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Abstract In the present paper, an averaging perturbation technique leads to the determina-
tion of a time-explicit analytic approximate solution for the motion of a low-Earth-orbiting
satellite . The two dominant perturbations are taken into account: the Earth oblateness and
the atmospheric drag. The proposed orbit propagation algorithm comprises the Brouwer–
Lyddane transformation (direct and inverse), coupled with the analytic solution of the
averaged equations of motion. This solution, based on equinoctial elements, is singularity-
free, and therefore it stands for low inclinations and small eccentricities as well. The
simplifying assumption of a constant atmospheric density is made, which is reasonable for
near-circular orbits and short-time orbit propagation. Two sets of time-explicit equations are
provided, for moderate and small eccentricities (O(e4) = 0 and O(e2) = 0, respectively),
and they are obtained by performing (1) a regularization of the original averaged differential
equations of motion for the vectorial orbital elements, and (2) Taylor series expansions of the
aforementioned equations with respect to the eccentricity. The numerical simulations show
that the errors due to the use of the proposed analytic model in the presence of drag are almost
the same as the errors of the Brouwer first-order approximation in the absence of drag.
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1 Introduction

The main perturbations acting upon low-Earth orbiting satellites are due to the planet’s
oblateness and the presence of the atmosphere. Their combined effect causes the orbit to
dramatically drift from the Keplerian unperturbed model. While the oblateness perturbation
(where the dominant term depends on the J2 zonal harmonic) still falls in the range of conser-
vative forces, allowing the classic perturbation methods to be applied, the atmospheric drag
produces a non-conservative force, making the use of the tools of analyticmechanics difficult.

While the search for analytic models that approximate the motion of a satellite about an
oblate planet (approach known as “the main problem in artificial satellite theory”) brought
a multitude of solutions: Garfinkel (1959), Brouwer (1959), Kozai (1959), Lyddane (1963),
Vinti (1960), Cid andLahulla (1969),Deprit (1981),Gurfil andLara (2014), Lara et al. (2014),
the analytic solutions for the atmospheric drag are present in a much less significant amount.

The study of the effect of atmospheric drag on satellites’ orbits dates back to the first
years of the spaceflight era. One of the initial and most important contributions in this area
belongs to King-Hele (1964). Although the effects of the atmospheric drag were approached
thoroughly, the effects of the other perturbations were neglected. Battin (1999) developed
closed-formexpressions for the averaged variation of semimajor axis and eccentricity in terms
of modified Bessel functions of the first kind. Vallado and McClain (2001) and Roy (2004)
presented approximate variational equations for eccentricity and semimajor axis, deriving
expressions for the secular rates of change of the orbital elements which are suitable for series
expansion in powers of the eccentricity. Mittleman and Jezewski (1982) offered the solution
to a modified problem, where an approximate expression for the drag acceleration was used
such that the problem becomes integrable. Vinh et al. (1979) also derived closed-form expres-
sions for the variational equations of the orbital elements with respect to a new independent
variable, and then used numerical techniques to integrate the equations of motion. All the
aforementioned studies either treat the atmospheric drag exclusively, and hence ignore the
other dominant perturbation, namely the Earth’s oblateness, or do not provide an analytic
solution, but offer instead numerical techniques to integrate them.

Combining the effects of the two major perturbations seems quite a challenge, and few
attempts weremade so far. Brouwer andHori (1961) extended the Poincaré-von Zeipel-based
method developed previously by Brouwer (1959) to accommodate the atmospheric drag, fail-
ing to reach closed-form equations of motion, but rather focusing on the separation of the
variables in order to ease numerical integration. Parks (1983) included the averaged effects
of the atmospheric drag in the contact transformation developed in Brouwer (1959), but this
method of solution rises several issues regarding the invertibility of the contact transfor-
mation, which is essentially needed for propagating the osculating elements. Franco (1991)
developed an approximate model for the motion about an oblate planet with atmosphere, but
only for the equatorial case.

In this context, the objective of this paper is to derive a new time-explicit solution of the
problem combining the J2 and drag forces. The outcome is an analytic short-term propagator
which could be implemented onboard the satellite.1 To support this conjecture, numerical
simulations show that the error in position, after two days of propagation of a low Earth
orbit with an initial altitude of 350km and a ballistic coefficient CB = 0.022 m2 kg, with a

1 Due to the presence of significant uncertainties in the atmosphere (influence of the solar activity, day/night
density variations, the atmospheric bulge, winds), realistic long-term propagations in the presence of drag
cannot be addressed with deterministic tools [see Dell’Elce and Kerschen (2014)].
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(constant) density ρ0 = 10−11 kg/m3, reaches hundreds of kilometers if the effects of the
atmospheric drag are ignored.

The present approach is based on the so-called perturbation averaging method, which is
in fact an expansion in trigonometric series (with respect to the mean anomaly) where only
the first term is retained. This approach already exists for the J2-only perturbation, namely
the Brouwer first-order model, and it is possible to develop it by simple manipulations, as in
Hestenes (1999) and Condurache et al. (2013). The same averaging technique can be applied
to the drag acceleration, obtaining the variational equations for the orbital elements with the
combined effect of J2 and drag. By making the assumptions that (1) the atmospheric density
is constant and (2) the orbit eccentricity is small (both situations O(e2) � 0 and O(e4) � 0
are addressed), time-explicit solutions to the equations of motion for the averaged classic
orbital elements are obtained.

