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Abstract This paper is devoted to an alternative model for a rotating, isolated, self-
gravitating, viscoelastic body. The initial approach is quite similar to the classical one, present
in the works of Dirichlet, Riemann, Chandrasekhar, among others. Our main contribution is
to present a simplified model for the motion of an almost spherical body. The Lagrangian
function L and the dissipation function D of the simplified model are:

L = ω · Iω
2

+ 1

36 I◦
(‖Q̇‖2 − γ ‖Q‖2)

and

D = ν

36 I◦
‖Q̇‖2

where ω is the angular velocity vector, Q is the quadrupole moment tensor, I = I◦ Id − Q/3
is the usual moment of inertia tensor with I◦ equal to the moment of inertia of the spherical
body at rest, γ is an elastic constant, and ν is a damping coefficient. The angular momentum
Iω transformed to an inertial reference frame is conserved. The constants γ and ν must be
determined experimentally. We believe this to be the simplest model one can get without
loosing the symmetries and the conserved quantities of the original problem. This model can
be used as a building block for the study of many-body planetary systems.
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304 C. Ragazzo, L. S. Ruiz

1 Introduction

The problem of the equilibrium shapes that a rotating isolated, incompressible, ideal fluid
can attain goes back to Newton in the Principia Mathematica. Generations of important
scientists contributed to the understanding of this theme, which remains as a fruitful source
of questions. For a brief historical review and general exposition, see Chandrasekhar (1987).
Classical treatments can be found in Lamb (1932), Darwin (1886), Poincaré (1885) and Love
(1944). The dynamics of the fluid is determined by a set of partial differential equations.
Solutions to these equations that are steady in a rotating reference frame are called relative
equilibria. They are important in the shapemodeling of celestial bodies. Questions on stability
of the known equilibria are still open in spite of the celebrated Poincaré’s work on the subject
(Poincaré 1885). The mathematical complexity of the equations is a challenge to numerical
analysts and physicists. More realistic models for the shape of stars and planets may include
compressibility, strain-forces, inhomogeneities, etc, which further increase the difficulty of
the problem.

From the perspective of Celestial Mechanics, while a planet or a star is physically per-
ceived as an object of finite size it is usually modeled as a point mass characterized only by
its center of mass position. Although the point-mass assumption has been very successful in
the study of planetary motion it precludes the analysis of some important phenomena like,
for instance, dissipation of energy due to tides. An attempt to overcome the limitations of the
point-mass model without introducing the infinitely many degrees of freedom of an extended
body is provided by the so-called pseudo-rigid body: “a point to which is attached a measure
of orientation and deformation”, see Cohen and Muncaster (1988). Formally a pseudo-rigid
body model is obtained in the following way.

Suppose that a body at rest has the shape of a ball B ⊂ R
3 with radius R > 0 (reference

configuration). Let x ∈ B denote the initial position of a point in the body and φ(t, x) ∈ R
3

denote the position at time t of that point. The map φ(t, ·) : B −→ R
3 determines the

configuration of the body at time t . We remark that the description of continuum mechanics
we are using in which the independent spatial variable is the material point x ∈ B is called
the Lagrangian description (or material description). An alternative description of continuum
mechanics in which the fixed point in space is the independent spatial variable is called the
Eulerian description (or spatial description). In principle a configuration can be given by an
arbitrary diffeomorphism φ : B −→ R

3. The crucial hypothesis in the pseudo-rigid body
formulation is that any configuration of the body is constrained to be of the form:

φ(t, x) = G(t)x, (1)

where G(t) is an invertible matrix. In this paper we further assume that the body is incom-
pressible, which means detG(t) = 1. For simplicity, we suppose that the center of mass is
fixed at the origin.

The assumption (1) was first proposed by Dirichlet. Using a suitable decomposition for
G (see, for example, Chapter 4 of Chandrasekhar (1987)), Dirichlet was able to find some
equilibrium shapes for a rotating isolated and incompressible fluid under self-gravity. Rie-
mann, following Dirichlet, gave great contributions classifying new equilibria and deciding
about their stability under the pseudo-rigid body constraint (1) (Riemann 1860) (see Riemann
(2007) for a Portuguese translation of this paper or Oliva (2007) for an expository discussion
on Riemann’s work). See Borisov et al. (2009) or Kristiansen et al. (2012) for a modern
Hamiltonian deduction of the equations of motion used by Riemann and for an application to
a two-body problem. For figures of equilibrium of an inhomogeneous self-gravitating fluid
see Bizyaev et al. (2015). For the Lagrangian mechanics setting, see Holm et al. (2009). For
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Dynamics of an isolated, viscoelastic, self-gravitating body 305

the introduction of elastic forces, see the references in Roberts and Sousa Dias (1999) and
Cohen and Muncaster (1988).

The pseudo-rigid body approach raises the question: Are the main dynamical properties
of the infinite-degree-of-freedom system preserved under the pseudo-rigid body constraint
(1)? There are at least two works, Muncaster (1984a) and Muncaster (1984b), where these
questions are analyzed from a mathematical point of view. In these papers it is proved the
relationship between fine and coarse theories, where the former represents a “complete”
theory and the later an approximation in which persist the “mean” characteristics of the fine
one. In the second paper it is shown that the pseudo-rigid body is a coarse theory for the
continuum theory of solids. In this sense, we suppose that results obtained from (1) represent a
good approximation to the behavior in the continuous problem. Another comparison between
the pseudo-rigid body approach and the Cosserat point theory is presented in Nordenholz
and O’Reilly (1998).

The aims of this paper are: to introduce energy dissipation due to internal viscosity under
the pseudo-rigid body hypothesis (1) and to further simplify the pseudo-rigid body model
under the extra hypothesis of small deformations G(t)T G(t) ≈ Id = Identity. These goals
will be accomplished using the Lagrangian formulation of mechanics with an additional
Rayleigh dissipation function. The pseudo-rigid body constraint (1) will be imposed by
means of D’Alembert’s principle and Lagrange multipliers. The conserved quantities will be
obtained from the symmetries of both the Lagrangian and the dissipation functions using a
suitable generalization of Noether’s theorem.

The remainder of the paper is organized as follows. In Sect. 2 the well-known Lagrangian
formulation of continuum mechanics is presented. The Lagrangian and the Rayleigh dissi-
pation functions are explicitly given under the usual hypotheses of linear elasticity. In Sect. 3
the pseudo-rigid body hypothesis (1) is used to constrain the continuum-Lagrangian function
to a finite number of degrees of freedom. Then the usual polar decomposition G = Y A,
where Y is a rotation matrix and A is a symmetric positive matrix with det(A) = 1, is used to
obtain the Lagrangian as a function of A, Y , and their time derivatives. The same is done for
the Rayleigh dissipation function. Finally the Euler–Lagrange equations for the constrained
motion are obtained in terms of Y and A. Most of the results in Sect. 3 are similar to those
found in the pseudo-rigid body literature (see, for instance, Cohen and Muncaster (1988)),
except for the introduction of the Rayleigh dissipation function and the qualitative analysis
of the dynamics of the system. Our main contribution is given in Sect. 4 and it is presented
in the following.

In Sect. 4 we introduce the small-ellipticity hypothesis that stems from the almost round
shape of most of the observed rotating celestial bodies. More precisely, let ε denote the
ellipticity or flattening of the deformed body defined as:

ε = equatorial − polar radius

equatorial radius
, (2)

where the instantaneous polar radius is defined as the smallest semi-major axis of the ellipsoid
{Ax : ‖x‖ ≤ R} and the instantaneous equatorial radius is defined as the arithmetic mean of
the two remaining semi-major axis. The hypothesis is that ε is much smaller than one. Then
A = exp(B) ≈ Id + B where B is a symmetric traceless matrix such that

‖B‖ =
√
B2
11 + B2

12 · · · =
√
Tr (BBT ) is of the order of ε

Let Ω = Y T Ẏ denote the instantaneous angular velocity of the body. The analysis of the
relative equilibria solutions to the equations of motion given in Sect. 3 shows that ε 	 1
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306 C. Ragazzo, L. S. Ruiz

requires that ‖Ω‖ is of the order of
√

ε. Using these scalings we obtain our simplified
Lagrangian function truncating the pseudo-rigid body Lagrangian function given in Sect. 3
at order ε2. We remark that a truncation using the equations of motion instead of the
Lagrangian function leads to a different result! The advantage of the Lagrangian truncation is
that the symmetries of the original Lagrangian function are naturally preserved. The novelty
of our work relies on this Lagrangian truncation. We must stress that in the pseudo-rigid
body approach the imposed linear deformation (1) neither verifies the differential equations
of linear elasticity nor the appropriate boundary conditions. At the end, we obtain an elastic
rigidity of the body, with respect to the centrifugal force, that is not so different from that
obtained by Love (1944) (see Sect. 4 and Appendices 2 and 3 for more details). We remark
that Love obtains a nonlinear deformation as a solution of a linear equation and we propose
a linear deformation as an approximation to the real solution.

Motivated by the ideas in the previous paragraph, we propose that under the small ellip-
ticity hypothesis the equations for the motion of a body that is isolated, incompressible, and
spherically symmetric at rest, are given by:

B̈ + ν Ḃ + γ B = −Ω2 + 1

3
Tr (Ω2)Id , (3)

Ω̇ + BΩ̇ + Ω̇B = − (
Ω Ḃ + ḂΩ + [Ω2, B]), (4)

where

ν is an effective viscosity constant (1/s);
γ is an effective rigidity constant (1/s2);
Ω is the average angular velocity matrix of the body (1/s)

Ω =
⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ with ‖Ω‖2 = 2(ω2

1 + ω2
2 + ω2

3); (5)

B(t) is the deformation matrix (dimensionless) that is proportional to the “quadrupole
moment tensor” Q(t):

Bi j = 1

3I◦
Qi j , where Qi j =

∫
(3xi x j − |x |2δi j )ρ(x, t)d3x and

I◦ is the angular momentum (kg m2) of the body at rest around an arbitrary axis passing
through its center of mass.

