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Abstract The multi-revolution elliptic halo (ME-Halo) orbit is a kind of strictly periodic
orbit existing in the elliptic restricted three-body problem (ERTBP) model. Its remarkable
features include that it survives the eccentricity perturbation of the primaries, it has a long
period commeasurable with the primary period and that its stability property varies greatly as
the eccentricity. The authors utilized continuation methods together with the multi-segment
optimization method to generate two groups of ME-Halo orbits, and then systematically
investigated their stability evolution with respect to the eccentricity and the mass ratio of the
primaries. These parameters show complicate impacts on the stability. SomeME-Halo orbits
can possess more than one pairs of real eigenvalue, some have negative real eigenvalues
or complex eigenvalues out of the unit circle. For certain parameters, continuation failures
are observed to be accompanied by a series of eigenvalue collision and bifurcations. The
results in this paper can help to understand the nonautonomous dynamic of the ERTBP and
can further aid in understanding the dynamical environment for real-world applications and,
thus, contribute to the trajectory development process.

Keywords Elliptic restricted three-body problem (ERTBP) · Strictly periodic orbit ·
Continuation method · Stability · ME-Halo orbit

1 Introduction

Since Euler first found three collinear libration points of Circular Restricted Three-Body
Problem (CRTBP) in 1767 and Lagrange found the other two triangular libration points in
1772 (Meyer et al. 2009), many mysteries in this fascinating field have been revealed and
fruitful applications in space exploration have been yielded. In 1967 Szebehely comprehen-
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sively surveyed both analytical and numerical outcomes until his time (Szebehely 1967).
Farquhar and Kamel then revealed the existence of halo orbit and proposed to use it as a relay
to communicate with the far side of the Moon (Farquhar and Kamel 1973). Later Richardson
constructed the third-order analytical solution of halo orbits usingLindstedt–Poincarémethod
in the truncated system (Richardson 1980), with which the shooting method was applied to
generate halo orbits in the full CRTBP. Howell and Pernicka improved it and developed the
multiple shooting method to compute halo and Lissajous orbits in more realistic systems
(Howell and Pernicka 1987). The research in the CRTBP provides new possibilities in prac-
tical applications. Belbruno studied temporary captures by the primary in the CRTBP and
proposed the weak stable region (WSB) theory, which was once utilized to rescue Hiten by
designing a low-energy transfer to the Moon (Belbruno et al. 2012). More recently, Barden,
Howell, Lo, Koon, Gomez and other researchers introduced the dynamical system theory to
CRTBP (Barden et al. 1996; Koon et al. 2000; Gomez et al. 2004; Koon et al. 2011), which
is a relatively modern technique. They developed theories of libration point orbits and the
associated invariant manifolds, and designed low-energy transfer orbits by Poincaré sections.

The motion of planets in the Solar System can be better described by Keplerian ellip-
tic orbits with eccentricity e ranging from 0.0086 to 0.2488 (Russell 2012), and Parker
and Anderson (2014) also claimed that the most notable perturbation leading the orbit to
diverge from being periodic was the nonzero eccentricity of the orbits of the primaries.
As a consequence, research priorities were partially turned to extending the results of the
CRTBP to the elliptic restricted three-body problem (ERTBP). The next step was naturally
to focus on the existence and stability of the libration periodic orbits in the ERTBP. Hep-
penheimer studied the out-of-plane motion in the ERTBP utilizing Jacobi elliptic functions
(Heppenheimer 1973). He constructed linear solution of the out-of-plane motion and used
Lindstedt–Poincaré method to obtain a third order expansion. He claimed that the eccen-
tricity tended to decrease the period while the nonlinearity tended to increase the period.
So one can expect the period of in-plane, out-of-plane and the primary to be commensu-
rable pairwise. Recently Hou and Liu constructed analytical expansion of collinear libration
point orbits in the ERTBP by Lindstedt–Poincaré method (Hou and Liu 2011). The result is
complicated since the appearance of eccentricity requires the expansion with one more para-
meter. Broucke had first systematically studied the stability of periodic orbits in the planar
ERTBP (Broucke 1969). Three important properties of the planar ERTBP, which are also
true in spatial case, are given as: the absence of Jacobi integral; discrete periodic orbits and
two system parameters, the mass ratio μ and the eccentricity e. But the study was limited
to the planar situation and period orbits were mostly constructed in systems with μ > 0.2,
which makes them less meaningful for solar planetary system. Sarris continued a vertical
Lyapunov orbit with period 2π in the CRTBP to ERTBP along both μ and e, then he stud-
ied their stability and divided the stability coefficients space into 12 regions (Sarris 1989).
But the system he investigated is also with a large μ which leads to periodic orbits with
large periods. His one important state is that the ERTBP model cannot have both axial and
bilateral symmetry at the same time. Gurfil and Kasdin applied niching genetic algorithm
to search practically stable geocentric orbits in the ERTBP and discussed their applications
(Gurfil and Kasdin 2002). These orbits remain finite motion for a long time but they revolve
around the primary rather than libration points. Gurfil and Meltzer worked out an analytical
approximation of the monodromy matrix of orbits in linearized ERTBP (Gurfil and Meltzer
2007), which is very helpful in stationkeeping problem but the study of the stability requests
full model monodromy matrix. Antoniadou and Voyatzis had investigated resonant periodic
orbits in the general three-body problem by continuation starting with periodic orbits in the
ERTBP (Antoniadou and Voyatzis 2013).
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Practical applications of ERTBP are also drawing great attentions, so periodic orbits
with interesting properties different from that in the CRTBP are needed to be explored,
which is as well the aim of this paper. Hiday and Howell had studied the optimal trans-
fer between libration point orbits in the ERTBP since 1992 (Hiday and Howell 1994).
Multiple shooting method could also be used to construct Lissajous orbits in the ERTBP
(Howell and Pernicka 1987; Pernicka 1990). Using the same method, Mahajan and Per-
nicka recently investigated the construction of halo like orbits in asteroidal ERTBP and
proposed their applications (Mahajan and Pernicka 2012). Later, Mahajan presented more
results around several asteroids and as well worked out an orbit control strategy (Maha-
jan 2013). But the periodic orbit they investigated is not strictly periodic but only close
after several revolutions, and the stability of these orbit is investigated by the monodromy
matrix of only one revolution of the orbit, which actually only reflects local stability proper-
ties. For more accurate studies, Campagnola generated elliptic halo orbit possessing periods
commensurable with that of the primaries, and found the stability bifurcation of these orbit
(Campagnola et al. 2008). He also designed the gravitational capture of BepiColombo mis-
sion and found that the resulted trajectory shadowed the manifold of a halo like orbit in
the Sun–Mercury ERTBP (Campagnola 2010). Qi et al. studied the gravitational capture in
the Sun–Mercury ERTBP (Qi et al. 2014b) and Earth–Moon ERTBP (Qi and Xu 2014). It
should be noticed that Qi et al. (2014a) also investigated the problem in a four-body prob-
lem model, which is a more accurate approximation of the Sun–Earth–Moon system. From
another perspective, Hyeraci and Topputo numerically investigated the role of true anom-
aly in ballistic capture as an extension of the WSB theory, and proposed a method to help
design missions in planar ERTBP (Hyeraci and Topputo 2010, 2013). In the opinion of the
authors, no enough attention has been paid on the studies of the strictly periodic orbits in the
ERTBP.

In this paper, the authors present a systematic study of the stability of two groups of
multi-revolution elliptic halo (ME-Halo) orbits in the ERTBP. The ME-Halo orbit is strictly
periodic and has a long period, which is rationally commeasurable with that of the primary
bodies. The results in this contribution can serve as a fresh supplement to the study of the
ERTBP. The observation of the stability evolutions of theME-Halo can help in understanding
the nonautonomous dynamics of the ERTBP. The eigenvalues of the group of ME-Halo orbit
in this paper shows various collision and bifurcations, as a consequence of the appearance of
the eccentricity. Their special features orbit can also provide new choices of nominal orbits
in space mission design.

The paper is organized as following. In the second section, the generation and classification
of ME-Halo orbits are elaborated, where the multi-segment optimization method is used to
continue ME-Halo along both μ and e. In the third section, numerical results about the two
groups of orbits are demonstrated and discussed in detail. Collisions and bifurcations of
eigenvalues of the monodromy matrix are also summarized. In the last section, conclusions
and related speculations are presented.

