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Abstract We used recently produced Solar System ephemerides, which incorporate 2 years
of ranging observations to the MESSENGER spacecraft, to extract the secular orbital ele-
ments for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit
resonance, these values constitute an important reference for the planet’s measured rotational
parameters, which in turn strongly bear on physical interpretation ofMercury’s interior struc-
ture. In particular, we derive a mean orbital period of (87.96934962±0.00000037) days and
(assuming a perfect resonance) a spin rate of (6.138506839± 0.000000028)◦/day. The dif-
ference between this rotation rate and the currently adopted rotation rate (Archinal et al. in
Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corre-
sponds to a longitudinal displacement of approx. 67m per year at the equator. Moreover, we
present a basic approach for the calculation of the orientation of the instantaneous Laplace
and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical
parameters of the planet, when derived from observations of Mercury’s rotation.

Keywords Mercury · Spin-orbit coupling · Laplace plane · MESSENGER · Ephemeris ·
Secular elements

1 Introduction

Mercury’s orbit is not inertially stable but exposed to various perturbations which over long
time scales lead to a chaoticmotion (Laskar 1989). The short-term (about few thousand years)
evolution of the orbit can be approximated by a secular contribution to the orbital elements.
Most prominent is the precession of the pericenter of Mercury’s orbit, which was also an
important test of Einstein’s theory of general relativity (Einstein 1915). Due to the Sun’s
torque on the asymmetric mass distribution of Mercury, the rotation of Mercury is strongly
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coupled to its evolving orbit. Radar observations (Pettengill and Dyce 1965) revealed that
Mercury’s rotation period is about 59days and in a stable 3:2 resonance with its orbital
period (Peale and Gold 1965; Colombo 1965). More recently Margot et al. (2007) have
used an Earth-based radar-speckle correlation technique to precisely measure the physical
libration amplitude and the obliquity of Mercury. By interpretation of these measurements
in terms of physical parameters of the planet—following the idea of the Peale experiment
(Peale 1976, 1981)—the authors concluded that Mercury’s core is at least partially molten
(Margot et al. 2007, 2012).

With the MESSENGER space probe (MErcury Surface, Space ENvironment, GEochem-
istry, and Ranging) having entered orbit around Mercury in March 2011, the observational
data ofMercury have greatly improved. Further, new Solar System ephemerides which incor-
porate 2years of ranging andDoppler tracking observations toMESSENGERwere produced.
For the interpretation of the observations of Mercury’s rotation performed by instruments on
MESSENGER, precise knowledge of the resonant rotation parameters of Mercury is manda-
tory. In fact, the resonant spin rate, currently adopted in the rotation model of Mercury, dates
back to the first IAU report (Davies et al. 1980).

In this work we provide updated reference values for Mercury’s rotation assuming the
perfectly resonant rotation model based on the most recent planetary ephemerides. These
values serve as a basis for the interpretation of the rotational parameters of Mercury, which
are proposed to be measured with high precision (Stark et al. 2015).

2 Secular orbital elements of Mercury

Recently, new Solar System ephemerides DE432 from the Jet Propulsion Laboratory
(W. M. Folkner, personal communication, 2014) and INPOP13c from the Institut de
Mécanique Céleste et de Calcul des Éphémérides (Fienga et al. 2014) were produced. Besides
other improvements, these ephemerides incorporate updates to the orbit of Mercury. Both
ephemerides although different in their production process and covered time span led to
identical results in our calculations. We concentrate here on the DE432 ephemeris and give
the orbital elements derived from the INPOP13c ephemeris in Appendix 1.

The DE432 ephemeris covers a time span of approximately 1000years (1 January 1550–
1 January 2550). In this time span we derived the osculating Keplerian orbital elements
of Mercury from state vectors given with respect to the Sun-centered International Celestial
Reference Frame (ICRF).We used a time step of 7days and set the gravitational parameter of
the Sun toGM⊙ = 132,712,440,041.9394 km3/s2 (Folkner et al. 2014). For the calculation
of the osculating orbital elements standard techniques were used (Bate et al. 1970). In order
to obtain the secular parts of the elements we decomposed the osculating orbital elements in
a quadratic polynomial and a sum of periodic terms

x(t) = x0 + x1t/cy + x2(t/cy)
2 +

∑

i

Ai cos(νi t + φi ), (1)

where x stands for a Keplerian orbital element a, e, I,Ω,ω, M , being semi-major axis,
eccentricity, inclination, longitude of ascending node, argument of pericenter, and mean
anomaly, respectively. The time t is measured in Julian centuries (cy) from the J2000.0 epoch.
Higher order terms in the polynomial were discarded because their estimated uncertainty
exceeded the actual value by many orders of magnitude. The periodic terms are characterized
by their amplitude Ai , frequency νi , and phase φi . We list these values for ten highest
amplitudes of each orbital element in Appendix 2.
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Mercury’s resonant rotation from secular orbital elements 265