The essential remark regarding this approach is that, after averaging, the new variational
equations do not refer to the osculating orbital elements (and their choice may be made
among several types; if the system is Hamiltonian, a set of canonical elements will obviously
be used), but for a new set of elements, which corresponds to the new dynamical problem.
They are usually referred to as mean elements in Astrodynamics [see Cain (1962)], or new
variables in classical mechanics. When treating a perturbation in this way, a connection
between the old and the new variables needs to be established, and it is made via a canonical
contact transformation (the term “contact” indicating a change of coordinates in the phase
space involving both the generalized coordinates and the conjugate momenta). It may be
either of the Jacobian type [(as in the Poincaré-von Zeipel method, used by Brouwer (1959)],
or infinitesimal, as in the method used by Deprit (1969, 1981).

The main challenge in the J2 & drag problem is that the system is non-conservative. How-
ever, the assumption that for short-term orbit prediction the canonical contact transformation
corresponding to the Hamiltonian system (in this case the J2-only dynamical system) can be
used to travel between the old and the new variables appears legitimate. In other words, the
newdynamical system, corresponding to the averaged equations ofmotion, takes into account
the effects of the atmospheric drag, and only the transformation back to the (approximate)
osculating elements is made by ignoring the drag effect.

The paper is organized as follows. Section 2 introduces themodel for themotion of a satel-
lite under the influence of J2 and drag, under the assumption of a static uniform atmosphere,
and defines the quantities related to the associated unperturbed Keplerian problem for which
variational equations will be developed. The averaged differential equations for the varia-
tional elements, together with some qualitative and quantitative insights of the motion, are
offered. Section 3 presents the time-explicit solution for the equations of motion, for small
(e4 � 0) and very small (e2 � 0) eccentricities. To the knowledge of the Authors, no time-
explicit solution for the problem in discussion was developed to date. Section 4 describes the
algorithm for orbit propagation. Section 5 presents the validation of the developed model,
by exploring a broad set of initial and atmospheric conditions, by means of a Monte-Carlo
analysis. Section 6 presents the conclusions and the future directions of investigation.

2 Method of solution

2.1 Problem statement

The initial value problem governing the motion of a satellite about an oblate planet, under
the influence of atmospheric drag, is:
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r̈ + μ

r3
r = fd , r (t0) = r0, ṙ (t0) = v0, fd = fJ2 + fdrag (1)

where fJ2 and fdrag model the accelerations due to the oblateness and to the drag, respectively.
The over-dot indicates the derivative with respect to the time variable t ≥ t0,where t0 denotes
the initial moment of time. The closed-form expressions of the perturbing accelerations are:

fJ2 = −3k2
r4

[(
1 − 5

z2

r2

)
r̂ + 2

z

r
iz

]
(2a)

fdrag = −C0 ‖ṙ‖ ṙ (2b)

and the following notations are used:

k2 = μJ2r2eq
2

, C0 = 1

2
CD

Sre f
m

ρ0

Here μ is the gravitational parameter, J2 is the second zonal harmonic, iz is the unit vector
associated with the Earth’s rotation axis, z is the projection of the position vector on the
Earth’s rotation axis, z = r · iz , while r̂ denotes the unit vector associated with vector r; req
denotes the mean equatorial radius,CD is the drag coefficient, Sre f is the cross-sectional area
of the satellite, m is its mass and ρ0 is the atmospheric density. The assumptions of a static
uniform atmosphere (the effect of the Earth rotation is neglected), a constant drag coefficient
and the presence of drag exclusively (no lift) are made [cf. Chao (2005)].

The unperturbed problemassociated to the initial value problem (1) (for fd = 0) isKepler’s
problem, which has the classic first integrals:

h = r × ṙ, e = 1

μ
ṙ × h − r̂, E = 1

2
ṙ2 − μ

r
(3)

namely the specific angular momentum, the eccentricity vector and the specific total energy,
respectively. If E < 0, then the unperturbed trajectory is an ellipse with eccentricity e and
semimajor axis a = −μ/ (2E). The use of the vectorial orbital elements h and e together
with the specific total energy E is inspired by Hestenes (1999) and Condurache et al. (2013),
and is motivated by the intuitive geometric interpretations available even before solving the
equations of motion.

