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Abstract The orbital boundary value problem, also known as Lambert problem, is revisited.
Building upon Lancaster and Blanchard approach, new relations are revealed and a new
variable representing all problem classes, under L-similarity, is used to express the time of
flight equation. In the new variable, the time of flight curves have two oblique asymptotes
and they mostly appear to be conveniently approximated by piecewise continuous lines.
We use and invert such a simple approximation to provide an efficient initial guess to an
Householder iterative method that is then able to converge, for the single revolution case, in
only two iterations. The resulting algorithm is compared, for single and multiple revolutions,
to Gooding’s procedure revealing to be numerically as accurate, while having a significantly
smaller computational complexity.

Keywords Lambert’s problem · Orbital boundary value problem ·
Interplanetary trajectories · Time of flight · Lambert solver · Gooding algorithm

1 Introduction

Lambert’s problem, sometimes referred to as orbital boundary value problem, is a fascinating
problem in Astrodynamics that intrigued, over the years, most famous mathematicians. Just
like Kepler’s equation, its solution is at the very heart of fundamental astrodynamical and
space engineering questions (Rauh and Parisi 2014; Luo et al. 2011; Izzo 2006). Following
the fundamental work laid down, among others, by Euler, Lambert, Lagrange and Gauss, the
need of having one robust algoritmic procedure able to function for a wide set of conditions
led to revisit the Lambert’s problem during the space era. Among the many contributions
made during that period, the work of Lancaster and Blanchard (1969) is to be highlighted as
it reduced the solution of Lambert’s problem to performing iterations each one requiring the
computation of one only inverse trigonometric or hyperbolic function. Later, Gooding (1990)
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2 D. Izzo

built upon these results and published a procedure achieving high precision in only three iter-
ations for all geometries. Gooding’s algorithm makes use of Halley’s iterations sided to well
designed heuristics to set the initial guess of the iterated variable. His methodology to recon-
struct the terminal velocity vectors is also remarkable as it is purely algebraic. The resulting
procedure is extremely efficient having low computational cost and high accuracy. A number
of studies Peterson et al. (1991), Klumpp (1991) and Parrish (2012) have tested Gooding
approach extensively, suggesting its superiority with respect to other Lambert solvers. His
procedure is most accurate and considered as the fastest existing approach to solve Lambert’s
problem (Arora and Russell 2013). Aside from Gooding’s algorithm, many other proposal
have been put forward to design Lambert solvers, they all differ in the details of at least one
of three fundamental ingredients: (a) the iteration variable (directly connected to the time of
flight equation), (b) the iteration algorithm, (c) the initial guess and (d) the reconstruction of
the terminal velocity vectors. More recently improvements on the original Gooding algorithm
were also claimed (Arora and Russell 2013) making use of the universal variable formulation
(Bate et al. 1971) and an original cosine transformation. At the same time, a number of works
recently addressed the possibility of deploying a large number of Lambert’s algorithms on
modern GPU architectures Parrish (2012), Arora and Russell (2010) and Wagner and Wie
(2011). Interestingly, in the first of these works, a comparison is also made between Good-
ing procedure, a universal variable Lambert’s solver and an early (slower) version of the
algorithm here described (unpublished at that time) showing already its promising nature.

In this paper, we build upon Lancaster and Blanchard work, first deriving some new
results, and then proposing and testing a new algorithm. The new algorithm (a) iterates on
the Lancaster-Blanchard variable x using (b) a Householder iteration scheme (c) feeded by
a simple initial guess found exploiting new analytical results found. The resulting procedure
is simple to implement, does not make use of heuristics for the initial guess generation and
is able to converge, on average, in only two iterations for the single revolution case and
three in the multirevolution case, introducing a significant reduction in the overall solver
complexity.

