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Abstract Central configurations have been of great interest overmany years,with the earliest
examples due to Euler and Lagrange. There are numerous results in the literature demonstrat-
ing the existence of central configurations with specific symmetry properties, using slightly
different techniques in each. The aim here is to describe a uniform approach by adapting to
the symmetric case the well-known variational argument showing the existence of central
configurations. The principal conclusion is that there is a central configuration for every pos-
sible symmetry type, and for any symmetric choice of masses. Finally the same argument is
applied to the class of balanced configurations introduced by Albouy and Chenciner.

Keywords n-Body problem · Balanced configurations · Relative equilibria · Orbit types ·
Symmetric variational problems

Mathematics Subject Classification 70F10 · 70G65

1 Introduction

In the n-body problem, central configurations allow particularly simple motions. If the par-
ticles are released from a central configuration with zero initial velocity, the configuration
will collapse to the centre of mass while maintaining the same shape up to rescaling. If they
are given other particular initial velocities, each particle will follow an elliptical Kepler orbit,
and the shape formed by the configuration will remain constant up to rescaling and rotation.
They also occur as limiting configurations of parabolic motions (Maderna and Venturelli
2009) and (partial) collisions (Ferrario and Terracini 2004). Moeckel (2014) has written a
recent survey on the subject.
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406 J. Montaldi

Fig. 1 A configuration with
triangular (D3) symmetry,
consisting of 12 points forming 3
orbits: two equilateral triangles
and one semiregular hexagon.
The theorem guarantees the
existence of a configuration of
this form, where the relative sizes
will depend on the relative
masses of each of the 3 orbits

We consider the set of central configurations in R
d . Of course, the most interesting cases

are d = 2 and d = 3, but nothing is lost by considering general dimensions. Over the past few
decades,many papers have beenwritten demonstrating the existence of central configurations
with various different symmetries, for example (Cedó and Llibre 1989; Corbera and Llibre
2010, 2013; Lei and Santoprete 2006; Yu and Zhang 2012; Zhao and Chen 2013 and other
references therein). The aim of this paper is to describe a uniform proof of all these existence
results, using well-known arguments for the existence of symmetric solutions to variational
problems. The main result is the following.

Theorem Given any symmetric configuration of n bodies in R
d and a corresponding sym-

metric distribution of masses, there is at least one central configuration of that symmetry
type and with the given masses.

We state a more precise result as Theorem1 below, after defining what is meant by sym-
metry type (or Burnside type), and a refinement using connected components. An example
of a symmetric configuration with triangular (D3) symmetry is illustrated in Fig. 1: in order
to be a central configuration, the relative sizes of the three orbits will depend on the rela-
tive masses of each. The proof of the theorem uses the well-known variational approach to
existence of central configurations, adapted to the symmetric setting, and details are given in
Sect. 3 below.

In Sect. 4 we give a few examples in 2 and 3 dimensions. We show for example the
existence of nested and staggered (or dual) platonic solids, as well as (nested) cubeoctahedron
and icosidodecahedron configurations, and discuss (in Example8) why other Archimedean
configurations are not likely to be central. In Sect. 5 we briefly describe the topological aspect
of this problem. The final short section illustrates how the same techniques can be applied to
balanced configurations, an extension of the idea of central configuration due to Albouy and
Chenciner (1998), and we make a few observations about the relation between symmetric
central and balanced configurations.

2 Symmetric configurations

A configuration of n particles in R
d is simply a set of n points in R

d , each having a mass. It
is usual to order these points, so that the configuration is given as a point in (Rd)n = R

nd .
However, in order to avoid introducing permutation groups when we consider symmetric
configurations, we wish to avoid ordering the points. We therefore describe a configuration
of n particles as a set C := {x1, . . . , xn} ⊂ R

d together with a function m : C → R
+,
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Existence of symmetric central configurations 407

assigning to each point in C the mass of the particle at that point. We denote the set of such
configurations (C,m) of n particles in R

d by C
(
R
d , n

)
, or simply by C.

The group O(d) of orthogonal transformations consists of rotations and rotation-
reflections (or, improper rotations) in Rd , the former having determinant equal to 1, the latter
to−1 (recall that an orthogonal transformation of determinant−1 is the product of a reflection
and a rotation). This group acts on the space of configurations in the natural way: let (C,m)

be a configuration with C = {x1, . . . , xn} and let g ∈ O(d), then g · (C,m) = (g ·C, g ·m)

where
g · C = {gx1, . . . , gxn} , (1)

and for the mass function, g · m : g · C → R
+ is defined by (g · m)(g · x) = m(x). That is,

g · m = m ◦ g−1.
Now consider a finite subgroup G of the orthogonal group O(d). A configuration (C,m)

is a symmetric configuration if the groupG leaves the set invariant: g ·C = C (it will usually
permute the points within the set), and moreover it preserves the masses, so that g ·m = m. In
particular, this requires that the points x and gx in the configuration have the same mass; we
call this an invariant mass distribution. Since all our arguments and results are independent
of the mass provided it is an invariant mass distribution, we may in places ignore the mass
function, and concentrate just on the configuration of points.