For this model, Lagrangian, dissipation, and energy functions, and angular momentum with
respect to an inertial frame, are given, respectively, by:

L (B, Ḃ,Ω) = I◦
4

(
‖Ḃ‖2 + ‖Ω‖2 + 2Tr (ΩΩT B)

)
− I◦

4
γ ‖B‖2, (6)

D(Ḃ) = ν
I◦
4

‖Ḃ‖2, (7)

E(B, Ḃ,Ω) = I◦
4

(
‖Ḃ‖2 + ‖Ω‖2 + 2Tr (ΩΩT B)

)
+ I◦

4
γ ‖B‖2 (8)

L(Y,Ω, B) = I◦[Y (Ω + ΩB + BΩ)Y T ]. (9)

The angular momentum is conserved under time evolution. The energy function is nonneg-
ative if ‖B‖ < 1/2 (Lemma 11), which is implied by our underlying hypothesis ‖B‖ 	 1.
Moreover, a simple computation gives Ė = −2D ≤ 0 with equality being reached if and

123



Dynamics of an isolated, viscoelastic, self-gravitating body 307

only if Ḃ = 0. These facts imply (Theorem 4) that any solution to the equations of motion
that is initially in the set

{
(B, Ḃ,Ω) : 0 ≤ E < I◦γ /20, ‖B‖ < 1/2

}

is attracted to a relative equilibrium solution where Ḃ = 0 and Ω̇ = 0. The eigenval-
ues of the linearized problem are easily computed from Eqs. (3) and (4) as it is done in
Sect. 4. In this section we also use center-manifold arguments to show that the dynamics of
the simplified Eqs. (3) and (4) is qualitatively the same, and quantitatively almost the same,
as the dynamics of the pseudo-rigid body equations given in Sect. 3 provided that initially
‖B(0)‖, ‖Ḃ(0)‖, ‖Ω(0)‖ are small.

Sections 2, 3, and 4 are based on the assumption of an idealized homogeneous elastic
body. For this idealized body it is possible to compute from first principles all the constants
I◦, γ , and ν, and to establish the relation between B and Q. For the idealized body, let: M be
the mass, R be the radius of the undeformed spherical body, g = MG/R2 be the acceleration
of gravity at the body surface, ρ be the density, μ be the elastic (shear) modulus of rigidity
(kg/ms2) (Landau and Lifshitz 1986), and η be the viscosity (shear) coefficient (kg/ms)
(Landau and Lifshitz 1986, 1987). For the idealized body:

I◦ = MR22/5 is the moment of inertia of the solid ball,

γ = 4

5

GM

R3

(
1 + 25

2

μ

gρR

)
, (10)

ν = 40πηR/3M.

These μ and η are “molecular constants” that in principle can be measured by means of
simple laboratory experiments. Nevertheless, it is well-known that these molecular constants
are inappropriate for use in most geophysical and astronomical models (see, for instance,
Brito et al. (2004), for a discussion about η). So, even for an approximately homogeneous
body “effective” constants γ and ν must replace μ and η.

Planets and particularly stars are not homogeneous bodies. Their density is almost radially
symmetric with an increasing value towards the center. It is not possible to use the idealized
homogeneous body hypothesis in a naive way to study real celestial bodies. For instance,
the real moment of inertia of the Sun is I◦ = 0.059 MR2 while the moment of inertia of
the idealized homogeneous Sun is 0.4 MR2. So, in order to obtain the correct expression
(I◦/2)

∑
ω2
i for the rotational kinetic energy we replaced the idealized moment of inertia

0.4 MR2 in the Lagrangian function (47) in Sect. 4 by I◦ in the Lagrangian function (6).
This is equivalent to change the visual radius R of the body for an effective inertial radius
(or “radius of gyration”) Rg such that 0.4 MR2

g = I◦. Let ω = (ω1, ω2, ω3) be the angular
velocity vector associated to the angular velocity matrixΩ and, similarly, let L be the angular
momentum vector associated to the angular momentum matrix L . Then the relation L = Iω
(valid for inhomogeneous bodies) and Eq. (9) imply that the inertia matrix I(t) of the body
at time t must satisfy

Ii j = I◦(δi j − Bi j )

This expression and the following relation between the moment of inertia tensor and the
moment of quadrupole tensor (valid for non-homogeneous bodies),

Qi j = −3Ii j + (TrI)δi j

imply that Bi j = Qi j/(3I◦) as stated above. Finally, the angular velocity matrix Ω in the
Lagrangian function (6) must be interpreted as the average angular velocity of the body in
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308 C. Ragazzo, L. S. Ruiz

Table 1 Data from bodies of the solar system

Body ω (×10−5 s−1) I◦/MR2 J2 (×10−6) γ (×10−6s−2) γ̃

Sun 0.338 0.059 0.218 3.092 0.5562

Mercury 0.1240 0.35 50.3 0.0107 0.0072

Venus 0.0299 0.33 4.458 0.0066 0.0042

Earth 7.2921 0.3308 1082.63 1.625 0.9909

Moon 0.26617 0.394 202.7 0.01377 0.0180

Mars 7.0882 0.366 1960.45 0.9380 0.9331

Jupiter 17.5852 0.254 14736. 0.5330 0.9093

Saturn 16.3788 0.21 16298. 0.3457 0.8556

Uranus 10.1237 0.225 3343.43 0.6897 1.024

Neptune 10.8338 0.2555 3411. 0.8792 1.225

the sense that instantaneously L = Iω. Through this procedure Ω is well-defined even for
the Sun where the gas angular velocity is known to vary considerably with the latitude and
with the distance to the center (see Rozelot and Damiani (2011) and Antia et al. (2008)). In
this way we are able to extrapolate the results for an idealized homogeneous body given in
Sect. 4 to the results for a inhomogeneous body given above. In the abstract the Lagrangian
function (6) is rewritten in a different way.

For the Sun and for some planets of the solar system the value of γ can be obtained in
the following way. Let Ω and Q be the steady angular velocity and moment of quadrupole
tensor of the body given by

Ω =
⎛
⎝
0 −ω 0
ω 0 0
0 0 0

⎞
⎠ and Q = 3I◦B =

⎛
⎝

λ 0 0
0 λ 0
0 0 −2λ

⎞
⎠ .

Defining the dynamic form factor J2 = λ/(MR2), we get from equation (3) that

γ = I◦
MR2

ω2

J2
. (11)

The constant γ has the dimension 1/s2. A hypothetical homogeneous body with radius Rg

and with elastic modulus of rigidity μ = 0 has γ = (4/5)GM/R3
g according to equation

(10). This value can be used to define a “dimensionless γ ” as:

γ̃ = γ
4
5
GM
R3
g

where Rg =
√
5

2

I◦
M

(12)

In Table 1 the values of γ and γ̃ are given for several bodies of the Solar system. For
the planets we used the data provided in (http://nssdc.gsfc.nasa.gov/planetary/factsheet/).
For the Sun the value of I◦ was taken from (http://nssdc.gsfc.nasa.gov/planetary/factsheet/
sunfact.html). Since the angular velocity of the gas in the Sun varies considerably with
the position, the average angular velocity ω of the Sun was obtained from the formula
ω = ‖L‖/I◦ = 3.38 × 10−6s−1 where the Sun angular momentum ‖L‖ = 1.92 × 1041

kg m2 s−1 was taken from Iorio (2012). The J2 = 2.18 × 10−7 of the Sun was taken from
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Antia et al. (2008), see also Rozelot and Damiani (2011). The moment of inertia of Neptune
(I◦/(MR2) = 0.2555) was taken from Nettelmann et al. (2013).

As expected γ̃ is close to one for most of the celestial bodies in Table 1. The differences
γ̃ − 1 may be mostly explained by the lack of radial homogeneity of the bodies, especially
in the case of the Sun. The low values of γ̃ found for Mercury, Venus, and Moon cannot be
explained by the lack of radial homogeneity. In this case a possible explanation is that these
bodies do not have a spherical equilibrium shape at rest, which violates one of our hypotheses.
Notice that a small residual plastic deformation, and its consequent residual J2res , combined
with a small value of angular velocity ω yield a low value for ω2/(J2res + ΔJ2), where ΔJ2
is the part of J2 that is caused by the rotation of the body. For large values of ω, and so of
ΔJ2, the residual value J2res lacks importance in this ratio.

In order to estimate an effective value for the viscosity η using Eqs. (3) and (4) it is
necessary to have measurements of non steady solutions to these equations. This is difficult.
The value of η can be more easily estimated using tide measurements due to the gravitational
interaction of the body with a second one. This is out of the scope of this paper.

Finally, Sect. 5 is a conclusion where we summarize and re-examine our work.

2 Euler–Lagrange equations for continuum mechanics

The derivation of all equations of motion in this paper are based upon the variational for-
mulation of continuum mechanics, which we informally present below. Our main references
on this classical subject are the two papers Baillieul and Levi (1987) and Baillieul and Levi
(1991).

2.1 Euler–Lagrange equations with dissipation function

In this section we adopt a more abstract approach than in the remainder of the paper.
Let M ⊂ V be a differentiable manifold contained in a vector space V , and L , D :

TM −→ R be two smooth functions, the Lagrangian and the dissipation functions. We say
that a smooth curve γ : I ⊂ R −→ M , with 0 ∈ I, γ (0) = x , solves the Euler–Lagrange
equations with dissipation (henceforth ELD) on x (relative to L and D) if there exists a chart
ϕ : x ∈ U −→ Ũ ⊂ W such that

d

dt

(
∂L

∂ Q̇
(dϕ(γ (t), γ ′(t)))

)
− ∂L

∂Q
(dϕ(γ (t), γ ′(t))) + ∂D

∂ Q̇
(dϕ(γ (t), γ ′(t))) = 0, ∀t.

(13)

The functions L ,D : Ũ × W −→ R are given by L (Q, Q̇) = L ◦ dϕ−1(Q, Q̇),

D(Q, Q̇) = D ◦ dϕ−1(Q, Q̇), the expressions for L , D in such chart. The derivatives
occurring in the previous equation are the gradient of the functions, in the corresponding
variables, relative to a fixed inner product on V .

Remark that Eq. (13) is a local condition, and analogously to the Euler–Lagrange equa-
tions, is coordinate-free. Precisely, a curve solves ELD on a chart ϕ if and only if it does on
another arbitrary chart around the same point. This calculation is presented in Baillieul and
Levi (1987).

In this setting, we recall the Lagrange’s Multipliers Theorem. The proof is the same as
that of the conservative case.
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310 C. Ragazzo, L. S. Ruiz

Theorem 1 Suppose V = R
n and M ⊂ R

n is a submanifold given by the holonomic
constraints f1(Q) = 0, . . . , fN (Q) = 0. If we have smooth functions L , D : R2n −→ R

and γ : I −→ M solves the ELD on x ∈ M (relative to L|T M , D|T M), then there are scalar
functions λ1, · · · , λN such that

d

dt

(
∂L

∂ Q̇
(γ (t), γ ′(t))

)
− ∂L

∂Q
(γ (t), γ ′(t)) + ∂D

∂ Q̇
(γ (t), γ ′(t)) +

N∑

k=1

λk
∂ fk
∂Q

(γ (t)) = 0,

(14)

where the derivatives denote the gradient relative to the Euclidean metric.

