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Abstract We present a method for explicit leapfrog integration of inseparable Hamiltonian
systems by means of an extended phase space. A suitably defined new Hamiltonian on
the extended phase space leads to equations of motion that can be numerically integrated
by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with
coordinate mixing transformations, the resulting algorithm shows good long term stability and
error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate
optimal methods of projecting the extended phase space back to original dimension. Finally,
we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-
Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the
methods to a general purpose differential equation solver LSODE, and the implicit midpoint
method, a symplectic one-step method. We find the extended phase space methods to compare
favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the
case of the non-linear oscillator.

Keywords Hamiltonian systems · Non-Hamiltonian systems · Leapfrog integration ·
Extended phase space methods · Partitioned Runge-Kutta · Geodesic equation · Van der Pol
oscillator

1 Introduction

Second order leapfrog or splitting methods are a class of widely used time-symmetric, explicit
and symplectic integration algorithms for Hamiltonian systems. These characteristics make
them a standard tool for very long integrations, as they preserve the phase space structure
and first integrals of the system. Being time-symmetric, second order leapfrog algorithms
have an error expansion that only contains even powers of the timestep. This fact makes
them convenient for use within extrapolation schemes, such as the Gragg–Bulirsch–Stoer
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212 P. Pihajoki

(GBS) method (Gragg 1965; Bulirsch and Stoer 1966), which are often used when very high
accuracy is required (Deuflhard and Bornemann 2002).

The main problem with leapfrog methods is the fact that they can only be constructed for
systems where the Hamiltonian separates into two or more parts, where the flow of each part
can be separately integrated (McLachlan and Quispel 2002). A solution to this problem for
partitioned systems of the type

ẋ = v

v̇ = f(x, v) (1)

was presented in Hellström and Mikkola (2010). By means of auxiliary velocity coordinates,
the equations of motion were transformed into a separable form and thus amenable for
integration with a leapfrog method. The method, called auxiliary velocity algorithm (AVA),
can also be used for nonconservative systems as well.

In this paper we propose an improved extension of the AVA method, applicable for Hamil-
tonian and non-Hamiltonian cases where all equations of motion depend on both coordinates
and momenta in general. We first briefly introduce leapfrog integration methods, and outline
their properties. Next, we demonstrate how the phase space of general Hamiltonian sys-
tems can be extended and a new Hamiltonian constructed so that the equations of motion
are brought into a separated form. We then construct symmetric leapfrog integrators for the
equations. These include maps that mix the extended phase space, which we find to be a
requirement for good long term behaviour. Finally, we investigate how the extended phase
space can be projected back to the original number of dimensions so that extra accuracy can
be gained in the process. We then show how the same principle can be applied to noncon-
servative systems as well. We apply the obtained leapfrog methods to illustrative example
cases: Hamiltonian geodesic flow, and a forced van der Pol oscillator.

2 Leapfrog integration

In many applications to classical physics, such as gravitational interaction of point masses,
the Hamiltonian function H : R

n × R
n → R of the system can be separated into two parts

H(q,p) = T (p)+ V (q), (2)

where T : R
n → R is the kinetic energy, and V : R

n → R is the potential energy. In these
cases, the Hamiltonian equations of motion read

q̇ = ∇p H(q,p) = ∇pT (p) (3)

ṗ = −∇q H(q,p) = −∇qV (q), (4)

where ∇x = (∂/∂x1, . . . , ∂/∂xn). The equations for coordinates can then be directly inte-
grated, if the momenta are kept constant, and vice versa. The solutions can be combined in
a time-symmetric manner to obtain the two forms of the archetypal second order leapfrog,
also known as the Störmer–Verlet method, or Strang splitting (Strang 1968):

qn+ 1
2

= qn + h

2
∇pT (pn) (5a)

pn+1 = pn − h∇qV (qn+ 1
2
) (5b)

qn+1 = qn+ 1
2

+ h

2
∇pT (pn+1) (5c)
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and

pn+ 1
2

= pn − h

2
∇qV (qn) (6a)

qn+1 = qn + h∇pT (pn+ 1
2
) (6b)

pn+1 = pn+ 1
2

− h

2
∇qV (qn+1), (6c)

where qn = q(nh), pn = p(nh), n ∈ Z and h ∈ R is the timestep.
Equations (5) and (6) can also be written as

zn+1 =
(
ϕ

XT
h/2 ◦ ϕXV

h ◦ ϕXT
h/2

)
(zn)

= exp

(
h

2
T

)
exp (hV ) exp

(
h

2
T

)
zn

(7)

and
zn+1 =

(
ϕ

XV
h/2 ◦ ϕXT

h ◦ ϕXV
h/2

)
(zn)

= exp

(
h

2
V

)
exp (hT ) exp

(
h

2
V

)
zn,

(8)

where z = (q,p), XT = J−1∇T and XV = J−1∇V are the Hamiltonian vector fields of T
and V, ϕX

t : R
2n → R

2n is the phase space flow along the vector field X ,

J =
(

0 −In

In 0

)
, (9)

is the symplectic form given in local coordinates, In is the n × n identity matrix and exp :
g → G is the exponential mapping from a Lie algebra g to the corresponding Lie group. Here
the Lie algebra is the algebra of smooth, real-valued functions on the phase space, with the
Lie product given by the Poisson brackets { f, g} = ∇gJ(∇ f )T . The group action (written
multiplicatively in Eqs. (7) and (8)) on the phase space manifold of the corresponding Lie
group is the phase space flow of the associated vector field.

Now, a reverse application of the Baker–Campbell–Hausdorff (BCH) formula on equation
(7) yields

exp

(
h

2
T

)
exp (hV ) exp

(
h

2
T

)

= exp

[
h(T + V )+ h3

(
− 1

24
{{V, T }, T } + 1

12
{{T, V }, V }

)
+ O(h4)

]

= exp(h Ĥ),

(10)

where then

Ĥ = T + V + h2
(

− 1

24
{{V, T }, T } + 1

12
{{T, V }, V }

)
+ O(h3), (11)

and similarly for (8) with T ↔ V . Equations (7)–(11) are of interest for a number of reasons.
First, the flows of Hamiltonian vector fields X f are symplectic transformations for smooth
functions f (Hairer et al. 2006), and thus preserve the geometric structure of the phase space,
and all first integrals. Since T and V are smooth, the leapfrog method has these properties
as well. Equation (11) shows on the other hand that leapfrog integrators exactly solve a
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Hamiltonian problem that is asymptotically related to the original one, with a perturbed
Hamiltonian Ĥ .

