)
AT + τ0 z̄

(
e3 r̄

T + r̄ eT3

)

+ 2τ2
[
x̄

(
e1 r̄

T + r̄ eT1

)
− ȳ

(
e2 r̄

T + r̄ eT2

)]}
. (22)

We can see that the formula of ∂αs/c
∂ r is tedious and it is difficult to obtain the explicit

formula of the characteristic polynomial of D(re). The stability depends on not only the
asteroid parameters: μ, ωT , τ0, and τ2, but also the spacecraft parameters: A, I , and m.

In the calculation of off-axis equilibrium points, wewill determine the stability by numeri-
cal calculations and give some discussions. It will need lots of work to investigate the stability
thoroughly with respect to all the system parameters. The stability analysis of the six degree-
of-freedom rigid body motion has been carried out in several previous works, such as Wang
et al. (1991, 1992, 2014b), Wang and Xu (2013d). A similar method can be used in the
stability analysis of this problem. However, should keep in mind that in this problem the
three degree-of-freedom translational motion is studied, but not the six degree-of-freedom
rigid body motion.

4.2 Previous results

In previous studies on the close-proximity orbital dynamics about asteroids, such as Hu
(2002), only the perturbation acceleration of the asteroid’s non-spherical gravity was consid-
ered, i.e., αs/c = αKepler + αNSG. Then, the equilibrium condition is

ωT × ωT × r

= − μ

r2
r̄ + 3μ

2r4
{[

τ0
(
1−5z̄2

)−10τ2
(
x̄2 − ȳ2

)]
r̄ + 2τ0 z̄e3 + 4τ2 (x̄e1 − ȳe2)

}
. (23)

Previous results based on Eq. (23) have shown that within the equatorial plane of the
asteroid there exist two kinds of equilibrium points, which lie on the u-axes and on the
v-axis. It is impossible to have equilibrium points at other longitudes.

123



Orbital dynamics and equilibrium points around an asteroid 273

The radii of these stationary orbits on the u- and v-axes satisfy the following equations,
respectively

ω2
T r = μ

r2
− 3μ

2r4
(τ0 − 6τ2) , (24)

ω2
T r = μ

r2
− 3μ

2r4
(τ0 + 6τ2) . (25)

The stationary orbits lying on the longer-axis (u-axis) are always unstable, while those
lying on the shorter-axis (v-axis) are stable under the following approximated condition (Hu
2002) (

μ

ω2
T

)2/3

+ τ0 − 162τ2 > 0. (26)

4.3 Equilibrium points within equatorial plane

Because of GOACP αOAC, the equilibrium points determined by Eq. (14) in the attitude-
restricted orbital dynamics will be different from the previous classical equilibrium points
without αOAC determined by Eq. (23).

GOACP αOAC introduces several new parameters into the system, including the spacecraft
attitude A and parameter I/m, which includes σx , σy , and ρ. The system ismore complicated
than the previous classical system Eq. (23), and the types and locations of equilibrium points
will be more diverse.

In the present paper, we will study the equilibrium points within the asteroid equatorial
plane, that is z̄ = 0 in the equilibrium condition (14). Then, we can have the new equilibrium
condition within the equatorial plane as

ω2
T r = μ

r2
r̄ − 3μ

2r4

{[
τ0 − 10τ2

(
x̄2 − ȳ2

) + 5r̄T A (I/m) AT r̄ − tr(I/m)
]
r̄

+ 4τ2 (x̄e1 − ȳe2) − 2A (I/m) AT r̄
}

, (27)

which requires that 4τ2(x̄e1 − ȳe2) − 2A(I/m)AT r̄ is parallel to the position vector r̄ .

4.4 On-axis equilibrium points

First we focus on the on-axis equilibrium points. We assume that the equilibrium point is
located on the equatorial principal axes, i.e., on the u- or v-axis.