For a given finite subgroup G of O(d), the symmetric configurations therefore form the
subset CG := Fix(G, C) of C. Let C be a symmetric configuration (with invariant mass
function m). If x ∈ C then so is gx , and therefore so is the orbit of x , which is the set of
images of x under the elements of G:

G · x =
{
gx ∈ R

d | g ∈ G
}

.

If G acts on a finite set, then the set can be partitioned into a disjoint union of orbits (as
in Fig. 1 where the 12 points form 3 orbits). However, different orbits may have different
‘geometry’, and this is made precise by the orbit type of an orbit defined as follows. The
isotropy subgroup Gx of a point x is the subgroup of G consisting of those transformations
fixing x :

Gx = {g ∈ G | gx = x} .

In particular, if x = 0 then Gx = G. It is a simple exercise to show that if y = gx then
Gy = gGxg−1; that is the isotropy subgroups of two points in the same orbit are conjugate.
Thus to each orbit is associated a conjugacy class of subgroups of G, called the orbit type
of the orbit. For a subgroup H of G, one denotes the conjugacy class containing H by (H),
and for x ∈ R

d , the orbit type of x is therefore (Gx ). The number of points in an orbit of
type (H) is equal to |G|/|H | (where |H | is the order of a group H ).

Notice in particular that if an orbit has type (H) say, then at least one of the points x of
the orbit has isotropy subgroup Gx = H and thus lies in the fixed point subspace

Fix(H, Rd) =
{
x ∈ R

d | hx = x, ∀h ∈ H
}

,

which is a linear subspace of Rd .
As a simple example consider the dihedral subgroup D3 of O(2); this is the symmetry

group of the equilateral triangle in the plane. See Figs. 1 and 2a. There are, at this point in the
discussion, three types of orbit: the originwith orbit type (D3), an orbit of type (Z2) consisting
of 3 points forming an equilateral triangle (each vertex of the triangle is fixed by a reflection)
and finally a ‘generic’ orbit of type (1) consisting of 6 points forming a semiregular hexagon
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408 J. Montaldi

Fig. 2 D3 and D4 symmetric
configurations in the plane,
taking connected components
into account for D3. For D4, κ
represents the reflection in the
horizontal axis, and ν in a
diagonal axis

(a) (b)

all with trivial isotropy. In this way we can write a general D3-symmetric configuration as
an integer combination of orbit types (so many orbits of each orbit type): we write

� = ε(D3) + a(Z2) + b(1),

where ε ∈ {0, 1} (since the only point with isotropy D3 in the plane is the origin, so there
can be at most one such orbit), while a, b ∈ N = {0, 1, 2, . . .}. A similar discussion applies
to D4, see Fig. 2b, but note that there are two non-conjugate reflections in D4, here denoted
κ and ν.

Extending this example to R
3, we let D3 act as before on the (x, y)-coordinates, and Z2

act by reflection in the (x, y)-plane, so τ(x, y, z) = (x, y,−z) (the Schoenflies notation for
this subgroup of O(3) is D3h). There are now a total of 6 orbit types: the three considered
above in the plane z = 0, but now with isotropy type enhanced by Z

τ
2, so for example the

orbit type of the 3-point orbit is (Zκ
2 × Z

τ
2), where κ is a reflection in D3, and three new

ones which are, firstly a pair of opposite points on the z-axis at (0, 0,±z) for some z �= 0,
with isotropy type (D3), secondly orbits of 6 points forming a triangular prism, which has
isotropy type (Zκ

2), and finally the ‘generic’ orbit consisting of 12 points arranged at the
vertices of a semiregular hexagonal prism, with isotropy type (1). Thus a general symmetric
configuration with symmetry D3h is of the form

� = ε(D3 × Z
τ
2) + a(Zτ

2 × Z
κ
2) + b(Zτ

2) + c(D3) + d(Zκ
2) + e(1),

with again ε ∈ {0, 1} and a, b, c, d, e ∈ N.
This idea of writing a G-invariant set as an integer combination of orbit types goes back

to (Burnside 1897) in the early days of group theory, so we call this the Burnside type of a
symmetric configuration. Many details about properties of Burnside types set can be found
in Kerber (1999).