Another desirable property of the second order leapfrogs is (relatively) easy composition
of the basic second order method to yield methods of higher order (Yoshida 1990). If ϕh is
the numerical flow of a time-symmetric second order leapfrog, then

ϕ̃h = ϕγs h ◦ ϕγs−1h ◦ · · · ◦ ϕγ1h, (12)

can be shown to be a method of higher order for certain choices of s and γi ∈ R, with
γs+1−i = γi for time-symmetric methods such as the second order leapfrog (Hairer et al.
2006). One particular example is the sixth order composition

γ1 = γ9 = 0.39216144400731413928

γ2 = γ8 = 0.33259913678935943860

γ3 = γ7 = −0.70624617255763935981

γ4 = γ6 = 0.082213596293550800230

γ5 = 0.79854399093482996340,

(13)

from Kahan and Li (1997) (composition s9odr6a in the paper), which we will use in
Sect. 5.2. The second order leapfrog is also useful when used within an extrapolation scheme,
such as the GBS scheme (Mikkola and Aarseth 2002; Hellström and Mikkola 2010). Using an
extrapolation scheme does in principle destroy the desirable properties of the leapfrog, since
the substeps require a change in timestep which destroys symplecticity, and the final linear
combination of the symplectic maps is also not symplectic in general. In practice, the increase
in accuracy per computational work spent often offsets this. For a comprehensive review
of splitting methods in contexts not limited to Hamiltonian ordinary differential equations
(ODEs), see McLachlan and Quispel (2002), for geometric integration methods in general,
see Hairer et al. (2006), and for extrapolation and other conventional methods for general
ODEs, see Deuflhard and Bornemann (2002).

3 A splitting method for an extended inseparable Hamiltonian problem

In the general case, the Hamiltonian H(q,p) does not separate into additive parts, and the
approach of the previous section cannot be used. We can partially circumvent this problem
in the following manner. We first extend the phase space S (essentially R

2n , when always
operating in local coordinates) by joining it with another identical copy, giving an extended
phase space S2 = S × S. In local coordinates (q, q̃,p, p̃), the symplectic form JS2 on this
phase space is

JS2 =
(

0 −I2n

I2n 0

)
= JS ⊗ I2, (14)

where JS is the symplectic form on S and ⊗ is the Kronecker product. We then introduce a
new Hamiltonian H̃ : S2 → R on this extended phase space with

H̃(q, q̃,p, p̃) = H1(q, p̃)+ H2 (̃q,p), (15)

where now H1 = H2 = H , equal to the Hamiltonian function of the original system.
Hamilton’s equations for the two parts of this split Hamiltonian are then
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Explicit methods in extended phase space for inseparable Hamiltonian problems 215

˙̃q = ∇p̃ H1 (16a)

ṗ = −∇q H1 (16b)

and

q̇ = ∇p H2 (17a)

˙̃p = −∇q̃ H2. (17b)

We see that the derivatives of q̃ and p depend only on q and p̃ and vice versa, and the equations
can be integrated to yield the actions of exp(t H1) and exp(t H2). We can now apply the results
from the previous section to find

exp(h H̃) = exp

(
h

2
H1

)
exp (h H2) exp

(
h

2
H1

)
+ O(h3)

= exp

(
h

2
H2

)
exp (h H1) exp

(
h

2
H2

)
+ O(h3),

(18)

where h ∈ R, which gives the leapfrog algorithms

qn+ 1
2

= qn + h

2
∇p H2 (̃qn,pn) (19a)

p̃n+ 1
2

= p̃n − h

2
∇q̃ H2 (̃qn,pn) (19b)

q̃n+1 = q̃n + h∇p̃ H1(qn+ 1
2
, p̃n+ 1

2
) (19c)

pn+1 = pn − h∇q H1(qn+ 1
2
, p̃n+ 1

2
) (19d)

qn+1 = qn+ 1
2

+ h

2
∇p H2 (̃qn+1,pn+1) (19e)

p̃n+1 = p̃n+ 1
2

− h

2
∇q̃ H2 (̃qn+1,pn+1) (19f)

and

q̃n+ 1
2

= q̃n + h

2
∇p̃ H1(qn, p̃n) (20a)

pn+ 1
2

= pn − h

2
∇q H1(qn, p̃n) (20b)

qn+1 = qn + h∇p H2 (̃qn+ 1
2
,pn+ 1

2
) (20c)

p̃n+1 = p̃n − h∇q̃ H2 (̃qn+ 1
2
,pn+ 1

2
) (20d)

q̃n+1 = q̃n+ 1
2

+ h

2
∇p̃ H1(qn+1, p̃n+1) (20e)

pn+1 = pn+ 1
2

− h

2
∇q H1(qn+1, p̃n+1) (20f)

over one timestep h. The leapfrog methods (19) and (20) then exactly solve the Hamiltonian
flows of the related Hamiltonians

Ĥ212 = H1 + H2 + h2
(

− 1

24
{{H2, H1}, H1} + 1

12
{{H1, H2}, H2}

)
+ O(h3) (21)

and

Ĥ121 = H1 + H2 + h2
(

− 1

24
{{H1, H2}, H2} + 1

12
{{H2, H1}, H1}

)
+ O(h3). (22)
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If we now consider a Hamiltonian initial value problem, with the initial values (q0,p0)

and set q̃0 = q0, p̃0 = p0, we see that the Eqs. (16) and (17) give identical derivatives and
identical evolution for both pairs (q(t), p̃(t)) and (̃q(t),p(t)), equal to the flow of the original
Hamiltonian system (q(t),p(t)). The numerical leapfrog solutions (19) and (20) then solve
closely related Hamiltonian problems given by (21) and (22).

We can write the problem in the form
⎛
⎜⎜⎝

q̇
˙̃q
ṗ
˙̃p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∇p H2

0
0
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
∇p̃ H1

0
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0

−∇q H1

0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
0

−∇q̃ H2

⎞
⎟⎟⎠

= fq (̃q,p)+ fq̃(q, p̃)+ fp(q, p̃)+ fp̃(̃q,p),

(23)

where the component vector fields fi are Hamiltonian. We also define operators Q(h) =
exp(h fq), Q̃(h) = exp(h fq̃), and similarly for P and P̃, where exp(h f )z = ϕ

f
h (z) is a trans-

lation along the vector field f . From this we see that we can also construct split solutions like

exp(h H̃) = Q(h/2)Q̃(h/2)P(h/2)̃P(h)P(h/2)Q̃(h/2)Q(h/2)+ O(h3)

= QQ̃PP̃(h)+ O(h3),
(24)

where the last equality defines a shorthand notation based on the symmetry of the operator.
Pairs Q, P̃ and Q̃,P commute, so e.g. H1(h) = exp(h H1) = Q̃(h)P(h) = P(h)Q̃(h). Origi-
nal and auxiliary variables are also interchangeable, since they initially have the same values.
As such, the only unique symmetric second order leapfrog compositions are (with the above
shorthand)