2.2 Variational method and averaging

If the perturbing acceleration fd is taken into account, the quantities defined in Eq. (3) are
no longer constant. The motion may still be referred to these quantities, but their variations
should be taken into account. A classic perturbation method of averaging is used, where the
averages over one period of the unperturbed motion are computed for the former constants of
themotion h, e and E . For computational purposes, it is more convenient to use the semimajor
axis a instead of the specific energy E . The derivatives of h, e and a may be expressed as:

ḣ = r × fd , ė = 1

μ
[fd × h − (r × fd) × ṙ] , ȧ = 2a2

μ
(ṙ · fd) (4)

Denote by T the main period of the unperturbed motion, and by n the mean motion. Then it
holds:

T = 2π√
μ
a3/2 = 2π

n
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The averages over one period T of the unperturbed motion of the derivatives expressed in
Eq. (4) are defined as follows:

ḣ = 1

T

T∫
0

(r × fd) dt (5a)

ė = 1

μT

T∫
0

[fd × h − (r × fd) × ṙ] dt (5b)

ȧ = 2a2

μT

T∫
0

(ṙ · fd) dt (5c)

It is convenient to refer all the vector functions used in Eq. (5) to a reference frame, which
classicly is chosen to be the averaged perifocal frame, defined by the orthogonal unit vectors
{uk}k=1,2,3 :

u1 = e
‖e‖ , u2 = h × e∥∥h∥∥ ‖e‖ , u3 = h∥∥h∥∥

All the vectorswhich are expressed as columnmatrices are referred to this particular reference
frame, if no other specification is made. The position and velocity vectors in the perifocal
frame are:

r = r

⎡
⎣ cos f
sin f
0

⎤
⎦ ; v = h

p

⎡
⎣ − sin f
e + cos f

0

⎤
⎦

if expressed with respect to the true anomaly, and:

r =
⎡
⎣ a (cos E − e)

b sin E
0

⎤
⎦ ; v = na

r

⎡
⎣−a sin E

b cos E
0

⎤
⎦

if expressed with respect to the eccentric anomaly.
In the right-hand side of Eq. (5), the expressions are linear with respect to fd , and therefore

they may be separated as:

d

dt
( ) = d

d t
( )J2 + d

dt
( )drag

The expressions of ḣJ2 , ėJ2 and ȧ J2 are computed as follows [see Condurache et al. (2013)]:

ḣJ2 = −3k2

b
3 (iz · u3) (iz × u3) (6a)

ėJ2 = 3ek2

2hb
3

{− [
1 − 3 (iz · u3)2

]
u2 + 2 (iz · u2) (iz · u3)u3

}
(6b)

ȧ J2 = 0 (6c)

where

b = a
√
1 − e2
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As expected, the magnitudes of vectors hJ2 and eJ2 remain constant, based on the fact that:

d

dt

∥∥hJ2

∥∥2 = 2hJ2

(
u3 · ḣJ2

)
= 0

d

dt

∥∥eJ2∥∥2 = 2eJ2
(
u1 · ėJ2

) = 0

It follows that the magnitudes h and e are affected only by the atmospheric drag, and their
derivatives are computed further in the current section.

Consider K (·) and E (·) the complete elliptic integrals of the first and second kinds,
respectively, defined as [see Abramowitz and Stegun (1964)]:

K (w) =
1∫

0

du√
1 − w2u2

, E (w) =
1∫

0

√
1 − u2√

1 − w2u2
du 0 ≤ w ≤ 1

Then the variations of h, e and a that are due to the atmospheric drag are computed from
Eq. (5) by making use of the equality:

1

T

T∫
0

F (E (t)) dt = 1

2πa

2π∫
0

rF (E) dE,

which is valid for any continuous vector or scalar function F , and is deduced from dE =
(na/r)dt. Denote:

p = a
(
1 − ē2

)
, n = √

μa−3/2

It follows:

ḣdrag = −μC0b

2πa

⎛
⎝

2π∫
0

√
1 − e2 cos EdE

⎞
⎠ u3

ėdrag = −4n pC0

π

⎡
⎣
⎛
⎝

2π∫
0

√
1 − e2 cos E

1 − e cos E
cos EdE

⎞
⎠u1

+
⎛
⎝a

b

2π∫
0

√
1 − e2 cos E

1 − e cos E
sin EdE

⎞
⎠u2

⎤
⎦

ȧdrag = −nC0

2π

2π∫
0

√
1 − e2 cos E

1 − e cos E
(1 + e cos E) dE

After manipulations, the closed-form expressions for the variations of h, e and a due to
the atmospheric drag are obtained as:

ḣdrag = −2C0μb

πa
E (ē)u3 (7a)

ėdrag = −4n pC0

π ē
[K (ē) − E (ē)]u1 (7b)

ȧdrag = −4na2C0

π
[2K (ē) − E (ē)] (7c)
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The variations due to drag of the magnitudes of vectors h and e are determined based on
Eq. (7) as follows:

ḣ = −2C0μb

πa
E (ē) , ė = −4n pC0

π ē
[K (ē) − E (ē)] (8)

The usage of the variation of the averaged semimajor axis (namely Eq. 7c) is chosen, based
on the fact that one of the equations (8) becomes redundant, since:

ḣ = n

(
b

2
ȧ − ea3

b
ė

)

(workingwith the average variation of the angularmomentumwould lead to the same results).

