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Abstract We consider the Clairaut theory of the equilibrium ellipsoidal figures for differen-
tiated nonhomogeneous bodies in nonsynchronous rotation (Tisserand, Mécanique Céleste,
t.II, Chaps. 13 and 14) adding to it a tidal deformation due to the presence of an external
gravitational force. We assume that the body is a fluid formed by n homogeneous layers of
ellipsoidal shape and we calculate the external polar flattenings εk, μk and the mean radius
Rk of each layer or, equivalently, their semiaxes ak , bk , and ck . To first order in the flattenings,
the general solution can be written as εk = Hkεh and μk = Hkμh , where Hk is a charac-
teristic coefficient for each layer that depends only on the internal structure of the body and
εh and μh are the flattenings of the equivalent homogeneous problem. For the continuous
case, we study the Clairaut differential equation for the flattening profile using the Radau
transformation to find the boundary conditions when the tidal potential is added. Finally,
the theory is applied to several examples: (i) a body composed of two homogeneous layers,
(ii) bodies with simple polynomial density distribution laws, and (iii) bodies following a
polytropic pressure-density law.

Keywords Polar flattenings · Tidal potential · Rotation · Differentiated bodies ·
Clairaut equation · Ellipsoidal figure of equilibrium · Exoplanets · Polytropes
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1 Introduction

Several theories of tidal evolution, since the theory developed by Darwin appeared in the
nineteenth century (Darwin 1880), are based on the figure of equilibrium of an inviscid
tidally deformed body (e.g., Ferraz-Mello et al. 2008; Ferraz-Mello 2013). The addition
of viscosity to the model is made at a later stage, but the way it is introduced is not
unique and can vary when different tidal theories are considered. Frequently, the adopted
figure is a Jeans prolate spheroid or, if the rotation is important, a Roche triaxial ellip-
soid (Chandrasekhar 1969). It is worth recalling that ellipsoidal figures are excellent first
approximations but not exact figures of equilibrium (Poincaré 1902; Lyapounov 1925,
1927). In addition, Maclaurin, Jacobi, Roche, and Jeans ellipsoids are valid only for homo-
geneous bodies. Real celestial objects, however, are quite far from being homogeneous.
This causes significant deviations which need to be taken into account in astronomical
applications.

The nonhomogeneous problem, when one considers only deformation by rotation, has
been extensively studied. The problem of one body formed by n rotating homogeneous
spheroidal layers as well as its extension to the continuous case was studied by Clairaut
(1743) [revisited by Tisserand (1891) and Wavre (1932)]. Their works were based on the
hypotheses of small deformations (linear theory for the polar flattenings) and constant angular
velocity inside a body. The general case of homogeneous layers rotating at different angular
velocities (nonlinear theory) was studied byMontalvo et al. (1983) and Esteban and Vazquez
(2001) [see Borisov et al. (2009) for a detailed review] and was generalized to the continuous
inviscid case by Bizyaev et al. (2015).

The case of uniformly rotating layers has been studied by several authors. Kong et al.
(2010) discussed the particular case of a body formed by two homogeneous layers with the
same angular velocity. Hubbard (2013), with a recursive numerical form of the potential of
an N-layer rotating planet in hydrostatic equilibrium, showed a solution for the spheroidal
shapes of the interfaces of the layers.

Regarding cases where the tidal forces acting on a body are taken into account along with
the rotation, the literature ismuch less extensive.Usually a spin-orbit synchronism is assumed,
so that a rotating-body solution can be used (e.g., Van Hoolst et al. 2008). Tricarico (2014),
assuming synchronism, found a recursive analytic solution for the shape of a body formed
by an arbitrary number of layers. For this, he developed the potentials of homogeneous ellip-
soids in terms of the polar and equatorial shape eccentricities. However, the results do not
include tidally deformed bodies whose rotation is nonsynchronous, such as, for instance,
the Earth, solar-type stars hosting close-in planets, and hot Jupiters in highly eccentric
orbits.