Q̃PQP̃ = H1(h/2)H2(h)H1(h/2) (25a)

QQ̃PP̃ (25b)

QQ̃P̃P (25c)

PP̃QQ̃ (25d)

PP̃Q̃Q (25e)

up to a reordering of commuting operators, and switching (Q,P) ↔ (Q̃, P̃).
From the leapfrogs (25), the only one symplectic in the extended phase space is (25a),

as well as its conjugate method H2(h/2)H1(h)H2(h/2). It is not, however symplectic as a
mapping M � (q,p) 	→ (q′,p′) ∈ M within the original phase space if the final (q′,p′)
are obtained from Q̃PQP̃(h)(q, q̃,p, p̃) by any pairwise choice. However, operating in the
extended phase space and projecting only to obtain outputs, without altering the state in the
extended phase space, leads to an algorithm that preserves the original Hamiltonian with no
secular growth in the error. This is not entirely surprising, since the algorithms (25) have
similarities with partitioned multistep methods, which can exhibit good long term behaviour
despite a formal lack of symplecticity (Hairer et al. 2006). By virtue of being leapfrogs, the
algorithms are also explicit, time-symmetric, have error expansions that contain only even
powers of the timestep and can be sequentially applied to form higher order methods.

The idea behind Eq. (15) can be generalised further. Introducing yet another copy of the
phase space with coordinates (̂q, p̂) leads to a Hamiltonian of the form

H̃ (q, q̃, q̂,p, p̃, p̂) = 1

2

[
H (q, p̃)+ H (q, p̂)+ H (̃q,p)+ H (̃q, p̂)+ H (̂q,p)

+H (̂q, p̃)
]
. (26)
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Explicit methods in extended phase space for inseparable Hamiltonian problems 217

The Hamiltonian (26) gives three sets of separable equations of motion that can be inte-
grated with a leapfrog method. As with the leapfrogs (25), only the leapfrogs obtained from
sequential applications of the flows of the different Hamiltonians in Eq. (26) give a method
symplectic in the extended phase space. Again, no simple pairwise choice of the extended
phase space variables leads to a method that is symplectic in the original phase space.

In general, using N > 1 sets of variables in total, with a phase space SN , one can use a
Hamiltonian of the form

H̃
(

q1, . . . qN ,p1, . . . ,pN
)

= 1

N − 1

N∑
i=1

N∑
j=1
j �=i

H
(

qi ,p j
)

= 1

N − 1

N−1∑
i=1

Hi

(
q1, . . . qN ,p1, . . . ,pN

)
,

(27)

where

Hi (q1, . . . qN ,p1, . . . ,pN ) =
N∑

j=1

H(q j ,pσi ( j)). (28)

where σi ( j) = ( j +i −1 mod N )+1 is a cyclic permutation of the indexes of the momenta.
The equations of motion of any Hi can be integrated with a leapfrog, as is the case for their
symmetric combination H̃ . However, we will not investigate this general case in the paper.

3.1 Phase space mixing and projection

While Eqs. (16) and (17) can be integrated with a leapfrog, the fact that they are coupled
only through the derivatives is a problem. The Hamiltonian vector field of one solution at
a point depends on the other and vice versa, but not on the solution itself. Since the two
numerical flows will not in general agree with each other or the exact flow, the derivative
function for one numerical flow at one point will end up depending on a different point of the
other solution, and both solutions may diverge with time. This problem is quickly confirmed
by numerical experiments.

A seemingly straightforward solution for this problem would be to introduce feedback
between the two solutions, in the form of mixing maps Mi : S2 → S2, i = 1, 2. We now
amend the leapfrogs (25) to obtain, e.g.

QP̃Q̃PM(h) = Q(h/2)̃P(h/2)Q̃(h/2)P(h/2)M1P(h/2)Q̃(h/2)̃P(h/2)Q(h/2)M2,

(29)
so that the resulting algorithm is still symmetric, since at the last step, M2 can be subsumed
into the projection map described below. If Mi are symplectic, then the leapfrogs that are
symplectic on the extended phase space, i.e. (25a), retain this character. There is no need to
restrict Mi to strictly symplectic maps, however, since the extended phase space leapfrogs
are not symplectic when restricted to the original phase space in any case. Without this
restriction, potentially attractive candidates might stem from e.g. symmetries of the extended
Hamiltonian (15) and its exact solution. For example, for (15), permutations of coordinates,
q ↔ q̃, or momenta, p ↔ p̃, do not change the exact solution for given (equal) initial
conditions. Permuting both switches the component Hamiltonians, but since they are equal,
this has no effect for the exact solution. We will find that for the numerical method, the
permutations can be beneficial.
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A related problem is how to project a vector in extended phase space back to the dimension
of the original. This should be done in a manner that minimizes the error in the obtained
coordinates, momenta and original Hamiltonian. In addition, the final algorithm should be
symplectic, or as close to symplectic as possible. To this end, we introduce a projection map
P : S2 → S2. In principle, the projection map could be used in two different ways. The
first is to obtain formal outputs at desired intervals, while the algorithm always runs in the
extended phase space. The second is to use the projection map after each step, and then
copy the projected values to create the extended set of variables for the next step. The final
algorithm ψ over k steps would then be either of

ψk = P ◦ (QP̃Q̃PM)k ◦ C (30)

ψk = (P ◦ QP̃Q̃PM ◦ C)k, (31)

where ◦ is function composition, and C : S → S2 is the cloning map C(q,p) = (q,q,p,p).
It should be emphasized that in Eq. (30), the projection map is included only to obtain

the formal output after k steps, while the current state (qk, q̃k,pk, p̃k) is preserved, and
used to continue the integration. In contrast, the algorithm (31) can evidently be considered
as a mapping S → S in the original phase space, and as such represents a conventional
method such as a partitioned Runge–Kutta method, as seen in Sect. 3.3. Unfortunately, for
Hamiltonian problems, it leads to secular increase of the error in the original Hamiltonian. In
the Hamiltonian case, it seems that operating in the extended phase space is necessary, and
as such, (30) is to be used.

To take a first stab at determining a suitable choice for Mi and P, we turn to analyzing the
error in the Hamiltonian function and deviations from symplecticity.