2 Background

2.1 From Lambert to Gauss

Lambert’s theorem states that the time of flight t to travel along a Keplerian orbit from r1 to
r2 is a function of the orbit semi-major axis a, of the sum r1 + r2 and of the chord c of the
triangle having r1 and r2 as sides. The complete formal proof was first delivered by Lagrange
and is here sketched briefly in the form reported by Battin (1999) as some of the quantities
and equations involved will prove to be useful in our later developments. We start introducing
the eccentric anomaly E and the hyperbolic anomaly H via the corresponding Sundmann
transformations rd E = ndt rd H = Ndt . The mean motion n = √

μ/a3 and its hyperbolic
equivalent N = √−μ/a3 are also introduced. As we do not make use of universal variables
we will be forced to give all our arguments twice: one for the elliptic case a > 0 and one
for the hyperbolic case a < 0. To this purpose some of the equations will be split in two
lines, in which case the line above holds for the elliptic case and the line below holds in the
hyperbolic case. We also make use of the reduced eccentric anomaly Er ∈ [0, 2π] so that
when M̃ full revolutions are made E = Er + 2M̃π . To ease the notation, in the following,
we will drop the subscript r so that E will be the reduced eccentric anomaly. The following
relations are then valid for an elliptic orbit (a > 0):
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Revisiting Lambert’s problem 3

r = a(1 − e cos E)

nt = E − e sin E + 2M̃π

r cos f = a(cos E − e)

r sin f = a
√
(1 − e2) sin E

(1)

The first one relates the orbital radius r to the eccentric anomaly E , the second one is the
famous Kepler’s equation relating the eccentric anomaly to the time of flight and the following
two relation define the relations between true anomaly f and eccentric anomaly E . Similar
equations hold in the case of hyperbolic motion:

r = a(1 − e cosh H)

Nt = e sinh H − H

r cos f = a(cosh H − e)

r sin f = −a
√
(e2 − 1) sinh H

(2)

The above equations are valid along a Keplerian orbit, including r1 and r2. The time of flight
can thus be written as:

√
μ(t2 − t1) =

{
a3/2 (E2 − E1 + e cos E1 − e cos E2 + 2Mπ)
−a3/2 (e cosh H2 − e cosh H1 − (H2 − H1))

(3)

where M = M̃2 − M̃1 is the number of complete revolutions made during the transfer from
r1 to r2. We may then define two new quantities such that:

ψ =
{

E2−E1
2

H2−H1
2

, cosϕ =
{

e cos E2+E1
2

e cosh H2+H1
2

(4)

so that, by construction, in both the elliptic and hyperbolic motion case ψ ∈ [0, π]. We also
restrict ϕ ∈ [0, π] (elliptc case) and ϕ ≥ 0 (hyperbolic case) as to avoid ambiguity in the
definition of the new angle. The time of flight equation is then written as:

√
μ(t2 − t1) =

{
2a3/2 (ψ − cosϕ sinψ + Mπ)
−2a3/2 (cosh ϕ sinhψ − ψ)

(5)

The two new quantities introduced, ϕ and ψ only depend on the problem geometry and the
sami-major axis a as can be easily found by computing c2 = (r2 cos f2 − r1 cos f1)

2 −
(r2 sin f2 − r1 sin f1)

2 and r1 + r2 from Eqs. (1) and (2), holding:

r1 + r2 =
{

2a(1 − cosψ cosϕ)
2a(1 − coshψ cosh ϕ)

(6)

c =
{

2a sinψ sin ϕ
−2a sinhψ sinh ϕ

(7)

Thus, one can conclude that the time of flight, given in Eq. (5), is a function of a, c and
r1 + r2. To further investigate the functional relation of the time of flight to these quantities
it is convenient to introduce two new angles:

α = ϕ + ψ, β = ϕ − ψ (8)

Clearly, in the elliptic case α ∈ [0, 2π ] and β ∈ [−π, π] while for the hyperbolic case
α ≥ 0 and β ≥ −π . These bounds are very important, as we shall see, in solving a quadrant

123



4 D. Izzo

ambiguity of the newly defined quantities. The time of flight equation now takes the elegant
form: √

μ(t2 − t1) =
{

a3/2 ((α − sin α)− (β − sin β)+ 2Mπ)
−2a3/2 ((sinh α − α)− (sinh β − β))