4.4.1 On u-axis

If the spacecraft is located on the u-axis, we have x̄ = ±1, ȳ = 0, and r̄ = [±1, 0, 0] = ±e1
in Eq. (27), and then the new equilibrium condition is given by

ω2
T re1 = μ

r2
e1 − 3μ

2r4

{[
τ0 − 6τ2+5eT1 A(I/m)AT e1−tr(I/m)

]
e1−2A(I/m)AT e1

}
.

(28)

This requires that e1 is the eigenvector of the matrix A(I/m)AT , which is actually the inertia
tensor of the spacecraft expressed in the asteroid frame SP . That is to say, the u-axis of the
asteroid lies on the principal axis of the spacecraft.
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Without loss of generality, we assume that the u-axis lies on the i-axis of the spacecraft
and have the same positive direction. Other cases can be converted into this case by changing
the arrangement of axes of the spacecraft’s body frame. In this case, the relative attitude of
the spacecraft with respect to the asteroid is just a single axis rotation around the u-axis, i.e.,

A =
⎡

⎣
1 0 0
0 cosφ − sin φ

0 sin φ cosφ

⎤

⎦ , (29)

where φ is the rotational angle. Therefore, we have

A(I/m)AT =
⎡

⎣
Ixx/m 0 0
0 cos2 φ Iyy/m + sin2 φ Izz/m sin φ cosφ

(
Iyy/m − Izz/m

)

0 sin φ cosφ
(
Iyy/m − Izz/m

)
sin2 φ Iyy/m + cos2 φ Izz/m

⎤

⎦ .

(30)

Then, the equilibrium condition (28) can be written as

ω2
T r = μ

r2
− 3μ

2r4

[
2
Ixx
m

− Iyy
m

− Izz
m

+ τ0 − 6τ2

]
. (31)

The orbital radius of the equilibrium point, which is the same with the orbital radius of the
relative equilibrium in the gravitationally coupled orbit–attitude (full) dynamics (Wang et al.
2014b; Wang and Xu 2014b), will be determined by Eq. (31). At the relative equilibrium in
Wang et al. (2014b), the spacecraft has the same attitude with the asteroid, i.e., φ = 0. Here,
the rotational angle φ does not affect the location of the equilibrium point. This is because
in the orbital dynamics Eq. (5) the gravitational force has been truncated up to the second
order, and at the equilibrium point the rotational angle φ only affects the higher-order terms.

Through the comparison between Eqs. (24) and (31), we can easily see the effect of
GOACP αOAC. Different from the previous orbital dynamics without αOAC in Eq. (24), the
orbitalmotion of the spacecraft in Eq. (31) is affected by itsmoments of inertia. This effect can
be considered as an equivalent change of the oblateness and ellipticity of the asteroid from the
viewpoint of orbital dynamics without αOAC. Notice that in the case of Ixx = Iyy = Izz , i.e.,
the spacecraft is a homogeneous sphere under the second-order approximation, the effects of
moments of inertia are vanished. In this case, Eq. (31) will be reduced to the previous result
without αOAC in Eq. (24). Besides, for a larger ρ, GOACP is more significant. These results
are consistent with the physical origin of the gravitational orbit–attitude coupling.

Because of the symmetry, if the u-axis lies on the i-axis of spacecraft but has the opposite
direction, we can also have the orbital radius given by Eq. (31).

If the u-axes lies on the j - and k-axes of the spacecraft, with the same method, we can
obtain the similar equilibrium conditions, respectively

ω2
T r = μ

r2
− 3μ

2r4

[
2
Iyy
m

− Ixx
m

− Izz
m

+ τ0 − 6τ2

]
, (32)

ω2
T r = μ

r2
− 3μ

2r4

[
2
Izz
m

− Ixx
m

− Iyy
m

+ τ0 − 6τ2

]
. (33)

4.4.2 On v-axis

If we assume that the spacecraft is located on the v-axis, we will have x̄ = 0, ȳ = ±1, and
r̄ = [0,±1, 0] = ±e2 in the equilibrium condition (27), and then the corresponding new
equilibrium condition is given by

123



Orbital dynamics and equilibrium points around an asteroid 275

ω2
T re2= μ

r2
e2 − 3μ

2r4

{[
τ0+6τ2+5eT2 A(I/m)AT e2 − tr(I/m)

]
e2 − 2A(I/m)AT e2

}
.