2.3 Satellite trajectory

Define the quantity Cu as follows:

Cu
(
a, e, req , J2

) = 3k2

2b
3
h

= 3

4
nJ2

(
req
p

)2

(9)

where p = a
(
1 − e2

)
and n = μ1/2a−3/2. It is possible to offer a qualitative insight for the

motion of the satellite, by taking into account the variations of the unit vectorsuk, k = 1, 2, 3 :

u̇1 = Cu
{[
3 (iz · ū3)2 − 1

]
ū2 + 2

[
(iz · ū2) (iz · ū3)

]
ū3

}
(10a)

u̇2 = Cu
{− [

3 (iz · ū3)2 − 1
]
ū1 − 2

[
(iz · ū3) (iz · ū1)

]
ū3

}
(10b)

u̇3 = Cu
{−2

[
(iz · ū2) (iz · ū3)

]
ū1 + 2

[
(iz · ū3) (iz · ū1)

]
ū2

}
(10c)

The instantaneous angular υ velocity of the averaged perifocal frame is deduced from:

υ = 1

2

3∑
k=1

uk × u̇k

and its closed-form expression with respect to this frame is:

υ = Cu
{−2

[
(iz · ū3) (iz · ū1)

]
ū1 − 2

[
(iz · ū2) (iz · ū3)

]
ū2 + [

3 (iz · ū3)2 − 1
]
ū3

}
(11)

The effect of the atmospheric drag on the vector υ is reflected only in the coefficient
Cu, through the presence of the quantities a and e, which are affected exclusively by the
atmospheric drag.

Based on Eq. (11), it is possible to determine the rotation matrix R associated with the
instantaneous angular velocity υ. By taking into account that:

iz =
3∑

k=1

(iz · uk) uk

and by noticing that cos i = iz · u3, with i being the constant average orbit inclination, the
vector υ may be rewritten as:

υ = −2Cu

{(
cos i

)
iz + 1 − 5 cos2 i

2
ū3

}
(12)
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Equation (10c) may be rewritten as:

u̇3 = (−2Cu cos i
)
iz × ū3 (13)

which indicates that ū3 precesses about the axis defined by iz with the rate α̇ = −2Cu cos i .
It follows that the closed-form expression of u3 is:

u3 = R (α, iz)u03 (14)

where u03 = u3 (t0) and R (α, iz) is defined by the Rodrigues formula [see Angeles (2002),
pp. 41]:

R (α, iz) = I3 + (sin α)̃ iz + (1 − cosα)̃ i
2
z , α =

t∫
t0

(−2Cu cos i
)
dt (15)

Here ĩz denotes the skew-symmetric tensor (matrix) associated to vector ĩz , satisfying ĩzx =
ĩz × x for any vector x.

The expression of the instantaneous angular velocity υ may be rewritten as:

υ = α̇iz + R (α, iz)
[
Cu

(
5 cos2 i − 1

)
u03

]
(16)

It is easy now to verify that the rotation matrix

R = R (α, iz)R
(
γ,u03

)
, γ =

t∫
t0

Cu
(
5 cos2 i − 1

)
dt (17)

satisfies Ṙ = υ̃R, R (t0) = I3, and therefore it is the rotation matrix associated with the
instantaneous angular velocity υ.

The motion may now be visualized as follows: At the initial moment t = t0, a plane �

having the normal u03 = h0 × e0/
(∥∥h0∥∥ ‖e0‖

)
is formed. The plane � starts rotating about

its own normal with the rate γ̇ = Cu
(
5 cos2 i − 1

)
, while its normal is precessing about

the iz vector with the rate α̇ = −2Cu cos i . The satellite moves in the rotating plane � on a
“shrinking” ellipse, which suffers from a semimajor axis decay with the rate ȧ < 0, given in
Eq. (7c), and a “circularization”, modeled by the decrease in the eccentricity, expressed in
Eq. (8). The motion on this shrinking ellipse is detailed in the next section.

A way to emphasize the aforementioned “circularization” of the ellipse is to compare the
rates of decrease of the semimajor axis a and the semiminor axis b of the ellipse. After some
computations, it is obtained:

ḃ√
1 − ē2

− ȧ = 4C0
√

μa

π
[K (ē) − E (ē)] < 0

which leads to:
ḃ < ȧ

√
1 − ē2 < ȧ (18)

The interpretations of Eq. (18) is that the rate of decrease of the semimajor axis is faster than
that of the semiminor axis, and therefore the use of term “circularization” is legitimate.

Note that the two aforementioned rotations recover the already known variational equa-
tions for the averaged right ascension of the ascending nodeΩ and for the averaged argument
of perigee ω:

Ω̇ = α̇, ω̇ = γ̇
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which become the well-known initial value problems [see Battin (1999), pp. 504, Schaub
and Junkins (2003), pp. 408]:

Ω̇ = −3

2
J2n

(
req
p

)2
cos i, Ω (t0) = Ω0 ω̇ = 3

4
J2n

(
req
p

)2 (
5 cos2 i − 1

)
, ω (t0) = ω0

(19)
Remark that Ω and ω are no longer varying linearly with time, due to the fact that the
quantities n and p are not constant, given the presence of the atmospheric drag. The solution
to the initial value problems (19) will be addressed in the next sections.

2.4 Satellite motion on the trajectory

The considerations made in the previous section have concerned the global behaviour of the
motion, without any reference to the specific motion on the trajectory. For this purpose, the
variational equation for one of the anomalies (true, eccentric or mean) is required:

d

dt
( ) = ∂

∂t
( ) +

[
∂

∂ ṙ
( )

]
· fd

where ( ) is any of the anomalies f, E or M [see Battin (1999), pp. 501–503]. The mean
anomaly M will be subjected to the averaging procedure, since it contains the sixth constant
of the unperturbed motion, related to the time of periapsis passage tP .