2 Background

2.1 Dynamic models

The full three-body problem has no complete solution because there are 18 first order dif-
ferential equations but only 10 general integrals (Meyer et al. 2009). For the application of
space trajectory design, an intuitive approach is to study the restricted three-body problem
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Fig. 1 Barycenter inertial
coordinate frame (X, Y, Z) and
barycenter synodic coordinate
frame (x, y, z). The z-axis
finishes the right handed system
pointing out of the paper. In the
CRTBP the primary orbit (dashed
arc) is circular while in the
ERTBP it is elliptical. In the
ERTBP, the epoch when
primaries are at periapsis is set to
be f0 = 0. The rotation angle of
synodic frame if given by the true
anomaly f

(RTBP), where the mass of the third body, usually a spacecraft, tends to zero and so that it
does not affect the motion of the primaries. In the RTBP, the motion of this infinitesimal third
body under the attraction of other two primaries’ gravity fields is of interest. In this section
a brief review of the equation of motion in the CRTBP and ERTBP is given.

In the CRTBP, the primaries revolves each other on Keplerian circular orbit around their
common barycenter. Nechvile first employed a transform from the inertial coordinate frame
to a synodic coordinate frame, with which equations of motion are most concise expressed
and there comes the Jacobi integral. The origin of the synodic rotating coordinate frame
locates at the barycenter. The x-axis points from the larger primarym1 to the smaller onem2.
The z-axis is parallel with the angular momentum (pointing out of the paper) and the y-axis
finishes the right-handed system. In Fig. 1 the eccentricity of the primary orbit (dashed arcs)
is zero for the CRTPB model. The motion is normalized by adopting the distance between
primaries r12 as the length unit, the total primary mass (m1 + m2) as the mass unit, and the
reciprocal of angular velocity n as the time unit, so that m1 is fixed at x1 = −μ and m2 at
x2 = 1−μ, where the scaled mass of the smaller primary μ = m2/(m1 +m2) is introduced
as the only system parameter. In this way, the equations of motion for the CRTBP is given
by (Szebehely 1967)

ẍ − 2 ẏ = �x

ÿ + 2ẋ = �y

z̈ = �z (1)

where

�(x, y, z) = 1

2
(x2 + y2) + 1 − μ

r1
+ μ

r2
+ 1

2
μ(1 − μ) (2)

with r1 = √
(x + μ)2 + y2 + z2 and r2 = √

(x − 1 + μ)2 + y2 + z2.
In the ERTBP, the primaries rotate each other on a Keplerian elliptic orbit (dashed ellipse

in figure). The distance between primaries r12 is changing with true anomaly f , thus with
time t , and is given by

r12( f ) = a12(1 − e2)

1 + e cos f
(3)

where a12 is the semimajor axis of primaries.A similar synodic coordinate frame is utilized, in
which the system is instantaneously normalized by r12( f ), the total primary mass (m1+m2)

and the reciprocal of the mean motion n̄. So the synodic frame is not only pulsating but also
non-uniformly rotating now. Furthermore, the independent variable is transformed from time
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t to true anomaly f by the chain rule

d

dt
= d f

dt
· d

d f
=

√
G(m1 + m2)

a3(1 − e2)3
(1 + e cos f )2 · d

d f
(4)

In this way equations of motion of the third body in the ERTBP is given in the pulsating
synodic frame by (Szebehely 1967)

x ′′ − 2y′ = ωx

y′′ + 2x ′ = ωy

z′′ = ωz (5)

where

ω(x, y, z, f ) = (1 + e cos f )−1�̃(x, y, z) (6)

�̃ (x, y, z) = �(x, y, z) − 1

2
e cos f z2 (7)

Primes over coordinates indicate differentials with respect to true anomaly f . The same
symbols (x, y, z) adopted for coordinate components will not cause confusion in the paper.
The epoch when primaries are at their periapsis is set to be f0 = 0 as illustrated in Fig. 1.
Although Eqs. (1) and (5) show identical forms, ω differs from � greatly. The ERTBP
explicitly depends on the independent variable f through ω(x, y, z, f ) in Eq. (6), so it
is a nonautonomous system. Besides, because of the trigonometric function introduced by
Eqs. (4), (6) and (7), the ERTBP is also a periodic system with period 2π . Therefore, as
a well-known fact, there does not exist the Jacobi integral in the ERTBP, which is used to
reduce the system by one dimension in the CRTBP (Szebehely 1967; Broucke 1969).

2.2 Multi-revolution elliptic halo orbit

The periodic orbit is the only type of orbits that we can ever hope to understand completely
throughout their evolution from the distant past to the distant future since the entire course
of their evolution is determined by knowledge over a finite time interval, i.e. the period
(Wiggins 2003). A fix point can be viewed as a periodic orbit with zero or infinite period.
The most intensively investigated periodic orbits in the CRTBP include planar and vertical
Lyapunov orbit families, prograde and retrograde orbit families around small primary, halo
orbit families at collinear libration points L1,2,3 and horseshoe-shape orbits around triangular
libration points L4,5. But in the ERTBP most of these orbits do not survive the perturbation
caused by the eccentricity e of the primaries, because the system is non-autonomous and the
libration point itself is osculating with primaries.

Following the way similar in the CRTBP (Szebehely 1967), libration points of the ERTBP
in the pulsating synodic frame can be obtained. Letting the first and second order differential
terms in Eq. (5) equal to zero, we have

ωx = ωy = ωz = 0 (8)

The solution gives five fixed points in the pulsating synodic frame, which locates exactly
at the same position with that in the CRTBP. However, they are only geometrical libration
points but not dynamical ones anymore. Because the collinear points are oscillating along
the x-axis with the pulsating frame, and the triangular points are oscillating to maintain the
equilateral triangle with primaries as well. Nevertheless, the pulsating region is bounded,
which should be referred to as libration point regionmore precisely. So a spacecraft can still
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revolve around such regions, and in the synodic pulsating frame it appears on a libration point
orbit similar to that in the CRTBP. But actually the orbit has stretched a lot along x-axis in a
non-pulsating frame, as will be shown by several figures later.

General periodic solutions in the ERTBP are not easy to detect, but the symmetric periodic
orbits is relatively easier. TheERTBP system (5) keeps invariance under themap (Sarris 1989)

( f ; x, y, z, ẋ, ẏ, ż) → (− f ; x,−y, z,−ẋ, ẏ,−ż) (9)

This relation indicates that the periodic orbit is symmetric with respect to x–z plane in the
synodic frame. In fact Sarris also discussed other symmetries, but this one is adopted by
the authors to generate the orbit investigated in this paper. According to it, Moulton first
expressed (Moulton 1920), and Broucke later cited (Broucke 1969) the strong periodicity
criterion for planar ERTBP as follows,

For an orbit to be periodic it is sufficient that it has two perpendicular crossings with
the syzygy-axis, and that the crossings happen at moments when the two primaries are
at an apse, (i.e., at maximum or minimum elongation, or apoapsis and periapsis).

The extension of this criteria in the spatial situation has been known at least since 1980s by
researchers such as Ichtiaroglou andMichalodimitrakis (Ichtiaroglou 1980; Ichtiaroglou and
Michalodimitrakis 1980). Recently, Campagnola (2010) expressed the sufficient criterion in
the spatial ERTBP as,

For an orbit to be periodic in the ERTBP, it is sufficient that it has two perpendicular
crossing with either the normal plane or the syzygy axis, or both of them, when the
primaries are at apse.