3.2 Error analysis

We start the search of suitable candidates for Mi and P from symmetric linear maps of the
form ⎛

⎜⎜⎝
q′
q̃′
p′
p̃′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
αMi α̃Mi 0 0
α̃Mi αMi 0 0

0 0 βMi β̃Mi

0 0 β̃Mi βMi

⎞
⎟⎟⎠ ⊗ In

⎛
⎜⎜⎝

q
q̃
p
p̃

⎞
⎟⎟⎠ , (32)

and
(

q′
p′

)
=

(
αP α̃P 0 0
0 0 βP β̃P

)
⊗ In

⎛
⎜⎜⎝

q
q̃
p
p̃

⎞
⎟⎟⎠ , (33)

where i = 1, 2, and all matrix elements are real. We then look for the coefficients that give
the best results according to conservation of Hamiltonian function or symplecticity. We can
thus use, say,

ψk = (QP̃Q̃PM)k ◦ C, (34)

take two steps to make M2 and P independent, and expand

	H̃ = H̃
(
ψ2(h)(z0)

) − H̃(C(z0)) (35)

	H = H
(
(P ◦ ψ2(h))(z0)

) − H(z0) (36)
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in terms of h, where z0 = (q0,p0), and look at the coefficients. In this example case, the
zeroth order coefficient of (36) reads

h0 : H(C1q0,C2p0)− H(q0,p0), (37)

with

C1 = (αM1 + α̃M1)
2(αM2 + α̃M2)

2(αP + α̃P ) (38)

C2 = (βM1 + β̃M1)
2(βM2 + β̃M2)

2(βP + β̃P ). (39)

To make the cofficient identically zero, we need to have

α̃M = 1 − αM , β̃M = 1 − βM (40)

for all the maps Mi and P, which makes them linear interpolations between the original and
auxiliary coordinates and momenta. With the substitutions (40), also the first order coefficient
of (36) becomes identically zero. The same substitution zeroes the coefficients of (35) up to
and including the second order. The third order coefficient of (35) becomes independent of
the map matrix elements, and as such we will focus on the expansion of (36).

The second order coefficient is

h2 : −1

2

[
C1∇2

p H(∇q H)2 + C2∇q∇p H∇q H∇p H + C3∇2
q H(∇p H)2

]
, (41)

where

C1 = (1 − 2αP )(1 − αM1)(1 − 2αM2)(1 − αM1 − αM2 + 2αM1αM2) (42)

C2 = 2αM1 + 3αM2 − α2
M1

− 7αM1αM2 − 2α2
M2

+ 4α2
M1
αM2 + 6αM1α

2
M2

− 4α2
M1
α2

M2

+ 2αP (1 − αM1)(1 − 2αM2)(1 − αM2 − αM1 + 2αM1αM2) (43)

− 2βM1 − 3βM2 + β2
M1

+ 7βM1βM2 + 2β2
M2

− 4β2
M1
βM2 − 6βM1β

2
M2

+ 4β2
M1
β2

M2

− 2βP (1 − βM1)(1 − 2βM2)(1 − βM2 − βM1 + 2βM1βM2)

C3 = (1 − 2βP )(1 − βM1)(1 − 2βM2)(1 − βM1 − βM2 + 2βM1βM2), (44)

and the derivatives ∇k
q∇l

p H : R
(k+l)n → R are k + l-linear operators

∇k
q∇l

p H(v1, . . . , vk, vk+1, . . . , vk+l)

=
∑

i1,...,ik , j1,..., jk

∂k+l H

∂qi1 · · · ∂qik ∂p j1 · · · ∂q jl
v

i1
1 · · · vik

k v
j1
k+1 · · · v jl

k+l ,
(45)

where in ∈ {1, . . . , k}, jn ∈ {1, . . . , l}, and juxtaposition in (41) implies contraction.
From here, there are several choices available. We will consider some interesting combi-

nations. Choosing αM1 = βM1 = αM2 = βM2 = 1 makes the second order term identically
zero. Taking αP = 1/3 and βP = 2/3 then makes also the third order term be identically
zero, and as such apparently gives an additional order of accuracy compared to the stan-
dard leaprog. However, despite this, these choices lead to poor long term behaviour, which
numerically is quickly apparent. If αM1 = 1 and βM1 = 0, so that the momenta are permuted,
then choosing βM2 = 1 will also identically zero the second order coefficient. In this case,
the third order coefficient can’t be brought to zero, but the numerical long term behaviour
found in the problem of Sect. 5.1 is good, if αM2 = 0 is chosen so that there is a permutation
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symmetry between coordinates and momenta. Numerically, the best results were obtained
with a choice αM1 = αM2 = 1, βM1 = βM2 = 0 and αP = 1, βP = 0. This necessitates
βP = 1/2 to zero the second order coefficient. We conclude that the long term behaviour of
the method is not evident from considering the conservation of the Hamiltonian alone.

In addition to the conservation of the Hamiltonian, we are interested in the conservation of
the symplectic form, or the symplecticity of the method. In local coordinates, the condition
for symplecticity of an integration method ϕh : S → S over one step h is

(Dϕh)
T J (Dϕh)− J = 0, (46)

where Dϕh is the Jacobian of the map ϕh (Hairer et al. 2006).
We consider first symplecticity in the extended phase space S2. It is clear that if M1 and

M2 are identity maps, then the method is symplectic. However, we know that this does not
lead to good numerical results in the long term. To investigate other possibilities, we again
apply the method (34) for two steps and expand the left side of Eq. (46) in terms of h. The
first order term gives two independent conditions

4
[−(αM1(1 − 2αM2)

2)+ α2
M1
(1 − 2αM2)

2 + (−1 + αM2)αM2

]

× [−(βM1(1 − 2βM2)
2)+ β2

M1
(1 − 2βM2)

2 + (−1 + βM2)βM2

]

+ [
1 − 2αM1(1 − 2αM2)

2 + 2α2
M1
(1 − 2αM2)

2 − 2αM2 + 2α2
M2

]

× [
1 − 2βM1(1 − 2βM2)

2 + 2β2
M1
(1 − 2βM2)

2 − 2βM2 + 2β2
M2

] = 1

(47)

2
[
1 − 2αM1(1 − 2αM2)

2 + 2α2
M1
(1 − 2αM2)

2 − 2αM2 + 2α2
M2

]

× [−(βM1(1 − 2βM2)
2)+ β2

M1
(1 − 2βM2)

2 + (−1 + βM2)βM2

]

+ 2
[−(αM1(1 − 2αM2)

2)+ α2
M1
(1 − 2αM2)

2 + (−1 + αM2)αM2

]

× [
1 − 2βM1(1 − 2βM2)

2 + 2β2
M1
(1 − 2βM2)

2 − 2βM2 + 2β2
M2

] = 0.

(48)

Solving any coefficient from these requires that none of the others is 1/2. As such, simply
averaging the extended variable pairs leads to destruction of symplecticity in the extended
phase space already in the zeroth order. On the other hand, any combination of αMi , βMi ∈
{0, 1} makes Eqs. (47) and (48) identically true. Of these, combinations with αMi = βMi

are exactly symplectic, since the corresponding maps Mi are. Other combinations give a
non-zero coefficient at second order.