As in the Lagrangian case, we would not need a metric to get equations of motion, but
this form is appropriate to our purposes. The essential advantages of this formalism rest on
the independence on coordinate systems and the behavior about restrictions to submanifolds
(constraints).

In the modeling, it is imposed linearity of dissipative forces on the velocities. Usually this
leads to a two-degree homogeneous dissipation function (on the velocities, of course), i.e.
∀λ ∈ R,D(Q, λQ̇) = λ2D(Q, Q̇). In this case, defining the “energy function” E : R2n −→
R,

E(Q, Q̇) :=
〈
∂L

∂ Q̇
(Q, Q̇), Q̇

〉
− L (Q, Q̇) (15)

a straightforward calculation shows that along a solution γ ,

d

dt
E(γ (t), γ ′(t)) = −

〈
∂D

∂ Q̇
(γ (t), γ ′(t)), γ ′(t)

〉
= −2D(γ (t), γ ′(t)), (16)

where the inner product <,> is that fixed in Theorem 1. In the last equality we used Euler’s
theorem.

We remark that for natural LagrangiansL (Q, Q̇) = T (Q, Q̇)−V (Q), with T two-degree
homogeneous on velocities, the energy is

E(Q, Q̇) = d

dλ

∣∣∣∣
λ=1

T (Q, λQ̇) − T (Q, Q̇) + V (Q) = T (Q, Q̇) + V (Q).

Note that this homogeneity condition is also coordinate-free.

2.2 Dissipative Noether’s theorem

We need to adapt Noether’s theorem of Lagrangian mechanics to these modified systems.
Let M ⊂ R

n be a submanifold, G a Lie group and Φ : G × M −→ M a smooth action.
We say a dissipative system (Rn,L ,D) admits a 1−parameter symmetry γ : I −→ G, on
M , if:

L
(
dΦγ(s)(x, ẋ)

) = L (x, ẋ) , ∂ẋD(x, ẋ)

(
∂

∂s

∣∣∣∣
s=0

Φγ(s)(x)

)
= 0,

∀s ∈ I, (x, ẋ) ∈ TM, (17)

with the notation Φg(x) := Φ(g, x), and dΦg(x, ẋ) = (Φg(x), DΦg(x)[ẋ]).
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Theorem 2 If a dissipative system (Rn,L ,D) admits a symmetry γ (s) (γ (0) = e) on M,
then it has the first integral:

h(x, ẋ) := ∂ẋL (x, ẋ)

(
∂

∂s

∣∣∣∣
s=0

Φγ(s)(x)

)
. (18)

Proof Using the chain rule and the equations of motion we see,

d

dt
h(x, ẋ) = d

dt

∂

∂s

∣∣∣∣
s=0

L
(
dΦγ(s)(x, ẋ)

) − ∂ẋD(x, ẋ)

(
∂

∂s

∣∣∣∣
s=0

Φγ(s)(x)

)
≡ 0.

��
Here the partial derivative symbol does not denote the gradient but the corresponding func-
tional.

2.3 Lagrangian and dissipation function

Following Baillieul and Levi (1987), let B ⊂ R
3 be a reference configuration for the body.

Themotion of a point x ∈ B is given byφ(t, x) := Y (t)u(t, x), where Y ∈ SO(3) represents
a “rotation” of the body and u : B −→ R

3 the particles positions relative to a “body frame”
at time t . In Baillieul and Levi (1991), the space of all u : B −→ R

3 is denoted by C (B,R3)

and is the set of diffeomorphisms from B onto their images containing the identity in its
interior. Since here we are only interested on isolated bodies the center of mass of the body
can be considered at rest. Then u − x represents the body deformation. Our configuration
space is SO(3) × C .

The kinetic energy is given by

T (Y, Ẏ , u, ut ) := 1

2

∫

B

∥∥∥∥
∂

∂t
φ(t, x)

∥∥∥∥
2

ρ(x)dx = 1

2

∫

B
‖Ωu + ut‖2 ρ(x)dx, (19)

whereΩ = Y T Ẏ is the skew-symmetric matrix representing the angular velocity in the body
frame.

TheLagrangian is given byL (Y, Ẏ , u, ut ) := T (Y, Ẏ , u, ut )−V (u), where V : C −→ R

is the potential energy. The potential energy can be split into an internal energy term plus a
term due to the interaction with external agencies. In this paper only the internal energy will
be considered. The dissipation function D is supposed to depend only on the deformation
u−x and its time derivative ut and neither on the body attitude Y nor on its time derivative Ẏ .
The derivation of the equations of motion from the Lagrangian and the dissipation functions
is given, for instance, in Baillieul and Levi (1987). These equations couple angular velocity
and deformation. The equation for the deformations is obtained from (13)

ρ(utt + 2ω × ut + ω̇ × u + ω × (ω × u)) = −δV

δu
− δD

δut
, (20)

where δV
δu means the gradient of V with respect to the perturbed coordinate u and ω is the

angular velocity vector associated to the angular velocity matrix Ω as in Eq. (5). Notice that
the multiplication of a vector by a matrix Ω is equivalent to applying a cross-product by ω.
Equation (20) is nothing but the Second Law of Newton for the continuum body. As we will
see below, the first term on the right-hand side of the equation comprises three forces: the
one generated by the elastic part of the stress, the gravity force due to the exterior perturber
(when such a perturber exists), and the self-gravitation force of the distorted body (which
exists, no matter whether an external perturber is brought in or not). The second term on the
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right-hand side is the force emerging due to the viscous part of the stress (see Efroimsky
(2012), in particular equation (158), for more details).

2.3.1 Elastic potential and dissipation function

Following Landau and Lifshitz (1986) and Efroimsky (2000), suppose we are dealing with
small deformations (u close to the identity) of an isotropic, Hookean, viscoelastic body.
QuotingEfroimsky (2000),we adopt theKelvin–Voigtmodel that is obtained by the following
choices

Vel =
∫

B
μTr (ε2) +

(
K

2
− μ

3

)
Tr (ε)2dx, (21)

D =
∫

B
ηTr (ε̇2) +

(
ζ

2
− η

3

)
Tr (ε̇)2dx (22)

where μ, K are the (adiabatic) shear and bulk moduli respectively, and η, ζ are the viscous
shear and viscous bulk moduli, respectively. Also we have the strain tensor and the strain
rate tensor

ε = 1

2
(du + duT ) − Id , ε̇ = 1

2
(dut + duTt ). (23)

with components

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
− δi j , ε̇i j = 1

2

(
∂ u̇i
∂x j

+ ∂ u̇ j

∂xi

)
.

The stress tensor obtained from the elastic potential Vel (21) and from the dissipation function
D (22) is Efroimsky (2000)

σ = σe + σv

where σe is the elastic part

σe = K (Trε) Id + 2μ

(
ε − 1

3
(Trε) Id

)

and σv is the viscous part

σv = ζ(Tr ε̇) Id + 2η

(
ε̇ − 1

3
(Tr ε̇) Id

)
.

Attach to the space of deformations C the condition that the stress tensor vanishes when
applied to the normal exterior vector, on the boundary, σn(x) = 0,∀x ∈ ∂B. In this case, a
straightforward calculation shows:

δVel
δu

= −
(
K + μ

3

)
∇(divu) − μΔu, (24)

δD

δut
= −

(
ζ + η

3

)
∇(divut ) − ηΔut , (25)

where Δu = (Δu1,Δu2,Δu3) and Δui is the Laplacian of ui .
The first term is the elastic force for a (compressible) solid, see chapter V, equation

(19) of Love (1944). The second is analogous to the viscosity expressed in the Navier-Stokes
equations for compressible, isotropic fluids [see paragraph 15 of Landau and Lifshitz (1987)].
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2.3.2 Gravitational energy

Since we are interested in isolated bodies, the gravitational energy is given only by the
self-gravitational potential

Vg(u) = G

2

∫

B

∫

B

ρ(x)ρ(y)

‖u(x) − u(y)‖dxdy, (26)

whose associated force is

δVg

δu
(x) = −Gρ(x)

∫

B

u(x) − u(y)

‖u(x) − u(y)‖3 ρ(y)dy.

3 Pseudo-rigid bodies

Acrucial point in the kinematics of amovingbodywithfixed center ofmass is the factorization
of the motion φ(t, x) into a rotation Y (t) and a deformation u(t, x), φ(t, x) = Y (t)u(t, x). If
the body is rigid, u(t, x) = x , then an orthonormal reference frame can be fixed to the body.
The motion of the body φ(t, x) = Y (t)x is determined by the “moving frame”. There is no
way to fix an orthonormal reference frame to a deformable body. The choice of a moving
frame that captures the motion of a deformable body may be a difficult task. Though not
unique, this choice is easier for the motion φ(t, x) = G(t)x of a pseudo-rigid body. In this
case, a standard method (see Borisov et al. 2009; Chandrasekhar 1987; Fassó and Lewis
2001; Kristiansen et al. 2012) is to use the singular value decomposition

G = R ÃST , R, S ∈ SO(3), Ã = diag(a1, a2, a3) > 0, (27)

where SO(3) is the group of 3×3 orthogonal matrices. The matrix R represents the rotation
of the body (shape) and S the circulation of the matter in its interior. This decomposition is
not unique and there exists a smooth curve t → G(t) that does not admit any smooth singular
decomposition (if t → G(t) is analytic, there is always an analytic singular decomposition
(see Fassó and Lewis 2001). For pseudo-rigid body motions another choice of moving frame
is provided by the polar decomposition. Let SL(3) be the group of 3 × 3 matrices with
determinant one and SSym+(3) be the subset of SL(3) of symmetric and positive matrices.
Then given G ∈ SL(3) , there are unique matrices Y ∈ SO(3) and A ∈ SSym+(3) such that
G = Y A. Therefore, the mapping

Φ : SSym+(3) × SO(3) −→ SL(3),

Φ(A, Y ) := Y A, is bijective.
Let Sym(3) be the set of symmetric 3 × 3 matrices. This set is diffeomorphic to R

6. We
claim that SSym+(3) is a 5−dimensional submanifold of Sym(3) . Indeed, SSym+(3) is
the preimage of one by the function det : Sym(3) −→ R. Moreover, the derivative of det is
nonsingular on SSym+(3) because if M ∈ SSym+(3)

DdetM (M) = det(M)Tr (Id) = 3.