(9)

and computing r1 + r2 ± c from Eqs. (6) and (7) one easily finds:

s

2a
=

{
sin2 α

2− sinh2 α
2

(10)

s − c

2a
=

{
sin2 β

2
− sinh2 β

2

(11)

where s = (r1 + r2 + c)/2 is the semiperimeter. These last three equations were first derived
by Lagrange and used in his proof of the Lambert’s theorem. The angles α and β cannot
be determined univocally from the equations above as their quadrant is not defined. We
thus appear to have two possible solutions for α and β. The quadrant of β can actually
be resolved by expanding cos θ/2 = cos( f2 − f1)/2 using trigonometric identities and
eventaully showing that the following holds:

√
r1r2 cos

θ

2
=

{
2a sin α

2 sin β
2

−2a sinh α
2 sinh β

2

(12)

since sin α
2 , sinh α

2 ≥ 0 the above equations dictate that sin β
2 , sinh β

2 have the same sign
as cos θ2 , thus β ∈ [−π, 0] when θ ≥ π and β > 0 when θ ∈ [0, π]. The ambiguity on
the α angle, instead, cannot be resolved as it derives from the fact that exactly two different
ellipses, having the same semi-major axis a, link r1 and r2 and thus two different time of
flights exist that satisfy Eq. (9).

2.2 The Lambert’s problem revival

During the 18th–19th century, the work on the orbital boundary value problem culminated
with Gauss masterpiece “Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientium” (Gauss 1857) where the “prince of mathematicians” conceives what is probably
the first procedure able to accurately solve the Lambert’s problem (see Battin 1999 for an
excellent account of Gauss method). In the following years science drifted slowly away this
topic, only to revisit it in the second half of the twentieth century when the orbital boundary
value problem received more attention in the context of Moon exploration. Hence, the work
of Lancaster, Blanchard, Battin, Bate and many others introduced several advances on the
topic. We here follow the approach from Lancaster and Blanchard that inspred most of our
developments and we will thus rederive some of their relations which are needed to explain
our new ideas. Consider the parameter λ defined as:

sλ = √
r1r2 cos

θ

2

using Eq. (12) and substituting the expressions in Eqs. (10) and (11) it is simple to show that:

λ2 = s − c

s

The parameter λ ∈ [−1, 1] is positive when θ ∈ [0, π] and negative when θ ∈ [π, 2π].
Values of λ2 close to unity indicate a chord of zero length, a case which is indeed extremely
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Revisiting Lambert’s problem 5

Fig. 1 Non-dimensional time of
flight curve for λ = −0.9
parametrized using a/am

interesting in interplanetary trajectory design as it is linked to the design of resonant transfers.
From Eqs. (10) and (11) one can also derive the useful relation:

sin
α

2
= λ sin

β

2
(13)

We also introduce a non dimensional time-of-flight defined as:

T = 1

2

√
μ

a3
m
(t2 − t1) =

√

2
μ

s3 (t2 − t1)

where am = s/2 is the minimum energy ellipse semi-major axis (Battin 1999). The advantage
of usingλ and T derives from the fact that T is a function of a/am andλ alone, which allows to
greatly simplify the taxonomy of possible Lambert’s problems. In Gooding’s words (Gooding
1990), all the triangles having equal c/s ratio form a large equivalence class and can be
described as L-similar. For them, all Lambert solutions are the same in terms of a/am and T .

If we now plot the time of flight given by Eq. (9) as a function of the ratio between the
semi-major axis and the minimum energy ellipse semi-major axis, for a particular value of λ
and for single and multiple revolution cases, we get Fig. 1. It is evident how, in order to invert
the time of flight relation iterating over a/am , while possible, is not a good choice. To avoid
these problems we follow Lancaster and Blanchard in some further derivations introducing
the new quantities:

x =
{

cos α2
cosh α

2
, y =

{
cos β2
cosh β

2

(14)

which imply:
{√

1 − x2 = sin α
2√

x2 − 1 = sinh α
2
,

{
λ
√

1 − x2 = sin β
2

λ
√

x2 − 1 = sinh β
2

(15)

123



6 D. Izzo

and y = √
1 − λ2(1 − x2). Using these relations it is possible to relate the auxiliary angles