Table 1 Secular Keplerian orbital elements of Mercury as derived from the DE432 ephemeris at epoch
J2000.0, given with respect to ICRF (see Fig. 1)

x0 x1 x2

a/(106 km) 57.90909 0.002 × 10−6 −0.002 × 10−6

±0.00011 ±22.34 × 10−6 ±4.45 × 10−6

e 0.2056317 20.4 × 10−6 −20 × 10−6

±0.0000071 ±1.4 × 10−6 ±290 × 10−6

I/◦ 28.552197 0.0048464 −9.8 × 10−6

±0.000036 ±0.0000073 ±1.5 × 10−6

Ω/◦ 10.987971 −0.032808 −12.3 × 10−6

±0.000099 ±0.000020 ±4.0 × 10−6

ω/◦ 67.5642 0.18861 −3 × 10−6

±0.0020 ±0.00040 ±80 × 10−6

M/◦ 174.7948 149472.51579 8 × 10−6

±0.0032 ±0.00063 ±126 × 10−6

Fig. 1 The unit vectors eX,Y,Z
denote the International Celestial
Reference Frame (ICRF).
Mercury’s orbital plane is
illustrated by a dashed ellipse and
its orientation by the vector eo.
The ecliptic and the eX − eY
plane of the ICRF are given by
dotted and dash-dotted ellipses,
respectively. The Laplace plane
normal is indicated by ew and
Mercury’s spin axis by es. The
figure is based on numbers given
in Table 1 at the J2000.0 epoch
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The decomposition of the osculating orbital elements time series into the form of Eq. 1
was performedwith the help of the frequencymapping tool FAMOUS 1. This is done because
a simple least-squares fit may lead to biased results given the fact that the variations of the
orbital elements are in first order periodic and not random. At least 50 frequencies were
identified and subtracted from the variation of the orbital elements. The variance of the
periodic variations σ 2

x was used to estimate an uncertainty for the coefficients. Thus, orbital
elements with relatively high periodic variations receive higher error bars. The uncertainties
of the secular coefficients x1 and x2 were derived by considering the maximal slope and
curvature of the polynomial within the interval [−σx , σx ] and a time span of 1000years. The
resulting values are given in Table 1.

1 F. Mignard, OCA/CNRS, ftp://ftp.obs-nice.fr/pub/mignard/Famous.
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In order to demonstrate the convergence of the method we increased the number of fre-
quencies to 100 and found only changes below 2% of the uncertainties of the polynomial
coefficients. For further verification of our approach we calculated orbital elements with
respect to the ecliptic at J2000.0 (see Appendix 1) and compared our results with those
published by Standish and Williams (2013). Beside the secular parts of the inclination and
longitude of ascending node our values and their uncertainties are consistent with the pub-
lished values. The discrepancy we found in I1 and Ω1 may result from the fact that we
consider the quadratic term, which is significant for these elements. Comparison with other
literature values (Margot 2009; Noyelles and D’Hoedt 2012; Noyelles and Lhotka 2013)
shows excellent agreement with our values for these orbital elements.

Additionally, we calculated the precession of the pericenter of Mercury. Note that the
secular rates are strongly dependent on the selected reference frame. We used the mean
orbital plane of Mercury at J2000.0 (see Sect. 2.2) as reference frame and found a precession
of 575.3 ± 1.5 arc sec/cy (see Appendix 1). Again this is in a very good agreement to the
literature value of (5600.73−5025) arc sec/cy = 575.73±0.41 arc sec/cy (computed from
Weinberg 1972, p.199).

Another method to obtain the secular orbital elements involve the usage of a secular
potential and integration of the averaged differential equation ofMercury’s motion. However,
such a method neglects the mutual interaction of the perturbing planets and is not appropriate
for precise interpretation of spacecraft data (Yseboodt and Margot 2006). More details on
averaging methods can be found in e.g., Sanders et al. (2007).