In order to treat equilateral triangles and their ‘duals’ as distinct types, we need to refine
the Burnside type towhat we call the topologicalBurnside type. This ismost easily illustrated
with the simpleD3 example shown in Fig. 2a. While the two triangles (red and blue) have the
same orbit type, they cannot be continuously deformed one into the other whilst maintaining
that orbit type, and so belong to different connected components of the set of orbits with
orbit type (Z2). We denote these as (Z2) and (Z2)

′. A similar phenomenon occurs in R
3 with

tetrahedra and their duals. In contrast, Fig. 2b shows that the square and its dual have distinct
isotropy types, here denoted (Zκ

2) and (Zν
2), where κ is the reflection in the x-axis and ν the

reflection in the diagonal y = x , and Z
κ
2 denotes the group of order 2 generated by κ; for D4

the topology does not refine the Burnside type.
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Existence of symmetric central configurations 409

We therefore define the topological Burnside type by distinguishing connected compo-
nents of the set of orbits of type (H), writing them as (H), (H)′ etc, or more generally (H)α

for α in some index set.
We are now in a position to state a more precise version of the theorem above.

Theorem 1 Given any finite subgroup G of O(d) and any topological Burnside type � for
G, there is at least one central configuration in each connected component of the set C(�).

The set C(�) fails to be connected only if one of the fixed point spaces is 1-dimensional
and the number of orbits of the corresponding type is greater than 1, for then reordering
those points may correspond to different connected components. See Remark2 and Sect. 5
for more details.

The precise central configuration whose existence is given by the theorem will depend
on the values of the masses of the particles (recall that for a symmetric configuration the
mass distribution is invariant: that is, points in the same orbit have equal mass). From these
existence theorems, under non-degeneracy conditions which for most mass distributions will
be generic, one can apply the implicit function theorem to obtain central configurations with
non-symmetric mass distributions, at least for nearby values of the masses, though the con-
figurations will no longer be symmetric in general. Moreover when the central configurations
are degenerate one expects to see bifurcations, some of which may break the symmetry, as
for example in Moeckel and Simó (1995), and some that do not, as in Lei and Santoprete
(2006).

Remark 2 Wehave described configurations of particles as unordered sets of points, together
with the mass of each one. It is more traditional to describe configurations as ordered col-
lections of points (x1, x2, . . . , xn), with respective masses (m1,m2, . . . ,mn). There are two
reasons for adopting our approach. Firstly, the results are independent of ordering, and it is
artificial to introduce the (arbitrary) ordering. Secondly, the symmetry group G no longer
leaves the ordered configuration invariant, but it permutes the elements, so for each g ∈ G
there is a permutation σ = σ(g) ∈ Sn such that g · xi = xσ(i). The proof would require
the action of (g, σ ) rather than just g. The two approaches are in fact equivalent, and the
Burnside type can still be defined using the ‘ordered’ approach.

One consequence of this approach is perhaps surprising. Consider for example configu-
rations of two distinct particles in a line. If we ignore the mass, then a configuration is of
the form {x, y} with x �= y ∈ R, and the set of such pairs is connected since, for example,
{1, 2} = {2, 1}. On the other hand, if we consider the set of ordered pairs {(x, y) | x �= y}
then there are two connected components, one with x < y and the other with y < x . Now
include the masses: the graph of m is {(x,m(x)), (y,m(y))}. If m(x) = m(y) then there is
again only one component, while if m(x) �= m(y) there are two: one with the larger mass
on the right, the other with the larger mass on the left. Thus the topology of the coniguration
space as we define it depends on the masses, and this would not be the case if we consider
ordered configurations. This might seem undesirable at first sight, but I claim it is completely
natural: consider for example the collinear Euler relative equilibria for the 3-body problem.
If the masses are distinct there are 3 such configurations (up to rescaling), depending which
particle lies between the other two (recall that opposite orderings are equivalent under rota-
tion in the plane). On the other hand, if they have the same mass, the 3 solutions are really
the same, and there is just the one solution.
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410 J. Montaldi

3 Proof of the theorem

This type of theorem is usually presented by representing the configurations as ordered
n-tuples and then using the permutation group acting by permuting the points as in Lim et al.
(2001) and Montaldi and Steckles (2013); this approach is needed particularly if collisions
are involved, such as in Stewart (1996). However, this is not necessary for our problem and
here we proceed directly on the configurations as sets, as described above, which removes
the need for introducing permutations. See however Remark2 above for further discussion.

Without loss of generality, we restrict attention to configurations whose centre of mass
is at the origin:

∑
x∈C m(x)x = 0. Central configurations are determined by two functions

defined for any configuration (with mass). First the potential,

U (C) =
∑

{x,y}⊂C

m(x)m(y)

‖x − y‖ ,

where m(x) is the mass of the particle at the point x and the sum is over all unordered pairs
of distinct points in the configuration C . The other function is the total moment of inertia
about the origin,

I (C) =
∑

x∈C
m(x)‖x‖2.

Wecan take as our definition the following, a configurationC is a central configuration ifC is
a critical point ofU when restricted to a level set of I . Since both functions are homogeneous
(of degrees −1 and 2 respectively) it follows that if a configuration C is central then so is
the homothetic configuration λC = {λx | x ∈ C} for any λ �= 0, and consequently we can
restrict attention to the level set I = 1 for convenience. See for example (Moeckel 2014) for
details. Let C1 = C ∩ {I = 1}.