According to the criterion, the period TE of a symmetric periodic orbit in the ERTBP must
be an integral multiple of the system period 2π . It is still difficult to construct a periodic orbit
in the ERTBP with this criterion. Usually it is started from a periodic orbit with a particular
period TC in the CRTBP, and continue it into the ERTBP. So TE must be an integral multiple
of TC as well. These two relationships can be expressed as the commeasurable constraint
below,

TE = N · 2π = M · TC , M, N ∈ N
+, (10)

where M indicates the revolution number of the third body around the libration region and
N indicates the revolution of the primaries within one orbit period. So actually it is an
M : N resonant orbits in the ERTBP. It should be noticed that TE and TC are both given in
true anomaly f , but in the CRTBP the true anomaly coincides with the scaled time so TC is
specifiedwith time unit usually. Broucke had studied the planar Lyapunov orbit in the ERTPB
where M = 1 (Broucke 1969), but the range of the period TC of the halo orbit family in the
CRTBP with a small μ is usually too narrow to have orbits with M = 1, as illustrated by the
Earth–Moon system in Fig. 2. Therefore the continuation needs to start from a halo orbit with
M > 1 revolutions. These periodic orbits will stay around the libration point region for a
long time, which is N times of the primary period. Campagnola first generated these orbits in
the Sun–Mercury and the Earth–Moon systems (Campagnola et al. 2008), where they were
referred to as Elliptic Halo Orbits. Considering the orbits the authors have interest in close
up after M revolutions, which are different from that in the ERTBP with a large μ, they are
referred to as ME-Halo orbits hereinafter, with the emphasis on their multiple revolutions
property, and the term halo orbit still means the traditional halo orbit in the CRTBP. This
special properties can be helpful in observation missions or libration gate missions.
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Fig. 2 Halo orbit families around L1 and L2 point in Earth–Moon system (μ = 0.0122), and their period
range. In the center plot the halos are illustrated on the x–z projections. The left (right) plot shows the z-axis
amplitude Az with respect to the period TC of the L1 (L2) family. The dashed vertical lines show some periods
satisfying the commeasurable constraint

The very first step of the continuation is to find a halo orbit with precise period TC
satisfying Eq. (9). Since there is no available analytical method so far as we know, such an
orbit is numerically extracted from the whole halo orbit family by a dichotomy of Az . Before
this, a proper set of (M, N ) should be specified. Take the Earth–Moon system as an example,
Fig. 2 illustrates Halo orbit families around L1 and L2 point on the x–z plane (center plot) and
curves of the z-axis amplitude Az with respect to their period (left and right plots resp.). These
orbits are generated by continuations along Az with simple differential correction method
as reviewed in the next subsection. Vertical dashed lines shows different sets of (M, N ) as
annotated in the figure, which satisfies Eq. (9). There are infinite sets of (M, N ) close to any
desired period since the rational number is dense. But it should be aware of that too large
M and N will cause numerical difficulties for stability study as will be discussed later in
Sect. 2.5, so in this paper M = 5 and N = 2 is chosen, which is abbreviated as M5N2
hereinafter. After having chosen the desired TC = 2Nπ/M for e = 0, the initial condition
X0(e = 0) of the corresponding halo orbit is extracted by dichotomies. Then the eccentricity
e is increased gradually by the continuation step δe, and X0(e+ δe) is obtained by adjusting
X0(e) with the multi-segment optimization method as will be elaborated in next section. In
this way, a group of orbits parameterized by the eccentricity e is obtained. In fact, a group
of orbits parameterized by the mass ratio μ can be obtained as well by continuation along
μ. The numerical methods used for continuation of both halo orbit and ME-Halo orbit are
elaborated in the next subsection.

2.3 Multi-segment optimization method

The general procedure of generating a halo orbit is to use the third order analytical solution
developed by Richardson (Richardson 1980) as an initial guess and then use the differential
correction method to close it up (Howell and Pernicka 1987). In order to be self-consistent, a
brief summary of this method is given first. Define the state of the third body in the CRTPB
as X(t) = [x, y, z, ẋ, ẏ, ż]T, so that Eq. (1) can be transformed into a group of six first-order
differential equations. The halo orbit should leave and return to the x–z plane perpendicularly
after half a period. The initial state vector is X(t0) = X0 = [x0, 0, z0, 0, ẏ0, 0]T and after
a propagation of half a period T/2 it should be X̂(T/2,X0) = X̂T/2 = [x̂, 0, ẑ, 0, ˆ̇y, 0]TT/2.

The error needed to be corrected after each iteration is given by δXT/2 = X̂T/2 −XT/2. The
initial condition X0 and period T is modified by a small correction (δX0, δT ) so that

0 = X̂T/2 − XT/2 = ∂XT/2

∂X0
δX0 + ∂XT/2

∂T
δT + O

(‖δX0‖2
) + O

(
(δT )2

)
, (11)
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where O(·) represents higher order infinitesimals. Define Φ(t, t0) = ∂X(t,X0)/∂X(t0,X0)

to be the state transition matrix (STM) from t0 to T/2 of the orbit passing X0. So that
∂XT/2/∂X0 = Φ(T/2, t0) in Eq. (11). It satisfies the first-order variation equation

Φ̇(t, t0) = AC (X, t)Φ(t, t0), Φ(t0, t0) = I6, (12)

where AC (X, t) is the Jacobian of Eq. (1)

AC (X, t) =
[
0 I3
HC KC

]

(X,t)
, HC =

⎡

⎣
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎤

⎦

(X,t)

,

KC =
⎡

⎣
0 2 0
−2 0 0
0 0 0

⎤

⎦

(X,t)

. (13)

The subscripts of � indicate partial differentials with respect to corresponding coordinates.
Truncate Eq. (11) at the first order, extract only the adjustable terms and we have

⎡

⎣
δy
δẋ
δż

⎤

⎦

T/2

=
⎡

⎣
φ2,1 φ2,3 φ2,5
φ4,1 φ4,3 φ4,5
φ6,1 φ6,3 φ6,5

⎤

⎦

⎡

⎣
δx0
δz0
δ ẏ0

⎤

⎦ +
⎡

⎣
ẏ1
ẍ1
z̈1

⎤

⎦

T/2

δT/2, (14)

where φi, j is the i-th row and the j-th column of Φ(T/2, t0). Furthermore, stop the propa-
gation at y1 = 0 so that δy = 0, then Eq. (14) can be simplified to be

[
δẋ1
δż1

]
=

[
φ4,1 φ4,3 φ4,5
φ6,1 φ6,3 φ6,5

]
⎡

⎣
δx0
δz0
δ ẏ0

⎤

⎦ − 1

ẏ1

[
ẍ1
z̈1

]
[
φ2,1 φ2,3 φ2,5

]
⎡

⎣
δx0
δz0
δ ẏ0

⎤

⎦ . (15)

In this paper the continuation is carried out along z-axis amplitude Az , so δz0 is fixed to be
zero. Then the desired correction δX0 = [δx0, 0, 0, 0, δ ẏ0, 0]T can be solved from Eq. (15).
The correction needs to be done iteratively until a required tolerance reached.

This method is adopted to generate all the halo orbit families in this study. But for ME-
Halo orbits, it has some limitations. Its convergence domain is small for a nonlinear problem,
hence it requires a good initial guess. And a long-time integration of nonlinear equations
will almost certainly fail the method even a good initial guess is available. Sometimes it
will converge to retrograde distant orbit around primaries because it does not control the
boundary of the correction (δX0, δT ). Other alternativemethods include themultiple (or two-
level) differential correction method (Howell and Pernicka 1987), evolutionary optimization
method (Tarragó 2007; Martin et al. 2010) and so on. An economical method, which means
it is easier to code and switch between different solvers but at the same time keeps high
efficiencies, is desired by us, so thatmore attention could be paid on other subjects, rather than
realizing complex advanced algorithm.Moreover, considering that the differential correction
method is essentially a simple Newton’s method without linear step searching (in the view of
optimization field), it would be helpful to re-describe the shooting problem as an optimization
problem and solve it with mature solvers.

The initial state X( f0) = X0 of the ME-Halo orbit in the ERTBP and the state after
integrated for half period XT/2 are

X0 = X( f0) = [x0, 0, z0, 0, y′
0, 0]T, (16)

XT/2 = X( f0 + TE/2) = [x, y, z, x ′, y′, z′]Tf0+TE/2, (17)
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Fig. 3 Illustration of the
multi-segments optimization
method. The orbit is broken into
several segments and continuous
constraints are applied at
connection points. Terminal
constraints are applied to require
the state X5 are perpendicular
with the x–z plane

where the primes over coordinates indicate differentials with respect to true anomaly f . It is
important to realize that in the ERTBP the independent variable at the same time indicates the
phase angle of the primaries, so not only the duration TE/2 but also the initial epoch f0 must
be specified, as given at the subscripts of Eq. (17). This is a nonautonomous feature of the
ERTBP. According to the periodicity criteria of the ERTBP, XT/2 should be perpendicular to
the x–z plane, i.e., at the half part of ME-Halo orbit there should be

yTE/2 = x ′
TE/2 = z′TE/2 = 0. (18)

Borrowing the idea of the multiple shooting method introduced by Howell and Pernicka
to calculate Lissajous orbits (Howell and Pernicka 1987), the initial orbit is broken into n
segments, as illustrated in Fig. 3. Xi and fi (i = 0, 1, . . . , n − 1) are the starting state and
epoch of the (i + 1)-th segment. Integrating Xi at from fi to fi+1 gives X