2.1 Mean orbital period

The mean period of the orbit is defined as Torbit = 2π/n0, where n0 is the mean motion of
Mercury. We can derive n0 from the first order term of the mean anomaly M = M0 +M1t =
n0(t0 + t). The time t0 is the elapsed time at J2000.0 since the last pericenter passage. Using
the values in Table 1 we derive

n0 = M1 = (4.092334450 ± 0.000000017)◦/day (2)

t0 = M0/M1 = (42.71274 ± 0.00077) day (3)

Torbit = 360◦/M1 = (87.96934962 ± 0.00000037) day. (4)

In order to check the derived value of n0 we used Kepler’s third law n0 =
√
GM⊙/a30 and

found 4.092343± 0.000083 ◦/day. This value is consistent with Eq. 2 but has an error larger
by two orders of magnitude.

2.2 Mean orbital plane

From the secular parts of the orbital elements Ω and I we can calculate the mean normal
vector of the orbital plane by

eo = sinΩ sin I eX − cosΩ sin I eY + cos I eZ (5)

= cosαorbit cos δorbit eX + sin αorbit cos δorbit eY + sin δorbit eZ, (6)

where eX,Y,Z denote the orientation of the ICRF (see also Fig. 1). Comparing Eqs. 5 and 6
we find the right ascension and declination of the orbit pole to be αorbit = Ω − π/2 and
δorbit = π/2− I . At J2000.0 the values are αorbit

0 = (280.987971± 0.000099)◦ and δorbit0 =
(61.447803 ± 0.000036)◦, respectively. From the secular components of Ω and I we can
directly derive the first order precession rates of the orbit pole αorbit

1 = Ω1 = (−0.032808±
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Mercury’s resonant rotation from secular orbital elements 267

0.000020)◦/cy and δorbit1 = −I1 = (−0.0048464± 0.0000073)◦/cy. It should be noted that
the precession of the orbit normal is treated here as a secular variation in inclination and
longitude of ascending node, which is justified by the long period of the precession. By that
reason the given description of the mean orbital plane is strictly valid only for the time span
of the ephemeris, i.e. about±500years around the J2000.0 epoch. The error bars on the orbit
pole orientation and precession rates were obtained through propagation of the uncertainties
in the orbital elements. Note that the derived values are in agreement with the findings of
Margot (2009) with αorbit = 280.9880◦−0.0328◦t/cy and δorbit = 61.4478◦−0.0049◦t/cy,
where DE408 ephemeris and a period of 200years was used.

2.3 Laplace plane

The other planets of the Solar System exert a torque on the orbital plane of Mercury, which
leads to a quasi-periodic precession of the orbit normal. Further, the plane to which the incli-
nation of Mercury remains constant, i.e., the Laplace plane, also undergoes slow variations
(Noyelles and D’Hoedt 2012). Several attempts have been made to calculate the orientation
of the Laplace plane normal (Yseboodt and Margot 2006; Peale 2006; D’Hoedt et al. 2009),
each of them leading to different results in the Laplace pole position and the precession period
(see Fig. 2).

The concept of the “instantaneous” Laplace plane was proposed forMercury by Yseboodt
and Margot (2006) to derive an approximate Laplace plane valid for several thousand years.
Note that without additional assumptions the instantaneous precession vector w is only con-
strained to a line. In order to overcome the ambiguity in the instantaneous Laplace plane
either a fit to the ephemeris (Yseboodt and Margot 2006) or some additional assumptions
(Peale 2006; D’Hoedt et al. 2009) are used.

Here we introduce a concept of an instantaneous Laplace plane, which removes the ambi-
guity in its instantaneous orientation and precession frequency. As the only assumption we
require the instantaneous Laplace plane to be invariable, i.e. ẇ ≡ 0. Note that a similar
concept was suggested by Yseboodt (2011). When an instantaneous Laplace plane is consid-
ered it is also important to clarify in which time period it should be instantaneous. The free
precession period of Mercury is in the order of 1000years (Peale 2005). This means that the
rotation axis will not be affected by the short period (on the order of decades) changes in the

Fig. 2 Orientation of the orbit
(OP) and the Laplace plane (LP,
black disk with error bars)
normal at J2000.0 epoch with
respect to the ICRF. The
precession of the orbit pole
around the instantaneous Laplace
pole is indicated by a dashed arc.
The Laplace plane orientation of
Yseboodt and Margot, 2006 (grey
disk) overlaps with the values
derived in this work. Note that
the longitude of the Laplace pole
is given incorrect in D’Hoedt
et al. (2009) and was corrected in
Noyelles and D’Hoedt (2012).
The figure shows the corrected
position (blue disk). (Color figure
online)
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268 A. Stark et al.

orientation of the orbit normal, but will follow the changes at long periods due to adiabatic
invariance (Peale 2005). In order to obtain an instantaneous Laplace plane, which is relevant
forMercury’s spin, we can neglect all periodic variations and consider only the secular terms.