Therefore one is a regular value of det : Sym(3) −→ R, which ensures that SSym+(3) is
a submanifold of Sym(3) . Moreover, it can be shown that the mapping Φ is a diffeomor-
phism (see Ferraz-Mello et al. (2015)) and therefore to each smooth motion G(t) ∈ SL(3)
corresponds a unique smooth motion (A(t), Y (t)) ∈ SSym+(3) × SO(3) (see Dieci
and Eirola 1999 for an algorithm to find (A(t), Y (t))). So, in the following we use the
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polar decomposition to investigate the dynamics of an incompressible homogeneous body
(ρ(x) = ρ = constant , μ(x) = μ = constant , η(x) = η = constant , · · · ) under the
pseudo-rigid body hypothesis (1).

Let φ(t, x) = Y (t)A(t)x, x ∈ B, be the function that describes the motion of a body that
at rest has the shape of a ball B = {x ∈ R

3 : ‖x‖ ≤ R}. The motion is determined by the
rotation matrix Y (t) and the deformation A(t) matrix. Using that the total mass of the body
is M = 4πR3ρ/3 and that for every 3 × 3 matrix

∫

B
〈x,Cx〉 dx = 4πR5

15
Tr (C), (28)

we obtain that the kinetic energy (19) of the body is given by

T (Y, A, Ẏ , Ȧ) = MR2

10
(Tr ( Ȧ2) − Tr (Ω2A2) + 2Tr ( ȦΩA)). (29)

Using that the pseudo-rigid body deformation is u(t, x) = A(t)x , the strain tensors (23)
become:

ε = 1

2
(A + AT ) − Id = A − Id , ε̇ = Ȧ.

So, the elastic potential (21) and the dissipation function (22) become

Vel(A) = 4πR3

3

(
μ

(
Tr (A2) − 1

3
Tr (A)2

)
+ K

2
(Tr (A) − 3)2

)
, (30)

D( Ȧ) = 4πR3

3

(
η

(
Tr ( Ȧ2) − 1

3
Tr ( Ȧ)2

)
+ ζ

2
Tr ( Ȧ)2

)
, (31)

and the self-gravitational potential (26) becomes

Vg(A) = −ρ2G

2

∫

B

∫

B

1

‖A(x − y)‖dxdy. (32)

It is easy to check (since A > 0) that Vg(A) is differentiable. The function Vg(A) can also
be written as

Vg(A) = −3M2G

10R

∫ ∞

0

1√
det(A2 + λId)

dλ, ∀A ∈ SSym+(3), (33)

which is a formula known to Dirichlet. For a proof, see Chandrasekhar (1987) or Thomson
and Tait (2009) and for a recent discussion see Khavinson and Lundberg (2013). The next
three lemmas show that the potentials above have some natural properties. The first shows
that the elastic stresses generated by (30) tend to restore the body to the relaxed shape, like
a spring.

Lemma 1 Take any μ, K ≥ 0, with at least one positive, and A ∈ SSym+(3) . Then we
have

(i) Tr (A)2 ≤ 3Tr (A2);
(ii) Tr (A) ≥ 3;
(iii) Vel(A) ≥ 0.

Moreover, the equalities are reached if and only if A = Id .
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Proof The Cauchy–Schwarz inequality for the inner product 〈H1, H2〉 := Tr (HT
1 H2) gives:

Tr (A) = 〈A, Id〉 ≤ ‖A‖‖Id‖ = √
3
√
Tr (A2). The equality holds if and only if A = λId,

i.e., A = Id. Let x, c > 0 be such that x−1, c−1, xc are the eigenvalues of A. Defining
fc(x) := cx + x−1 + c−1, f ′

c(x) = cx−2(x2 − c−1). So fc(x), for x > 0, has a global

minimum at x = c− 1
2 . Hence, fc(x) ≥ fc(c− 1

2 ) = h(c) := 2c
1
2 + c−1 ∀x, c > 0. But,

h′(c) = c−2(c
3
2 − 1), then h(c) ≥ h(1) = 3. Thus, Tr (A) = fc(x) ≥ h(c) ≥ 3, and since

the minima are strict, the equality holds only for A = Id. The last assertion follows from (i),
(ii) and (30). ��
The next lemma shows that the self-gravitational potential (33) has a global minimum exactly
when the body has the shape of a ball.

Lemma 2 For all A ∈ SSym+(3) ,

−3M2G

5R
≤ Vg(A) < 0.

The equality holds if and only if A = Id .

Proof Let a1, a2, a3 > 0 be the eigenvalues of A. Thus, det(A2 + λId) = λ3 + (a21 +
a22 + a23)λ

2 + (a21a
2
2 + a21a

2
3 + a22a

2
3)λ + (a1a2a3)2 = λ3 + Tr (A2)λ2 + Tr ( Ã)λ + 1,

where Ã = diag(a21a
2
2 , a

2
1a

2
3 , a

2
2a

2
3) ∈ SSym+(3) . Hence, from (ii) of Lemma 1, follows

det(A2 + λId) ≥ λ3 + 3λ2 + 3λ + 1 = (λ + 1)3. So,

Vg(A) ≥ −3M2G

10R

∫ ∞

0
(λ + 1)−

3
2 dλ = −3M2G

5R
.

��
The next lemma shows that energy dissipation ceases along with the internal motion.

Lemma 3 Take any η > 0, ζ ≥ 0 and Ȧ ∈ TASSym+(3) . Therefore D( Ȧ) ≥ 0, and
equality holds if and only if Ȧ = 0.

Proof Note that the arguments used in Lemma 1, item (i), can be applied here, ensuring that
D ≥ 0. Thus, if D( Ȧ) = 0, then Ȧ = λId. But, 0 = Tr (A−1 Ȧ) = λTr (A−1). So Ȧ = 0. ��

In order to obtain the equations of motion for the deformation A, we use Theorem 1.
On the nine-dimensional vector-space of 3 × 3 matrices consider the (Euclidean) metric
< H1, H2 >:= Tr (HT

1 H2). The symmetric matrices with determinant one is the subset of
matrices of this vector-space that satisfy the constraints:

g12(A) = 0, g13(A) = 0, g23(A) = 0, g(A) = 0, (34)

where gi j (A) = ai j −a ji and g(A) = det(A)−1. Letχi j andχ be the Lagrangianmultipliers
associated to gi j and g, respectively. If we write

Z = d

dt

(
∂L

∂ Ȧ

)
− ∂L

∂A
+ ∂D

∂ Ȧ
,

then the constrained Euler–Lagrange equations can be written as Z + X +χ A−1 = 0 where

∑

i j

χi j
∂gi j
∂A

+ χ
∂g

∂A
=

⎛
⎝

0 χ12 χ13

−χ12 0 χ23

−χ13 −χ23 0

⎞
⎠ + χ A−1 = X + χ A−1. (35)
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In order to determine the Lagrange multipliers X we take the skew-symmetric part of Z +
X + χ A−1 = 0 to get X = −(Z − ZT )/2. In order to determine χ we multiply both
sides of Z + X + χ A−1 = 0 by A−1 and take the trace to get χ = −Tr (A−1Z)/Tr (A−2).
To eliminate the term Tr (A−1 Ä) from Tr (A−1Z) we use that det(A) − 1 = 0 implies
Tr (A−1 Ä) = Tr (A−1 ȦA−1 Ȧ). Finally, using that L = T − Vel − Vg we obtain the
equations of motion relative to the deformations:

Ä + 1

2
[Ω̇, A] + [Ω, Ȧ] + 1

2
(Ω2A + AΩ2) + 20πR

3M

[
2μA +

(
K − 2μ

3

)
Tr (A)Id

−3K Id + 2η Ȧ +
(

ζ − 2η

3

)
Tr ( Ȧ)Id

]
+ 3MG

2R3

∫ ∞

0

A(A2 + λId)−1
√
det(A2 + λId)

dλ + χ A−1 = 0

(36)

where,

χ = 1

Tr (A−2)

{
2Tr (A−1 ȦΩ) − Tr (A−1 ȦA−1 Ȧ) − Tr (Ω2)

−20πR

3M

[
6μ +

(
K − 2μ

3

)
Tr (A)Tr (A−1) − 3K Tr (A−1)

+
(

ζ − 2η

3

)
Tr ( Ȧ)Tr (A−1)

]

−3MG

2R3

∫ ∞

0

Tr ((A2 + λId)−1)√
det(A2 + λId)

dλ

}
.

Notice that the initial condition (A0, Ȧ0) must satisfy the constraints: A0 ∈ SSym+(3), Ȧ0

symmetric, and Tr (A−1
0 Ȧ0) = 0. Since det A(t) = 1 the positiveness of A(t) is ensured for

all t .
The equations of motion for the rotation Y are obtained in the same way as those for A.

The set of matrices Y is considered as a subset of the vector-space of 3 × 3 matrices that
satisfy Y T Y = Id. These constraints can be written as:

fkm(Y ) = Tr (Y T Yσkm) =
{
1, if k = m
0, if k �= m

,

where σkm are the matrices

(σkm)i j =
{
1, if {k,m} = {i, j}
0, otherwise.

Let χkm denote the Lagrange multiplier associated to fkm . Then, using

∑

k,m

χkm
∂ fkm
∂Y

= 2Y T
∑

k,m

χkmσkm = 2Y T

⎛
⎝

χ11 χ12 χ13

χ12 χ22 χ23

χ13 χ23 χ33

⎞
⎠ = 2Y T X,

we get that the constrained Euler–Lagrange equations associated to Y are

d

dt

(
∂T

∂Ẏ

)
− ∂T

∂Y
+ 2Y T X = 0.
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Since X is a symmetric matrix, in order to eliminate the Lagrangian multipliers of this
equation it is enough to multiply it by Y and to take its skew-symmetric part

(
Y

(
d

dt

(
∂T

∂Ẏ

)
− ∂T

∂Y

))
−

(
Y

(
d

dt

(
∂T

∂Ẏ

)
− ∂T

∂Y

))T

= 0, (37)

to obtain

A2Ω̇ + Ω̇A2 + 2Ω ȦA + 2AȦΩ + [Ω2, A2] = [A, Ä]. (38)

Finally we use (36) to eliminate Ä from equation (38) to obtain

�A(Ω̇) + 2Ω ȦA + 2AȦΩ + 2AΩ Ȧ + 2 ȦΩA + [Ω2, A2] = 0, (39)

where�A : skew(3) −→ skew(3) is the linear operator�A(H) := A2H + H A2 +2AH A.