To investigate symplecticity in the original phase space S, we append the projection map
P. In this case, the zeroth and first order terms are zero independely of the coefficients of
the maps Mi and P. The second order term is a cumbersomely lengthy function of the map
components and derivatives of the Hamiltonian. However, it is reduced to zero by those
substitutions from αMi , βMi ∈ {0, 1} that have αM1 �= αM2 or βM1 �= βM2 . In this case, if
we also put αP = βP = 1/2, the first non-zero term is of the fifth order. In the case that
αM1 = αM2 or βM1 = βM2 , setting αP = βP = 1/2 does zero out the second order term,
as well as the third order term, but not the fourth. The combination of identity maps Mi

with αP = 1/3 and βP = 2/3, shown above to conserve Hamiltonian to an extra order of
accuracy, leads to a non-zero error already in the third order. The method, which gives the
best results for the application in Sect. 5.1 in both accuracy and long term behaviour, is the
one with αM1 = αM2 = 1, βM1 = βM2 = 0 and αP = βP = 1. Interestingly, these choices
give a non-zero contribution already at second order, and this is not affected by subsituting
in the specific choice of Hamiltonian for the problem.
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Table 1 The Butcher tableaux
for the second order leapfrog as a
partitioned Runge–Kutta system

0 0 0
1 1/2 1/2

1/2 1/2

1/2 1/2 0
1/2 1/2 0

1/2 1/2

3.3 Relation to partitioned Runge–Kutta methods

Many common integration methods can be written in some general formulation as well,
which can give additional insight to the numerical behaviour of the algorithm. Here, we will
consider partitioned Runge–Kutta (PRK) methods. PRK methods form a very general class
of algorithms for solving a partitioned system of differential equations

ẋ = f (x, y)

ẏ = g(x, y),
(49)

where x, y, f and g may be vector valued. A partitioned Runge–Kutta algorithm for system
(49) can be written as

ki = f

⎛
⎝x0 + h

s∑
j=1

a(1)i j k j , y0 + h
s∑

j=1

a(2)i j l j

⎞
⎠

li = g

⎛
⎝x0 + h

s∑
j=1

a(1)i j k j , y0 + h
s∑

j=1

a(2)i j l j

⎞
⎠

x1 = x0 +
s∑

i=1

b(1)i ki y1 = y0 +
s∑

i=1

b(2)i li ,

(50)

where a(1)i j , b(1)i and a(2)i j , b(2)i are the coefficients of two (possibly different) Runge–Kutta
methods, respectively.

The second order leapfrog can be written as a PRK algorithm using the coefficients in
Table 1. If f (x, y) and g(x, y) are functions of only y and x , respectively, the resulting
algorithm is explicit. In the extended phase space the equations of motion (16) and (17) can
be written as

ẋ = f(y)

ẏ = f(x),
(51)

with x = (q, p̃), y = (̃q,p) and f(x) = J−1∇ H(x). If the maps Mi are identity maps, the
leapfrogs (19) and (20) can be written as PRK algorithms with coefficients from Table 1 as
well. If this is not the case, the final result for x1 will involve both x0 and y0, and similarly
for y1, but in general during the integration, x0 �= y0 at the beginning of any given step.
The resulting x1 and y1 will both also involve a mix of k(1)i and k(2)i , as well. This cannot be
obtained with a PRK scheme. If, however, βMi = αMi , we can write a PRK scheme for the

first step, where x0 = y0, and also k(1)i = k(2)j . The resulting coefficients are listed in Table 2.
In this light, the algorithm (31) could be written as a PRK method on the original phase

space if both βMi = αMi and βP = αP . In this case, due to the continuous application of

the cloning and projection maps C and P, the conditions xi = yi and b(1)i = b(2)i hold at the
beginning of each step. This method is unfortunately not very interesting for Hamiltonian
systems, since it leads to secular growth in the energy error. In principle, the algorithm (30)
could be written as a PRK method as well, but due to the points made above, we would need
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Table 2 The Butcher tableaux for the extended phase space leapfrog with mixing as a partitioned Runge–
Kutta system

0 0000
1/2 0002/1
1/2 1/ 2 (1 − 1)/ 2 0 0
1/2 1/ 2 (1 − 1)/ 2 0 0

[ 2 1 + (1 − 2)(1 − 1)]/ 2 [ 2(1 − 1) + (1 − 2 1]/ 2 (1 − 2)/ 2 2/ 2

0 0000
0 0000

1/2 (1 − 1)/ 2 1/ 2 0 0
1 (1 − 1)/ 2 1/ 2 0 0

[ 2(1 − 1) + (1 − 2 1]/ 2 [ 2 1 + (1 − 2)(1 − 1)]/ 2 2/ 2 (1 − 2)/ 2

Here α1 = αM1 and α2 = αM2

4k stages for k steps, effectively producing one huge and convoluted PRK step. This is due
to the fact that the propagation needs to start from the initial point where x0 = y0.

4 Application to non-Hamiltonian systems

The idea of the previous section can be extended to general coupled systems of time dependent
differential equations that can be reduced to a form

ẋ = f (x, t), (52)

where x ∈ R
n, f : R

n × R → R
n and ẋ = dx/dt . The requirement is not severe, since

all high order systems of differential equations, where the highest order derivatives can be
explicitly solved for, can be written in this form.

In general, the Eq. (52) cannot be solved in closed form, but if f (x, t) = ∑
i f i (x, t),

where the flows ϕi of the parts f i can be solved separately, a scheme equivalent to the
operator splitting in (10) can be used. If f = f 1 + f 2, then in this scheme our numerical
flow is either of

ϕS1 = ϕ1
h/2 ◦ ϕ2

h ◦ ϕ1
h/2 (53)

or

ϕS2 = ϕ2
h/2 ◦ ϕ1

h ◦ ϕ2
h/2, (54)

a method known as Strang splitting (Strang 1968). Unfortunately, this approach does not
work when either f cannot be split into additive parts, or the flows of the component parts
cannot be solved.