−
i+1, which is the

end state of this segment. If the obtained orbit is smoothly connected, it should be identical
to Xi+1, which can be expressed as

X−
i+1(Xi , fi ) = Xi , i = 0, . . . , n − 2, (19)

where X−
i+1 is formulated as a function of the previous state and epoch. These 6 · (n − 1)

equations will serve as the nonlinear constraints in the optimization problem. In this way,
XT/2 is the last integration end point Xn = [xn, yn, zn, x ′

n, y
′
n, z

′
n]T at fT/2 = f0 + TE/2, so

it should satisfies Eq. (18), and other three components are free. Use this property to define
the cost function of the optimization problem as

min J (X0, f0; . . . ;Xi , fi ; . . . ;Xn−1, fn−1) =
√
y2n + x ′2

n + z′2
n , (20)

At last, the problem is well defined by Eq. (20) with differential constraints given by Eq. (5)
and nonlinear constraints given by Eq. (19). The minimum of this problem should be zero
and it implies a periodic orbit. If an initial orbit guess in the ERTBP with μ0 and e0 is given,
changing e0 (orμ0) to e1 (orμ1) and solving the problem in the ERTBPwith new parameters
will finish one step of the continuation of the ME-Halo orbit. Since both the optimization
form and the segmentation are the key ideas of this continuation process, it is referred to as
the Multi-segment Optimization Method in this paper.

In this paper, interior point method embedded inMatlab function fmincon is adopted as the
default solver. The tolerances for nonlinear constraints can be set differently for position and
velocity components. It converges quickly and allows to use a rough initial guess, which is
simply the previous ME-Halo orbit. Extrapolation techniques for initial guesses show some
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Fig. 4 Earth–Moon L1 Periapsis
(left plot) and Apoapsis (right
plot) ME-Halo orbit with M5N2
in the pulsating synodic frame

improvements but not that much efficient, possible because the interior point solver is already
adequately efficient. The SequentialQuadratic Programming (SQP)method in fmincon is also
utilized in some studies, for example when trying to re-close up a continuation result with
higher accuracy. The SQP appears faster than interior point method when a good initial
guess is available. The convergence of the algorithm increases as n increases, but the time
cost increases as well. So after a trial and error process, we recommend M/2 ≤ n ≤ 2M for
continuations along e and n ≥ 3M for continuations along μ.

2.4 Four groups of ME-Halo orbits

The halo orbit family exists continuously in the CRTBP with fixed μ and e = 0, and it is
parameterized by the z-axis amplitude Az . ME-Halo orbits with different sets of (M, N ) exist
discretely in the ERTBP with fixed set of (μ, e) because of the commeasurable constraint.
However, for fixed (M, N ), they can be continuously parameterized by μ and e. To differen-
tiate it with the orbit families in the CRTBP, the term orbit group rather than orbit family is
used. According to the periodicity criterion, ME-Halo orbits perpendicularly cross the x–z
plane twice and these two crosses can occur whether primaries are at periapsis or apoapsis.
Categories first introduced by Campagnola et al. (2008) is summarized below and explained
more rigorously.

If M is odd, after half a period, two crosses occur at two sides of ME-Halo, so the orbit
is different whether it starts at f0 = 0 or f0 = π , which indicates the primaries are at
their periapsis or apoapsis. Let the orbit starts from the left side (in the x–y projection)
of the ME-Halo orbit, define Periapsis Group to start at f0 = 0 and Apoapsis Group to
start at f0 = π . If the orbit starts from the right side, it will coincide with one of the two
groups depending on that N is even or odd. In Fig. 4 the Earth–Moon L1 periapsis group
and apoapsis group ME-Halos with M5N2 are depicted as examples, with the Earth–Moon
eccentricity adopted as 0.0554. The most obvious difference between them is that the relative
position where the perpendicular cross occurs, marked by red small circle. As shown in the
y–z projection, for periapsis ME-Halo it occurs at the outer circle and for apoapsis at the
inner circle.

If M is even, two crosses occur at the same side of ME-Halo orbit and the orbit can be
different whether the cross is on the left or right side of the orbit. Let the orbit starts at
f0 = 0, define Left Group to start from the left side and Right Group from the right side. If
the orbit starts at f0 = π , it will coincide with one of the two groups as well. In Fig. 5 the
Earth–Moon L2 left and right group ME-Halo orbits with M2N1 are depicted as examples.

123



Stability of two groups of multi-revolution elliptic halo orbits 289

Fig. 5 Earth–Moon L2 Left (left
plot) and Right (right plot)
ME-Halo orbit with M2N1 in the
pulsating synodic frame

The most obvious difference is the position of the bifurcation of the orbit. For Left Group it
is at the top and for Right Group the bottom.

Moreover, there are north and south halo orbits in the CRTBP, so each group defined here
possesses a north and a south branch that are symmetric with respect to the x–y plane. In
this paper only the north branch is chosen as the study object.

2.5 Monodromy matrix and stability indices

The monodromy matrix of a periodic orbit is defined as the state transition matrix (STM)
over one period. In the ERTBP, the STM Φ( f, f0) satisfies

Φ ′( f, f0) = AE (X, f )Φ( f, f0), Φ( f, f0) = I6,

where AE (X, f ) is the Jacobian of Eq. (5)

AE (X, f ) =
[
0 I3
HC KC

]

(X, f )
, HE =

⎡

⎣
ωxx ωxy ωxz

ωyx ωyy ωyz

ωzx ωzy ωzz

⎤

⎦

(X, f )

,

KE =
⎡

⎣
0 2 0
−2 0 0
0 0 0

⎤

⎦

(X, f )

. (21)

The subscripts of ω indicate partial differentials with respect to corresponding coordinates.
The independent variable is true anomaly f here. The periodic orbit in a periodic system
is stable if and only if all eigenvalues of the monodromy matrix Ψ ( f ) = Φ( f + TE , f )
have modules smaller than one (Bittanti and Colaneri 2009). Since eigenvalues of Ψ ( f ) are
invariant along the periodic orbit, they can be calculated at any convenient point. In this paper,
the monodromy matrix Ψ ( f0) of ME-Halo is obtained by propagating Eq. (5) together with
Eq. (21) from f0 to f0 + TE . For Periapsis, Left and Right Group ME-Halo orbits f0 = 0
is adopted and for Apoapsis Group f0 = π is adopted. In the situation where the ME-Halo
orbit is given by multiple segments, the STM matrix Φ for each segment can be calculated
separately and then multiplied up as

Ψ ( f0) = Φ ( f0 + TE , f0) = Φ ( f0 + TE , fn−1) . . . Φ ( f2, f1) · Φ ( f1, f0) . (22)

If directly integrate for one period TE from the very first initial condition, the initial deviation
will be magnified exponentially, and the deviation it caused to the monodromy matrix can
affect its eigen-structure. But ifΨ is calculated separately according to Eq. (22), the numerical
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process appearsmore steady. It is hard to tell how these deviations effect the final eigenvalues,
sinceΦ( fi+1, fi ) has no direct relationship with the final Ψ . This trick given by Eq. (22) can
solve the problem of numerical accuracy in a sense because the orbit in segments are with the
same accuracy.However, asM and N grow larger, the total integration time increases, and this
causes the largest eigenvalue become larger exponentially and the smallest become smaller.
Very quickly they will differ more than 20 orders, and this will cause the Ψ intrinsically not
able to be numerically obtained will enough accuracy. So this is a crucial restriction that the
ME-Halo orbits with N = 2 are studied, even though we could generate ME-Halo orbits
with a larger N . The authors suppose a more profound insight into the stability of these orbit
requires more advanced mathematic methods dealing with the nonlinearity.

In the CRTPB, the monodromy matrix of a halo orbit usually has a pair of eigenvalues
equal to one because the system is Hamiltonian and autonomous. But in the ERTBP this is
not the truth because of the appearance of eccentricity e and the non-autonomous features
(Broucke 1969). The eigenvalues of ME-Halo orbits in the ERTBP come in reciprocal pairs
as (Campagnola 2010)

λ1,
1

λ1
, λ2,

1

λ2
, λ3,

1

λ3

Following the notation of Broucke (1969) and Sarris (1989), the stability index of ME-Halo
is defined as

ki = λi + 1/λi , i = 1, 2, 3

This gives a simple criterion in most situations that the orbit is unstable if any ki > 2. The
only exception is that if there are two pairs of reciprocal complex eigenvalues which are
conjugate but not on the unit circle, they will give complex ki . If the other pair of eigenvalue
is on the unit circle, then the criterion fails. The definition of stability indices is slightly
modified to be include this rare situation as

ki =
{
2 · max (|λi | , |1/λi |) , if λi is complex and |λi | �= 1,
λi + 1/λ1, others.