By taking into account the closed-form expressions which are obtained in the right-hand
side of the equalities above, it follows that [see Battin (1999), pp. 502–503]:

Ṁ = n + rb

ha2e

[
cos f (r · fd) − a

h
(r + p) sin f (ṙ · fd)

]
(20)

At this point it is more natural to perform the computations in the Local-Vertical-Local-
Horizontal (LVLH) frame of the satellite, defined by the orthogonal unit vectors:

i1 = r̂; i2 = ĥ × r̂; i3 = ĥ

where the perturbing accelerations have the expressions:

f LV LH
J2 = −3k2

r4

⎡
⎣ 1 − 3 sin2 i sin2 (ω + f )

sin2 i sin2 (2ω + 2 f )
sin (2i) sin (ω + f )

⎤
⎦ , f LV LH

drag = −C0 ‖v‖ h

p

⎡
⎣ e sin f

p/r
0

⎤
⎦

Equation (20) transforms into [see Battin (1999), pp. 488]:

Ṁ = n + b

hae
[(p cos f − 2re) fdr − sin f (p + r) fdθ ]

where fdr is the component of the perturbing acceleration along the i1 unit vector of the LVLH
frame, while fdθ is the component along the i2 unit vector of the same frame. Averaging over
one period of the unperturbed motion provides the following expression:

Ṁ = n + Cu

√
1 − e2

(
3 cos2 i − 1

)
(21)

The classic differential equation for the averaged mean anomaly is recovered in this way,
with the same remark that the quantity in the right-hand side of Eq. (21) is not a constant,
due to the fact that both a and e are subject to variations, because of the presence of the
atmospheric drag.

For an observer whose world is shrinking together with the instantaneous ellipse, the
averaged motion of the satellite is Keplerian on this ellipse, with a gravitational parameter
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which depends both on the shape of the ellipse and on the orbit inclination. The value of this
fictitious gravitational parameter is:

μ∗ = μ

[
1 + Cub

na

(
3 cos2 i − 1

)]2

(22)

The rate of variation of the fictitious gravitational parameter μ∗ is determined to be:

μ̇
∗ = 12C0k2

na2

b
3

[
1 + Cub

na

(
3 cos2 i − 1

)]
[K (ē) + E (ē)] > 0 (23)

3 Analytic solutions

Eventually, the initial value problems which model the motion of the satellite under the
influence of J2 and the atmospheric drag is

ȧ = −4C0na
2 2K (ē) − E (ē)

π
(24a)

ė = −4C0n p
[K (ē) − E (ē)]

π ē
(24b)

i̇ = 0 (24c)

Ṁ = n + Cub

a

√
1 − e2

(
3c2 − 1

)
(24d)

ω̇ = Cu
(
5c2 − 1

)
(24e)

Ω̇ = −2Cuc

a (t0) = a0, e (t0) = e0, i (t0) = i0, M (t0) = M0, ω (t0) = ω0, Ω (t0) = Ω0

(24f)

where c = cos i . It is obvious now that Eqs. (24a) and (24b) need to be solved first, since the
quantities a and e are involved in all the other equations.

3.1 The case of small eccentricity (e4 � 0)

In order to obtain an analytic solution to Eq. (24), Taylor series expansions with respect to the
averaged eccentricity e are performed, together with the introduction of a new independent
variable τ, defined by:

dt = dτ

B (a, e)
, τ (t0) = a0 (25)

where the expression of B (a, e) is:

B (a, e) = −C0na2

2

(
4 + 3e2

)
(26)

A new system of differential equations will emerge, where the derivatives, denoted with ( )′,
are computed with respect to the new independent variable τ as follows

( )′ = d

dτ
( ) = 1

B (a, e)

d

dt
( )
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A new differential equation, which links the time variable t to the independent variable τ

(similar to Kepler’s equation in the unperturbed case), will be derived and solved explicitly
in each situation.

Since the averaged inclination remains constant, its differential equation will be omitted.
Equations (24) are rewritten as:

a′ = −4C0
√

μā
2K (ē) − E (ē)

πB (a, e)
(27a)

e′ = −4C0
√

μ√
ā

(
1 − ē2

)
[K (ē) − E (ē)]

π ēB (a, e)
(27b)

M
′ = n

B (a, e)
+ Cu

√
1 − e2

(
3c2 − 1

)
B (a, e)

(27c)

ω′ = Cu
(
5c2 − 1

)
B (a, e)

(27d)

Ω
′ = − 2Cuc

B (a, e)
(27e)

t ′ = 1

B (a, e)
(27f)

After expanding the right-hand sides of Eq. (27a–27e ) in Taylor series and assuming that
O (

e4
) = 0, the system becomes:

a′ = 1 (28a)

e′ = e

2a
(28b)

M
′ = − 1

8C0

4 − 3e2

a2
− 3k2

(
3c2 − 1

)
16μC0

(
4 + 3e2

)
a4

(28c)