(34)

This requires that e2 is the eigenvector of A(I/m)AT . That is to say, the v-axis of the asteroid
lies on the principal axis of the spacecraft.

With a similar method with the cases on the u-axis, we can obtain the equations deter-
mining the orbital radius of equilibrium points as

ω2
T r = μ

r2
− 3μ

2r4

[
2
Ixx
m

− Iyy
m

− Izz
m

+ τ0 + 6τ2

]
, (35)

ω2
T r = μ

r2
− 3μ

2r4

[
2
Iyy
m

− Ixx
m

− Izz
m

+ τ0 + 6τ2

]
, (36)

ω2
T r = μ

r2
− 3μ

2r4

[
2
Izz
m

− Ixx
m

− Iyy
m

+ τ0 + 6τ2

]
, (37)

which correspond to the cases that the v-axis lies on the i-, j -, and k-axes of the space-
craft, respectively. The differences between Eqs. (35)–(37) and the previous orbital dynamics
Eq. (25) are due to GOACP αOAC.

As stated above, the on-axis equilibrium points can be divided into four groups, which are
on the +u-, −u-, +v−, and −v-axes of the asteroid, respectively. In each group, there exist
three different cases that the equatorial principal axis of the asteroid lies on the i-, j -, and
k-axes of the spacecraft, respectively. Although the longitudes of equilibrium points are the
same with those in the previous orbital dynamics without αOAC, the orbital radii are different
due to GOACP αOAC, as shown by Eqs. (31)–(33) and (35)–(37).

4.5 Off-axis equilibrium points

In this subsection, we obtain the off-axis equilibrium points, which are located off the u-
and v-axes of the asteroid. These off-axis equilibrium points cannot exist in the previous
orbital dynamics without αOAC, but can exist in the attitude-restricted orbital dynamics due
to GOACP.

The spacecraft can stay at a stable equilibrium point without orbital control, and stay
at an unstable equilibrium point with small orbital control without needing to null out the
unbalanced gravity. Therefore, the off-axis equilibrium points can be useful in the asteroid
close-proximity operations, such as the asteroid body-fixed hovering.

4.5.1 Off-axis equilibrium conditions

As for these off-axis equilibrium points, we have x̄ �= 0, ȳ �= 0, and r̄ = [x̄, ȳ, 0] in the
equilibrium condition (27), which cannot be simplified further.

Equation (27) requires that 4τ2(x̄e1 − ȳe2) − 2A(I/m)AT r̄ is parallel to r̄ . Notice that
r̄ is within the equatorial plane spanned by e1 and e2, therefore A(I/m)AT r̄ should also
be within the equatorial plane. Then, we can know that the equatorial plane is the principal
plane of the inertia tensor A(I/m)AT that is expressed in SP . That is to say, one of the i– j
plane, j–k plane, and i–k plane of the spacecraft is within the e1–e2 plane of the asteroid.
Without loss of generality, we assume that the i– j plane is within the e1–e2 plane, and the
unit normal vector k of the i– j plane has the same direction with e3. Other cases can be
converted into this case by changing the arrangement of axes of SB . That is to say, the relative
attitude of the spacecraft with respect to the asteroid is just a single axis rotation around the
w-axis, i.e.,
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A =
⎡

⎣
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤

⎦ , (38)

where ψ is the rotational angle. Therefore, we have

A(I/m)AT =
⎡

⎣
cos2 ψ Ixx/m + sin2 ψ Iyy/m sinψ cosψ

(
Ixx/m − Iyy/m

)
0

sinψ cosψ
(
Ixx/m − Iyy/m

)
sin2 ψ Ixx/m + cos2 ψ Iyy/m 0

0 0 Izz/m

⎤

⎦ ,

(39)