Lemma 4 For every A ∈ SSym+(3) , the operator �A is invertible.

Proof Take H ∈ skew(3) such that �A(H) = 0. In a basis such that A = diag(a1, a2, a3),

H =
⎛
⎝

0 −h3 h2
h3 0 −h1

−h2 h1 0

⎞
⎠

we see that H must satisfy
⎛
⎝

0 −(a1 + a2)2h3 (a1 + a3)2h2
(a1 + a2)2h3 0 −(a2 + a3)2h1

−(a1 + a3)2h2 (a2 + a3)2h1 0

⎞
⎠ = 0.

So, H = 0. ��
Therefore, we have a well-posed problem, since we can write the system of equations (36),
(39) and Ẏ = YΩ in an explicit form.

Now, we describe the qualitative aspects of the motion.

Lemma 5 The angular momentum on an inertial frame

L(Ω, A, Ȧ) := 1

2
Y (A2Ω + ΩA2 + [ Ȧ, A])Y T (40)

is conserved by the motion.

Proof Consider the action Φ : SO(3) × (SO(3) × SSym+(3)) −→ SO(3) × SSym+(3),
Φ(U, Y, A) := (UY, A). For every ξ ∈ skew(3) , we have L (dΦesξ ((Y, A), (Ẏ , Ȧ))) =
L ((esξY, A), (esξ Ẏ , Ȧ)) = L ((Y, A), (Ẏ , Ȧ)). Note thatD is independent of Y, Ẏ , then the
second condition of (17) is fulfilled. Hence, by Theorem 2,

Tr
(
(Y A2ΩY T + YΩA2Y T − 2Y AȦY T )ξ T

)

is a first integral, for all ξ ∈ skew(3) . Then, its skew-symmetric part is conserved. ��
Now, consider the action Φ(U, Y, A) := (YUT ,U AUT ). Note that

L (dΦesξ ((Y, A), (Ẏ , Ȧ))) = L ((Ye−sξ , esξ Ae−sξ ), (Ẏ e−sξ , esξ Ȧe−sξ ))

= L ((Y, A), (Ẏ , Ȧ)).
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However,

∂ẋD

(
∂

∂s

∣∣∣∣
s=0

Φesξ (x)

)
= 16πR3η

3
Tr ( Ȧξ A) (41)

does not vanish, except for η = 0. In the case η = 0, given any ξ ∈ skew(3) we have the
additional first integral

h = ∂ẋL (−Y ξ, ξ A − Aξ) = Tr (ξ T (AȦ + AΩA)).

This implies that, for η = 0, � := [A, Ȧ] + 2AΩA is conserved. This � is called vorticity
in Borisov et al. (2009) (equation (29)) and circulation in Chandrasekhar (1987).

3.1 Equilibria

One easily checks that both L (Y, A, Ẏ , Ȧ),D(Y, A, Ẏ , Ȧ) are two-degree homogeneous
functions in the velocities. So, from (16) we see that the energy E := T + Vg + Vel +
3M2G/(5R) is such that

Ė = −2D ≤ 0,

where the last inequality comes from Lemma 3. In other words, E : T (SO(3) ×
SSym+(3)) −→ R is a Lyapunov function. Note that the kinetic energy (29) can be rewritten
as

T (Y, A, Ẏ , Ȧ) = MR2

10
‖ Ȧ + ΩA‖2 ≥ 0.

This and Lemmas 1 and 2 imply that E ≥ 0.

Lemma 6 Suppose thatμ > 0. Then given E0 ≥ 0, the set E−1 ([0, E0]) ⊂ T SSym+(3) ×
skew(3) is compact where skew(3) denotes the set of 3 × 3 skew-symmetric matrices.

Proof Notice that E−1 ([0, E0]) is closed in T SSym+(3) × skew(3) that is closed in the set
inW = M ×M × skew(3) where M is the vector space of 3×3 matrices. We will show that
there is no sequence (An, Ȧn,Ωn) ∈ E−1 ([0, E0]) that is unbounded in W . The definition
of E , Lemma 2, and the positivity of T imply:

4πμR3

3

(
Tr (A2

n) − 1

3
Tr (An)

2
)

≤ E ≤ E0, ∀n, (42)

MR2

10

(‖ Ȧn + Ωn An‖2
) ≤ E ≤ E0. ∀n. (43)

From (42) we see that the norms of the vectors

An − < An, Id >

‖Id‖2 Id

are bounded. So, the projection of the sequence An on any vector orthogonal to Id is bounded.
Then, writing An = sn Id + αn , where < αn, Id >= 0, we get that the ‖αn‖ is bounded
and the sequence ‖An‖ is unbounded if, and only if, the sequence |sn | is unbounded. But
if |sn | is sufficiently large s−1

n αn is close to zero and det(An) = s3n det(Id + s−1
n αn) > 1

that is impossible because det(An) = 1. So An is bounded. Denote (An)i j = ani j and

( Ȧn)i j = bni j . Equation (43) shows that Ȧn+Ωn An is bounded, as well as its skew-symmetric
part (AnΩn + Ωn An)/2. Taking An diagonal again, we see that the vector associated to
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AnΩn + Ωn An (as in Eq. 5) is ((an22 + an33)ω
n
1 , (a

n
11 + an33)ω

n
2 , (a

n
11 + an22)ω

n
3). Since none

of the coefficients (anii + anj j ) can accumulate at zero, because an11a
n
22a

n
33 = 1, we conclude

that the sequence Ωn is bounded. Hence Ȧn must also be bounded. ��

Therefore, we are able to apply the LaSalle invariance principle more or less as in Bambusi
and Haus (2012).

Lemma 7 (LaSalle’s Invariance Principle) Let γ +(x0) be the positive orbit of the initial
condition x0 in the phase space M. If γ +(x0) is bounded and V is a Lyapunov function on
M, then the ω−limit set of this solution is contained in the largest invariant subset (by the
flow) of {x ∈ M : V̇ (x) = 0}.

For a proof, consult Hale (1980). We denote the largest invariant subset under the flow
contained in {X = (Y,Ω, A, Ȧ) : Ė(X) = 0} by A . So, by Lemma 6, the ω−limit set of
every initial condition is contained inA . Taking an initial condition onA , since it is invariant,
its flow is such that Ė(X (t)) = −2D(X (t)) ≡ 0. Then, by Lemma 3, A(t) = A,∀t ≥ 0.
The next lemma shows that any point in the attracting set A is a relative equilibrium.

Lemma 8 Ω̇ = 0 on the set A .

Proof Since for all R0 ∈ SO(3), (R0Y (t)RT
0 , R0Ω(t)RT

0 , R0ART
0 , 0) is also a solution,

without loss of generality, we may assume A = diag(a1, a2, a3). Since Ȧ = 0 on A , Eqs.
(36) and (39) imply

A2Ω̇ + Ω̇A2 + 2AΩ̇A + [Ω2, A2] = 0,
1

2
[Ω̇, A] + 1

2
(Ω2A + AΩ2) + D = 0,

where D is a diagonal matrix. The first of these equations imply:
⎧
⎪⎨
⎪⎩

(a21 + a22)ω̇3 + 2a1a2ω̇3 − (a22 − a21)ω1ω2 = 0

(a21 + a23)ω̇2 + 2a1a3ω̇2 + (a23 − a21)ω1ω3 = 0

(a22 + a23)ω̇1 + 2a2a3ω̇1 − (a23 − a22)ω2ω3 = 0

⇒

⎧
⎪⎨
⎪⎩

(a1 + a2)ω̇3 + (a1 − a2)ω1ω2 = 0

(a1 + a3)ω̇2 + (a3 − a1)ω1ω3 = 0

(a2 + a3)ω̇1 + (a2 − a3)ω2ω3 = 0

The off diagonal terms of the second of those equations imply:
⎧
⎨
⎩

(a2 − a1)ω̇3 + (a1 + a2)ω1ω2 = 0
(a1 − a3)ω̇2 + (a1 + a3)ω1ω3 = 0
(a3 − a2)ω̇1 + (a2 + a3)ω2ω3 = 0

⇒
⎧
⎨
⎩

((a1 + a2)2 + (a2 − a1)2)ω̇3 = 0
((a1 + a3)2 + (a1 − a3)2)ω̇2 = 0
((a2 + a3)2 + (a3 − a2)2)ω̇1 = 0

and the conclusion follows. ��

Equations (36) and (39) are invariant under rotations. So, the system can be initially rotated
such that the angularmomentum vector, Eq. (40), has the form (0, 0, �).We aim to understand
qualitatively the set of all relative equilibria of Eqs. (36) and (39) for a fixed value of �. Since
Ω̇ = 0 and Ẏ (t) = Y (t)Ω we conclude that Ω commutes with Y (t). Differentiating with
respect to t the angular momentum equation 2Y T LY = A2Ω + ΩA2 we conclude that L
commutes with Ω and therefore the vector Ω is also of the form (0, 0, ω3). Equation (39)
with Ȧ = 0 and Ω̇ = 0 gives

0 = [Ω2, A2] = A[Ω2, A] + [Ω2, A]A
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that implies [Ω2, A] = 0 because A is positive definite. This equation implies that A has the
form:

A =
⎛
⎝
a11 a12 0
a21 a22 0
0 0 a33

⎞
⎠ = Ã +

⎛
⎝
0 0 0
0 0 0
0 0 a33

⎞
⎠ (44)

The relative equilibria can be of three types depending on the equilibrium shape of the body
being: a sphere, an ellipsoid of revolution or a triaxial ellipsoid. The spherical shape, A = Id,
can only occur for � = 0 and it is the only relative equilibrium in this case. If the equilibrium
shape is an ellipsoid then one of the semi-major axis is in the vertical direction. For a given
L , if there exists one relative equilibrium with the shape of a triaxial ellipsoid, then there are
infinitely many others: one for each angle of rotation ( mod π) around the vertical axis. For
one of these relative equilibria a12 = a21 = 0 and a11 > a22. Notice that the invariance of
ellipsoids of revolution under rotations around the vertical axis imply that there may exist a
unique relative equilibrium of this kind for a fixed value of � (as it happens to the spherical
shape for � = 0). Our quantitative study of the relative equilibria is restricted to the case of
small angular momentum.