ϕ and ψ directly to x :

cosϕ = xy − λ(1 − x2)

cosh ϕ = xy + λ(x2 − 1)
,

sin ϕ = (y + xλ)
√

1 − x2

sinh ϕ = (y + xλ)
√

x2 − 1
(16)

and,
cosψ = xy + λ(1 − x2)

coshψ = xy − λ(x2 − 1)
,

sinψ = (y − xλ)
√

1 − x2

sinhψ = (y − xλ)
√

x2 − 1
(17)

which allows to derive the relations cosϕ sinψ = (x − λy)
√

1 − x2, cosh ϕ sinhψ = (x −
λy)

√
x2 − 1 and thus have the following time of flight equation valid in all cases (parabolic,

hyperbolic and elliptic):

T = 1

1 − x2

(
ψ + Mπ
√|1 − x2| − x + λy

)

(18)

where we must set M = 0 in the case of hyperbolic and parabolic motion where unbounded
motion prevents complete revolutions to happen. The auxiliary angle ψ is computed using
Eq. (17) by the appropriate inverse function and thus, the time of flight evaluation is reduced
to one only inverse function computation. Given the bounds on α, from the definition of x ,
we can see how x ∈ [−1,∞]. Also, x > 1 implies hyperbolic motion, x = 1 corresponds
to parabolic motion, while x < 1 to elliptic motion. Since 1 − x2 = sin2 α

2 = s
2a = am

a , we
see how x = 0 corresponds to the minimum energy ellipse. Note that different Lambert’s
problems having identical λ values (i.e. same c/s), result in the same x , we then say that x
is a Lambert invariant parameter.

Computing Eq. (18) in x = 0 we get:

T (x = 0) = T0M = arccos λ+ λ
√

1 − λ2 + Mπ = T00 + Mπ (19)

where we have introduced T0 as the value of T in x = 0 and T00 as the value in the single
revolution case M = 0.

When computing Eq. (18) in the single revolution case, a loss of precision is encountered
due to numerical cancellation for values of x ≈ 1 where both 1 − x2 and ψ tend to zero.
In these cases we compute the time of flight equation by series expansion using the elegant
result from Battin (1999) setting:

η = y − λx

S1 = 1

2
(1 − λ− xη)

Q = 4

3
1 F2(3, 1,

5

2
, S1)

2T = η3 Q + 4λη

(20)

where 1 F2(a, b, c, d) is the Gaussian or ordinary hypergeometric function. This can be eval-
uated by direct computation of the associated hypergeometric series. Noting that S1 → 0
when x → 1 the number of terms to retain in the series is small whenever the series is used in
the neighbourhood of x = 1. Departing from Battin, we study the parabolic case substituting
x = 1, y = 1 into Eq. (20) and thus obtaining the following remarkable expression:

T (x = 1) = T1 = 2

3
(1 − λ3) (21)
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Revisiting Lambert’s problem 7

relating the geometry of the triangle created by two different observations of an object on
a parabolic Keplerian orbit to the non-dimensional time elapsed between them. It is also
possible to derive the following formulas for the time of flight derivatives:

(1 − x2)
dT

dx
= 3T x − 2 + 2λ3 x

y

(1 − x2)
d2T

dx2 = 3T + 5x
dT

dx
+ 2(1 − λ2)

λ3

y3

(1 − x2)
d3T

dx3 = 7x
d2T

dx2 + 8
dT

dx
− 6(1 − λ2)λ5 x

y5
(22)

which are valid in all cases (single and multiple revolutions, elliptic and hyperbolic) except
in λ2 = 1, x = 0 and x = 1,∀λ. We then apply de l’Hôpital’s rule to the first of the above
equations, and using the expression derived for T1 we are also able to find the value of the
derivative of the time of flight curves in the case of a parabola:

dT

dx

∣
∣
∣
∣
x=1

= 2

5
(λ5 − 1) (23)

which is valid for M = 0. This expression, toghether with Eq. (21) are here derived for the
first time and will be used later to define good initial guesses for the Lambert solver. By direct
substitution, one can also easily show:

dT

dx

∣
∣
∣
∣
x=0

= −2

A great advantage of the time of flight equation in the form of Eq. (18) as derived by Lancaster
and Blanchard (1969) is in the low computational cost of computing T and its derivatives,
up to the third order. Only one trigonometric (or hyperbolic) function inversion, two square
roots and a few multiplications, divisions and sums are indeed necessary to compute these
numerical values. Other approaches based on geomerical considerations or on a universal
variables formulation are, at best, only able to match such a simple representation. We now
summarize all the information relative to all possible Lambert problems in one single graph
as done in Fig. 2.