In this work, we generalize the linear Clairaut theory, adding a tidal potential due
to the presence of an external body, without the synchronism hypothesis. The paper is
organized as follows. In Sect. 2, we present the 2n classical equations of equilibrium.
The resolution of the system of equilibrium equations is shown in Sect. 3. In Sect. 4,
we study Clairaut’s equation for the continuous problem and its solution. In Sect. 5,
we calculate the potential at a point in space due to the deformed body and calcu-
late a generalized Love number for differentiated nonhomogeneous bodies. In Sect. 6, we
apply the theory to a body composed of two homogeneous layers, while bodies with
continuous density laws are studied in Sect. 7. Finally, in the Sect. 8, we present our
conclusions.
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Fig. 1 Body of mass mT
composed of n homogeneous
layers of density ρk and mean
radius Rk rotating at angular
velocity � = Ω ẑ and a point
mass M orbiting at a distance r
from its center in a plane
perpendicular to the rotation axis

2 Equilibrium equation of a fluid in rotation

We consider a rotating inviscid fluid of mass mT and a mass point M orbiting at a distance
r from the center of the primary in a plane perpendicular to the rotation axis. We assume
that the fluid is composed of n homogeneous layers of density ρk (k = 1, . . . , n) and that
each layer has an ellipsoidal shape with external semiaxes ak , bk , and ck along the coordinate
axes, and angular velocity �. We define the mean radius of each layer as Rk = 3

√
akbkck .

We choose a reference system such that r = r x̂ and � = Ω ẑ, where x̂ and ẑ are unit vectors
along the x and z axes (Fig. 1).

Now, if we consider one point on the surface of the �th layer, with position vector x� =
ξ� x̂+η� ŷ+ζ� ẑ and the velocity v� = �×x�, we can use the same equation used in the study
of equilibrium ellipsoids (see Tisserand 1891, Chaps. 8 and 13; Jeans 1929, Sect. 215–216;
Jardetzky 1958; Chandrasekhar 1969), which expresses the fact that the total force acting on
a point of its surface must be perpendicular to the surface,

∇�Φ� ∝ ∇�VG + � × (� × x�), (1)

where

Φ�(ξ�, η�, ζ�) = ξ2�

a2�
+ η2�

b2�
+ ζ 2

�

c2�
− 1 = 0 (2)

is the equation of the surface of the ellipsoid, VG is the potential of the gravitational forces
at x�, and the last term corresponds to the centripetal acceleration. The use of the preceding
equilibrium equation in a case where the tidal force field is changing because of the external
body needs a justification. Equation (1) means that no change in the shape of the body occurs
because of internal forces; the shape will change, but only because of the relative change in
the position of the external body.

Hence, we obtain the equilibrium equations

Ω2 = 1

ξ�

∂VG
∂ξ�

− α�

ζ�

∂VG
∂ζ�

,

Ω2 = 1

η�

∂VG
∂η�

− β�

ζ�

∂VG
∂ζ�

, (3)

where

α� = c2�
a2�

< 1, β� = c2�
b2�

< 1. (4)
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186 H. A. Folonier et al.

The problem of finding the equilibrium figure (i.e., the values of the semiaxes ak , bk , and
ck) is equivalent to finding the 2n external polar flattenings

εk = ak − ck
ak

≈ 1 − αk

2
,

μk = bk − ck
bk

≈ 1 − βk

2
(5)

for each layer. For this, we will use the 2n equilibrium equations (3).
The gravitational potential can be written as the sum of the potential due to the mass M

and the sum of the potentials of each layer. It can also be written as the sum of the potentials
of n superposed homogeneous ellipsoids, with semiaxes ak , bk , and ck and densities

σk = ρk − ρk+1, (6)

with ρn+1 = 0. The mass of each partial ellipsoid is

mk = 4π

3
σk R

3
k . (7)

If we call Vk the potential of each ellipsoid, the total potential is

VG = Vtid +
n∑

k=1

Vk . (8)

As the equilibrium equations (3) are linear in V , we can write

Ω2 = χ
(i)
� (Vtid) +

n∑

k=1

χ
(i)
� (Vk), (9)

where χ
(1)
� and χ

(2)
� are the operators

χ
(1)
� = 1

ξ�

∂

∂ξ�

− α�

ζ�

∂

∂ζ�

,

χ
(2)
� = 1

η�

∂

∂η�

− β�

ζ�

∂

∂ζ�

. (10)

3 Flattenings of the layers

The next step is to calculate the contribution of each potential to the equilibrium equations
(9). If we consider the contributions to the potentials due to the inner and outer layers on the
�th layer, we obtain the equations

Ω2 =−3GM

r3
+

�−1∑

k=1

Gmk

R3
�

[
2ε� − 6εk

5

(
Rk

R�

)2
]