However, having an equation of form (52), we can apply the idea of the previous chapter,
and introduce auxiliary variables x̃, an auxiliary time t̃ , and an extended system of equations

ẋ = f (̃x, t̃) (55a)

ṫ = 1 (55b)
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˙̃x = f (x, t) (55c)

˙̃t = 1, (55d)

where the derivative is now taken with respect to a new independent variable. In the system of
Eq. (55), the original independent variable (time) is now relegated to the role of another pair
of coordinates. This corresponds to the usual extension of the phase space of a Hamiltonian
system, where the canonical conjugate momenta of time p0 is added to the Hamiltonian and
time t considered as an additional canonical coordinate (Hairer et al. 2006). In essence, the
Eq. (52) splits to

ż = f 1(z)+ f 2(z), (56)

where z = (x, x̃, t, t̃) ∈ R
2n+2, f 1(z) = ( f (x, t̃), 0, 1, 0), f 2(z) = (0, f (̃x, t), 0, 1) and

the derivative is taken with respect to a new independent variable. The flows of f i ’s can now
be directly integrated, and Strang splitting can be used to derive a second order leapfrog of
a form

xn+ 1
2

= xn + h

2
f (̃xn, t̃n) (57a)

tn+ 1
2

= tn + h

2
(57b)

x̃n+1 = x̃n + h f (xn+ 1
2
, tn+ 1

2
) (57c)

t̃n+1 = t̃n + h (57d)

xn+1 = xn+ 1
2

+ h

2
f (̃xn+1, t̃n+1) (57e)

tn+1 = tn+ 1
2

+ h

2
, (57f)

or its adjoint, by exchanging the flows used for propagation.
Moreover, the problem (52) can also be split arbitrarily into a coupled form

ẋ = f (x, y, t) (58a)

ẏ = g(x, y, t), (58b)

where now x ∈ R
n−k, y ∈ R

k, f = ( f1, . . . , fn−k) and g = ( fn−k+1, . . . , fn), where fi are
the component functions of the original f in Eq. (52). The above approach could naturally be
used here as well after introducing further auxiliary variables ỹ. However, we can now mix
the auxiliary and original variables as in the previous section, to obtain a different system of
equations

ẋ = f (̃x, y, t̃) (59a)

˙̃y = g(̃x, y, t̃) (59b)

ṫ = 1 (59c)

˙̃x = f (x, ỹ, t) (59d)

ẏ = g(x, ỹ, t) (59e)

˙̃t = 1. (59f)

123



224 P. Pihajoki

These equations can be directly integrated as well, to produce a different second order leapfrog
method with

xn+ 1
2

= xn + h

2
f (̃xn, yn, t̃n) (60a)

ỹn+ 1
2

= ỹn + h

2
g(̃xn, yn, t̃n) (60b)

tn+ 1
2

= tn + h

2
(60c)

x̃n+1 = x̃n + h f (xn+ 1
2
, ỹn+ 1

2
, tn+ 1

2
) (60d)

yn+1 = yn + hg(xn+ 1
2
, ỹn+ 1

2
, tn+ 1

2
) (60e)

t̃n+1 = t̃n + h (60f)

xn+1 = xn+ 1
2

+ h

2
f (̃xn+1, yn+1, t̃n+1) (60g)

ỹn+1 = ỹn+ 1
2

+ h

2
g(̃xn+1, yn+1, t̃n+1) (60h)

tn+1 = tn+ 1
2

+ h

2
. (60i)

In this manner, a system like (52) can be split into as many component parts as desired, down
to single variables.

The propagation can be split further by using the individual vector fields in (59). Simi-
larly to Sect. 3, these then give rise to propagation operators X(h) = exp(h D f ), Y(h) =
exp(h Dg), T = exp(h D1) and likewise for X̃, Ỹ, T̃, where D f h(z) = ∇h(z)T f (z) is the
Lie derivative of h on the vector field f , which reduces to a directional derivative in this case
(Hairer et al. 2006). This then leads to various possibilities of splitting the propagation, as in
(25), with several equivalent combinations due to the commutation relations

[X, Ỹ] = [X̃,Y] = [T,X] = [T,Y] = [T̃, X̃] = [T̃, Ỹ] = [T̃,T] = 0, (61)

where for example

[X,Y](h)x = X(h)Y(h)x − Y(h)X(h)x, (62)

for x ∈ R
n .

Similarly to the Hamiltonian case, a combination of the maps Mi and P is to be used
here as well. They generalize the leapfrogs (57) and (60), which otherwise represent known
algorithms. For example, if we use identity maps for Mi and set αP = 1 and βP = 0,
the leapfrog (57) is equivalent to the modified midpoint method (Mikkola and Merritt 2006).
However, the modified midpoint method and its generalization in Mikkola and Merritt (2006)
and Mikkola and Merritt (2008) as well as the AVA method in Hellström and Mikkola (2010)
discard the auxiliary variables after integration. In general, this need not be done, though
whether a measurable benefit can be obtained is harder to quantify than in the Hamiltonian
case.

4.1 Error analysis

A backward error analysis on Eq. (56) can be done in a similar way as in the previous section
(for details, see e.g. Hairer et al. 2006), yielding the modified differential equation

ẋ = f̃ (x), (63)
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which the discretization (57) solves exactly. Here

f̃ = f + h2
{ 1

12

[
D2 f 1( f 2, f 2)+ D f 1(D f 2( f 2))

− D2 f 2( f 1, f 2)− D f 2 (
D f 1( f 2)

) ]

− 1

24

[
D2 f 2 (

f 1, f 1) + D f 2(D f 1( f 1))

− D2 f 1( f 2, f 1)− D f 1 (
D f 2( f 1)

) ]}
+ O(h4), (64)

where Dk f : R
kn → R

n is the k’th order derivative of f , written as a k-linear operator in
the usual way, so that

Dk f (v1, . . . , vk) =
∑

i1,...,ik

∂k f

∂xi1 · · · ∂xik
v

i1
1 · · · vik

k , (65)

where i j ∈ {1, 2, . . . , k}. Equation (64) is essentially the same as Eq. (22), but written with
vector fields.

The problem of how to choose the mixing and projection maps Mi and P remains. In
the context of general problems we have no invariants to guide us in choosing a suitable
transformation. Numerical experiments indicate that averaging the auxiliary and original
variables (αMi = βMi = 1/2, and similarly for P) leads to good results, but this matter
should be investigated more thoroughly in a future work.

5 Applications

In the following, we call the methods of the two previous sections by the common name
extended phase space methods. To rudimentarily explore their numerical behaviour, we test
them with physically relevant non-linear and inseparable problems, both of Hamiltonian and
non-Hamiltonian type.