Since bothU and I depend only on the distances between the particles (and their masses),
they are both invariant under the orthogonal group O(d). To prove the theorem, we use the
so-called principle of symmetric criticality, first established by Palais. But first we recall
some basic facts about fixed point spaces. If a group G acts smoothly on a manifold M , then
the set of points with symmetry G is the fixed point set MG , that is the subset

MG := Fix(G, M) = {x ∈ M | G · x = x}.
If the group is finite (or indeed compact) then if non-empty, MG is a union of closed sub-
manifolds of M , possibly having components of different dimensions.

Principle of symmetric criticality (Palais 1979) Suppose a finite group G acts smoothly on
a manifold M and suppose f : M → R is a smooth invariant function. Let x ∈ MG . Then
x is a critical point of f if and only if it is a critical point of the restriction f

MG .

This is essentially because at any symmetric point x ∈ MG the gradient ∇ f (x) is tangent
to MG .

It follows from this principle that C is a central configuration with symmetry G and
moment of inertia I = 1 if and only if it is a critical point of the restriction ofU to the closed
submanifold CG1 of C1.

The manifold structure and topology of C are defined simply by identifying it locally
with the same configurations considered as ordered collections of points, regardless of which
ordering is chosen, while the mass function is taken to be locally constant.
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Existence of symmetric central configurations 411

Now, CG is a union of the different Burnside types compatible with G and the number of
particles, and if one takes a configuration with a particular Burnside type � and perturbs it
within CG , then the Burnside type cannot change (in both cases, to perturb a configuration
one takes a representative of each orbit and perturbs in a way compatible with the orbit type,
and the other points in the orbit are perturbed in a corresponding fashion). It follows that each
Burnside type C(�) is an open subset of CG , and so a critical point of an invariant function
f restricted to CG is the same as a critical point of that function restricted to the open subset
C(�).

Now I : C → R is a smooth non-singular invariant function so that C1 = I−1(1)
is a smooth G-invariant submanifold, and hence the fixed point supspace CG1 is a smooth
submanifold, and hence so is its open subset C1(�). Thus we have a smooth function U :
C1(�) → R, and we want to show it must have a critical point, for then the result follows by
the principle of symmetric criticality.

Because of the form of I (positive definite quadratic form), ifC j is a sequence of configu-
rations in C1 or in C1(�) that doesn’t contain a limit point, then the minimal distance between
pairs of points must tend to zero. Consequently,U → ∞ on such a sequence. It follows that
U must attain a minimum somewhere on C1, or C1(�) respectively, and this minimum is the
desired critical point. �

Remark 3 As is well-known, if C is a configuration in R
d and e > d then C is a central

configuration in R
d if and only if it is a central configuration in R

e, when embedded in
R
d ×{0} ⊂ R

e. To see this using a symmetry argument, writeRe = R
d ×R

e−d , and consider

the 2-element subgroup ofO(e) generated by g =
(
I 0
0 −I

)
. Then Fix(g,Re) = R

d , and the

result follows from the principle of symmetric criticality.

Remark 4 We have been considering an ambient space of arbitrary dimension d . If d > 3
the relevance of the inverse square law is debatable, and for physical reasons should arguably
be replaced by an inverse power (d − 1) law. The potential would then be of the form

U (C) =
∑

{x,y}⊂C

m(x)m(y)

‖x − y‖d−2 ,

However, Theorem 1 only relies on the symmetry of the function U and the fact that as the
configuration approaches a collision, so U → ∞. It follows that the approach would also
apply with this gravitational law, and indeed with any other potential depending only on
the shape of the configuration and the masses, in a symmetric fashion, provided it tends to
infinity near collisions.

4 Examples

There are many statements in the literature of the existence of symmetric central configu-
rations, and all can be deduced from the method described in this paper. In this section we
describe a few of these.

4.1 Dimension 2

Here it is straightforward to list the different types of symmetric configuration. The only
finite subgroups ofO(2) are the cyclic groups Ck (of order k) and the dihedral groups Dk (of
order 2k).
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412 J. Montaldi

If G = Ck (k > 1), then there are two relevant Burnside types (and no topological
refinement), namely (Ck) and (1). The corresponding fixed point subspaces are the origin
and R

2. A symmetric configuration is then a set of n = ak points, forming a regular k-gons
centred on the origin, together with possibly a point at the origin. The Burnside type is

� = ε(Ck) + a(1) (2)

The group G = D1 consists of a reflection in (say) the x-axis. There are two (topological)
Burnside types (D1) (points on the axis) and (1) (pairs of points, each a reflection of the
other in the axis). Therefore, given any Burnside type � = a(D1) + b(1), there is at least
one central configuration of this type.

Now suppose G = Dk (k > 1). In this case there are four topological Burnside types, as
described above for k = 3 or 4.