+Gm�

R3
�

4ε�

5
+

n∑

k=�+1

Gmk

R3
k

[
2ε� − 6εk

5

]
,

Ω2 =
�−1∑

k=1

Gmk

R3
�

[
2μ� − 6μk

5

(
Rk

R�

)2
]

+Gm�

R3
�

4μ�

5
+

n∑

k=�+1

Gmk

R3
k

[
2μ� − 6μk

5

]
(11)
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(see Appendix A in the online supplement), which can be solved with respect to the �th-layer
flattenings, giving

γ�ε� = (εJ + εM )

(
R�

Rn

)3

+
�−1∑

k=1

α�kεk +
n∑

k=�+1

β�kεk,

γ�μ� = εM

(
R�

Rn

)3

+
�−1∑

k=1

α�kμk +
n∑

k=�+1

β�kμk, (12)

where εM and εJ are the flattenings of the equivalent Maclaurin and Jeans homogeneous
spheroids:

εM = 5R3
nΩ

2

4mTG
, εJ = 15MR3

n

4mT r3
, (13)

where mT is the mass of the body.
These flattenings are obtained as solutions of the rotational and tidal problem, respectively,

when the deformed body is a homogeneous spheroid with the samemassmT andmean radius
Rn as the considered body (see online Appendix B). The coefficients α�k , β�k , and γ� are

α�k = 3mk

2mT

(
Rk

R�

)2

,

β�k = 3mk

2mT

(
R�

Rk

)3

,

γ� = 1 + 3(mT − m�)

2mT
−

n∑

k=�+1

5mk

2mT

(R3
k − R3

� )

R3
k

. (14)

If we divide the equations for ε� by εJ + εM and divide the equations for μ� by εM , we
obtain the same equation for the two polar flattenings:

γ�H� =
(
R�

Rn

)3

+
�−1∑

k=1

α�kHk +
n∑

k=�+1

β�kHk, (15)

where
H j

def= ε j

εJ + εM
= μ j

εM
( j = 1, . . . , n). (16)

It is worth emphasizing that these equations naturally associate the flattening of the homo-
geneousMaclaurin spheroidwith the polar flatteningsμk calculated using theminor semiaxis
of the tidally deformed equator. This is so because the tide also acts to shorten the polar axis.
While the εk flattenings increase because of the tide, the μk flattenings remain the same as in
the absence of the tide. Therefore, the tide increases the mean polar flattening of the layers.
The three axes of the layer are a j = R j [1+H j (εM +2εJ )/3], b j = R j [1+H j (εM −εJ )/3],
and c j = R j [1 + H j (−2εM − εJ )/3].

It is important to note that in the case of a synchronous satellite, when the approximation
εJ � 3εM is adopted1, the system (12) is equivalent to that found by Tricarico (2014), where
the square of the polar and equatorial “eccentricities” used there are related to the polar
flattenings through e2pi ≈ 2εi and e2qi ≈ 2εi − 2μi .

1 The exact relation is εJ = 3εM
a3

r3
M

M+mT
. The approximation is valid only if the mass of the deformed

body and the orbital eccentricity are small, that is r � a and mT << M .
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The calculations done are valid only for small flattenings, i.e., they assume that the per-
turbation due to the tide and the rotation are small enough so as not to deform the body too
much (in the second order, the figure ceases to be an ellipsoid).

4 Extension to the continuous case

To extend this approach to the continuous case (following Tisserand 1891, Chap. 142), we
assume that the number of layers tends to infinity, so that the increments �Rk = Rk − Rk−1

are infinitesimal quantities. When �Rk → 0, Eq. (15) becomes

5x2

3
f (x)H(x) = 2 fn

3
x5 +

∫ z=x

z=0
ρ̂(z)d(z5H(z)) + x5

∫ z=1

z=x
ρ̂(z)dH(z), (17)

where x = R/Rn is the normalized mean radius [x(0) = 0 in the center and x(Rn) = 1
on the surface], ρ̂(x) = ρ(R)/ρ0 is the normalized density [ρ0 is the density in the center;
therefore, ρ̂(0) = 1], and the function f (x) is

f (x) = 3
∫ x

0
ρ̂(z)z2dz, (18)

with f (0) = 0 and f (1) = fn .
Deriving (17) with respect to x , we have

2 f (x)

3x3
H(x) + f (x)

3x2
H′(x) = 2 fn

3
+

∫ z=1

z=x
ρ̂(z)dH(z), (19)

and deriving once more we obtain the differential equation for the flattening profile

H′′(x) + 6ρ̂(x)x2

f (x)
H′(x) +

(
6ρ̂(x)x

f (x)
− 6

x2

)
H(x) = 0. (20)

This is a homogeneous linear differential equation of second order with nonconstant
coefficients, and it turns out to be the same for both flattenings. It is the same expression
found by Clairaut (Jeffreys 1953).