(23)

With this new definition, two pairs of conjugate complex eigenvalues not on the unit circle
will give the same index larger than 2, so that the criterion is sufficient and necessary. This
definition is consistent with classic definitions. There is discontinuities when eigenvalues
bifurcates away from the unit circle, as will be discussed in Sect. 3.2, however, this cannot
be easily evaded without change classic definitions about stability indices. It is worth to note
that Broucke (1969) also observed the complex instability in the planar ERTBP, where there
are two pairs of eigenvalues conjugate with respect to the unit circle.

3 Numerical results and discussions

In this paper, the L1 ME-Halo orbit with M5N2 is chosen as objects, where M5N2 means
M = 5 and N = 2. And there are two groups of orbit as discussed in Sect. 2.4. Beside of
stability properties, the authors are as well seeking for practical applications of the ME-Halo
orbit. Halo orbits with this set of (M, N ) in the Earth–Moon system are adequately far away
from the Moon to be practically useful, as illustrated in Fig. 2. Another consideration of this
choice is that their periods can be numerically handled.

The variation of the stability ofME-Halo orbits is studiedwith respect to parametersμ and
e. The parameter space analyzed here is spanned by μ ∈ [0.001, 0.020] and e ∈ [0, 0.210]
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with constant step sizes δμ = 0.001 and δe = 0.001. The orbits are firstly continued along
μ with e = 0. Then they are continued along e for each μ using parallel computing. The
integrator ode45 in Matlab is used with an absolute tolerance of 3 × 10−14 (normalized
unit, same unites for others) and a relative tolerance of 3 × 10−14. For the continuation, the
nonlinear constraint tolerance is 1× 10−10, which is the upper boundary of all discontinues
at the connection points between two segments. After obtain databases with thousands of
ME-Halo orbits, the eigenvalues of monodromy matrices of each orbit are calculated by the
multi-segment method in Sect. 2.5. Before integration, each orbit is refined to four segments,
so that less deviations will be introduced by Eq. (22). The same tolerances are adopted during
this procedure. Finally, the stability property is analyzed by stability indices, and sometimes
directly by eigenvalues.

During the study, the mass ratio μ is observed to have a greater impact than eccentricity
e. The ME-Halo orbit is needed to be broken into about 32 segments to accomplish one
continuation by δμ, but only eight segments by δe. Averagely, for one step continuation by
δμ it takes about 170s, and by δe about 60 s. The data is serially collected on a 64-bit PC
with a CPU of 3.2GHz maximally. This can be explained by the fact that in the Legendre
polynomial expansion of Eq. (5) (Lei et al. 2013), μ arises since the first-order terms, but e
arises only from the second-order terms.

3.1 Periapsis group of ME-Halo orbits

In this subsection, the stability of the L1 Periapsis Group of ME-Halo orbits with M5N2
is investigated. The characteristic curves of the orbits in this group are given by their initial
conditions in the subspace (x0, z0, y′

0) in the six-dimensional phase space, since they perpen-
dicularly start from the x–z plane, i.e., y0 = x ′

0 = z′0 = 0 for X0 = [x0, y0, z0, x ′
0, y

′
0, z

′
0]T.

The characteristic curves are depicted in Fig. 6. Each curve corresponds to a specific mass
ratio μ as annotated. The curve is colored by the eccentricity of the primaries, growing from
zero (green vertex) to the continuation end or 0.21 (red vertex). The curves show two clearly
different trends. At μ̂ = 0.012 the curve is the shortest, and it separates the two trends. For
μ > μ̂, y′

0 of the curves keep descending, but for smaller μ < μ̂ the curves bend in the

Fig. 6 Characteristic curves of
the L1 Periapsis Group ME-Halo
with M5N2 in the subspace
(x0, z0, y

′
0). Curves

corresponding to fixed mass ratio
μ show different trends with e.
The curves with larger μ keep
descending. The curves with
smaller μ bend in the middle and
start to increase, and they have
different length because the
continuation algorithm fails to
converge at ê(μ)

123



292 H. Peng, S. Xu

Fig. 7 Stability index surface k1(μ, e) (left plot) and curves k1(e)μ (right plot) of the L1 Periapsis Group
ME-Halo with M5N2. The small dot (red) on the surface stands for the parameters of the Earth–Moon system
(the same in following figures). For smallerμ, it becomes very negative though not demonstrated in this figure

Fig. 8 Stability index surface k2(μ, e) (left plot) and curves k2(e)μ (right plot) of the L1 Periapsis Group
ME-Halo with M5N2. For smaller μ, it becomes very negative before ê(μ), though not demonstrated in this
figure

Fig. 9 Stability index surface k3(μ, e) (left plot) and curves k3(e)μ (right plot)of the L1 Periapsis Group
ME-Halo with M5N2. It is always below k3 = 2

middle, y′
0 of the curves start to go upward and stop at a critical eccentricity ê(μ) < 0.21.

The continuation algorithm fails to converge at ê(μ). The algorithm could converge with a
smaller step, but then it needs to further reduce the step until below the integration accuracy.
Besides, all successful continuations can converge with any accuracy no higher than the inte-
gration accuracy, but any continuation covering ê(μ) cannot converge to the tolerance. The
ME-Halo orbits later displayed in Fig. 10 do not show any obvious mechanisms that might
cause this problem, like a close flyby, so it can be inferred that either there is a bifurcation or
the characteristic curve is not monotonic with respect to the continuation parameter, which
causes the failure of continuation using our algorithm. Moreover, the stability analysis later
shows that the eigenvalues of the ME-Halo orbit near ê(μ) have great changes.

The stability index surfaces ki (μ, e) (i = 1, 2, 3) of this group of orbits are depicted
separately in the left plots of Figs. 7, 8 and 9 separately. The small dots (red or blue) on
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the surfaces stand for the parameters of the Earth–Moon system. There is a clear and big
great gap at μ̂ = 0.012 in all figures, and the trends on two sides of the gap are different.
When μ < μ̂, k1 decreases, k2 increases and k3 increases with e, but when μ > μ̂, k1, k2
and k3 all increase with e (the parameters and subscripts of ki are dropt for simplicity if
no ambiguity). These surfaces have very complex details, as will be revealed by separated
curves ki (e)μ depicted in following three figures (the subscriptμ indicates that the mass ratio
is fixed). In the right plot of Fig. 7, the curves k1(e)μ<μ̂ drop to below k1 = −2 at ê(μ),
the curve k1(e)μ=μ̂ stops earlier than its adjacent curves, and the curves k1(e)μ>μ̂ increase
steadily. In the enlarged drawing, it is more clear that k1(e)μ<μ̂ falls to below −2. There
seems to be an infinite discontinuous point at the end of the continuation because the end
of k1(e)μ<μ̂ is nearly vertical. In this circumstance, a tiny incensement of e will cause very
large variation of k1, which could explains the reduction of the step required by the algorithm
and its final failures. In the right plot of Fig. 8, the curves k2(e)μ appear all horizontal, but
there are abrupt variations looking like computational errors. In the enlarged drawing, it is
clear that the curves k2(e)μ≤μ̂ rise rapidly and fall down at last, but the curves k2(e)μ>μ̂

grow slowly and steady. The seeming errors are caused by plotting when trying to connect
one large positive point and one small negative point. In fact, k2(e)μ<μ̂ suddenly drops to
below −2, rises to the stable region for the next step and then the algorithm fails, as will be
shown more delicately later. In the right plot of Fig. 9, the curves k3(e)μ<μ̂ drop and stop
after sudden rises, and the curves k3(e)μ>μ̂ smoothly rise to nearly 2 and decrease slowly.
It is interesting that the enlarged drawing reveals that the curve k3(e)μ̂ stops almost exactly
at k3 = 2, which means that λ3 almost equals one. The word almost is used here because
it needs very high accuracy and complex calculations to locate an eigenvalue on the unit
circle. However, there is a clear trend that the curve between these two different kinds would
interact with the boundary.