ω′ = −3k2
(
5c2 − 1

)
16μC0

(
4 + 5e2

)
a4

(28d)

Ω
′ = 3k2c

8μC0

(
4 + 5e2

)
a4

(28e)

t ′ = − 2

C0
√

μ

1√
a
(
4 + 3e2

) (28f)

The solutions to Eq. (28a) and (28b) are:

a = τ (29a)

e = α0
√

τ , α0 = e0√
a0

(29b)

From Eq. (28f), the time-explicit expression of the averaged semimajor axis may now be
obtained:

β0 =
√
3

2
e0

a = a0
β2
0

tan2 [arctan (β0) − β0n0a0C0 (t − t0)] (30)
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The rest of the differential equations are solved by simple integration, yielding:

e = 2√
3
tan [arctan (β0) − β0n0a0C0 (t − t0)] (31a)

M − M0 = 1

8

1

C0

[
4

τ
+ 3α2

0 ln
τ

a0

]∣∣∣∣
τ=a

τ=a0

+ 3k2
(
3c2 − 1

)
16μ

1

C0

[
3α2

0

2

1

τ 2
+ 4

3τ 3

]∣∣∣∣∣
τ=a

τ=a0

(31b)

ω − ω0 = 3k2
(
5c2 − 1

)
16μ

1

C0

[
5α2

0

2

1

τ 2
+ 4

3τ 3

]∣∣∣∣∣
τ=a

τ=a0

(31c)

Ω − Ω0 = −3k2c

8μ

1

C0

[
5α2

0

2

1

τ 2
+ 4

3τ 3

]∣∣∣∣∣
τ=a

τ=a0

(31d)

In order to avoid the singularities induced by the choice of classic orbital ele-
ments, the equations of motion may be written with respect to the equinoctial variables(
a, P1, P2, Q1, Q2, σ

)
as follows:

a = a0
β2
0

tan2 [arctan β0 − β0n0a0C0 (t − t0)] (32a)

P1 = 2√
3
tan [arctan β0 − β0n0a0C0 (t − t0)] sin� (32b)

P2 = 2√
3
tan [arctan β0 − β0n0a0C0 (t − t0)] cos� (32c)

Q1 = u0 sin

⎧⎨
⎩arctan

Q1 (t0)

Q2 (t0)
− 3k2c

8μ

1

C0

[
5α2

0

2

1

τ 2
+ 4

3τ 3

]∣∣∣∣∣
τ=a

τ=a0

⎫⎬
⎭ (32d)

Q2 = u0 cos

⎧⎨
⎩arctan

Q1 (t0)

Q2 (t0)
− 3k2c

8μ

1

C0

[
5α2

0

2

1

τ 2
+ 4

3τ 3

]∣∣∣∣∣
τ=a

τ=a0

⎫⎬
⎭ (32e)

σ = σ 0 + 1

8C0

[
4

τ
+ 3α2

0 ln
τ

a0

]∣∣∣∣
τ=a

τ=a0

+

k2
16μC0

[
3α2

0

(
17c2 − 5c − 4

)
τ 2

+ 8
(
4c2 − c − 1

)
τ 3

]∣∣∣∣∣
τ=a

τ=a0

(32f)

where:

α0 =
√
P
2
1 (t0) + P

2
2 (t0)√

a0
(33a)

β0 =
√
3

2
α0

√
a0 (33b)

u0 =
√
Q

2
1 (t0) + Q

2
2 (t0); (33c)

� 0 = arctan
P1 (t0)

P2 (t0)
; (33d)
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σ 0 = � 0 + M0; (33e)

� = � 0 + k2
(
5c2 − 2c − 1

)
32μC0

[
15α2

0

τ 2
+ 8

τ 3

]∣∣∣∣∣
τ=a

τ=a0

(33f)

The presence of C0 at the denominator in Eqs. (31) might seem to introduce a singularity.
However, it is only apparent, due to the fact that expressions of the type (a − a0) g (a, a0) ,

g (a, a0) 	= 0, are present at the numerators. By taking into account Eq. (30), it follows that:

lim
C0→0

a − a0
C0

= −2n0a
2
0

(
1 + β2

0

)
(t − t0) (34)

If the limitC0 → 0 is made in Eq. (31), the classic averaged variational equations for J2 only
are obtained, after some manipulations. The singularity is therefore removed. For numerical
purposes, in order to avoid the inconvenience of C0 being small, the series expansion of the
difference a − a0 in powers of C0 is considered, which is deduced based on Eq. (30) as:

a − a0 = a0
(
1 + β2

0

) ∞∑
k=1

[n0a0C0 (t − t0)]
k dk (35)

where the first relevant values of the coefficients dk are:

d1 = −2

d2 = 1 + 3β2
0

d3 = −4

3
β2
0

(
2 + 3β2

0

)

d4 = 1

3
β2
0

(
15β4

0 + 15β2
0 + 2

)

d5 = − 2

15
β2
0

(
45β4

0 + 60β2
0 + 17

)

For the logarithmic term which is present in the expression of M , in Eq. (31b), the following
series expansion

1

C0
ln

a

a0
= n0a0

(
1 + β2

0

)
(t − t0)