The general equation for the precession around an axis w is

w × eo = ėo. (7)

The precession vector w is given by w = −μ ew, where ew is the orientation of the Laplace
plane and μ the precession rate. First we multiply both sides of Eq. 7 with eo and obtain

w = (eo × ėo) − μ cos ι eo, (8)

where we used eo · w = −μ cos ι and ι is the inclination of Mercury’s orbit with respect to
the Laplace plane. In order to constrain the instantaneous orientation of the Laplace plane we
have to find an instantaneous value for μ cos ι. By differentiating Eq. 7 and the requirement
ẇ ≡ 0 we obtain

ëo + μ2 eo = −μ cos ιw, (9)

where wemake use ofw× ėo = w×(w×eo) = −μ cos ιw−μ2eo. The differential equation
Eq. 9 describes a regular (uniform) rotation of eo around ew with the frequency μ. Following
the concept of the instantaneous Laplace plane Eq. 9 is only fulfilled with a unique w for a
specific time t . By multiplying Eq. 9 with eo and using Eq. 7 we can find

μ cos ι = ėo · (eo × ëo)
|ėo|2 . (10)

By using Eq. 5 for eo and ëo we can obtain the values of μ cos ι as it would be in a regular
form and by that an expression for the instantaneous Laplace plane. The combination of
Eqs. 8 and 10 gives the instantaneous Laplace plane orientation

w = (eo × ėo) − ėo · (eo × ëo)
|ėo|2 eo. (11)

Following the formalism of Peale (2006) Eq. 11 can be expressed as

w = (
İ cosΩ + (

wz − Ω̇
)
tan I sinΩ

)
eX +

+ (
İ sinΩ − (

wz − Ω̇
)
tan I cosΩ

)
eY + wzeZ (12)

and wz given by

wz = Ω̇ + ( Ï Ω̇ − İ Ω̈) sin I + Ω̇ İ 2 cos I

İ 2 + (Ω̇ sin I )2
cos I. (13)

The instantaneous Laplace pole given by Eq. 11 is practically equivalent to the fit of the
ephemeris to a cone, performed by Yseboodt and Margot (2006).

Using Eq. 11 we calculate the coordinates of the Laplace pole at J2000.0 to αLP
0 =

(273.8±1.0)◦ and δLP0 = (69.50±0.77)◦ in the ICRF. It should be noted that the covariance
Cov(αLP

0 , δLP0 ) = −(0.77◦)2 is very high, indicating a high correlation (−99.8%) of the
right ascension and declination values. The instantaneous precession rate is μ = (0.00192±
0.00018)/cy, TLP = (327300 ± 32000) years and ι = (8.58 ± 0.84)◦.

However, if Mercury is in a Cassini state (see Sect. 3.4) the determination of the polar
moment of inertia from the obliquity is not largely affected by the uncertainties of the Laplace
pole (Yseboodt andMargot 2006; Peale 2006).Usingour formalismwecanderive the relevant
quantities and their errors

μ sin ι = (2.8645 ± 0.0016) × 10−6/years (14)
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Mercury’s resonant rotation from secular orbital elements 269

μ cos ι = (18.98 ± 1.83) × 10−6/years. (15)

The correlation between μ sin ι and μ cos ι is very low Corr(μ sin ι, μ cos ι) = −10−3.

3 Mercury’s rotation

3.1 Rotation model

The rotation model of a celestial body consists of a set of values defining its orientation as a
function of time with respect to a reference frame. Here we recall briefly the IAU convention
of a rotation model for Mercury (e.g. Archinal et al. 2011).

The orientation ofMercury’s spin axis is described by the right ascensionα and declination
δ coordinates of the intercept of the spin axis vector es with the celestial sphere. The spin
axis vector es with respect to the ICRF is given by

es = cosα cos δ eX + sin α cos δ eY + sin δ eZ, (16)

where eX,Y,Z denotes the ICRF. The orientation at J2000.0 epoch is denoted by α0 and δ0 and
the first order precession rates are α1 and δ1. The rotational axis is consequently given by

α(t) = α0 + α1 t (17)

δ(t) = δ0 + δ1 t. (18)

The rotation of Mercury around its axis is described by the longitude of the prime meridian
ϕ0, the rotation rate ϕ1, and the physical longitudinal libration ϕlib

ϕ(t) = ϕ0 + ϕ1t + ϕlib(t). (19)

The rotation model is of great importance, as it is used to derive body-fixed coordinates
of observations performed by spacecraft. The matrix R which transforms coordinates from
ICRF to body-fixed is composed from three rotations

R = RT
z (ϕ)RT

x (π/2 − δ)RT
z (α + π/2), (20)

where Rx,z denote counter-clockwise rotations (right hand rule) around the x- and z-
axis, respectively. Note that the spin axis orientation can be computed by es = Rz(α +
π/2)Rx(π/2 − δ)eZ.