Lemma 9 There exists |�0| > 0 such that for each angular momentum L with 0 < ‖L‖ =
|�| < |�0| there exists a unique relative equilibriumwith the shape of an ellipsoid of revolution
and with angular momentum L. For this equilibrium, A = exp(B) where B is a symmetric
traceless matrix given approximately by

B = − 1

γ

(
Ω2 − Tr (Ω2)

3
Id

)
+ O(‖Ω‖3/2) = �2

12γ

⎛
⎝
1 0 0
0 1 0
0 0 −2

⎞
⎠ + O(|�|3/2)

Proof The angular momentum definition (40) and the above discussion imply that � =
ω3Tr ( Ã2), where Ã is the matrix defined in Eq. (44). We use this equation to replace ω3 for �
in Eq. (36) after imposing Ȧ = 0, Ω̇ = 0. As a result we obtain a set of three scalar equations
that can be represented as F(�2, A) = 0, where A has the form in Eq. (44). For a given �2,
the three scalar equations F(�2, A) = 0 must be solved for the four unknowns in A under
the additional constraint det(A) − 1 = 0. Notice that F(0, Id) = 0. So, to finish the proof it
is enough to show that the matrix ∂AF(0, Id) is nonsingular when restricted to the tangent
space to det(A) − 1 at A = Id. The lemma follows from the implicit function theorem. The
best way to compute ∂AF(0, Id) is to write A = Id + εB and to expand F(0, Id + εB) =
ε∂AF(0, Id)+O(ε2). The constraint 0 = det(Id + εB)− 1 = εTr (B)+O(ε2) implies that
Tr (B) = 0. So substituting A = Id + εB into Eq. (36) with Ω̇ = 0, Ȧ = 0, and expanding
up to order ε we obtain:

0 =
(

Ω2 − Tr (Ω2)

3
Id

)
+ ε

(
γ B + Ω2B + BΩ2

2
+ Tr (Ω2)

3
B

)
+ O(ε2) (45)

where γ > 0 is given in Eq. (10). Using that � = 0 ⇔ Ω = 0 we get ∂AF(0, Id)B = γμB,
so the lemma is proved. The stated form of B for � small follows directly from Eq. (45) and
� = 2ω3 + O(|ω3|3/2). ��
For μ > 0, we know that the ω-limit set of any solution to the equations of motion (36) and
(39) is contained in the set A , which is the set of relative equilibria. Lemma 9 states that
there is exactly one point in A with a given angular momentum L if ‖L‖ < �0. Therefore
we get the following.
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Theorem 3 Forμ > 0, every solution to equations (36) and (39) with small angular momen-
tum L , ‖L‖ < �0, is attracted to the unique relative equilibrium given in Lemma 9. The
asymptotic shape is an oblate ellipsoid of revolution.

We remark that a theorem similar to Theorem 3 holds in the case μ = 0. In this case some
additional bound on the energy of the initial condition must be imposed. The gravitational
force is not strong enough to restrain the growth of very energetic initial conditions.

4 Small deformations regime

Our goal in this section is to simplify the pseudo-rigid body equations of motion (36) and
(39) under the small ellipticity hypothesis A ≈ Id. In this case, it is convenient to write
A = exp(B) = Id + B + B2/2 . . . where B is a symmetric traceless matrix. Clearly the
map

exp : ssym(3) = {B ∈ Sym(3) : Tr (B) = 0} −→ SSym+(3) (46)

is a diffeomorphism near the origin. It is indeed a global diffeomorphism, see Ferral-Mello
et al. (to apper), but this fact will not be used in this paper.

We wish to insert a small scaling parameter ε > 0 in order to express the small amplitude
of the internal vibrations of A = exp(εB). This requires also an scaling for Ω , since small
deformations can only exist for small angular velocities. In order to balance the scalings for
B and Ω we use the relative equilibrium expression given in Lemma 9. Replacing B by εB
in this expression we obtain that the correct scaling for Ω is

√
εΩ . So, we introduce the

modified coordinates A = exp(εB) and
√

εΩ into the Lagrangian and dissipation functions

presented in the last section. Performing their Taylor expansions up to order ε
5
2 , we obtain:

L (B, Ḃ,Ω) = MR2

10
(ε2Tr (Ḃ2) − εTr (Ω2) − 2ε2Tr (Ω2B))

−ε2
MR2

10
γ Tr (B2) + O(ε

5
2 ),

where γ is given in Eq. (10) in the Introduction. See Eq. (61) from Appendix 1 for further
details. We also have,

D(Ḃ) = ε2
4πηR3

3
Tr (Ḃ2) + O(ε3).

The parameter ε was introduced by means of a change of variables only to understand the

relative scale between B andΩ . So, we neglect all terms inO(ε
5
2 ) from the above Lagrangian

function and reverse the change of variables, or equivalently take ε = 1.
So, we get the following functions

L (B, Ḃ,Ω) = MR2

10

(‖Ḃ‖2 + ‖Ω‖2 + 2Tr (ΩΩTB)
) − MR2

10
γ ‖B‖2, (47)

D(Ḃ) = 4πηR3

3
‖Ḃ‖2. (48)
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To obtain the equations of motion, we consider the functions g12, g13 and g23 in Eq. (34),
but now we replace g(A) = det(A)− 1 by g(B) = Tr (B) = 0. So, similarly to (35), we get

∑

i j

χi j
∂gi j
∂B

+ χ
∂g

∂B
=

⎛
⎝

0 χ12 χ13

−χ12 0 χ23

−χ13 −χ23 0

⎞
⎠ + χ Id = X + χ Id .

The same type of analysis used to obtain Eq. (36) gives the equation of motion

B̈ + ν Ḃ + γ B = −Ω2 + 1

3
Tr (Ω2)Id, (49)

where the constants ν and γ are given by (10).
Using the same procedurewe used to get Eq. (39), we obtain the equations ofmotion forΩ

ΦB(Ω̇) = − (
Ω Ḃ + ḂΩ + [Ω2, B]) , (50)

where ΦB : skew(3) −→ skew(3) is the linear operator (inertia tensor)

ΦB(H) := H + BH + HB, ∀H ∈ skew(3).

We remark that the deformations behave like a damped harmonic oscillator, externally
forced by the noninertial effects of the rotation. Notice that all the variables are coupled.

The existence of solutions is the first problem we must deal with. Likewise Lemma 4, we
state the following.

Lemma 10 For every B ∈ ssym(3), ‖B‖ < 1/2, the operator ΦB is symmetric, positive
definite and, therefore, invertible.

Proof Taking arbitrary H1, H2 ∈ skew(3) ,

〈ΦB(H1), H2〉 = −Tr (H1H2) − Tr (H1BH2) − Tr (BH1H2) = 〈H1, ΦB(H2)〉 .

Now, take H ∈ ker(ΦB). So, (Id + 2B)H + H(Id + 2B) = 0. Let v ∈ R
3 be an unitary

eigenvector of (Id + 2B). Then, ∃λ ∈ R:

v + 2Bv = λv ⇒ Bv = λ − 1

2
v ⇒ |λ − 1|

2
<

1

2
.

Hence, λ > 0, i.e, A = (Id + 2B) is symmetric, positive definite. By taking A =
diag(a1, a2, a3), and S(H) = (h1, h2, h3), the previous condition implies:

⎛
⎝

0 −(a1 + a2)h3 (a1 + a3)h2
(a1 + a2)h3 0 −(a2 + a3)h1

−(a1 + a3)h2 (a2 + a3)h1 0

⎞
⎠ = 0.

So, H = 0. Let β and H be eigenvalue and eigenvector of ΦB . So, we have

(β − 1)H = (BH + HB) ⇒ |β − 1| ≤ 2‖B‖ ≤ 1.

Therefore, since β �= 0, β ∈ (0, 2). ��

This lemma shows that the equation for Ω̇ can be written in explicit form for ‖B‖ < 1/2
and therefore in this region the standard existence and uniqueness theorems for ordinary
differential equations hold.
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The functions L (Y, B, Ẏ , Ḃ),D(Y, B, Ẏ , Ḃ) are two-degree homogeneous functions in
the velocities. So, the energy function associated to L is

E(B, Ḃ,Ω) = MR2

10

(
‖Ḃ‖2 + ‖Ω‖2 + 2Tr (ΩΩT B)

)
+ MR2

10
γ ‖B‖2 (51)

and, from Eq. (16), we get Ė = −2D ≤ 0, where the equality is reached if and only if
Ḃ = 0. The next lemma establishes a region where the solutions to the equations of motion
are defined for all time.

Lemma 11 Let β = MR2γ /50 and V be the connected component of

{
(B,U,Ω) ∈ E−1([0, β)) : ‖B‖ < 1/2

}
(52)

that contains the origin. The set V is bounded and any solution to the equations (49) and
(50) initially in V remains in V for all t > 0.

Proof Recall that the energy is given by:

E(B, Ḃ,Ω) = MR2

10

(
Tr (Ḃ2) − Tr ((Id + 2B)Ω2) + γ Tr (B2)

)
.

Inside V , A := Id+ 2B > 0, so −Tr ((Id+ 2B)Ω2) = Tr ((
√
AΩ)T (

√
AΩ)) ≥ 0. Lemma

10 ensures the existence and uniqueness. Taking one such solution, we know that E(t) < β.
Suppose that exists a sequence {tn} such that ‖B(tn)‖ < 1/2,∀n, and lim

n→+∞ ‖B(tn)‖ = 1/2.