4τ2 (x̄e1 − ȳe2) − 2A(I/m)AT r̄

= 2

⎡

⎢⎢
⎣

−
(
cos2 ψ Ixx/m + sin2 ψ Iyy/m − 2τ2

)
x̄ − sinψ cosψ

(
Ixx/m − Iyy/m

)
ȳ

− sinψ cosψ
(
Ixx/m − Iyy/m

)
x̄ −

(
sin2 ψ Ixx/m + cos2 ψ Iyy/m + 2τ2

)
ȳ

0

⎤

⎥⎥
⎦ .

(40)

Then, the condition that 4τ2(x̄e1 − ȳe2) − 2A(I/m)AT r̄ is parallel to r̄ is equivalent to
(
cos2 ψ Ixx/m + sin2 ψ Iyy/m − 2τ2

)
x̄ + sinψ cosψ

(
Ixx/m − Iyy/m

)
ȳ

sinψ cosψ
(
Ixx/m − Iyy/m

)
x̄ + (

sin2 ψ Ixx/m + cos2 ψ Iyy/m + 2τ2
)
ȳ

= x̄

ȳ
, (41)

which can be further simplified as
(
cos2 ψ + sin2 ψ Iyy/Ixx − 4τ2/ρ2

)
x̄ + sinψ cosψ

(
1 − Iyy/Ixx

)
ȳ

sinψ cosψ
(
1 − Iyy/Ixx

)
x̄ + (

sin2 ψ + cos2 ψ Iyy/Ixx + 4τ2/ρ2
)
ȳ

= x̄

ȳ
. (42)

We can see that the condition (42) is affected by the mass distribution parameter Iyy/Ixx ,
the characteristic dimension ρ and the attitude angle ψ of the spacecraft. These parameters
are all introduced into the system by GOACP αOAC. If αOAC is neglected, Eq. (41) will be
x̄/ȳ = −x̄/ȳ, which implies that x̄ = 0 or ȳ = 0. This is the reason why the off-axis
equilibrium point cannot exist in the previous orbital dynamics without αOAC.

After some rearrangements, Eq. (42) can be simplified as

sinψ cosψ
(
1 − Iyy/Ixx

) (
x̄2 − ȳ2

)

+ [(
sin2 ψ − cos2 ψ

) (
1 − Iyy/Ixx

) + 8C22a
2
e /ρ

2] x̄ ȳ = 0. (43)

By using the relation x̄2 + ȳ2 = 1, Eq. (43) can be written further as

x̄4 − x̄2 + c = 0, (44)

where

c = sin2 ψ cos2 ψ
(
1 − Iyy/Ixx

)2

4 sinψ2 cosψ2
(
1 − Iyy/Ixx

)2 + [(
sin2 ψ − cos2 ψ

) (
1 − Iyy/Ixx

) + 8C22a2e /ρ
2
]2 > 0.

(45)

Therefore, we have

x̄2 = 1 ± √
1 − 4c

2
, (46)
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which contains four solutions: if the terms sinψ cosψ(1 − Iyy/Ixx ) and (sin2 ψ − cos2 ψ)×
(1 − Iyy/Ixx ) + 8C22a2e /ρ

2 in Eq. (43) have the same sign, x̄2 − ȳ2 and x̄ ȳ will have the
opposite signs, and then

(1) x̄ =
√
1 + √

1 − 4c

2
, ȳ = −

√
1 − √

1 − 4c

2
;

(2) x̄ = −
√
1 + √

1 − 4c

2
, ȳ =

√
1 − √

1 − 4c

2
;

(3) x̄ =
√
1 − √

1 − 4c

2
, ȳ =

√
1 + √

1 − 4c

2
; (47)