∞∑
k=1

[n0a0C0 (t − t0)]
k gk (36)

should be used, where the first relevant values of the coefficients gk are:

g1 = −2

g2 = −1 + β2
0

g3 = −2

3

(
1 + β4

0

)

g4 = 1

6

(
1 − β2

0

) (
3β4

0 + 4β2
0 + 3

)

g5 = − 2

15
β2
0

(
3β8

0 + 2β6
0 + 2β2

0 + 3
)

3.2 The case of very small eccentricity (e2 � 0)

Simpler expressions may be obtained if a more restrictive assumption is made, namely that
the eccentricity is such thatO (

e20
) = 0. By expanding in Taylor series in Eqs. (30) and (31),
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it follows that:

a = a0 − 2C0
√

μ (t − t0)
√
a0 + μC2

0 (t − t0)
2 a0 + O (

e20
)

e =
[
1 − C0

√
μ√

a0
(t − t0)

]
e0 + O (

e30
)

The analytic solution is expressed as follows:

a = a0 [1 − C0n0a0 (t − t0)]
2 (37a)

e = α0
√
a (37b)

M − M0 = 1

2C0

(
1

a
− 1

a0

)
+ k2

(
3c2 − 1

)
4μC0

(
1

a3
− 1

a30

)
(37c)

ω − ω0 = k2
(
5c2 − 1

)
4μC0

(
1

a3
− 1

a30

)
(37d)

Ω − Ω0 = − k2c

2μC0

(
1

a3
− 1

a30

)
(37e)

The inconvenience of having C0 at the denominator is removed by taking into account
Eq. (37a):

1

C0

(
1

a
− 1

a0

)
=

√
μ
(√

a0 + √
a
)

a0a
(t − t0) (38a)

1

C0

(
1

a3
− 1

a30

)
=

√
μ
(
a20 + aa0 + a2

) (√
a0 + √

a
)

a30a
3 (t − t0) (38b)

The singularities which occur at low inclinations and small eccentricities are removed by
using equinoctial elements, instead of the classic ones. By using also Eqs. (36), Eqs. (37) are
rewritten as:

P1 = α0 [1 − C0n0a0 (t − t0)] sin� (39a)

P2 = α0 [1 − C0n0a0 (t − t0)] cos� (39b)

Q1 = u0 sin

[
arctan

Q1 (t0)

Q2 (t0)
− k2c

2μC0

(
1

a3
− 1

a30

)]
(39c)

Q2 = u0 cos

[
arctan

Q1 (t0)

Q2 (t0)
− k2c

2μC0

(
1

a3
− 1

a30

)]
(39d)

σ = σ 0 +
√

μ
(√

a0 + √
a
)

2a0a

[
1 − k2

(−4c2 + c + 1
)

μ

(
a20 + aa0 + a2

)
a20a

2

]
(t − t0)

(39e)

where are u0, � 0, σ 0 are defined in Eqs. (33) and

� = � 0 − k2
(−5c2 + 2c + 1

)
4
√

μa30a
3

(
a20 + aa0 + a2

) (√
a0 + √

a
)

(t − t0) (40)
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Fig. 1 Proposed orbit
propagation algorithm

4 Algorithm for orbit propagation

The time-explicit solutions obtained in the previous section describe the averaged motion
under the influence of J2 and atmospheric drag. However, the set of averaged orbital elements
does not belong to the space of osculating orbital elements, which describe the real motion of
the satellite. A mapping between these two sets of elements therefore needs to be established
via a so-called contact transformation.

Because we target short-term orbit predictions in this study, we assume that the effects of
the atmospheric drag may be locally ignored in the contact transformation. This assumption
allows us to exploit the classic canonical theory for Hamiltonian systems for transforming
osculating elements into mean elements and vice versa. Since the eccentricities considered
herein are small, a slightly-modified version of the canonical contact transformation devel-
oped in Brouwer (1959) is used. The transformation was originally developed by Lyddane
(1963), and the governing equations can be found in Schaub and Junkins (2003), Appendix
G.

The orbit propagation is performed as presented in Fig. 1. At the initial epoch t = t0, the
input consists of the osculating equinoctial elementsŒ0 = (

a0, P1,0, P2,0, Q1,0, Q2,0, σ0
)
.

The osculating to mean transformation is applied to these coordinates:

Œ0
T−→ Œ0

in order to obtain the mean initial conditions Œ0 = (
a0, P1,0, P2,0, Q1,0, Q2,0, σ 0

)
. The

equations derived in Section 3 are used to propagate the averaged orbital elements, starting
from Œ0. At each step of the propagation, the inverse contact transformation is applied in
order to recover the osculating orbital elements:

Œ (t)
T−1−→ Œ (t)

which constitute the output of the propagation.