But, in this case,

E(0) ≥ E(tn) ≥ MR2γ

10
‖B(tn)‖2 ⇒ E(0) ≥ MR2γ

40
,

which is a contradiction. So, V is invariant. The set is bounded because, ∀(B, Ḃ,Ω) ∈
V , ‖B‖ < 1/2, ‖Ḃ‖2 < 10β/MR2, ‖√AΩ‖2 < 10β/MR2. ��

Again, we can apply the LaSalle’s invariance principle (Lemma 7). Let A be the largest
invariant subset under the flow contained in the set {(Y,Ω, B, Ḃ) : Ḃ = 0} ∩ V . The
ω−limit set of any solution in V is contained in A . Since A is invariant, for an initial
condition in A , Ḃ(t) = 0 for all t . Then, by (49),

B = −γ −1(Ω2 − 1

3
Tr (Ω2)Id) ⇒ [B,Ω2] = 0

that implies Ω̇ ≡ 0. So, every point in the attracting set A is a relative equilibrium.
As in the previous section the equations of motion are invariant under rotations. There-

fore we may assume that the angular velocity vector of a relative equilibrium has the form
(0, 0, ω3). The relative equilibrium obtained from equations (49) and (50) is that given by
the first term in the expression in Lemma 9. Let ε be the ellipticity as defined in equation (2).
Using that A = exp(B), we obtain that the ellipticity associated to this relative equilibrium
is:

ε = e
ω2
3γ − e− 2ω2

3γ ≈ ω2

γ
= 1

2

ω2R3

GM
h2, h2 = 5

2

1(
1 + 25

2
μ

ρgR

) ,
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where h2 is analogous to the second Love number that is a long-standing known value,
appearing in the works of Thomson and Tait (2009) and Love (1944), given by

h2 = 5

2

1(
1 + 19

2
μ

ρgR

) .

The factor 25/2 appearing in our formula is different from the 19/2 appearing in the second
Love number because the pseudo-rigid body assumption (1) implies an overestimation of the
stresses in the body (see a detailed explanation for this difference in Appendices 2 and 3).
Since in both models, Love’s and ours, the effective constant μ must be estimated using the
model itself this difference is irrelevant. We remark that as the radius R becomes larger, we
may neglect the term corresponding to the elasticity. So, we obtain the standard flattening

εg ≈ 5

4

ω2R3

GM
, (53)

see for instance paragraph 374 of Lamb (1932).
By defining the same action as in Lemma 5, a calculation similar to that in Lemma 5 gives

that the angular momentum given in Eq. (9) is conserved by this new system. We remark that
the angular momentum in Eq. (9) is an approximation to the original angular momentum L
given in Eq. (40) (for small values of ‖L‖).

Finally the same arguments used to prove Theorem 3 can be used to prove the following.

Theorem 4 Every solution to Equations (49) and (50) initially in the set V , given in
Lemma 11, is attracted to the unique relative equilibrium that has the same angular momen-
tum as the solution. The asymptotic shape is an oblate ellipsoid of revolution.

So, for small angular momentum the asymptotic behavior of the system studied in this
section an that from the previous section is essentially the same.

4.1 Quantitative analysis

We recall from Carr (1981) some basic results which we apply to this specific model. In the
general case, take x ∈ R

n, y ∈ R
m , and let A1 ∈ M(n), A2 ∈ M(m) be square matrices,

f : R
n+m −→ R

n and g : R
n+m −→ R

m be smooth functions such that f (0, 0) =
0, Df (0, 0) = 0, g(0, 0) = 0 and Dg(0, 0) = 0. Construct the system

{
ẋ = A1x + f (x, y)
ẏ = A2y + g(x, y)

, (54)

supposing that all the eigenvalues of A1 have zero real parts and all the eigenvalues of A2

have negative real parts.
Let h : Rn −→ R

m , with h(0) = 0 and Dh(0) = 0, be a smooth function. If its graph
y = h(x) is an invariant manifold for the flow of (54), it is called a center manifold for (54).
In this case the flow on this manifold is given by (u(t), h(u(t))), where u(t) ∈ R

n is solution
of

u̇ = A1u + f (u, h(u)). (55)

The following theorem is proved in Carr (1981).

Theorem 5 Suppose that the zero solution of (55) is stable. Then

(i) The zero solution of (54) is stable.
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(ii) Let (x(t), y(t)) be solution of (54), with (x(0), y(0)) sufficiently small, and σ :=
min{|Re(λ)| : λ ∈ Spectrum(A2)}. So, exist constants C1,C2 > 0 and a solution
u(t) of (55) such that

‖x(t) − u(t)‖ ≤ C1e
−σt , ‖y(t) − h(u(t))‖ ≤ C2e

−σt (56)

Now, we apply the rescaling B → εB andΩ → √
εΩ directly at the equations of motion

(36), (39) and (49), (50). The first system becomes

B̈ + ν Ḃ + γ B = −Ω2 + 1

3
Tr (Ω2)Id + O(ε

1
2 )

Ω̇ = −εΩ Ḃ − ε ḂΩ − ε
3
2
1

2
[Ω2, B] + O(ε2), (57)

and the second

B̈ + ν Ḃ + γ B = −Ω2 + 1

3
Tr (Ω2)Id

Ω̇ = −εΩ Ḃ − ε ḂΩ − ε
3
2 [Ω2, B] + O(ε2), (58)

So, we see that the systems coincide when ε = 0 and have the form

Ω̇ = 0(
Ḃ
U̇

)
= A2

(
B
U

)
+

(
0

−Ω2 + 1/3Tr (Ω2)Id

)
, (59)

where A2(B,U ) := (U,−νU − γ B). Note that this system satisfies the hypotheses of
Theorem 5, with x = Ω, y = (B,U ) and A1(Ω) = 0. If A2(B,U ) = λ(B,U ), then
λ2 + νλ + γ = 0, so

λ = −ν

2
± 1

2

√
ν2 − 4γ

whose real part is always negative.
We remark that the graph of the function (B,U ) = h(Ω) = (γ −1(−Ω2 +

1/3Tr (Ω2)Id), 0) defines a global center manifold. Indeed, each point on this graph is
a stable relative equilibrium. So, the whole graph is invariant under the flow. We can see
explicitly from (59) that for each (Ω(0), B(0),U (0)) in this graph there exist constants
C1,C2 > 0 such that

‖Ω(t) − Ω(0)‖ ≤ C1e
−σt , ‖γ B(t) −

(
−Ω(0)2 + 1

3
Tr (Ω(0)2)Id

)
‖ ≤ C2e

−σt ,

(60)

where σ = Re
(
−ν/2 + √

ν2 − 4γ /2
)
. Quoting the Section 9 from Ferraz-Mello (2013),

we see that for a wide range of examples in the Solar System, such eigenvalues are real, i.e.,
the corresponding harmonic oscillator is overdamped. Remark that the constant denoted by
γ in Ferraz-Mello (2013) is obtained in the present paper by the quotient 25γ /(4ν).

Therefore, we see that this graph is a normally hyperbolic invariant manifold and using
the main theorems from Fenichel (1971) we see that for each ε > 0 sufficiently small, there
is an invariant manifold, diffeomorphic to this one, for each one of the systems [(49), (50)]
and [(36), (39)]. Such manifolds are also attractive in the sense of (56). For both systems
[(49), (50)] and [(36), (39)] these are manifolds of equilibria.
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5 Conclusion

The main contribution given in this paper is a mathematical model for the motion of a body
that is isolated, incompressible, and spherically symmetric at rest. Wewere lead to this model
by means of a series of simplifications that started with Newton’s equation for a continuum
(Sect. 2), passed the pseudo-rigid body approach of Dirichlet, Riemann, etc... (Sect. 3), and
ended with an even simpler low ellipticity approximation to the pseudo-rigid body (Sect.
4). During the computations the body was supposed linearly viscoelastic, homogeneous and
isotropic. At a first moment these strong hypotheses suggested that the final model could not
be applied to any realistic physical celestial body. Indeed, most real bodies are far from being
homogeneous which becomes evident when we compare the moment of inertia of a real body
with the moment of inertia of a homogeneous ball with the same mass and geometric radius
of the real body. This deficiency lead us to abandon the original meaning of the geometric
quantities of the originalmodel (as, for instance, the geometricmeaning of B) and to group the
model parameters into measurable physical quantities. In this way we were lead to the model
presented in the Introduction that, as in the Abstract, is given by the following Lagrangian
and dissipation functions

L = ω · Iω
2

+ 1

36I◦
(‖Q̇‖2 − γ ‖Q‖2)

and

D = ν

36I◦
‖Q̇‖2

Our model has the following short a posteriori explanation. From the point of view of
Celestial Mechanics the gravitational field of a body can be approximated by its monopole
and quadrupole gravitational moment. Due to self-gravitation a non-rotating and non-rigid
isolated body must have a null quadrupole moment. On the contrary, a rotating non-rigid
body must have a non-null quadrupole moment which has an intensity that depends on the
angular speed. Regardless on how complicated the quadrupole moment varies as a function
of the angular speed it is sensible to suppose that this dependence can be linearized. This
reasoning brings up the term

1

36I◦
(‖Q̇‖2 − γ ‖Q‖2)

that attributes an inertia and a rigidity to the variations of the gravitational quadrupole tensor
Q of the body. The quadrupole moment is naturally coupled to the angular velocity ω by
means of the rotational kinetic energy

ω · Iω
2

and the moment of inertia tensor

I = I◦
(
Id − Q

3

)

Notice that I◦ = TrI/3 is constant and equal to the moment of inertia of the spherical
body at rest The total mass M and I◦ are the inertial physical properties of the body. Finally,
linear dissipation is introduced by means of an additional Rayleigh dissipation function to
the conservative linear quadrupole oscillator:

D = ν

36I◦
‖Q̇‖2
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The effective viscosity coefficient ν and the elastic constant γ must be estimated from
direct observation. Therefore, within this model the body is completely determined by the
physical constants: M, I◦, γ , and ν. The total mass M is necessary for the characterization
of the translational energy of the body, which has been completely neglected in this work
since the center of mass is supposed at rest.

We believe that our model is the simplest one can get without loosing the symmetries
and the conserved quantities of the original system. With respect to the coupling between
the quadrupole moment tensor and the body rotation our model provides the same answers
as those more sophisticated models, at least for low angular momentum. In contrast to more
sophisticated models, it does not answer, and it is not its purpose, many interesting ques-
tions about the geometry of the deformed body, as for instance, about the flattening. When
compared to simplermodels it has several advantages. At first there is no hypothesis of aligne-
ment of principal moments of inertia and angular velocity. This is a common hypothesis in
many simplified models. For our model the initial angular velocity and the initial quadru-
pole moment tensor is arbitrary. The alignment is a natural consequence of the dynamics.
Of course our model shares many features and dynamical properties with other simplified
models. This is more evident in the study of two-body systems, which we will pursue in a
future work. Finally, due to its Lagrangian formulation our model can be used as a building
block in the study of many-body systems without any further assumptions (compare to the
study of a planar two body system in Zlenko (2015).
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Appendix 1

We perform the Taylor expansion of (32) up to order ε2. If A = exp(εB) ∈ SSym+(3) then:

φ(εB) = −Gρ2

2

∫

B

∫

B

1

‖ exp(εB)(x − y)‖dxdy + C

= −γ

∫ ∞

0

1√
det(exp(2εB) + λId)

dλ + C.