(4) x̄ = −
√
1 − √

1 − 4c

2
, ȳ = −

√
1 + √

1 − 4c

2
;

If the terms sinψ cosψ(1 − Iyy/Ixx ) and (sin2 ψ − cos2 ψ)(1 − Iyy/Ixx ) + 8C22a2e /ρ
2 in

Eq. (43) have the opposite signs, x̄2 − ȳ2 and x̄ ȳ will have the same sign, and then

(1) x̄ =
√
1 + √

1 − 4c

2
, ȳ =

√
1 − √

1 − 4c

2
;

(2) x̄ = −
√
1 + √

1 − 4c

2
, ȳ = −

√
1 − √

1 − 4c

2
;

(3) x̄ =
√
1 − √

1 − 4c

2
, ȳ = −

√
1 + √

1 − 4c

2
; (48)

(4) x̄ = −
√
1 − √

1 − 4c

2
, ȳ =

√
1 + √

1 − 4c

2
.

These four solutions are located in four quadrants of the equatorial plane of the asteroid,
i.e., the e1 − e2 plane, respectively. Because of the symmetry of the system, the equilibrium
points in the first and third quadrants are symmetrical with respect to the asteroid center, and
also the equilibrium points in the second and fourth quadrants. That is, in Eqs. (47) and (48)
the first and second solutions have the opposite signs, and also the third and fourth solutions.

With Eqs. (45), (47), and (48), we can obtain the position vector r̄ = [x̄, ȳ, 0], i.e., the
longitude of the off-axis equilibrium point. Then according to Eq. (27), the orbit radius of
the off-axis equilibrium point can be calculated by

ω2
T r = μ

r2
− 3μ

2r4

[
τ0 − 10τ2

(
x̄2 − ȳ2

) + 5r̄T A(I/m)AT r̄ − tr(I/m) + a
]
, (49)

where a r̄ = 4τ2(x̄e1 − ȳe2) − 2A(I/m)AT r̄ .

4.5.2 Calculation examples

We want to give some calculation examples of the off-axis equilibrium points and to inves-
tigate the effect of GOACP αOAC.
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The parameters of the asteroid are chosen to be

μ = 5m3/s2, C20 = −0.12, C22 = 0.01, ae = 250m, ωT = 2.9089 × 10−4 s−1,

(50)
which has a similar size with the target of the OSIRIS-REx mission, the asteroid 101955
Bennu (provisional designation 1999 RQ36), but has larger values for C20 and C22 than
the approximate values of Bennu, which are calculated under the assumption of filling its
currently best determined shape model with a homogeneous bulk density. The period of the
asteroid’s uniform rotation is 6h.

The mass distribution of the spacecraft is set to be

Ixx :Iyy :Izz = 1.5:1:1.2, (51)

which is a common case in space engineering. As for ρ, we choose six different values

ρ = 2m, ρ = 50m, ρ = 100m, ρ = 120m, ρ = 140 m, ρ = 160 m. (52)

Theminimumρ = 2 m corresponds to a general asteroid explorer, such asNEARmission,
OSIRIS-REx mission, and Hayabusa mission. The maximum ρ = 160 m corresponds to a
much larger spacecraft or a space station in future asteroid deflection missions, such as a big
gravity tractor, or the mother ship in the asteroid resource exploitation. These situations are
extreme from the viewpoint of current deep space missions, but perhaps will be common in
future asteroid missions.

By using Eqs. (47)–(49), the longitudes and orbital radii of off-axis equilibrium points
can be calculated. We then plot the locus of equilibrium points in the equatorial plane of the
asteroid with respect to the attitude angle ψ in six cases of different ρ. The considered range
of ψ is 0 ≤ ψ ≤ π , since π ≤ ψ ≤ 2π is actually the same case with 0 ≤ ψ ≤ π because
of the symmetry of the spacecraft inertia tensor. The stability of these off-axis equilibrium
points are also calculated by using D(re) in Eq. (21).