Equation (17) allows us to calculate easily the limitsHn that the proportionality parameter
H can take at the surface. In the homogeneous case ρ̂(x) = 1, the integrals can be calculated
trivially. At the surface x = 1, we obtainHn = 1. In the nonhomogeneous case, if the density

is a nonincreasing function (dρ̂

dx � 0), then we have, at the surface,

Hn = 2

5
+ 3

5 fn

∫ z=1

z=0
ρ̂(z)d(z5H(z))

= 2

5
+ 3

5 fn

[
ρ̂nHn −

∫ z=1

z=0
z5H(z)dρ̂(z)

]
�

2

5
. (21)

Then, under the assumption of equilibrium, a nonhomogeneous body will have flattenings
on the surface with values between 0.4 and 1 times the values they would have if the body
was homogeneous.

2 See Appendix C in the online supplement for more details.
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4.1 Boundary conditions. Radau transformation

The differential equation (20) requires two boundary conditions to be solved.However, before
attempting to find these boundary conditions, we will show two relationships that will prove
useful later. The first relationship is obtained from Eq. (19), where at x = 1 we have

H′
n = 2(1 − Hn). (22)

The second relationship is obtained from the differential equation (20) by simply multiplying
it by f (x)/x2 and evaluating the resulting equation in the neighborhood of x = 0 [note that
f (x) ∼ x3 + 3(dρ̂/dx)0x4/4 and ρ̂(x) ∼ 1 + (dρ̂/dx)0x]. We get

H′
0 = −dρ̂0

dx

H0

4
, (23)

where dρ̂0
dx is the derivative of the density at x = 0.

In practical applications (Sect. 6), it is convenient to introduce the Radau transformation

η(x) = xH′(x)
H(x)

(24)

and to rewrite Clairaut equation as the Ricatti differential equation

η′ + η2

x
+

[
q(x) + 5

x

]
η + q(x) = 0, (25)

where

q(x)
def= 6

x

(
ρ̂(x)x3

f (x)
− 1

)
. (26)

In the new variables, the boundary condition is

η(x = 0) = 0. (27)

The variable η is sometimes referred to as Radau’s parameter (Bullen 1975). Defining η(x =
1) = ηn and using relationship (22) and transformation (24), the boundary conditions of (20)
are

Hn = 2

2 + ηn
H′

n = 2ηn
2 + ηn

. (28)

As a result of this relationship, if we consider that 0.4 < Hn < 1, we recover the classical
result 0 < ηn < 3 (Tisserand 1891).

Finally, it should be noted that once η(x) is found, we may find the profile flattening from
Eq. (24), whose solution is

H(x) = Hne
∫ x
1 η(z)/z dz . (29)

5 Potential of the tidally deformed body

The contribution of the kth ellipsoid to the potential at an external point x = x x̂ + y ŷ + zẑ
is given by

δV (k)
2 = −Gmk R2

k εk

5r∗3
(
3 cos2 Ψ1 − 1

) − Gmk R2
kμk

5r∗3
(
3 cos2 Ψ2 − 1

)
, (30)

123



190 H. A. Folonier et al.

Fig. 2 Density profile of a body
formed by two homogeneous
layers. ξ is the mean outer radius
of the core relative to the mean
outer radius of the shell R2. λ is
the shell density relative to the
core density ρ1

where r∗ = |x|, and Ψ1 and Ψ2 are the angles between the direction of the point where the
potential is taken and the coordinate axes x and y, respectively.3 The total potential is the
sum of the potentials of all ellipsoids:

V = −GmT

r∗ − 2k f GmT R2
nεh

15r∗3
(
3 cos2 Ψ1 − 1

) − 2k f GmT R2
nμh

15r∗3
(
3 cos2 Ψ2 − 1

)
,

(31)

where εh andμh are the flattenings of the equivalent homogeneous ellipsoid, and the constant
k f is often called the fluid Love number (Munk andMacDonald 1960; Correia and Rodríguez
2013). For a nonhomogeneous body, we find

k f
def= 3

2

∑n
k=1 mk R2

kHk

mT R2
n

(32)

or, using the continuous model,

k f = 3

2 fn

∫ z=1

z=0
ρ̂(z)d(z5H(z)). (33)

Using the integral form of Clairaut’s equation (19) to evaluate the integral, we have

k f = 5

2
Hn − 1, (34)

which shows the link of the fluid Love number to the coefficient Hn . This relationship is
based on the fact that both constants depend solely on the internal structure characterizing
the inhomogeneity of the body. In the homogeneous case, Hn = 1, thereby recovering the
classical result k f = 1.5.

6 Two-layer core–shell model

In this section we consider the simple case of a body composed of two homogeneous layers:
a core with density ρ1 and mean outer radius R1, and a shell with density ρ2 = λρ1 (with
λ < 1) and mean outer radius R2 (Fig. 2). The densities of the superposed ellipsoids are

3 For the details of the calculation of δV k
2 , see Eq. (A.13) in Appendix A (in the online supplement).
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σ1 = ρ1(1 − λ),

σ2 = ρ1λ, (35)

and their masses are

m1 = 4π

3
ρ1R

3
2(1 − λ)ξ3,

m2 = 4π

3
ρ1R

3
2λ, (36)

where ξ = R1/R2. The total mass is

mT = 4π

3
ρ1R

3
2

[
λ + (1 − λ)ξ3

]
. (37)

The polar flattenings are such that

γ1H1 = R3
1

R3
2

+ β12H2,

γ2H2 = 1 + α21H1 (38)

[see Eq. (15)], where the coefficients are given by Eq. (14):

α21 = 3m1

2mT

(
R1

R2

)2

= 3(1 − λ)ξ5

2λ + 2(1 − λ)ξ3
,

β12 = 3m2

2mT

(
R1

R2

)3

= 3λξ3

2λ + 2(1 − λ)ξ3
,

γ1 = 1 + 3(mT − m1)

2mT
− 5m2

2mT

R3
2 − R3

1

R3
2

= (2 + 3λ)ξ3

2λ + 2(1 − λ)ξ3
,

γ2 = 1 + 3(mT − m2)

2mT
= 2λ + 5(1 − λ)ξ3

2λ + 2(1 − λ)ξ3
. (39)

Hence,

H1 =
10

(
λ + (1 − λ)ξ3

)2

(
2 + 3λ

)(
2λ + 5(1 − λ)ξ3

)
− 9λ(1 − λ)ξ5

,

H2 =
2
(
λ + (1 − λ)ξ3

)(
2 + 3λ + 3(1 − λ)ξ5

)

(
2 + 3λ

)(
2λ + 5(1 − λ)ξ3

)
− 9λ(1 − λ)ξ5

. (40)

Figure3 shows the results obtained for the constants H1 and H2. We see that:

– If λ = 1 or ξ = 1, then the constants are H1 = H2 solutions for a homogeneous body.
– When the core is denser than the mantle,H2 � H1, and the flattenings of the nucleus are

smaller than the flattenings of the surface (where ε1 = H1(εJ +εM ) � ε2 = H2(εJ +εM )

and μ1 = H1εM � μ2 = H2εM ).
– SinceH2 � 1, the maximum surface flattening is given by the homogeneous solution. In

the presence of a core, the surface is always less flattened than it is in the homogeneous
case.
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Fig. 3 Possible values ofH1
(core) andH2 (shell) as functions
of the core size ξ and of the
relative density of the shell λ

– While H1 may take all possible values between 0 and 1, H2 is always larger than the
critical limit 0.4, corresponding to the degenerate limit case in which the whole mass
would tend to concentrate in the center and be surrounded by a zero-density shell (case
of Huygens–Roche). Therefore, the flattenings of the outer surface can never be less than
40% of the homogeneous reference values. This is the same result given by Eq. (21) for
the continuous case.