3.2 Resonant rotation

Using the secular orbital elements in Table 1 we derive the resonant spin rate of Mercury
ϕ

(3/2)
1 for the case that the spin is in perfect 3:2 resonance to the motion of the planet on

its orbit. Using the mean motion value n0 = M1 derived from the mean anomaly and the
precession of the argument of pericenter ω1 we compute the mean resonant spin rate to

ϕ
(3/2)
1 = 3

2
n0 + ω1 = (6.138506839 ± 0.000000028)◦/day. (21)

The current value of Mercury’s rotation found in the literature is 6.1385025◦/day (Archinal
et al. 2011). The difference between these rates corresponds to a longitudinal displacement
of 5.7 arc sec per year (approx. 67m per year at the equator of Mercury), which should be
noticeable during e.g. the MESSENGER mapping mission (where typical image resolution
vary from few kilometers to few meters).
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Wewant to stress that the resonant spin rate ϕ
(3/2)
1 in the rotationmodel is composed of the

planet’s rotation around its spin axis and the precession of Mercury’s orbit. Thereby, we have
to consider the precession of the argument of pericenter ω1 = (5.164±0.011)×10−6 ◦/day,
and not the precession of the longitude of pericenter �1 = Ω1 + ω1 since the precession
of the ascending node Ω1 is already incorporated in the precession of the rotational axis.
Note that the spin rate ϕ

(3/2)
1 is defined with respect to a precessing frame and is not strictly

“sidereal” since the rotation axis changes slowly its orientation. Further, Mercury has a small
but non-zero obliquity of ic = 2.04 arc min (Margot et al. 2012). However, the correction
arising from the obliquity is in the order of icΩ2

1/I1 and can be neglected when comparing
with the error of ω1 (see Appendix 3).

If one of the sub-solar points at perihelion is used for the definition of the prime meridian
ϕ0, the orientation of Mercury’s long axis at J2000.0 with resonant rotation would be

ϕ
(3/2)
0 = 3

2
M0 + ω0 = (329.7564 ± 0.0051)◦. (22)

We find excellent agreement of this value with the findings of Margot (2009), who stated a
value of 329.75◦. Note that the actual prime meridian of Mercury ϕ0 is defined with respect
to the crater Hun Kal located at 20◦ W (Archinal et al. 2011).

3.3 Physical libration in longitude

The annual libration of Mercury is closely tied to the revolution of Mercury around the Sun.
Of particular importance is the mean anomaly M of Mercury since it defines the period and
the phase of the libration. The libration is modeled as follows (Goldreich and Peale 1966)

ϕlib(t) =
∑

k

g88/k sin (k n0(t + t0)) . (23)

The amplitudes g88/k follow a recursive relationship

g88/(k+1) = g88/k
G2 0 1(k + 1, e0)

G2 0 1(k, e0)
, (24)

where G2 0 1(k, e0) are given by Kaula’s eccentricity functions (Kaula 2000)

G2 0 1(k, e) = G2 0 1−k(e) − G2 0 1+k(e)

k2
. (25)

Using e0 = 0.2056317 ± 0.0000071 from Table 1 we calculate the first five terms to

G2 0 1(1, e0) = 0.569650 ± 0.000027 (26)

G2 0 1(2, e0) = (−60.0733 ± 0.0042) × 10−3 (27)

G2 0 1(3, e0) = (−5920.32 ± 0.77) × 10−6 (28)

G2 0 1(4, e0) = (−1200.10 ± 0.20) × 10−6 (29)

G2 0 1(5, e0) = (−267.691 ± 0.053) × 10−6. (30)

The main period of the annual libration is the mean orbital period Torbit (Eq. 4) with the
phase given by M0 = n0t0. In addition, long-period variations of the orbital elements can
lead to forced librational motion of Mercury with periods other than the orbital period (Peale
et al. 2007; Yseboodt et al. 2010), but these are not considered in this work.