5 Validation of the analytic propagator

5.1 Deterministic simulations

Our analytic propagator is demonstrated using a nanosatellite (CD = 2.2, Sre f /m = 0.01
m2/kg) in a quasi-circular orbit (e0 = 0.001, i = 51◦, f0 = 20◦, ω0 = 0◦, Ω0 = 0◦). The
simulations were performed for a time interval of 2days and for two initial altitudes, namely
350 and 600km. The predictive capability of the propagator for very small eccentricities
(e2 � 0) was assessed through comparison with direct numerical integration of the equations
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Fig. 2 Dashed red line
numerical propagation with
J2-only, solid blue: analytic
propagation with Drag+J2. a
Error in position for an initial
altitude of 350km (ρ0 = 10−11

kg/m3). b Error in position for an
initial altitude of 600km
(ρ0 = 10−13 kg/m3). c Error in
position between numerical and
analytic propagations with no
drag for an initial altitude of
350km
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of motion. Similar results were achieved using the propagator for small eccentricities (e4 �
0), which is therefore not considered in this section.

Figure 2a, b compare the outcome of three different propagations, i.e., numerical prop-
agation with Drag+J2, numerical propagation with J2-only, and analytic propagation with
Drag+J2 at 350 and 600km, respectively. Figure 2a shows that neglecting drag in the numer-
ical propagation at 350km can result in a position error of the order of several hundreds
kilometers. The error with the analytic propagator drops down to approximately 1km, which
represents the evidence of the good predictive capability and usefulness of the proposed time-
explicit solution. Interestingly, the error made by the analytic propagator is also around 1km
at an altitude of 600km, as displayed in Fig. 2b. Considering that drag is much smaller at this
altitude, this result suggests that the error is mainly inherited from the Earth’s oblateness,
i.e. from the averaging of the J2 effect and the absence of drag in the contact transformation.
Further confirmation of this finding is obtained by setting the atmospheric density to 0 in the
simulations, as in Fig. 2c, which also gives an error of 1km.

123



Analytic propagation of near-circular satellite orbits 101

In addition, the fact that the error of the analytic propagator evolves nearly linearly and
with non-zero initial slope is another indication that the drift is due to the Earth’s oblateness.
Small errors in the initial mean estimation due to the first-order contact transformation are
mapped into errors in the coefficient Cu in Eq. (9), which, in turn, modifies the mean orbital
period and results in a linear drift of the mean anomaly.

5.2 Statistical analysis

In view of the important uncertainty affecting atmospheric drag and because the considered
contact transformation neglects drag, a statistical validation of the analytic propagator was
also performed. The atmospheric density ρ was chosen according to the Harris–Priester
model for a given altitude H as follows. Consider ρnom(H) the deterministic component of
the density, computed as the mean between the minimum andmaximum values of the density
of the Harris–Priester model at altitude H . The quantity Cρ is a random variable ranging
from −1 to 1, and it is used to correct the density, i.e., ρ(H,Cρ) = ρnom(H) ·10Cρ . Figure 3
depicts the dependence of the density with the altitude obtained through this process. The
initial Keplerian elements were also modeled as uniformly distributed random variables with
the lower and upper bounds given in Table 1.

Two different simulations are compared by means of Monte-Carlo propagation of 20000
samples of the stochastic input variables. Specifically, the difference between analytic (i.e.,
Brouwer’s model) and numerical propagations for J2-only is compared against the difference
between analytic and numerical propagations in the Drag+J2 case. Figure 4a depicts the
resulting median errors in position, as well as the 90% confidence bounds. The differences
between the two errors are negligible, since the two medians are almost overlapping. In

Fig. 3 Density profile in
function of the altitude. The solid
line is the the mean between the
minimum and maximum values
of the density of the
Harris–Priester model at a given
altitude. The shaded region
indicates the variability
introduced by the parameter Cρ
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Table 1 Lower and upper bounds of the Keplerian elements used in the Monte Carlo simulations

Variable Lower bound Upper bound Description

H0 300km 800km Geocentric altitude

e0 0 5 · 10−3 Eccentricity

i0 0◦ 180◦ Inclination

ω0 0◦ 360◦ Argument of perigee

Ω0 0◦ 360◦ RAAN

f0 0◦ 360◦ True anomaly
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Fig. 4 Medians and 90%
confidence bounds for the error
after 2days for the J2 & drag and
J2-only analytic propagators. a
With respect to time. b With
respect to the initial altitude H0
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addition, the correlation between the position errors of the drag+J2 and the J2 -only analytic
propagators is 99.8%, thus showing that the main contribution to the error is the J2 effect.

Figure 4b depicts the error between the two analytic propagators (J2 & drag and J2-only)
as a function of the initial altitude of the satellite. As expected, the 90% confidence bounds
are converging to 0 when altitude increases, while the median value always remains very
close to 0.

6 Conclusions

A new time-explicit solution for the motion of a satellite in the atmosphere of an oblate planet
was proposed in this paper. The solution was developed in two cases, namely small and very
small initial osculating eccentricities. The resulting analytic propagator was validated using
deterministic and stochastic numerical simulations, which evidenced that the propagation
errors are mostly inherited from Brouwer’s first-order model, through the truncation of the
Fourier series of the J2 potential, and, to a lesser extent, from the Brouwer–Lyddane con-
tact transformation. The propagator is able to run on a processor with very limited power
capabilities, such as those onboard satellites.

Future research will generalize this analytic solution to more advanced atmospheric mod-
els, e.g., accounting for the vertical exponential rarefaction of the atmosphere. The possibility
of adapting higher-order contact transformations such that they can account for atmospheric
drag will also be investigated.
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