6.1 Fluid Love number

Using Eq. (34), together with the expression forH2 (Eq. 40), the expression of the fluid Love
number k f is

k f =
5
(
λ + (1 − λ)ξ3

)(
2 + 3λ + 3(1 − λ)ξ5

)

(
2 + 3λ

)(
2λ + 5(1 − λ)ξ3

)
− 9λ(1 − λ)ξ5

− 1. (41)

Figure4 shows the possible value of k f as a function of the core size ξ and of the relative
density of the shell λ. If we obtain k f , for example by determiningHn by direct observation
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Fig. 4 Possible values of k f as
functions of the core size ξ and of
the relative density of the shell λ

of the surface flattenings, then Eq. (41) defines a continuous curve of possible values for
the size of the nucleus ξ and the relative density of the shell λ under the hypothesis of two
homogeneous layers. Moreover, as can be seen in this figure, a maximum value for these
physical parameters can be predicted.

7 Application to different density distribution laws

In this section, we present some applications of the theory developed in this paper to bodies
with continuous density distributions. For this we use two examples of density distributions:
polynomial and polytropic density laws.

In both cases, Clairaut’s equation is solved numerically after introduction of the variable
defined by Eq. (24). The flattening profile H(x) and the Love number are then obtained
through the inverse transformation.

7.1 Polynomial density functions

We consider initially a simple polynomial density law:

ρ̂(x) = 1 − xα, (42)

whereα > 0. Figure5a shows the density functions forα = 0.1, 1, 2, 10, and100 as functions
of the normalized mean radius x .

The resulting flattening profiles H(x) are shown in Fig. 5b. In all cases, the flattening
profile H(x) is an increasing monotonic function, and for all x the values of H(x) increase
when the power α increases.

Note that, as discussed in Sect. 3, the value ofHn is always greater than the limit value 0.4
and less than 1. In particular, Hn tends to 0.570 when α tends to 0 and Hn tends to 1 when
α tends to ∞ (homogeneous case). The fluid Love number increases from 0.424 (when α

tends to 0) to 1.5 (when α tends to ∞). These results can be seen in Fig. 6, where we also
show the values of the flattening factor Hn at the surface and the dimensionless moment of
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194 H. A. Folonier et al.

Fig. 5 a Density profiles for
polynomial density distributions
with different values of α.
b Flattening profile H(x) for the
same density laws. α = 0.1
(black), α = 1 (red), α = 2
(green), α = 10 (blue), and
α = 100 (magenta)

Fig. 6 Values ofHn (black), k f
(red), and C/mT R2

n (blue) for
different values of the exponent
of the polynomial density law

inertia C/mT R2
n . This last parameter increases from 0.24 (when α tends to 0) to 0.4 (when

α tends to ∞).4

4 An elementary calculation allows one to find the relationship C
mT R2

≈ 2
3

∫ 1
0 ρ̂z4dz

∫ 1
0 ρ̂z2dz

= 2
5 × 3+α

5+α
.
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7.2 Polytropic pressure–density laws

We may consider a self-gravitating body in hydrostatic equilibrium with a more general
polytropic pressure–density law:

P = Kρ1+ 1
n , (43)

where P is the pressure, n is the polytropic index, and K is constant. The differential equation
for the density is then given by the Lane–Emden equation (Chandrasekhar 1939)

1

ξ2

d

dξ

(
x2

dθ

dξ

)
+ θn = 0, (44)

where ρ̂ = θn and R = αξ , with α2 = (n + 1)Kρ
1
n −1
0 /4πG. The standard boundary

conditions are θ(0) = 1 and θ ′(0) = 0. If 0 ≤ n < 5, then the solution θ(ξ) decreases
monotonically and has a zero at a finite value ξ = ξ1. This radius corresponds to the surface
of the body where P = ρ = 0.

It is worth mentioning that several real cases exist that correspond to polytropes. For
example, when convection is established in the interior of a star, the resulting configuration
is a polytrope; when the gas is degenerate, the corresponding equations of state have the
same form as the polytropic equation of state, and so forth (Collins 1989). We also mention
recent results by Leconte et al. (2011) showing that the density profile of hot Jupiters is well
approximated by a polytrope.

Figure 7a shows the density functions for n = 0.5, 1.0, 1.5, 3.0, and 4.5 as functions of
the normalized mean radius x = R/αξ1 obtained from the integration of the Lane–Emden
equation.

The resulting flattening profiles H(x) are shown in Fig. 7b. In all cases, the flattening
profile H(x) is an increasing monotonic function, and for all x the values of H(x) decrease
when the polytropic index n increases.