Thus, (choosing φ(0) = 0),

φ(εB) = εDφ(0)B + 1

2
ε2D2φ(0)B2 + O(ε3).

Since the derivatives of the integrand are continuous and bounded, we may perform the
following calculations

Dφ(εB)B = d

dε
φ(εB) = γ

∫ ∞

0

Tr
(
(exp(2εB) + λId)−1 exp(2εB)B

)
√
det(exp(2εB) + λId)

dλ,

D2φ(εB)B2 = d

dε
Dφ(εB)B = −γ

∫ ∞

0

Tr
(
(exp(2εB) + λId)−1 exp(2εB)B

)2
4
√
det(exp(2εB) + λId)

− Tr
(−4(exp(2εB) + λId)−2 exp(4εB)B2 + 4(exp(2εB) + λId)−1 exp(2εB)B2

)

2
√
det(exp(2εB) + λId)

dλ.
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Hence,

Dφ(0)B = 0,

D2φ(0)B2 = −4γ
∫ ∞

0

1

2(1 + λ)
3
2

(
(1 + λ)−2 − (1 + λ)−1) dλTr (B2) = 8

15
γ Tr (B2).

Recalling that γ = 3M2G/(10R), we get

φ(εB) = 2

25

M2G

R
ε2Tr (B2) + O(ε3). (61)

Appendix 2

Love (1944) (chapter XI) studied the relative equilibria of Eq. (20) for an elastic, incom-
pressible, homogeneous, and isotropic body. Love assumed, as we did, that the body angular
velocity was small in such a way that he could linearize the problem around the spherical
shape of equilibrium. Then he used spherical coordinates (r, θ, φ) to write the deformed
surface of the body as r = R + εS, where S = S(θ, φ) and R is the radius of the sphere of
reference. Finally, he supposed εS to be expanded in a series

∑
εn Sn of surface spherical

harmonics and following this expansion he also expanded all other quantities in the prob-
lem: pressure, deformation, and boundary conditions, in spherical harmonics and powers of
r . Equating powers of r he obtained recurrence relations for the coefficients of the spher-
ical harmonics and solved the linear problem. Up to second order spherical harmonics the
parametrization for the deformed surface becomes

r = R

(
1 − 2

3
ε

(
3

2
cos2 θ − 1

2

))
, (62)

where ε is the flattening of the body up to first order in ε. The deformation u of the body
(here we follow the notation of Love and writes u(x) for what we had previously written as
u(x) − x) up to the second order, is

u(x1, x2, x3) = −A2r
2∇ p2 − B2 p2r − ∇φ2

where p2, φ2 are spherical solid harmonics:

p2 = 2

3

( r

R

)2 (3

2
cos2 θ − 1

2

)
= 1

3R2

(
2x23 − x21 − x22

)

and φ2 is proportional to p2 (we are following Love’s notation). The equations of motion,
boundary conditions and div u = 0 imply (Love (1944), chapterXI, paragraph 177, equations
(22) to (28)) A2 = −5B2/4 and 2φ2 = −R2(B2 + 4A2)p2 . So,

u = − B2

6R2

(
3x31 + 3x1x

2
2 + 9x1x

2
3 − 8R2x1, 3x

3
2 + 3x2x

2
1 + 9x2x

2
3 − 8R2x2,

−6x33 − 12x3x
2
1 − 12x3x

2
2 + 16R2x3

)
.

Using the definition of flattening in Eq. (2), Eq. (62), and that the surface of the deformed
body is also given by x + u(x) with ‖x‖ = R we get a relation between the flattening ε

and the coefficient B2: ε = 5B2/(2(1 + 5B2/6)) ≈ 5B2/2. Now, using the elastic energy
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formula (21) and the elastic strain tensor in Eq. (23) we obtain that the elastic energy of
Love’s deformation as a function of ε is:

ELove = μ

∫

B
Tr (Du2)(x)dx =

(
4πR3

3

)(
2 · 19
3 · 25μ

)
ε2 = kLove

2
ε2. (63)

In our approach, the deformation of the body is a priori imposed as eεBx − x ≈ εBx
where ε is the flattening of the ellipsoid up to first order in ε, and

B = 1

3

⎛
⎝
1 0 0
0 1 0
0 0 −2

⎞
⎠ .

The elastic energy associated to this deformation is

E = μ

∫

B
Tr ((εB)2)dx =

(
4πR3

3

)(
2

3
μ

)
ε2 = k

2
ε2. (64)

So, the elastic rigidity with respect to ellipticity ε-deformations found by Love and ours have
a ratio kLove/k = 19/25. This is exactly the ratio between the elastic contribution to the Love
numbers of eachmodel as it should be. Notice that Love solves the Euler–Lagrange equations
associated to the elastic energy functional up to first order in ε. Indeed he is minimizing this
energy functional under the boundary conditions of linear elasticity. Our deformation neither
satisfies the elastic boundary conditions nor minimizes the elastic functional energy. So, our a
priori imposed deformation overestimates both the elastic energy and the stress while Love’s
deformation gives the correct value up to order ε. Since both models lead to a deformed
surface represented by the same ellipsoid up to first order in ε, the gravitational energy of
both models coincide.

Appendix 3

In Appendix 2 we presented a quantitative comparison between our results and some of those
obtained by Love for the equilibrium of a rotating elastic body. The computations of Love are
involved which makes the comparison not easy. In this appendix we use a simple example to
explain the qualitative difference between our approach and that by Love.

Consider a homogeneous rod of natural length �, elastic modulus λ, and linear density
ρ rotating with constant angular velocity ω around its center point. Let s ∈ [−�/2, �/2]
be a point in the undeformed rod and p(s) be the position of this point after deformation
(Lagrangian description). If u(s) = p(s) − s denotes the deformation of the point originally
at s then the equilibrium equation is:

− λu′′(s) = ρω2s, u′(−�/2) = u′(�/2) = 0 (65)

This equation is analogous to the equation solved by Love in the sense that both are lin-
ear equations that were obtained under the assumption of small deformations and linear
constitutive relations. The solution to problem (65) is:

u′(s) = −cs2

2
+ c�2

8
, u(s) = −cs3

6
+ c�2s

8
, where c = ρω2

λ

Since the problem treated by Love is three-dimensional, he was not able to obtain a simple
solution as this one. He obtained a solution in the form of an infinite series in powers of a
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scalar parameter ε that essentially measures the flattening of the deformed body. His solution
satisfies the boundary conditions accordingly. Notice that the solution to equation (65), which
is linear, is a nonlinear function (a cubic polynomial). The same happens for the solution
found by Love. Now, the solution to problem (65) is the critical point of the functional

u → E(u) =
∫ �/2

−�/2

[
λ

2
u′2 − ρω2su

]
ds, with u′(−�/2) = u′(�/2) = 0 (66)

The first term in E

Ee(u) =
∫ �/2

−�/2

λ

2
u′2ds

is the elastic energy of the rod. The second term

Ec(u) = −
∫ �/2

−�/2
ρω2suds

is the centrifugal energy of the rod in the following sense. The energy spent to move a point
particle of mass m from the origin to a point s in the centrifugal field ω2s is −mω2s2/2.
So the centrifugal energy of the rod after deformation minus the centrifugal energy before
deformation is

−
∫ �/2

−�/2
ρ

ω2

2
[s + u]︸ ︷︷ ︸
=p(s)

2ds +
∫ �/2

−�/2
ρ

ω2s2

2
ds = −

∫ �/2

−�/2
ρω2suds −

∫ �/2

−�/2
ρ

ω2

2
u2ds

that is equal to Ec(u) except for the negligible term which is quadratic in u. It is important to
say that we are disregarding variations of density after the deformation of the rod. This can
be done when the elastic constant is large compared to the centripetal force, namely, if

ρω2�2

λ
	 1

The length of the deformed rod minus its natural length is

δ = 2p(�/2) − � = 2u(�/2) = 2

(
�

2
+ c�3

24

)
− � = c�3

12
(67)

The elastic energy stored in the rod is

Ee =
∫ �/2

−�/2

λ

2
u′2ds = 1

240
λ�5c2 = 1

2

144

120

λ

�
δ2 (68)

The centrifugal energy of the rod is

Ec(u) = −
∫ �/2

−�/2
ρω2suds = −ρω2�5c

120
= −ρω2�2

10
δ (69)

The length of the rod as a function of ω2 is given by the critical point of the total energy of
the rod as a function of δ:

0 = d

dδ
E = d

dδ

{
1

2

144

120

λ

�
δ2 − ρω2�2

10
δ

}
�⇒ δ = ρ�3

12λ
ω2

that gives exactly the value in Eq. (67), as expected.
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Our approach to problem (65) is the following. We a priori assume that the deformation
is linear, u(s) = bs, where b is a free parameter (Love obtains a nonlinear deformation as
a solution of a linear equation and we propose a linear deformation as an “approximation”
to the real solution). The linear deformation neither solves the equation nor the boundary
conditions of problem (65). In order to determine b we use the variational characterization
(66) of problem (65) to obtain the function:

b →
∫ �/2

−�/2

[
λ

2
b2 − ρω2s2b

]
ds = λb2�

2
− ρω2�3b

12
.

The critical point of this function is

b = ρω2�2

12λ
= c�2

12

In this case the length of the deformed rod minus its natural length is

δ = 2p(�/2) − � = 2u(�/2) = b� = c�3

12
, (70)

the elastic energy stored in the rod is

Ee =
∫ �/2

−�/2

λ

2
u′2ds = λb2�

2
= 1

2

λ

�
δ2

and the centrifugal energy of the rod is

Ec(u) = −
∫ �/2

−�/2
ρω2suds = −ρω2�3b

12
= −ρω2�2

12
δ

As above, the length of the rod as a function of ω2 is given by the critical point of the total
energy of the rod as a function of δ:

0 = d

dδ
E = d

dδ

{
1

2

λ

�
δ2 − ρω2�2

12
δ

}
�⇒ δ = ρ�3

12λ
ω2

that gives exactly the value in Eq. (70), as expected, and also the same value in Eq. (67),
as not expected. Therefore in this case the approximated method, which is similar to that
used in the paper, gives exactly the same rigidity with respect to variations of ω2 as the exact
solution. In general this does not happen. For instance, the elastic rigidity we obtain in our
paper is close to (but different from) that obtained by Love with a rigorous analysis.
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