{
(Dk), (Zκ

2), (Zκ
2)

′, (1) for k odd
(Dk), (Zκ

2), (Zν
2), (1) for k even

(3)

To treat the two cases together, denote these topological orbits as (Dk), (A), (B) and (1).
Then a general symmetric configuration would have topological Burnside type

� = ε(Dk) + a(A) + b(B) + c(1).

Geometrically, thiswould consist of ε points at the origin, a regular nested k-gons, b staggered
(or twisted by π/k) regular k-gons and c semiregular 2k-gons, all centred at the origin. A
semiregular 2k-gon is the orbit of a point in the complement of the axes of reflection (this
may in fact be a regular 2k-gon, but that would not be a consequence of the Dk-symmetry).
The study in Lei and Santoprete (2006) considers configurations with (topological) Burnside
type (Dk) + (A) + (B).

In each of these cases, the theorem guarantees the existence of central configurations with
such symmetry, provided the masses have corresponding symmetry. We therefore recover
and extend a result of Zhao and Chen (2015), whose result corresponds to symmetry Dk and
topological Burnside type p(A) + g(B).

SinceCk < Dk it follows that dihedral configurations also have cyclic symmetry.However,
to the best of my knowledge it is unknown whether there exist central configurations of equal
mass with cyclic symmetry that do not in fact have dihedral symmetry. On the other hand,
by altering the masses of a configuration with dihedral symmetry, it is possible to produce
one with precisely cyclic symmetry and no more. For example, consider the Burnside type
(1) with G = Dk (analogous to the semiregular hexagon in Fig. 1). Now perturb the mass m
of alternate particles to a nearby value m′. The perturbed central configuration will then not
have any reflectional symmetry, but the rotation remains; it will therefore have symmetryCk

and be of Burnside type 2(1). I am grateful to Alain Albouy for this observation.

4.2 Dimension 3

This case is more complex, resulting in many more types of central configuration. A descrip-
tion of all the possible symmetry types is given in Lim et al. (2001), although some adaptation
is needed as in that reference the action is restricted to the sphere: in particular the origin did
not appear and nested polyhedra are not possible.

Example 5 Consider G = Z2 × Z2 with one generator τ acting by reflection in the (x, y)-
plane, and the other ρ by rotation by π about the z-axis. The Schoenflies notation is C2h .
There are 4 Burnside types: (C2h), (Z

ρ
2 ), (Zτ

2) and (1). The Burnside type � = ε(C2h) +
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Existence of symmetric central configurations 413

a(Z
ρ
2 )+b(Zτ

2)+c(1) consists of ε points at the origin, 2a points symmetrically placed along
the z-axis, 2b points in the (x, y)-plane placed symmetrically with respect to the origin and
4c points in space, placed in G-orbits (these each forming the vertices of a rectangle). For
any symmetric distribution of masses among these points, the theorem tells us that there is
at least one central configuration with the points in such a configuration.

Example 6 Consider the subgroup Dnh < O(3) in the Schoenflies notation. As a group this
is isomorphic to Z2 ×Dn , and is generated by the reflection τ in the (x, y)-plane (giving the
Z2 factor) and the usual dihedral group acting on the (x, y)-plane and leaving the ‘vertical’
z-axis fixed. Among the orbit types are the origin with orbit type (Dnh), the horizontal lines
of reflection forming two components (as in 2 dimensions) with orbit type (Zτ

2 × Z
κ
2) and

(Zτ
2 ×Z

ν
2) or (Zτ

2 ×Z
κ
2)

′ (accordingly as n is even or odd) giving orbits of regular n-gons and
their duals, and the prisms with n-fold symmetry with the 2n vertices lying in the vertical
planes of reflection and with z �= 0 and orbit type (Zκ

2) and (Zν
2) or (Zκ

2)
′ as above. Consider

in particular the configurations with 3n points with Burnside type

� =
{
1(Zκ

2) + 1(Zτ
2 × Z

ν
2) if n is even

1(Zκ
2) + 1(Zτ

2 × Z
κ
2)

′ if n is odd.

This is chosen so that the n-gon in the plane z = 0 is staggered (dual) relative to the polygons
in the other horizontal planes. The theorem then implies there must be a central configuration
of this symmetry type, so proving the existence part of a conjecture of Corbera and Llibre
(2013) on ‘double antiprisms’. A similar result is available if the three n-gons are aligned
rather than staggered.

Example 7 Consider the symmetry group Td of the regular tetrahedron, which has order
24. There are 5 orbit types: (Td) (the origin), (S3) (radial lines through the vertices of the
tetrahedron or its dual), (Z2 × Z2) (mid-points of the 6 edges, forming an octahedron), (Z2)

(other points on the edges, forming an orbit of 12 points) and (1) (generic points, orbits of
24 points). The theorem tells us that for any non-negative integers ε, a, b, c, d, e, there is a
symmetric central configuration of Burnside type

C = ε(Td) + a(S3) + b(S3)
′ + c(Z2 × Z2) + d(Z2) + e(1).