5.1 Geodesic equation

The equation of a geodesic of a massive test particle in a pseudo-Riemannian spacetime with
a metric gμν(x), where x are the coordinates and μ, ν ∈ {0, 1, 2, 3} index the components
of the metric, can be written in a Hamiltonian form (Lanczos 1966)

H = 1

2
gαβ(x)pα pβ = 1

2
m2, (66)

gμν is the inverse of the metric, m is the mass of the test particle, and the Einstein summation
convection is used. The generalized momenta, pμ, are

pμ = gμα(x)ẋα, (67)

where ẋα = dxα/dτ , and τ is the parametrization of the geodesic.
For our test scenario, we take the Schwarzschild metric (in units where G = c = 1)

gαβdxαdxβ =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2 (
sin2 θdφ2 + dθ2) , (68)

123



226 P. Pihajoki

where M is the central mass, so that Schwarzschild radius rS = 2M , and x = (t, r, φ, θ).
We set θ = π/2 so that the motion is constrained to the equatorial plane, which leads to a
Hamiltonian of the form

H =
(

1 − 2M

r

)−1

p2
t −

(
1 − 2M

r

)
p2

r − r2 p2
φ = 1

2
m2, (69)

where we have used the variable names in place of the corresponding numerical subscript.
The Hamiltonian (69) evidently does not separate into additive parts dependent only on
coordinates or momenta.

For the initial values, we set m = M = 1, t0 = 0 and φ0 = 0. To draw parallels with
a classical Keplerian situation, we take τ = t (i.e. the coordinate time), and demand that r0

corresponds to the apocentre of the orbit so that ṙ0 = 0 and r0 = a0(1+e), where a0 = 14·2M
is the semi-major axis and e the eccentricity of the (classical) orbit, which we set to e = 0.5.
From this the initial velocity v0 = √

(1 − e)/[a(1 + e)] = √
(1 − e)/r0 ≈ 0.109 and φ̇0 =

v0/r0 ≈ 2.60×10−3. For the momenta we have then pr,0 = 0, pφ,0 = −r2φ̇0 ≈ −4.58. The
conjugate momentum of time must then be solved from the equality H = m2/2 in (69), to
get pt,0 ≈ 0.982. The final initial conditions are then x = (0, 42, 0), p ≈ (0.982, 0,−4.58).
It should be noted that for these choices the first order estimate for pericenter precession	ω
is (Lanczos 1966)

	ω = 6πM/[(1 − e2)a] = π/2. (70)

We simulate the system with three methods: QP̃Q̃P, implicit midpoint method, and the
LSODE solver (Hindmarsh 1980) used from the SciPy Python environment (Jones et al.
2001). The LSODE solver internally uses either a high order Adams–Moulton method or a
backwards differentiation formula, and automatically switches between them. It also includes
a timestep control scheme (Radhakrishnan and Hindmarsh 1993). For the method QP̃Q̃P, we
use the mixing maps with αM1 = αM2 = 1 and βM1 = βM2 = 0. These values were chosen
after numerous experiments, since they yielded the best results for this particular problem
by a wide margin. During the propagation, we obtained the physical outputs after each step
using two different projection maps, either with αP1 = 1 and βP1 = 0, which yielded the
best results, and with αP2 = 1 and βP2 = 0 for comparison.

The implicit midpoint method was chosen for comparison since it is symplectic and well-
behaved (Hairer et al. 2006). For a differential equation

ẋ = f(x), (71)

the method is given by

xn+1 = xn + hf
(

xn+1 + xn

2

)
. (72)

We applied the method to the equations of motion in the original phase space, and at each step
solved the implicit Eq. (72) iteratively until a relative error of less than 10−15 was achieved. As
a truth model, we used the LSODE solver, which was run with a relative accuracy parameter
of 10−13 and absolute accuracy parameter of 10−15. The simulations were first run for 10
orbital periods, with a timestep set to h = 0.02P , where P = 2π

√
a3/M is the orbital

period. The LSODE method has internal stepsize control, so for this method h controlled
only the initial trial timestep and output sampling.

Figure 1 shows the resulting orbits shown in xy-coordinates, with (x, y) = (r cosφ,
r sin φ), as well as the relative errors in the coordinates when compared to the LSODE result.
Table 3 shows the amount of vector field evaluations for the different methods, which is a
rough estimate of the computing power required for each solution. The fourfold symmetry of
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Fig. 1 Left The orbits (r cos(φ), r sin(φ)) of the QP̃Q̃P method with P1 (solid line) and P2 (dotted line),
implicit midpoint method (dashed line), and the LSODE method (dash-dotted line). Right The errors in the
coordinates t, r and φ with respect to the LSODE solution, relative to the orbital period P , maximum radius
(1 + e)a and 2π , respectively. The line styles are the same as in the figure on the left

Table 3 The total number of
evaluations of vector fields q̇ and
ṗ, including ˙̃q and ˙̃p for the
extended phase space methods

Integration time/P Evaluations

QP̃Q̃P Implicit midpoint LSODE

10 3.9 × 103 1.1 × 104 6.2 × 104

3000 1.2 × 106 2.7 × 106 2.6 × 107

Fig. 2 The error in H for the QP̃Q̃P method with P1 (solid line) and P2 (dotted line), implicit midpoint
method (dashed line), and the LSODE method (dash-dotted line). Left Absolute error, for 10 first orbits. Right
Maximum absolute error up to given time during integration. Note the different x-axis scaling

the orbit is evident from the figure, as well as the fact that the methods show some precession.
This precession is worst for the implicit midpoint method and less for the extended phase space
method with P2. The method with P1 is nearly indistinguishable from the LSODE solution.
From the figure we also see that the errors are mainly accumulated near the pericenter, as
expected. For all the methods, there is a secular drift in the mean error for t and φ coordinates,
with the implicit midpoint method having the worst behaviour, followed by P2 and P1. The
drift inφ causes the observed precession. It should be noted that this precession is not reflected
in the conservation of the Hamiltonian, since it is invariant for translations of t and φ. In this
manner, the situation is analogous to the Keplerian problem.

To assess the long term behaviour of the methods, we did another integration for 3000
orbital periods, and investigated the error in the conservation of the Hamiltonian. Figure 2
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shows the absolute error for the first 10 orbits and the maximum error up to a given time
during the integration for the whole run. While the LSODE method is very accurate, we see
that it eventually displays a secular power law increase in the maximum error with time,
typical for nonsymplectic algorithms. The symplectic implicit midpoint method shows no
secular growth in the error, and neither does the method QP̃Q̃P with either projection Pi .
This result is not completely unexpected, since symmetric non-symplectic methods can also
display behaviour similar to symplectic ones, particularly for quadratic Hamiltonians, such
as in this case (Hairer et al. 2006).

For this particular problem, the method QP̃Q̃P with P1 produces excellent results. The
resulting orbit is much more closely aligned with the LSODE solution than the orbit given by
a basic symplectic integrator, the implicit midpoint method, and there is no secular growth in
the error of the Hamiltonian. It is notable also that since the method is explicit, the number
of vector field evaluations required and thereby the computing time used is much less than
for the implicit midpoint method, or the LSODE method. As such, the QP̃Q̃P could be used
with a smaller timestep to obtain even better results relative to the other methods.