The loci of equilibrium points in the u–v plane in the six cases with respect to 0 ≤ ψ ≤ π

are given in Figs. 2, 3, 4, 5, 6, and 7, respectively. In the loci, the stable equilibrium points
are denoted by larger dots than the unstable ones. To distinguish between stable and unstable
points better, we also indicate the stability using texts in the figures.

Fig. 2 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 2 m
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Fig. 3 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 50 m

Fig. 4 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 100 m

Fig. 5 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 120 m
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Fig. 6 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 140 m

Fig. 7 Loci of off-axis
equilibrium points with respect to
ψ in the case of ρ = 160 m

4.5.3 Discussion

According to Figs. 2, 3, 4, 5, 6, and 7, we can reach some conclusions about the locations
and stability of the off-axis equilibrium points:

1. In thesefigures, the loci of equilibriumpoints and their stability have several symmetries.
They are symmetrical with respect to the equatorial principal axes u- and v-axes. This is due
to the symmetries of mass distributions of the asteroid and spacecraft. Besides, for a given
value of ψ , the equilibrium points and their stability are symmetrical with respect to the
center of the asteroid, and the two symmetrical equilibrium points have the same parameters
with each other. This symmetry has also been shown by Eqs. (47) and (48). Although in the
figures the stability is indicated by using texts only for some equilibrium points, the stability
of other equilibrium points is easy to know by these symmetries.

2. As ρ increases, the significance of GOACP αOAC also increases. Meanwhile, the shift
of equilibrium point from the equatorial principal axes becomes larger, and the effect of
GOACP on the stability of equilibrium points becomes more significant.
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When ρ = 2 m, GOACP αOAC is weak. The system is close to the previous orbital
dynamics without αOAC, and the equilibrium points are near to those in the previous model
given by Eqs. (24) and (25), as shown by Fig. 2. The stability is also close to that in previous
orbital dynamics determined by the asteroid parameters μ, ωT , τ0 and τ2 as in Eq. (26): By
using Eq. (26) we know that the classical equilibrium points on the v-axis are stable, and
those on the u-axis are unstable; We also know that in Fig. 2 all the off-axis equilibrium
points near the v-axis are stable, whereas all those near the u-axis are unstable.

In Figs. 3, 4, and 5, as ρ increases to 120 m, the significance of GOACP αOAC increases.
Consequently, the loci of equilibrium points expand from the vicinity of the classical equilib-
rium points without αOAC, and the maximum shift of equilibrium points from the equatorial
principal axes increases. Besides the locations, the stability property of equilibrium points
also diverges from that in the previous dynamics without αOAC: We can see that in the case
of ρ = 50 m all equilibrium points near the v-axis are stable and all the equilibrium points
near the u-axis are unstable, whereaswhenρ increases to 100–120m some equilibriumpoints
near the v-axis have become unstable, as shown by Figs. 4 and 5.

In Figs. 6 and 7, when ρ increases to 140–160m, the loci of equilibrium points expand
to two closed curves around the asteroid. That is to say, the equilibrium point can exist
at an arbitrary longitude in the equatorial plane with an appropriate attitude angle ψ . The
equilibrium points on the outer closed curve are all unstable. On the inner closed curve, the
equilibrium points near the u-axis are stable and those near the v-axis are unstable. Compared
with Figs. 2, 3, 4, and 5, we can find that the locations of the stable equilibrium points have
moved from near the v-axis to near the u-axis.

Therefore, by using GOACP αOAC, the spacecraft can stay at an arbitrary longitude around
the asteroidwithout orbital control at the stable equilibriumpoints orwith small orbital control
at the unstable ones. This result is totally different from the previous orbital dynamics without
αOAC, and it provides many potential applications for the asteroid proximity-operations. For
example, the asteroid body-fixed hovering at an arbitrary longitude can be achieved by using
GOACP αOAC.