Here as usual ε ∈ {0, 1} determines whether or not there is a point at the origin, a is the
number of nested tetrahedra and b the number of nested dual tetrahedra, etc.

Similar results apply to the other groups Oh and Ih , from which we deduce a stronger
form of the existence theorem of Corbera and Llibre (2010) on nested Platonic solids—in
that paper they only show there exist masses for which such central configurations exist.

One can also deduce the existence of two types of Archimedean solid: the cubeoctahedron
and the icosidodecahedron. The vertices of the cubeoctahedron lie at the mid-points of the
edges of the cube (or of the octahedron) and has octahedral symmetry Oh ; it is uniquely
determined by the orbit type (Z2×Z2), a subgroup generated by reflections in two orthogonal
planes, and this shows that this is also a central configuration. The icosidodecahedron consists
of 30 vertices placed at themid-points of the edges of the dodecahedron (or of the icosahedron)
and is similarly determined uniquely by the analogous orbit type (Z2 × Z2), but now as a
subgroup of the icosahedral group Ih , and this shows it too is a central configuration. Similarly,
nested cubeoctahedra and nested icosidodecahedra also form central configurations.

Example 8 On the other hand, other Archimedean solids do not (in all likelihood) form
central configurations. This is because their symmetry group does not determine their shape.
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414 J. Montaldi

For example, consider the family of truncated tetrahedra. These are obtained by shaving
off the 4 vertices of a regular tetrahedron, replacing them with 3 vertices each and 4 new
equilateral triangles as faces. The original faces of the tetrahedron then become semiregular
hexagons. As more is shaved off, the ratio between the sides of the semiregular hexagons
varies (increases say), and when the two lengths are equal, the hexagon is regular, and this
truncated tetrahedron is an Archimedean solid. Let ρ > 0 denote the ratio of the sides of
the semiregular hexagon. As ρ → 0 so the orbit tends to a tetrahedron, and as ρ → ∞ the
12 vertices merge in pairs to form an octahedron. The Archimedean truncated tetrahedron of
course corresponds to ρ = 1. The theorem implies that there is at least one value of ρ > 0
which forms a central configuration, and numerical calculations (using Maple) suggest this
to be unique with value ρ = 0.855 which does not correspond to the Archimedean shape
(the edge between two semiregular hexagons being shorter than the edges of the equilateral
triangles).

It is to be expected that a similar phenomenon happens for the other Archimedean shapes:
namely that they fail to be central configurations, except of course the cubeoctahedron and
icosidodecahedron discussed above. The distinguishing feature of these two particular shapes
among the Archimedean ones is that they are edge regular, which means that all the edges
are equivalent under the symmetry group, while in the others there are two distinct types of
edge, and the symmetry alone does not force them to be of equal length.

Example 9 Consider the subgroup of SO(3) with 4 elements consisting of the identity, and
the rotations by π about each of the x, y and z-axes. The Schoenflies notation is D2. There
are 5 types of orbit for this group. Firstly the point at the origin which is fixed by the whole
group. Secondly, a pair of opposite points on the z-axis, and these have isotropy equal to
the subgroup of order 2 generated by the corresponding rotation Rz , third and fourth are the
corresponding pairs of points on the x- and y-axes, and finally a generic orbit consisting of the
4 points {(x, y, z), (x,−y,−z), (−x, y,−z), (−x,−y, z)} which are distinct provided at
most one of the coordinates is 0, and which has trivial isotropy. Any symmetric configuration
has Burnside type

� = ε(G) + a(Rz) + b(Ry) + c(Rx ) + e(1).

(d is used for dimension!) In particular, with ε = 0, a = k, b = p, c = �, e = 0 we reclaim
the result of Jiang and Zhao (2014) using their notation. And of course we can let ε = 1 or
e > 0 to obtain a more general result.

5 Topology

Let G be a given finite subgroup of O(d) and let � be a Burnside type for G. It is natural
(and useful) to have a measure of the complexity of the corresponding set of configurations
C(�) using topological invariants. This information can be used to find a lower bound on the
number of central configurations of the given type, using Morse theory if all critical points
are non-degenerate or more generally using Lusternik-Schnirelman category. In this short
section we give some indications of what this topology is.

Consider the quotient space X = R
d/G, which is in general a singular space. The image

of the points with orbit type (H) is a subset of X , which we denote XH , and which has a
manifold structure such that together the XH form a stratification of X . Note that if H and
H ′ are conjugate then XH = XH ′ . See for example (Duistermaat and Kolk 2000) for details
on group actions and stratifications of their orbit space.
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Fig. 3 The connected
components of the fixed point sets
for actions of D3 and D4, with
the orbit space R2/Dn with its 4
strata represented on the right

Thus, if a particular symmetric configuration consists of a orbits of type (H), then it is
determined by a points in XH . Denote by I = I(G) the collection of all conjugacy classes
of isotropy subgroups of G, and by T its refinement into topological classes (the (H)α

introduced earlier). For a conjugacy class (H) ∈ I we work with a representative H and we
write aH for the number of orbits of type (H).