The measurement of the libration amplitude provides important constraints on the interior
structure of Mercury. The amplitude of the annual libration g88 is related by (Peale 1981)
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Mercury’s resonant rotation from secular orbital elements 271

g88 = 3

2

B − A

Cm
G2 0 1(1, e0) (31)

to the ratio of moments of inertia (B − A)/Cm , where A ≤ B < C are the principal axes
of inertia of the planet and Cm is the polar moment of inertia of the mantle and crust.
Assuming the libration amplitude could be measured with a negligible error, the uncertainty
in (B − A)/Cm would be only at 6 × 10−7, due to the uncertainty in the eccentricity of
Mercury’s orbit. Here we used a libration amplitude of g88 = 38.5 arc sec (Margot et al.
2012).

3.4 Cassini state

Mercury is assumed to occupy a Cassini state 1 (Peale 1969), implying that the spin vector of
Mercury es lies in the plane defined by the Laplace plane normal ew and the orbit normal eo
with the latter being enclosed by the others. The spin axis is consequently in a 1:1 resonance
to the precession of the orbit normal, i.e. α1 ≈ αorbit

1 and δ1 ≈ δorbit1 . Note that the spin axis
precesses with slightly higher rates as described in Appendix 3. The Cassini plane ec, which
contains all Cassini states can be expressed as a linear combination of the orbit and Laplace
plane normal

ec = r eo + s w. (32)

We can constrain r and s by |ec| = 1 and ec · eo = cos ic, where ic is the obliquity. By using
Eq. 8 for w and |eo × ėo| = |ėo| this results in

ec = cos iceo + sin ic
eo × ėo

|ėo| , (33)

with

eo × ėo = (
İ cosΩ − Ω̇ sin I cos I sinΩ

)
eX

+ (
İ sinΩ + Ω̇ sin I cos I cosΩ

)
eY + Ω̇(sin I )2eZ (34)

|ėo| = μ sin ι =
√

İ 2 + (Ω̇ sin I )2. (35)

From Eq. 33 it can be verified that the plane defining the Cassini state is independent
from the exact form of the precession of the orbit around the Laplace plane. Especially, it is
not dependent on wz as recognized by Peale (2006) and Yseboodt and Margot (2006). The
Cassini plane is sufficiently defined by the orientation of the orbit normal and its temporal
change. In fact, the Cassini plane normal is the vector ėo given by

ėo = (
Ω̇ cosΩ sin I + İ sinΩ cos I

)
eX

+ (
Ω̇ sinΩ sin I − İ cosΩ cos I

)
eY

− İ sin I eZ. (36)

With the uncertainty of the orbital elements we can estimate the “thickness” of the Cassini
plane, which results from uncertainties in the knowledge of the secular variation ofMercury’s
ephemeris. At ic = 2.04 arc min (Margot et al. 2012) we find a 1σ thickness of 0.18 arc sec.
This allows to interpret possible offsets of Mercury’s spin orientation from the exact Cassini
state (Margot et al. 2012; Peale et al. 2014).

Using the obliquity ic the polar moment of inertia C/mR2 (scaled with the mass m and
radius R of Mercury) can be calculated by (Peale 1981)
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272 A. Stark et al.

C

mR2 = n0 sin ic((J2(1 − e2)−3/2 cos ic + C22G201(e)(1 + cos ic))

μ sin ι cos ic − μ cos ι sin ic
, (37)

where J2 = 5.03216×10−5 andC22 = 0.80389×10−5 (Mazarico et al. 2014) are the second
degree harmonic coefficients of Mercury’s gravity field. Assuming perfect knowledge in the
obliquity and the gravitational coefficients the error on C/mR2 is only at 6.1 × 10−5 due
to the uncertainty of the orbital elements. Note that our analysis does not include model
uncertainties of Eq. 37, e.g., simplifying assumptions which were made in the derivation of
the equation. We only infer the uncertainty of C/mR2 due to orbital elements if Eq. 37 holds
exactly and all other quantities are perfectly known. A more sophisticated analysis including
higher order gravity field and tides can be found in Noyelles and Lhotka (2013).

4 Discussion and conclusion

In this work we extract orbital elements for Mercury from ephemeris data and predict a mean
rotational model for Mercury in the view of a perfect resonance to its orbit. In this case the
rotation is, besides the obliquity and the libration amplitude, completely determined by the
mean orbital elements and their rates. On the basis of the uncertainties in the mean orbital
elements, errors of the theoretical perfectly resonant rotation model can be estimated. Note
that ephemeris uncertainties are estimated from the periodic variation of the orbital elements
and do not reflect any accuracy or “error” of the ephemeris. They can be rather understood as
model uncertainties, since the secular part of Mercury’s orbital elements does not capture the
full variation of the orbit. In this work we introduced a consistent approach which allows us
to estimate the uncertainties of the rotational parameters resulting from the simplified secular
orbital elements. The findings are of great importance for interpretation of the current and
future observations of Mercury’s rotation by MESSENGER and BepiColombo spacecraft.
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Appendix 1

The Keplerian orbital elements derived from the INPOP13c ephemeris (Fienga et al. 2014)
are given in Table 2.We find very little difference of the values when comparing to the DE432
ephemeris (see Table 1). The deviation for the trend a1 of the semi-major axis is about 1.7
meter per century.