Also notice that in Figs. 6 and 7 as ρ increases from 140 to 160m, GOACP becomes more
significant. Consequently, the separation between the two closed curves increases.

3. As shown by Figs. 2, 3, 4, and 5 when ρ is about and smaller than 120m, the loci of
equilibrium points with respect to ψ are four symmetrical closed curves around the classical
equilibrium points without αOAC. As ρ increases, the closed curves become larger. For a
given value of ψ , there exist four equilibrium points that are located on the four closed
curves, respectively, and are symmetrical with respect to the asteroid center.

With the attitude angle ψ changing from 0 to π , the equilibrium point will move along
the closed curve for one cycle. When ψ changes from 0 to π/2, the equilibrium point will
move off the asteroid principal axis, and after reaching the maximum shift it will move back
towards and finally return to the asteroid principal axis when ψ = π/2. When ψ changes
further from π/2 to π , the equilibrium point will move off the equatorial principal axis on
the opposite direction.

The locus between ψ = π/2 and ψ = π is symmetrical with that between ψ = 0 and
ψ = π/2 with respect to the asteroid principal axis. The equilibrium point will return to the
starting point ψ = 0 on the asteroid principal axis when ψ = π . The two equilibrium points
on the asteroid principal axis when ψ = 0(π) and ψ = π/2, which are actually on-axis
equilibrium points, correspond to the cases that the i- and j -axes of the spacecraft are parallel
to the asteroid principal axis, respectively.

In the cases of ρ = 100 m and ρ = 120 m, as the equilibrium point moves along the
closed curve near the v-axis, the stability property can be changed.
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4. As shown by Figs. 5 and 6, when ρ increases from 120 to 140m, the loci of equilibrium
points have fundamental changes.

When ρ increases from 120 to 140m, the starting point ψ = 0 and the ending point
ψ = π of the two closed curves crossing the u-axis in Fig. 5 “jump” from the u- to +v-axis
and −v-axis in Fig. 6, and then these two closed curves in Fig. 5 become two open curves
connecting the asteroid’s +v- and −v-axes in Fig. 6. These two open curves form the outer
closed curve around the asteroid, which means that the equilibrium point can exist at an
arbitrary longitude with an appropriate attitude angle ψ .

At the same time, the starting point ψ = 0 and the ending point ψ = π of the two
closed curves crossing the v-axis in Fig. 5 “jump” to +u- and −u-axis in Fig. 6, and then
these two closed curves crossing the v-axis in Fig. 5 become two open curves connecting
the asteroid’s +u- and −u-axes in Fig. 6. These two open curves also form a closed curve,
the inner one, which also means that the equilibrium point can exist at an arbitrary longitude
with an appropriate attitude angle ψ .

We can see that when the locations of equilibrium points have fundamental changes from
Fig. 5 to Fig. 6, the stability property has followed the equilibrium points: the locations of
the stable equilibrium points have moved from near the v-axis to near the u-axis.

4.5.4 Attitude stabilization

As shown above, the asteroid body-fixed hovering at an arbitrary longitude can be achieved
at the off-axis equilibrium points by using GOACP αOAC.

However, in the attitude-restricted orbital dynamics, we have assumed that the spacecraft
is controlled ideally to a given attitude with respect to the asteroid. At the off-axis equilib-
rium points, the spacecraft attitude is biased with respect to the nadir direction; therefore,
the spacecraft will suffer from a constant gravity gradient torque caused by the asteroid
gravity. The angular momentum caused by this constant gravity gradient torque needs to be
absorbed consistently by the onboard attitude control system, i.e., the reaction wheels. When
the angular momentum of the reaction wheels reaches saturation, fuel will be needed for
the unloading. Therefore, it is necessary to assess the effect of the gravity gradient torque
to see how much fuel will be needed to unload the angular momentum of the reaction
wheels.