Recall that a configuration of particles is a finite set C of points together with a mass
function m : C → R

+. Since every point in an orbit of a symmetric configuration has the
same mass, the mass function descends to a function m̄ : (C/G) → R

+.
The following decomposition of C(�) is immediate from the discussion above.

Proposition 10 Let G < O(d) be a finite subgroup and � = ∑
aH (H) a given Burnside

type, where the sum is over (H) ∈ I, and aH ∈ N. Then there is a diffeomorphism

C(�) 
∏

(H)∈I
C(XH , aH ),

where
∏

denotes theCartesian product and C(XH , a) is the configuration space of a particles
in XH .

Note that the connected components Xα
H of XH correspond to the topological Burnside

types with orbit type (H). The expression above is readily refined to give

C(�) 
∏

(H)α∈T
C(Xα

H , aα
H ). (4)

One can identify each XH with a quotient of a subspace ofRd as follows. For each isotropy
subgroup H let V = V (H) = Fix(H,Rd) and let V ◦ = V ◦(H) be the subset of points whose
isotropy is precisely H (V ◦ is an open and dense subset of V ). It follows from the relation
Ggx = gGxg−1, that for x ∈ V ◦ one has gx is also in V ◦ if and only if g ∈ NG(H), the
normaliser of H in G. It follows from this that XH  V ◦(H)/NG(H). This is illustrated in
Fig. 3 for the dihedral group Dn acting on R

2.
We finish this section with some observations and an example.

• The trivial case where V (H) = {0} does not contribute to the topology of C(�).
• The simplest non-trivial case is when the fixed point space is 1-dimensional: dim(V (H))

= 1. This has already been mentioned in Sect. 2, and is well-known. If a > 1 and the
masses of the orbits of type (H) are distinct then the space C(XH , a) is a disjoint union
of contractible connected components, corresponding to different orderings of the points.
At the other extreme, if the masses are all equal then there is only a single component,
since different orderings cannot be distinguished. See also Remark2.

• If a fixed point space has dimension 2, there are two different possibilities. Let H be
the isotropy subgroup in question and V the fixed point space (of dimension 2). The
first possibility is that V \V ◦ is a (finite) union of 1-dimensional subspaces, and in this
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case each component of V ◦ is diffeomorphic to the plane. The contribution to C(�), if
� includes a(H)α is then diffeomorphic to C(R2, a). The topology of this space is well-
known: its fundamental group is a subgroup of the braid group on a strings depending
on how many masses are equal (the pure braid group if they are all distinct or the full
braid group if they are all equal), while all its higher homotopy groups vanish (Farb and
Margalit 2012).
The second possibility is that V ◦ is a punctured plane, and the contribution to C(�) from
a orbits of type (H) is equivalent to C(R2, a + 1).
For example, consider the symmetric 5-body configurations, with symmetry D1  Z2

acting by reflection in a line [see Fig. 2c, d of Lee and Santoprete (2009)]. The orbit types
are (D1) and (1), and for a total of 5 bodies there are 3 possibilities,

1(D1) + 2(1), 3(D1) + 1(1), and 5(D1).

The 5(D1) are the collinear Moulton configurations of 5 bodies. For � = 1(D1) + 2(1),
the resulting space C(�) is homotopic to the circle, so U must have at least two critical
points, as illustrated in Lee and Santoprete (2009). As above, the topology in this last
case in principle depends on whether the masses are equal or distinct; however, in this
case of two particles in the plane, both spaces are homotopic to the circle.

• Higher dimensional fixed points spaces will contribute to higher homotopy groups and
cohomology, but the correspondence is not so easily understood.

• Even though the set (Rd)◦ of points in R
d with trivial isotropy may not be connected,

the quotient (Rd)◦/G is always connected. This is because the complement of (Rd)◦
is a union of linear subspaces, and so the only way (Rd)◦ is disconnected is through
hyperplanes, and these only arise as fixed point sets for reflections (a matrix with (d −1)
eigenvalues equal to+1 and one equal to (−1)), and the reflection then identifies the two
sides of the corresponding hyperplane. The following example shows that (Rd)◦ may not
be contractible.