As mentioned previously, the value of Hn is always greater than the limit value 0.4. In
particular, Hn → 0.4 when n → 5. The fluid Love number decreases from 1.5 for n = 0
(constant density) to 0 when n tends to the limit n = 5. These results can be seen in Fig. 8,
where we also show the values of the flattening factorHn and the dimensionless moment of
inertia C/mT R2

n for values of n below the limit n = 5. The adimensional moment of inertia
decreases from 0.4 (when n = 0) and tends to 0 when n → 5.

8 Conclusions

In this paper, we extended the classical results on nonhomogeneous rotating figures of equi-
librium to the case in which a body is also under the action of a tidal potential owing to the
presence of an external body, without the restrictive hypothesis of spin-orbit synchronization.
The only assumptions in this paper are that the body is formed by n homogeneous ellipsoidal
layers in equilibrium and that there are small enough tidal and rotational deformations with
symmetry axes perpendicular to each other (remember that, in the second order, the figure
ceases to be an ellipsoid). We calculated the 2n equilibrium equations for small flattenings
and found that the two polar flattenings εk and μk were linearly related, both being propor-
tional to the homogeneous reference values with a factor of proportionality Hk that is the
same in both cases. The deformations propagate toward the interior of the body in the same
way, depending, in the first approximation, only on the density profile, not on the origin of
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Fig. 7 a Density profiles for
different values of the polytropic
index. b Flattening profile H(x)
for these density laws. n = 0.5
(black), n = 1 (red), n = 1.5
(green), n = 3 (blue), and
n = 4.5 (magenta)

Fig. 8 Values ofHn (black), k f
(red), and C/mT R2

n (blue) for
different polytropic indices n < 5

the two considered deformations. Then the problem of finding the 2n flattenings corresponds
to finding the n coefficients Hk with n equilibrium equations. An important consequence of
this approach is that the flattening profile Hk is the same regardless of whether the rotation
of the body is synchronous or nonsynchronous, and the results forHk are equivalent to those
found by Tricarico (2014).

We also studied the continuous case as the limit for a very large number of layers of
infinitesimal thickness, which leads to Clairaut’s differential equation for the functionH(x)
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(i.e., the same equation for both flattenings). This result was expected because the coefficients
of the Clairaut equation only depend on the internal distribution of matter ρ(x). Therefore,
the differential equation that generates the functional form of the profile flattening H(x)
does not change when we change the nature of the deformation, provided that it is small.
For densities decreasing monotonically with the radius, we found that, at the surface, Hn

takes values larger than 0.4 [see Eq. (21)] and takes the limit value 1 in the homogeneous
case. This means that the surface flattenings of a differentiated body are always smaller than
the flattenings of the corresponding homogeneous ellipsoids but always larger than 40% of
them.

The results were applied to several examples. In the case of a body composed of two
homogeneous layers, the following results were obtained:

– In a realistic case where the core is denser than the shell, the flattening of the nucleus is
smaller than the flattening of the surface. This is a result classically known to Tisserand
(1891) and discussed in recent papers by Zharkov and Trubitsyn (1978), Hubbard (2013),
and Tricarico (2014).

– In the presence of a core, the surface is always less flattened than the homogeneous
reference flattening but larger than 40% of the latter value.

– The fluid Love number k f < 1.5 defines a continuous curve of possible values for the
size of the nucleus ξ and the relative density of the shell λ and predicts their maximum
value.

Finally, we studied bodies with different continuous density laws, first for some simple
polynomial functions and then for polytropic profiles. The following results were obtained:

– In all cases, the function H(x) is an increasing monotonic function.
– For all x , the values of H(x) increase from 0.530 to 1 when the power α increases from

0 to ∞, in contrast to the polytropic densities, where the values of H(x) decrease from
1 to 0.4 when the polytropic index n increases from 0 to the limit case n = 5.

– The fluid Love number k f varies between 0.326 and 1.5 in the same range of the power
α for polynomial densities. For the polytropic laws, the fluid Love number k f varies
between 1.5 and 0 when the polytropic index n increases.

– For polynomial laws, the values of C/mT R2 increase from 0.24 to 0.4 when the power
α increases, and for the polytropic laws, the values of C/mT R2 decreases from 0.4 to 0
when the polytropic index n increases.
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