To further analyze the differences between these two trends, two branches of orbits in the
PeriapsisGroupwith constantmass ratioμ, 0.009 < μ̂ and 0.015 > μ̂ separately, are chosen
as representatives in the following study. They are referred to as the lighter branch and the
heavier branch for convenience, becauseμ is the normalizedmass of the second primary. The
comparison starts from their orbit shapes. In Figs. 10 and 11, lighter and heavier branches of
ME-Halo orbits with various e are depicted separately in pulsating and non-pulsating synodic
frames, and separately in x–y and x–z projections. The orbits in the pulsating synodic frame
(upper red) is displaced along positive vertical axis for clarity, but those in the non-pulsating
frame (lower blue) are depicted as they are. Firstly, discussions are made about the plots in

Fig. 10 Lighter branches of
Periapsis Group ME-Halo orbits
with μ = 0.009, depicted in
pulsating (upper red) and
non-pulsating (lower blue) frame
separately
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Fig. 11 Heavier branches of
Periapsis Group ME-Halo orbits
with μ = 0.015, depicted in
pulsating (upper red) and
non-pulsating (lower blue) frame
separately

Table 1 Eigenvalues of orbits of the lighter branch illustrated in Fig. 10

e λ1 1/λ1 λ2 1/λ2 λ3 1/λ3

0 1.3112e+06 7.6258e−07 1.0002 0.9998 0.9587+0.2843i 0.9587−0.2843i

0.02 1.3169e+06 7.5937e−07 1.0008 0.9993 0.9607+0.2777i 0.9607−0.2777i

0.04 1.3338e+06 7.4995e−07 1.0043 0.9957 0.9662+0.2577i 0.9662−0.2577i

0.06 1.3615e+06 7.3453e−07 1.0119 0.9882 0.9745+0.2245i 0.9745−0.2245i

0.08 1.3978e+06 7.1573e−07 1.0250 0.9756 0.9840+0.1782i 0.9840−0.1782i

0.10 1.4324e+06 6.9841e−07 1.0452 0.9567 0.9927+0.1206i 0.9927−0.1206i

0.12 1.3515e+06 7.3979e−07 1.0778 0.9278 0.9976+0.0696i 0.9976−0.0696i

0.14 8.0075e+05 1.2486e−06 1.2073 0.8283 0.9929+0.1190i 0.9929−0.1190i

0.16 −2.1676e+05 −4.6133e−06 0.8705+0.4922i 0.8705−0.4922i 0.9896+0.1440i 0.9896−0.1440i

the pulsating frame (upper red). In the x–y projection, the orbits of the lighter branch shrinks
more than that of the heavier branch. In the x–z projection, the multiple revolutions of the
heavier branch separate each other further without crosses as e grows, but that of the lighter
branches shows a clear cross after e = 0.12, where the right revolutions lean to the left.
Secondly, the plots in the non-pulsating frame (lower blue) are compared. The orbits until
e = 0.12 appears all the same, but after this they are different. In the x–y projection, the
two left loops of the lighter branch detach into an outer loop and an inner small loop, but
those of the heavier branch always keep contact with each other. The middle loop unfolds
differently as well. For the lighter branch the left side of the middle loop is more vertical than
the right side, but for the heavier branch they appear symmetric. In the x–z projection, the
lighter branch stretches to upper direction as e increases, while the heavier branch stretches
to lower direction.

The eigenvalues of the monodromy matrix of the orbits depicted in Figs. 10 and 11 are
listed in Tables 1 and 2. The first orbits with e = 0 in both branches are the halo orbits
revolving M = 5 revolutions in the corresponding CRTBP systems, so their true value of
λ2 (or 1/λ2) should be one. But in both tables, the values are not identically one, which are
1.0002 and 1.0000+0.0001i separately. This is caused by numerical errors during long-time
integrations, and the data suggest that there are at least four significant digits. In Table 1, the
lighter branch shows a big change from e = 0.12 to 0.16, where λ1 starts to decrease and
finally falls below zero and λ2 becomes complex at the same time.

The analysis of the stability indices above, as well as their different orbit shapes, reveal
that lighter branches have a great change just before the end of the continuation along e. To
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Table 2 Eigenvalues of the monodromy matrix of the orbits illustrated in Fig. 11

e λ1 1/λ1 λ2 1/λ2 λ3 1/λ3

0 1.5966e+06 6.2662e−07 1.0000+0.0001i 1.0000−0.0001i 0.9021+0.4316i 0.9021−0.4316i

0.02 1.6061e+06 6.2247e−07 1.0006 0.9994 0.9052+0.4250i 0.9052−0.4250i

0.04 1.6351e+06 6.1197e−07 1.0035 0.9965 0.9142+0.4053i 0.9142−0.4053i

0.06 1.6845e+06 5.9376e−07 1.0098 0.9903 0.9282+0.3721i 0.9282−0.3721i

0.08 1.7563e+06 5.6919e−07 1.0202 0.9802 0.9457+0.3250i 0.9457−0.3250i

0.10 1.8536e+06 5.3984e−07 1.0359 0.9654 0.9647+0.2635i 0.9647−0.2635i

0.12 1.9825e+06 5.0427e−07 1.0594 0.9439 0.9824+0.1870i 0.9824−0.1870i

0.14 2.1633e+06 4.6247e−07 1.1003 0.9089 0.9948+0.1014i 0.9948−0.1014i

0.16 2.4712e+06 4.0464e−07 1.1624 0.8603 0.9982+0.0601i 0.9982−0.0601i

0.18 2.7552e+06 3.6307e−07 1.2374 0.8082 0.9971+0.0764i 0.9971−0.0764i

0.20 2.9533e+06 3.3824e−07 1.3246 0.7549 0.9954+0.0962i 0.9954−0.0962i

0.21 3.0388e+06 3.2940e−07 1.3749 0.7273 0.9944+0.1059i 0.9944−0.1059i

Fig. 12 Illustrations of the three collision and bifurcations of λ1 and λ2 of the lighter branch in Table 1. Their
reciprocals are illustrated but not annotated. The annotated intervals contain the eccentricities at which they
occur

figure out the variation in this eccentricity interval, a detailed analysis with continuation steps
as least as δe = 2.5 × 10−6 is carried out. The variation is found to be complicate, and the
eigenvalues collide and bifurcate three times as shown in Fig. 12. The collisions occur in the
intervals annotated in the figure. It needs to be noticed that in the interval between subplot a)
and b) the ME-Halo orbit has all eigenvalues complex but two pairs of them conjugate with
respect to the unit circle, and in the interval between subplot b) and c) the ME-Halo orbit
has two pairs of negative eigenvalues. However, the ME-Halos in Fig. 10 before and after
this process do not show much differences. We suggest this phenomenon is caused by the
interaction between μ and e, which cannot likely be explained by numerical studies. As a
comparison, in Table 2, the heavier branch shows less complexity, where λ1 keeps increasing
and grows quicker than λ2. So there is no collision during the whole interval from 0 to 0.21.
This again reflects that when μ is larger, the effect of the eccentricity is relatively smaller.

Figure 13 demonstrates various ME-Halo orbits on the x–y plane with the critical orbit
with μ̂ = 0.012 and ê(μ̂) = 0.143 in the center of the figure. Parameters of each plot are
annotated below it. The center row shows the orbits with the same eccentricity 0.143 but
different mass ratio. The first two are empty because the continuation fails ahead of 0.143.
The upper row shows the orbits at the continuation end of respective μ (for μ = 0.012 it
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Fig. 13 Variation of Periapsis
Group ME-Halo orbits around
the critical orbit with μ = 0.012
and e = 0.143

is identical to the center row). The bottom row shows the orbits with a δe = 0.05 ahead of
orbit just above it, which means for the first two ahead of the continuation end, and for others
ahead of 0.143. There are some clear differences among these orbits. In the non-pulsating
plots (blue), for smallμ the loops in themiddle shrink greatly comparedwith their beginnings
(in the sense of eccentricity), but for larger μ these loops always keep relatively the same
size and even tend to stretch vertically. Reflected in the pulsating plots (red), for small μ the
orbits disperse gradually and the inner regions shrink, but for larger μ the orbits appear more
regular.

3.2 Apoapsis group of ME-Halo orbits

In this subsection, the stability of the L1 Apoapsis Group of ME-Halo orbits with M5N2 is
investigated. The characteristic curves of the orbits in this group are also given by their initial
conditions in the subspace (x0, z0, ẏ0) in the phase space, which are illustrated in Fig. 14.
Each curve in the plots corresponds to a specific mass ratio μ as annotated. The curve is
colored by the eccentricity of the primaries, growing from zero (green vertex) to 0.21 (red
vertex). The curves show clearly different trends as well. For μ ≥ 0.011 y′

0 of the curves
keep descending, but for smaller μ ≤ 0.010 the curves bend in the middle and y′

0 of the
curves start to go upward. What differs from that of the Periapsis Group is that all curves
extend to e = 0.210 successfully. Like what for the Periapsis Group, there tends to exist
a specific μ̂ ∈ (0.010, 0.011) separating these two trends as well. But it was not directly
detected by the discrete grids.