Fig. 2 Time of flight curves
parametrized using x for different
λ and M values
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8 D. Izzo

3 A new Lambert invariant variable

Let us consider the following new variables:

ξ =
{

log(1 + x), M = 0

log
(

1+x
1−x

)
, M > 0

, τ = log(T ) (24)

The domain of the time-of-flight curve is now extended to [−∞,∞]. In the case of M = 0
the co-domain is also extended similarly. Let us study the resulting time of flight equation
τ(ξ, λ,M). In Fig. 3 we plot τ versus ξ for M = 0 and M = 1 and thirty equally spaced
values ofλ ∈ [−0.9, 0.9]. In the case M = 0 the curves appear to have two asymptotes having
negative inclination coefficient. For the multiple revolution case (M > 0) the curves have
two symmetric asymptotes. The new introduced parameter ξ is Lambert invariant according
to Gooding’s definition (Gooding 1990) as it essentially is a transformation of the Lambert
invariant variable x . We study the differential properties of the new curves, we have:

dξ =
{

1
1+x dx, M = 0

2
1−x2 dx, M > 0

, dτ = 1

T
dT (25)

Substituting these relations into Eq. (22), after some manipulations we may derive the fol-
lowing hybrid expressions for the derivatives in the case M = 0:

dτ

dξ
= 1 + x

T

dT

dx

d2τ

dξ2 = (x + 1)2

T

d2T

dx2 + dτ

dξ
−

(
dτ

dξ

)2

d3τ

dξ3 = (1 + x)3

T

d3T

dx3 +
(

d2τ

dξ2 − dτ

dξ
+

(
dτ

dξ

)2
) (

2 − dτ

dξ

)
+ d2τ

dξ2 − 2
dτ

dξ

d2τ

dξ2

(26)

Note that these expressions can be computed, sequentially, after Eq. (22). The following
holds for the M = 0 case:

Fig. 3 Time of flight curves (τ ) parametrized using ξ for 30 λ values equally spaced in [−0.9, 0.9]
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Fig. 4 Time of flight curves
parametrized using ξ for different
λ and M values

lim
ξ→∞ τ = −ξ + log(1 − λ|λ|)

lim
ξ→−∞ τ = −3

2
ξ + log

(π
4

√
2
)

(27)

which describes the asymptotic behaviour of the time of flight as visualized in Fig. 3. The
two asymptotes are thus revealed to have negative coefficients −1 and −3/2. For the multi-
revolution cases the derivatives are found to be:

dτ

dξ
= 1 − x2

2T

dT

dx

d2τ

dξ2 = (1 − x2)2

4T

d2T

dx2 − x
dτ

dξ
−

(
dτ

dξ

)2

d3τ

dξ3 = (1 − x2)3

8T

d3T

dx3 −
(

d2τ

dξ2 + x
dτ

dξ
+

(
dτ

dξ

)2
) (

2x + dτ

dξ

)

− 1 − x2

2

dτ

dξ
− x

d2τ

ξ2 − 2
dτ

dξ

d2τ

dξ2

(28)

again computable in cascade and the following asymptotic behavior can be derived:

lim
ξ→−∞ τ = log

(
π + Mπ

8

)
− 3

2
ξ

lim
ξ→∞ τ = log

(
Mπ

8

)
+ 3

2
ξ

(29)

revealing two symmetric asymptotes having inclination ±3/2. In Fig. 4 we report the time
of flight curves in the new variables for different values of λ and M . The reader can then
compare this ξ -τ plane to the x-T plane visualised in Fig. 2.