In Table 3 we give values for reference frame dependent orbital elements with respect
to the ecliptic (ECLIP, inclination 23.439291◦), Mercury orbital plane (OP), and Mercury
Laplace plane (LP) at J2000.0. The rotation matrices for the transformation to the these
reference frames from the ICRF are given by

RECLIP =
⎛

⎝
1 0 0
0 0.91748206 0.39777716
0 −0.39777716 0.91748206

⎞

⎠ , (38)
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Table 2 The same as Table 1 but
derived from the INPOP13c
ephemeris and a time span of
2000years (09.06.973
AD—23.06.2973)

x0 x1 x2

a/(106 km) 57.90909 −44 × 10−12 420 × 10−12

e 0.2056317 20.4 × 10−6 −0.027 × 10−6

I/◦ 28.552197 0.0048473 −9.8 × 10−6

Ω/◦ 10.987969 −0.032808 −11.9 × 10−6

ω/◦ 67.5642 0.18862 −4 × 10−6

M/◦ 174.7948 149472.51578 7 × 10−6

Table 3 Orbital elements of
Mercury as derived from the
DE432 ephemeris at epoch
J2000.0 with respect to the
following reference frames:
Ecliptic and Earth equinox of
J2000; Mercury orbital plane of
J2000.0 and ascending node with
respect to the ecliptic; Mercury
Laplace plane and ascending
node with respect to the Mercury
orbital plane of J2000.0

x0 x1 x2

Ecliptic

I/◦ 7.004975 0.0059524 0.7 × 10−6

Ω/◦ 48.330908 −0.125416 −89.2 × 10−6

ω/◦ 29.1252 0.28428 80 × 10−6

�/◦ 77.4561 0.15886 −13 × 10−6

Mercury orbital plane

I/◦ 0.0 −0.016413 −3.9 × 10−6

Ω/◦ 68.735669 −0.054375 337.0 × 10−6

ω/◦ 320.3895 0.21417 −350 × 10−6

�/◦ 29.1252 0.15980 −13 × 10−6

Mercury Laplace plane

I/◦ 8.582338 1 × 10−18 5 × 10−21

Ω/◦ 0.0 −0.109981 −25.9 × 10−6

ω/◦ 50.3895 0.26855 13 × 10−6

�/◦ 50.3895 0.15857 −13 × 10−6

ROP =
⎛

⎝
0.98166722 0.19060290 0

−0.16742216 0.86227887 0.47795918
0.09110040 −0.46919686 0.87838205

⎞

⎠ , (39)

RLP =
⎛

⎝
0.88845611 0.43672271 0.14113473

−0.45838720 0.82896828 0.32045711
0.02295468 −0.34940643 0.93669004

⎞

⎠ . (40)

The precession of the pericenter of Mercury is given by �OP
1 = ΩOP

1 + ωOP
1 =

575.3 arc sec/cy. The inclination of the orbital plane with respect to the Laplace plane
ILP0 = ι = 8.58◦ remains constant ILP1 = ILP2 ≈ 0. The precession of the orbit around
the Laplace plane is |ΩLP

1 | = μ = 0.109981◦/cy.
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Table 4 Ten leading terms of the
decomposition of the time series
of the osculating orbital elements
in

∑
i Ai cos(νi t + φi ) with

νi = 2π/Ti

The unit of the amplitude Ai is
given in the brackets beside each
orbital elements symbol,
respectively. The periods Ti are
given in years and the phases φi
in degrees. The values are given
for orbital elements in the ICRF
and derived from the DE432
ephemeris

a [km] e [10−6]

i Ai Ti φi Ai Ti φi

1 109.56 1.11 145.25 7.23 5.93 272.97

2 56.37 0.20 140.65 4.63 1.11 326.10

3 54.55 5.66 356.60 3.53 5.66 181.05

4 35.31 0.29 213.41 2.53 1.38 141.21

5 31.01 0.12 76.038 1.52 11.86 123.83

6 29.41 1.38 325.51 0.89 0.25 261.39

7 21.92 0.13 211.50 0.88 0.55 109.00

8 21.19 0.25 81.45 0.86 14.73 304.98

9 20.27 0.55 285.27 0.81 0.46 128.90

10 19.46 0.40 70.013 0.78 0.29 36.27

I [10−3 arc sec] Ω [10−3 arc sec]