5.2 Forced van der Pol oscillator

We test the extended phase space method also on a non-conservative system, the forced van
der Pol oscillator (van der Pol 1927)

ẍ − μ(1 − x2)+ x = A cos(2π t/P), (73)

which can be written in the equivalent form

ẋ = y
ẏ = μ(1 − x2)− x + A cos(2π t/P),

(74)

where μ ∈ R parametrizes the non-linearity of the system, and A, P ∈ R are the amplitude
and period of the sinusoidal forcing. The van der Pol oscillator is essentially a damped
non-linear oscillator that exhibits a limit cycle. For our test, we set μ = 5, A = 5 and
P = 2π/2.463; a choice for which the oscillator is known to exhibit chaotic behaviour
(Parlitz and Lauterborn 1987). As initial conditions, we take x = y = 2.

To integrate the system, we use split systems of types XYT̃X̃ỸT (Method 1 in the follow-
ing) X̃T̃XYT̃Ỹ (Method 2), in the same symmetric shorthand as in Eq. (25). Method 1 is of
type (57) while Method 2 is of type (60). For both methods, we employ the 6th order com-
position coefficients from (13) to yield a 6th order method. In this case, we use the method
(31), and set αP = βP = 1/2 so that after one composited step, the original and auxiliary
variables are averaged. For the mixing maps, we take αM1 = βM1 = 1 and αM2 = βM2 = 0.
As in the previous section, we compare these methods to the implicit midpoint method (72),
iterated to 10−15 precision in relative error, and the LSODE solver with a relative accuracy
parameter of 10−13 and absolute accuracy parameter of 10−15. We propagate the system until
t = 500 using a timestep h = 0.02.

Figure 3 shows the numerical orbits of the four methods in the phase space (x, y). The
behaviour of the system is characterized by slow dwell near points x ≈ ±1, and quick
progression along the curved paths when not. In Fig. 4 we have plotted the maximum absolute
errors in x and y up to given time with respect to the LSODE method. We find that all the
methods display a secular growth in the coordinate errors, with Method 1 performing best,
followed by Method 2 and the implicit midpoint method. Methods 1 and 2 show similar
qualitative behaviour as the LSODE solution, while the midpoint method shows a clear
divergence. These results needs to be contrasted with the amounts of vector field evaluations,
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Fig. 3 Numerical orbits of the
van der Pol system (74) with
μ = 5, A = 5 and
P = 2π/2.463, integrated until
t = 500, with Method 1 (solid
line, top left), Method 2 (dotted
line, top right), the LSODE
method (dash-dotted line, bottom
left), and the implicit midpoint
method (dashed line, bottom
right)

Fig. 4 Maximum absolute errors
in x and y up to given time, for
Method 1 (solid line), Method 2
(dotted line) and the implicit
midpoint method (dashed line),
compared to the LSODE method
along orbit in Fig. 3

which are 0.7 × 106 (Method 1), 1.3 × 106 (Method 2), 1.3 × 106 (implicit midpoint) and
1.4 × 106 (LSODE). The number of evaluations is roughly similar for each method, and as
such Method 1 is rather clearly the best of the constant timestep methods, with LSODE likely
the best overall.

6 Discussion

Perhaps the most obvious benefit of splitting methods is that they’re explicit, which eliminates
all problems inherent in having to find iterative solutions. Specifically, if evaluating the
vector field, or parts of it, is very computationally intensive, then explicit methods are to
be preferred, as they only require a single evaluation of the vector field for each step of
the algorithm. Leapfrog methods can also be composited with large degrees of freedom,
making it possible to optimize the method used for the specific task at hand. More subtly,
when the problem separates to asymmetric kinetic and potential parts, different algorithmic
regularization schemes can be used to yield very powerful (even exact), yet simple integrators
(Mikkola and Tanikawa 1999a, b; Preto and Tremaine 1999).

However, for the case when the Hamiltonian remains unspecified, algorithmic regulariza-
tion seems to yield little benefit, since both parts of the new Hamiltonian (15) are essentially
identical. This is problematic, since the leapfrog integration of an inseparable Hamiltonian
typically leads to wrong results only when the system is in “difficult” regions of the phase
space, such as near the Schwarzschild radius for the case in Sect. 5.1, where the derivatives
have very large numerical values and the expansions (21)–(22) may not converge for the
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chosen value of timestep. This is exactly the problem that algorithmic regularization solves,
and it would be greatly beneficial if such a scheme could be employed even for the artificial
splitting of the Hamiltonian in (15).

Despite the lack of algorithmic regularization, the extended phase space methods seem
promising. The results in Sect. 5.1 demonstrate that the extended phase space methods can
give results comparable to an established differential equation solver, LSODE, but with
less computational work. More importantly, the results are superior to a known symplectic
method, the implicit midpoint method. The results in Sect. 5.2 are less conclusive with
respect to the LSODE method, but clear superiority versus the implicit midpoint method is
still evident. We find this encouraging, and believe that the extended phase space methods
should be investigated further. Obvious candidate for further research is the best possible form
and use of the mixing and projection maps. The optimal result is likely problem dependent.
Another issue that would benefit from investigation is how to find algorithmic regularization
schemes for the split (15), preferably with as loose constraints on the form of the original
Hamiltonian as possible. Finally, whether useful integrators can be obtained from the splits
of types (26)–(28) should be investigated.

7 Conclusions

We have presented a way to construct splitting method integrators for Hamiltonian problems
where the Hamiltonian is inseparable, by introducing a copy of the original phase space, and
a new Hamiltonian which leads to equations of motion that can be directly integrated. We
have also shown how the phase space extension can be used to construct similar leapfrogs
for general problems that can be reduced to a system of first order differential equations.
We have then implemented various examples of the new leapfrogs, including a higher order
composition. These methods have then been applied to the problem of geodesics in a curved
space and a non-linear, non-conservative forced oscillator. With these examples, we have
demonstrated that utilizing both the auxiliary and original variables in deriving the final result,
via the mixing and projection maps, instead of discarding one pair as is done in Mikkola and
Merritt (2006) and Hellström and Mikkola (2010), can yield better results than established
methods, such as the implicit midpoint method.

The new methods share some of the benefits of the standard leapfrog methods in that they’re
explicit, time-symmetric and only depend on the state of the system during the previous step.
For a Hamiltonian problem of the type in Sect. 5.1 they also have no secular growth in the
error in the Hamiltonian. However, the extended phase space methods leave large degrees of
freedom in how to mix the variables in the extended phase space, and how to project them
back to the original dimension. As such, there is likely room for further improvement in
this direction, as well as in the possibility of deriving a working algorithmic regularization
scheme for these methods. In conclusion, we find the extended phase space methods to be
an interesting class of numerical integrators, especially for Hamiltonian problems.
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