The second-order gravity gradient torque acting on the spacecraft expressed in its body-
fixed frame SB can be given by

T = 3μ

R5
R × I R, (53)

where R = AT r is the position vector with respect to the asteroid expressed in the spacecraft
body-fixed frame SB . Since the relative attitude A with respect to the asteroid is a single axis
rotation around the w-axis, see Eq. (38), the position vector R is within the i– j plane
of the spacecraft, and then the gravity gradient torque T has non-zero component only
on the k-axis of the spacecraft with its components on the i- and j -axes both equal to
zero.

We have calculated the magnitude of gravity gradient torque per unit mass (kg) of the
spacecraft for the off-axis equilibrium points in Figs. 2, 3, 4, 5, 6, and 7. Curves of magnitude
of the gravity gradient torque per unit mass (kg) with respect to the attitude angle 0 ≤ ψ ≤ π

in the cases of six different values of ρ are given in Fig. 8. For each value of ρ, there are two
curves corresponding to the two groups of off-axis equilibriumpoints that are not symmetrical
with respect to the asteroid center.
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Fig. 8 Magnitude of gravity
gradient torque per unit mass (kg)
of spacecraft at off-axis
equilibrium points

We can find that as ρ increases, the magnitude of gravity gradient torque also increases.
In the case of ρ = 2 m the magnitude of gravity gradient torque is too small to be seen in
Fig. 8. In the case of ρ = 160 m the maximum magnitude of gravity gradient torque per
unit mass (kg) of the spacecraft is about 3 × 10−4 N m/kg. In worst case, all the absorbed
angular momentum by the reaction wheels needs to be unloaded by the thrusters. The average
control acceleration by the thrusters to unload the angular momentum can be estimated as
about 3 × 10−4/ρ = 1.8750 × 10−6 m/s2, which is practical. In a better case, before the
wheels reach saturation, the angular momentum can be stored temporarily by the wheels and
can be unloaded by the gravity gradient torque with the opposite direction in later mission
operations. Therefore, the asteroid body-fixed hovering at the off-axis equilibrium points by
using GOACP αOAC is practical in space engineering.

5 Conclusions

We have added GOACP into the close-proximity orbital dynamics about asteroids for a large
spacecraft to improve the previous orbital models. By assuming that the spacecraft attitude
is controlled ideally with respect to the asteroid, we have proposed a new orbital dynamics
model called the attitude-restricted orbital dynamics.

Two kinds of equilibrium points within the asteroid equatorial plane are discovered: on-
and off-axis. On-axis equilibrium points are located on the asteroid equatorial principal
axes, and require one of the principal axes of the spacecraft to be parallel to the equatorial
principal axis. The existence of off-axis equilibrium points, which cannot exist in previous
orbital models, is attributed to GOACP. Off-axis equilibrium points within the equatorial
plane require that one of the spacecraft principal planes is parallel to the equatorial plane.
Locations of the off-axis equilibrium points depends on the relative attitude of spacecraft, and
the loci of equilibriumpointswith respect to the attitude varywith the spacecraft characteristic
dimension. In the case of an enough large characteristic dimension, the off-axis equilibrium
points can exist at an arbitrary longitude in the equatorial plane with an appropriate attitude.

Our results have shown that, because of GOACP, the phase space of attitude-restricted
orbital dynamics is much more complicated than that of the previous close-proximity orbital
dynamics. The equilibrium points can give a basic picture of the phase space. More impor-
tantly, the spacecraft can stay at stable equilibrium points without orbital control and stay at
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unstable equilibrium points with small control without needing to null out the unbalanced
gravity. Therefore, the equilibrium points are useful for the asteroid close-proximity oper-
ations. The asteroid body-fixed hovering at an arbitrary longitude can be achieved at the
off-axis equilibrium points by using GOACP without or with small orbital control.

The location and attitude of the spacecraft at equilibrium points depends on its mass
distribution. In the future, it is of great interest to study how to modify the mass distribution
(shape) of the spacecraft, such as by using deployable appendices, to affect its position and
attitude at the equilibrium points.
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