Example 11 Consider finally Example 9 above, and C(�) for � = ε(G)+ a(Rz)+ b(Ry)+
c(Rx ) + e(1). The orbit types (G), (Rx ), (Ry) and (Rz) give spaces of dimension 1 or less,
so if a, b or c > 0 their contribution is to increase the number of connected components of
C(�), but not otherwise to change its topology. However the generic orbit, with orbit type
(1), consists of 4 points in the complement of the coordinate axes. Its contribution to C(�) is
C(X1, e), and one can show that the stratum X1 = (R3)◦/G is (homeomorphic to) the thrice
punctured sphere. Thus each connected component of the space C(�) is homotopic to the
space of e points in the thrice punctured sphere. Using Morse theory one can show that for
e = 1, and assuming critical points are non-degenerate, there must be at least three critical
points: one minimum and 2 saddle points, in each connected component. In fact if e = 1
and a = b = c = 0 then there are 5 critical points: two minima occurring at tetrahedral
configurations and 3 saddles occurring at squares in the coordinate hyperplanes.

6 Balanced configurations

Balanced configurations were introduced by Albouy and Chenciner (1998) as a configuration
for which in a suitably larger space, the configuration is a relative equilibrium. More details
are given in Moeckel (2014), and in Chenciner (2013) where several equivalent definitions
are given. The version appropriate for our discussion is as follows (see Proposition 2.25 of
Albouy and Chenciner (1998) and p. 178 of Chenciner (2013)).
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Consider an ordered configuration (x1, . . . , xn) in (Rd)n with
∑

mi xi = 0 and let X be
the d × n matrix whose columns are the position vectors of the points x1, . . . , xn , and let μ
be the n × n diagonal matrix with μi i = mi . Consider the d × d matrix S = XμXT . It is
clear that while X depends on the order of the points, S does not, so S only depends on the
configuration as defined in Sect. 2.

The inertia spectrum of the configuration is the spectrum (withmultiplicities) of thematrix
S (Chenciner 2013). It is easy to see that the eigenvalues are all non-negative, and that the
moment of inertia function I is equal to the trace tr(S). Moreover, 0 is an eigenvalue if and
only if all the bodies are contained in a lower dimensional subspace.

Let C(σ ) denote the space of all configurations with inertia spectrum σ . A configuration
is said to be balanced if it is a critical point of the restriction of the potential function U to
C(σ ). Since I is constant on C(σ ) it follows that any central configuration is also a balanced
configuration. The variational argument used in this paper shows that there is always a
balanced configuration in each non-empty C(σ ).

Theorem 12 Given any finite subgroup G of O(d), let σ be the inertia spectrum of some
symmetric configuration. Then C(σ )G is a non-empty closed subset of C(σ ) and there is a
symmetric balanced configuration in each component of C(σ )G, and indeed on C(σ )(�), for
any topological Burnside type � for which C(σ )(�) is non-empty.

For example, the observation in Remark3 holds equally well for balanced configurations.
Symmetry of a configuration will cause its inertia spectrum to have multiplicities. Given

a finite subgroup G < O(d), decompose R
d as a sum of isotypic representations of G,

R
d = ⊕ j E j . That is, each E j is a sum of copies of isomorphic irreducible representations,

and one can write E j = Wj ⊗ R
d j , where Wj is an irreducible representation and d j the

multiplicity of that representation in R
d . See for example the book of Serre (1977).

It is clear that for a symmetric configuration, for eachmatrix A ∈ G, the symmetric matrix
S satisfies AT SA = S. Since A is orthogonal, AT = A−1 whence AS = SA for all A ∈ G.
It then follows from Schur’s Lemma (Serre 1977) that the matrix S block diagonalizes into
a single block S j for each E j . On the E j block, the eigenvalues will have multiplicity at
least dimWj . In the particular case that d j = 1, so E j = Wj is irreducible, the symmetric
matrix S j will be a scalar matrix, equal to the moment of inertia of the projection of the
configuration into E j times the identity. Two immediate conclusions are as follows.

Proposition 13 SupposeRd is an irreducible representation of G < O(d). Thena symmetric
configuration is balanced if and only if it is central.

For example, any balanced configuration with tetrahedral, octahedral or icosahedral sym-
metry is a central configuration (see Example 7).

Proof In this case S is a scalar matrix, and fixing the inertia spectrum σ is equivalent to
fixing the moment of inertia I .

Proposition 14 Suppose Rd = ⊕ j E j is a multiplicity-free representation of the finite group
G, (that is, no representation occurs with multiplicity > 1). Then two configurations C1,C2

with the same Burnside type have the same inertia spectrum if and only if, for each j , their
images π j (Ci ) have the same moment of inertia, where π j : R

d → E j is the natural
projection.

A simple example is the group Z2 acting on the plane by reflection in the y-axis. If we
place 3 masses forming an isosceles triangle, at points (0, a), (x, b), (−x, b) with masses
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m1 and m2 = m3 (and with centre of mass at the origin), one finds that the inertia spectrum
is σ = {2m2x2, 2

m2
m1

Mb2}, where M = m1 + 2m2 is the total mass. It follows in this
simple case that σ determines the configuration and so the isosceles triangle is a balanced
configuration, as is well-known. And indeed, any such configuration can form a relative
equilibrium in R

4.
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