In Fig. 15, the stability index surface k1(e, μ) is smooth but the trend of the surface has a
gap around μ̂ (0.010 < μ̂ < 0.011). The stability index curve plot on the left shows that the
curves k1(e)μ<μ̂ fall down to as small as 500, but turn upward after a critical eccentricity ê.
This is a significant difference from the previous Periapsis Group, whichmight guarantees the
successful continuation to e = 0.210. The curves k2(e)μ and k3(e)μ are depicted together in
Fig. 16. The curveswithμ < μ̂ andμ > μ̂ are separated since they have differentmagnitudes
and clearly different trends. It should be noticed that all three enlarged plots shows that k2 and
k3 coincide with each other for specific intervals, and the lower figure shows discontinuities
which are results of the modified definition of stability indices. At these changing points,
λ2 and λ3 become complex eigenvalues but not on the unit circle. It is also worth to note
that in the enlarged plot of the upper figure, the curves shows again two different trends, for
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Fig. 14 Characteristic curves of
the L1 Apoapsis Group of
ME-Halo orbits with M5N2 in
the subspace (x0, z0, y

′
0) and

their projections. Curves
corresponding to fixed mass ratio
μ show different trends as e
grows larger. The curves with
larger μ keep descending. The
curves with smaller μ bend in the
middle and start to increase. All
the curves extend to e = 0.21
successfully

Fig. 15 Stability index surface k1(μ, e) and various curves k1(e)μ of the L1 Apoapsis Group ME-Halo
with M5N2. They are always above the stability boundary k1 = 2, which means λ1 and 1/λ1 are always
real and positive. The surface and curves behave differently before and after the gap around some separator
μ̂ ∈ (0.010, 0.011)

example k2,3(e)μ=0.010 has two arches but most others have only one. So totally there are
three kinds of stability evolutions in this Apoapsis Group. In the similar way, three branches
of ME-Halo orbits are chosen as representatives to study. They are the lighter branch with
μ = 0.004, the medium branch with μ = 0.009, and the heavier branch with μ = 0.015.
The variation of the shape of the orbits of these three branches are demonstrated in Figs. 17,
18 and 19. In the x–y projections of all three figures, for the orbits in the non-pulsating frame,
the inner loops of the lighter and medium branches shrink and separate from the outer loops
as e increases, but that of the heavier branch remain contact with the outer loop; for that in
the pulsating frame, the orbits all shrink to the center but less severe for the heavier branch.
Another obvious difference is that in the x–z projections, the orbits in Figs. 17 and 18 stretch
more severely in the right half of the projection after e = 0.15, just where their stability
indices k2 and k3 become very negative in Fig. 16, but the orbits in Fig. 19 appear to stretch
more uniformly.

The eigenvalues of the ME-Halo orbits of three branches are listed in Tables 3, 4 and 5,
from which the variations can be viewed directly. It needs to be notice that the first lines of
each table correspond to the ideal halo orbits in the CRTBP. And as mentioned before, the
numerical error of λ2 in the table, which should be one ideally, indicates there are at least
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Fig. 16 Stability index curves of k2(e)μ and k3(e)μ of the L1 Apoapsis Group of ME-Halo orbits. The upper
plot and the enlarged drawing there show two different trends of the lighter and medium branches. The lower
plot shows all similar trends of the heavier branch, which has two abrupt change points as shown in two
enlarged drawings

Fig. 17 Lighter branch of L1
Apoapsis ME-Halo orbits with
μ = 0.004, depicted in pulsating
(upper red) and non-pulsating
(lower blue) frames separately

Fig. 18 Medium branch of L1
Apoapsis ME-Halo orbits with
μ = 0.009, depicted in pulsating
(upper red) and non-pulsating
(lower blue) frames separately

four significant digits. For all branches, λ1 is always large positive real values. λ2 and λ3
show great differences among three branches. The lighter and medium branches has complex
eigenvalue variations as reflected in Fig. 16. Combined with the sudden rises in Fig. 16, it can
be observed that the lighter branch has only one interval from about e = 0.10 to e = 0.14
where λ2 and λ3 are with modules larger than 1, but the medium branch has two intervals
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Fig. 19 Heavier branch of L1
Apoapsis ME-Halo orbits with
μ = 0.015, depicted in pulsating
(upper red) and non-pulsating
(lower blue) frames separately

Table 3 Eigenvalues of orbits of the lighter branch with μ = 0.004 illustrated in Fig. 17

e λ1 1/λ1 λ2 1/λ2 λ3 1/λ3

0 9.3110e+05 1.0740e−06 1.0004 0.9996 0.9021+0.4316i 0.9021−0.4316i

0.02 9.3063e+05 1.0746e−06 0.9905+0.1378i 0.9905−0.1378i 0.9052+0.4250i 0.9052−0.4250i

0.04 9.2647e+05 1.0793e−06 1.0000+0.0060i 1.0000−0.0060i 0.9142+0.4053i 0.9142−0.4053i

0.06 9.0444e+05 1.1056e−06 0.9952+0.0977i 0.9952−0.0977i 0.9282+0.3721i 0.9282−0.3721i

0.08 8.1800e+05 1.2225e−06 0.9967+0.0808i 0.9967−0.0808i 0.9457+0.3250i 0.9457−0.3250i

0.10 6.4486e+05 1.5507e−06 1.0320+0.1017i 0.9597−0.0946i 0.9647+0.2635i 0.9647−0.2635i

0.12 4.3834e+05 2.2812e−06 1.0502+0.1743i 0.9267−0.1538i 0.9824+0.1870i 0.9824−0.1870i

0.14 2.3927e+05 4.1794e−06 1.0019+0.2994i 0.9163−0.2738i 0.9948+0.1014i 0.9948−0.1014i

0.16 8.1398e+04 1.2285e−05 0.5867+0.8098i 0.5867−0.8098i 0.9982+0.0601i 0.9982−0.0601i

0.18 2.8907e+03 3.4593e−04 −46.5318 −0.0215 0.9971+0.0764i 0.9971−0.0764i

0.20 5.0494e+04 1.9805e−05 −2.6794 −0.3732 0.9954+0.0962i 0.9954−0.0962i

0.21 1.4006e+05 7.1400e−06 −0.1870+0.9824i −0.1870−0.9824i 0.9944+0.1059i 0.9944−0.1059i

Table 4 Eigenvalues of orbits of the medium branch with μ = 0.009 illustrated in Fig. 18

e λ1 1/λ1 λ2 1/λ2 λ3 1/λ3

0 1.3112e+06 7.6272e−07 1.0000+0.0001i 1.0000−0.0001i 0.9587+0.2843i 0.9587−0.2843i

0.02 1.3169e+06 7.5949e−07 1.0000+0.0008i 1.0000−0.0008i 0.9607+0.2777i 0.9607−0.2777i

0.04 1.3339e+06 7.4968e−07 1.0000+0.0043i 1.0000−0.0043i 0.9662+0.2577i 0.9662−0.2577i

0.06 1.3623e+06 7.3434e−07 0.9745+0.2245i 0.9745−0.2245i 0.9999+0.0119i 0.9999−0.0119i

0.08 1.4018e+06 7.1325e−07 0.9997+0.0248i 0.9997−0.0248i 0.9841+0.1778i 0.9841−0.1778i

0.10 1.4487e+06 6.9018e−07 0.9990+0.0457i 0.9990−0.0457i 0.9931+0.1169i 0.9931−0.1169i

0.12 1.4488e+06 6.9014e−07 1.0102+0.0656i 0.9858−0.0640i 1.0102−0.0656i 0.9858+0.0640i

0.14 1.0349e+06 9.6637e−07 1.0121+0.1266i 0.9728−0.1217i 1.0121−0.1266i 0.9728+0.1217i

0.16 6.2201e+05 1.6077e−06 1.0015+0.2330i 0.9472−0.2204i 1.0015−0.2330i 0.9472+0.2204i

0.18 2.8905e+05 3.4596e−06 0.8384+0.5451i 0.8384−0.5451i 0.9623+0.2718i 0.9623−0.2718i