i Ai Ti φi Ai Ti φi

1 167.3 5.93 15.01 399.8 5.93 292.75

2 52.5 5.66 71.86 165.8 5.66 135.33

3 31.9 1.38 250.97 145.2 11.86 145.14

4 22.1 11.86 267.19 116.6 1.11 249.76

5 20.1 14.73 58.16 107.3 1.38 189.18

6 17.5 6.58 343.74 57.5 0.62 356.75

7 17.2 3.95 51.01 52.3 0.40 155.89

8 11.8 0.31 326.19 48.3 14.73 336.52

9 9.9 0.24 112.99 44.0 6.56 59.20

10 9.6 0.12 99.47 42.6 0.24 45.75

ω [arc sec] M [arc sec]

i Ai Ti φi Ai Ti φi

1 7.36 5.93 180.64 10.71 5.66 87.97

2 4.57 1.11 55.93 8.04 1.11 235.40

3 3.49 5.66 272.57 7.70 5.93 3.50

4 2.55 1.38 50.09 1.92 1.38 230.24

5 1.62 11.86 17.21 1.90 11.86 186.46

6 0.89 14.73 212.80 1.31 6.57 334.16

7 0.84 0.25 351.58 1.22 0.55 17.86

8 0.84 0.55 200.04 1.10 0.46 38.25

9 0.78 0.46 219.04 1.10 0.29 305.42

10 0.78 0.62 194.46 1.09 0.25 171.25

Appendix 2

In Table 4 we list the first ten periodic terms, which were identified in the osculating orbital
elements time series. Some of the periods can be assigned to planetary perturbations, e.g.,
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Venus: (λV ) 0.62years; (2λV ) 0.31years; (2λM − 5λV ) 5.66years; (λM − 3λV ) 1.38years;
(λM − 2λV ) 1.11years; (2λM − 4λV ) 0.55years; Earth: (λM − 4λE ) 6.58years; Jupiter:
(λJ ) 11.86years; (2λJ ) 5.93years; (3λJ ) 3.95years; Saturn: (2λS) 14.73years, where λ =
M + � = M + Ω + ω denotes the mean longitude of the planet, respectively.

Appendix 3

The obliquity of the spin axis ic introduces small changes in the precession and resonant
rotation rates. To stay within the Cassini plane the spin axis has to precess slightly faster than
the orbital plane normal. In order to compute the corrections we expand equation Eq. 33 to
first order in the obliquity ic. The declination δ and right ascension α of the spin axis are then
given by

δ(t) = π

2
− I + Ω̇ sin I

√
İ 2 + (Ω̇ sin I )2

ic = δ0 + δ1t (41)

and

α(t) = Ω − π

2
+ İ/ sin I

√
İ 2 + (Ω̇ sin I )2

ic = α0 + α1t. (42)

By deriving the series in t we obtain the precession rates at J2000.0

δ1 = I1

⎛

⎝−1 + Ω1 I 21 cos I0 + 2(Ω2 I1 − I2Ω1)
√

(I 21 + (Ω1 sin I0)2)3
ic

⎞

⎠ (43)

and

α1 = Ω1 − (I 21 cot I0 + Ω2
1 sin 2I0)I

2
1 / sin I0

√
(I 21 + (Ω1 sin I0)2)3

ic. (44)

For ic = 2.04 arc min (Margot et al. 2012) this results in

δ1 = −0.00486◦/cy and α1 = −0.03291◦/cy. (45)

The rotation rate is also slightly modified due to the obliquity. For small ic we get

ϕ(t) = 3

2
M + ω − İ cot I

√
İ 2 + (Ω̇ sin I )2

ic = ϕ
(3/2)
0 + ϕ

(3/2)
1 t. (46)

The resonant rotation rate is consequently

ϕ
(3/2)
1 = 3

2
n0+ω1+ (I1Ω1)

2(3 + cos 2I0)/2 + (Ω2 I1 − I2Ω1)Ω1 sin 2I0 + I 41 /(sin I0)2
√

(I 21 + (Ω1 sin I0)2)3
ic

(47)
and with ic = 2.04 arc min this amounts to 6.138506841◦/day. The introduced correction is
not significant when compared to the error of the resonant rotation rate in Eq. 21.
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