0.20 6.6894e+04 1.4949e−05 −0.4359+0.9000i −0.4359−0.9000i 0.9421+0.3354i 0.9421−0.3354i

0.21 1.1938e+04 8.3769e−05 −19.7985 −0.0505 0.9288+0.3705i 0.9288−0.3705i
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Table 5 Eigenvalues of orbits of the heavier branch with μ = 0.015 illustrated in Fig. 19

e λ1 1/λ1 λ2 1/λ2 λ3 1/λ3

0 1.5966e+06 6.2636e−07 1.0002 0.9998 0.9021+0.4316i 0.9021−0.4316i

0.02 1.6061e+06 6.2266e−07 0.9052+0.4250i 0.9052−0.4250i 1.0000+0.0006i 1.0000−0.0006i

0.04 1.6351e+06 6.1147e−07 0.9142+0.4053i 0.9142−0.4053i 1.0000+0.0035i 1.0000−0.0035i

0.06 1.6851e+06 5.9339e−07 0.9282+0.3721i 0.9282−0.3721i 1.0000+0.0097i 1.0000−0.0097i

0.08 1.7590e+06 5.6862e−07 0.9457+0.3250i 0.9457−0.3250i 0.9998+0.0200i 0.9998−0.0200i

0.10 1.8623e+06 5.3682e−07 0.9648+0.2630i 0.9648−0.2630i 0.9994+0.0353i 0.9994−0.0353i

0.12 2.0062e+06 4.9841e−07 0.9834+0.1814i 0.9834−0.1814i 0.9982+0.0600i 0.9982−0.0600i

0.14 2.2197e+06 4.5037e−07 1.0508+0.0908i 0.9446−0.0816i 1.0508−0.0908i 0.9446+0.0816i

0.16 2.5436e+06 3.9332e−07 1.0935+0.0561i 0.9121−0.0468i 1.0935−0.0561i 0.9121+0.0468i

0.18 2.8381e+06 3.5188e−07 1.1411+0.0264i 0.8759−0.0203i 1.1411−0.0264i 0.8759+0.0203i

0.20 3.0812e+06 3.2454e−07 1.2449 0.8033 1.1417 0.8759

0.21 3.1997e+06 3.1249e−07 1.2950 0.7722 1.1489 0.8704

around e = 0.12 and e = 0.14 ∼ 0.16. Within these intervals, the ME-Halo orbits has two
pairs of eigenvalues out of but conjugate with respect to the unit circle. Later on, they both
change to have a pair of negative eigenvalues as revealed in both Fig. 16 and the tables. The
heavier branches has three pairs of eigenvalues, and they all show increasing trends as revealed
in Fig. 16, which indicates that the ME-Halo orbit is very unstable with these parameters,
all states near it in the phase space will eventually leaving it along the three-dimensional
unstable manifold quickly. Among the changes between these different distributions, there
exist the collision and bifurcations of the eigenvalues on the complex plane. This comparison
among three branches shows that the eccentricity has more complicate effects when the mass
ratio is relatively small.

3.3 Earth–Moon ME-Halo orbits

The Earth–Moon system has a relatively large eccentricity and revolves faster than usual
solar planetary systems, so it could be more helpful to design deep space trajectories in a
more real model, for example the ERTBP which has considered the orbital eccentricity. The
mass ratio of the Earth–Moon system is adopted as 0.0122 and the eccentricity as 0.0554.
Compared with a halo orbit in the CRTBP, an ME-Halo orbit can capture more features in
the ephemeris model, such as the pulsating motion along the x-axis caused by the elliptical
motion of the Moon. The stability of ME-Halo orbits Earth–Moon system is demonstrated
in stability index surfaces in Sects. 3.1 and 3.2. For clarity, they are summarized here. The
L1 Periapsis ME-Halo orbit has two pairs of real eigenvalues, (λ1, 1/λ1) and (λ2, 1/λ2),
and a pair of complex unit eigenvalues (λ3, 1/λ3). λ1 is very large, about 1.5427 × 106, but
λ2 = 1.0086 is only slightly bigger than 1. The L1 Apoapsis orbit has only one pair of real
eigenvalue (λ1, 1/λ1), and two pairs of complex unit eigenvalues (λ2, 1/λ2) and (λ3, 1/λ3),
where λ2 = 1.5431× 106 is larger than that of the Periapsis. The shapes of these two orbits
are illustrated in Fig. 4 in Sect. 2.4. Although theME-Halo orbit will not be precisely periodic
in the ephemeris model, it can be seen that the appearance of eccentricity has dynamically
changed the stability properties. Generally speaking, the orbits in the ERTBP appear more
unstable than that in the CRTBP.
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Fig. 20 Summary of eigenvalue
distributions on the complex
plane of the ME-Halo orbits
investigated in this paper

3.4 Collisions and bifurcations

Campagnola had observed that the stability of left and right ME-Halo orbits with M2N1 in
the Earth–Moon system bifurcates at e = 0 (Campagnola et al. 2008; Campagnola 2010).
In this paper, bifurcations and collisions of the eigenvalues of another two groups of ME-
Halo orbit are observed. All types of eigenvalue distributions observed during the study are
summarized in Fig. 20. The first plot shows that of the halo orbit in the CRTBP from which
the continuation starts. It has a pair of eigenvalues equal to one. It can be observed in other
plots of Fig. 20 that an ME-Halo orbit can have as many as three pairs of real eigenvalues.
The evolution of the eigenvalues of different branches of orbits are summarized below:

• L1 Periapsis Group with M5N2, lighter branch: Type 1 → Type 2 → Type 3 → Type 4
→ Type 5 → Type 6.

• L1 Periapsis Group with M5N2, heavier branch: Type 1.
• L1 Apoapsis Group with M5N2, lighter branch: Type 8 → Type 9 → Type 8 → Type

10 → Type 11 → Type 10.
• L1 Apoapsis Group with M5N2, medium branch: Type 8 → Type 9 → Type 8 → Type

9 → Type 8 → Type 10 → Type 11.
• L1 Apoapsis Group with M5N2, heavier branch: Type 8 → Type 9 → Type 7.

Generally the heavier branches show less complexity. On the other hand, the eccentricity
e usually has relatively greater effects on the stability property of ME-Halo orbits when μ

is small. This can be preliminarily explained by the Legendre polynomial expansion of the
equations of motion (Lei et al. 2013). The eccentricity e only arises from the second order
terms, it will have less effect, but when it is comparable with effect of the mass ratio μ, for
example if e is 10 times of μ it might show more severe effect. However, a quantified result
can hardly be drawn from the present numerical study.

4 Concluding remarks

In this paper the authors systematically studied the stability properties of two groups of
ME-Halo orbits generated by a multi-segment optimization method. ME-Halo orbits are
strictly periodic orbits in the nonautonomous ERTBPmodel which revolvesM circles around
the libration point region in one period when primaries revolve N circles. The orbits are
generated by continuing from a halo orbit with commeasurable period in the CRTBP with
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mass ratio μ to the ERTBP with the same μ and a nonzero eccentricity e. The multi-segment
optimization method is proposed to accomplish the continuation because the traditional
differential correction method diverges. The monodromymatrix is used to numerically study
the stability of ME-Halo orbits, which is generated also in a multi-segment way consist with
the generation of ME-Halo orbits. The L1 Periapsis and Apoapsis Group of ME-Halo orbits
are generated in the parameter region spanned by μ ∈ [0.001, 0.020] and e ∈ [0, 0.21].
Different evolutions of the eigenvalues with e are observed. Totally eleven distribution types
of eigenvalues are observed in this study. Different collision and bifurcations of eigenvalues
are analyzed as well.

According to the numerical exploration, the Periapsis Group has two different branches,
and the apoapsis group has three different branches. The emergence of the eccentricity in the
system introduces great complexity. AnME-Halo orbit can have asmuch as three pairs of real
eigenvalues, one or two pairs of negative eigenvalues, and two pairs of complex eigenvalues
out of the unit circle. Also, eigenvalues of particular orbits are negative. These are all very
different from halo orbits in the CRTBP. Moreover, the eccentricity e shows more significant
effect on the stability evolution when the mass ratio μ is small. In the Periapsis Group, a
continuation barrier arises for small mass ratio, which seems to be caused by the change of
eigenvalues from positive to negative but still needs more analytical studies in the future.
Since the ME-Halo orbit captures more natural dynamics, its specific stability features can
provide potentially practical applications. These properties will be helpful especially in fast
systems like the Earth–Moon system or very eccentric systems like the Sun–Mercury system.
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