4 Lambert solver

A Lambert solver can be defined as a procedure that returns, for a gravitational field of strength
μ, all the possible velocity vectors v1 and v2 along Keplerian orbits linking r1, r2 in a transfer
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time T ∗. The ingredient of such an algorithm are, essentially (a) the choice of a variable to
iterate upon and thus invert the time of flight curve, (b) the iteration method, (c) the starting
guess to use with the iteration method and (d) the reconstruction methodology to compute
v1 and v2 from the value returned by the iterations. As we will detail, our Lambert solver
(a) iterates on the Lancaster-Blanchard variable x using (b) a Householder iteration scheme
(c) feeded by initial guesses found exploiting the curve shape in the τ -ξ plane and the new
analytical results found above. Eventually the velocity vectors are reconstructed following,
again, the methodology proposed by Gooding (1990). The final pseudo-code of the proposed
Lambert solver is reported in Algorithms 1, 2. Note how we detect the maximum number
of revolutions Mmax at the beginning by computing Tmin in one case. All other cases (i.e.
M <= Mmax ) will not require the evaluation of a Tmin via an iterative procedure. By doing
so we do not bound the roots (short and long period) and thus risk cases where the solution
jumps between the long and short period branches. While this did not happen in our tests of
the new routine, it is a possibility we are not safeguarding against.

The code, written in C++ and exposed to Python, is made available as part of the open
source project PyKEP from the European Space Agency github repository https://github.com/
esa/pykep/. The final algorithm is the final result of many different trials to exploit the newly
found results detailed above, and in particular the T0, T1 expressions (and their derivatives)
and the ξ -τ plane. It is worth reporting how one very robust set-up, not selected as our
final proposed algorithm, was that of iterating directly with a simple derivative free method
(regula-falsi) on the ξ -τ plane using constant initial guesses (i.e. xl = −0.7, xr = 0.7). We
ended up choosing a different set-up (Algorithms 1, 2) which turned up to be faster in our
computational tests.

4.1 The Householder iterations

One of the main differences of the proposed Lambert solver with respect to previous work
is the use of the Householder iterative scheme as a root finder for the time-of-flight curves
T (x) − T ∗ = 0. Householder iterations are not used widely as the added computational
effort of computing higher order derivatives is not worth the gain whenever these request
further function evaluations. In our case, as the derivatives computation is done using Eq.
(22), Householder iterations are able to provide a significant benefit. We report the exact form
used to implement the iterations as it is known how different numerical form can produce
different behaviours. After experimenting with different implementations the following was
used:

xn+1 = xn − f (xn)
f ′2(xn)− f (xn) f ′′(xn)/2

f ′(xn)( f ′2(xn)− f (xn) f ′′(xn))+ f ′′′(xn) f 2(xn)/6

where f is, in our case, T (x)− T ∗ and the derivatives are indicated as f ′, f ′′, f ′′′.

4.2 Initial guess

To generate an initial guess for x we use the newly introduced ξ -τ variables and the values
T0 and T1 as computed from Eqs. (19) and (21). Our initial guess is obtained inverting the
following linear approxmation to the time of flight curves:

τ = cξ + d

where we vary the c and d values according to the value of τ and M .
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Revisiting Lambert’s problem 11

4.2.1 Single revolution

Let us start from the single revolution case. Clearly, for high values of τ , we must set
c = −1.0, while for low values c = −3/2 so that the asymptotic behavior derived in Eq. (27)
is reproduced. We then consider the following piece-wise linear approximation:

τ = − 3
2 ξ + τ0, T ≥ T0

τ = −ξ + log 2 + τ1, T < T1

τ = τ0 + ξ
log 2 (τ1 − τ0) T1 < T < T0

where τ1 = log T1 and τ0 = log T0. We have basically enforced the lines to pass through the
points (x0, T0) and (x1, T1) and have the desired asymptotic behaviour.

The above relation is easily inverted and thus the following simple starter ξ0 is derived:

ξ0 = 2
3 (τ0 − τ), T ≥ T0

ξ0 = log 2 + τ1 − τ, T < T1

ξ0 = τ−τ0
τ1−τ0

log 2 T1 < T < T0

Transforming these relations back to the x-T plane we find the following expression for the
starter x0:

x0 =
(

T0
T

) 2
3 − 1, T ≥ T0

x0 = 2 T1
T − 1, T < T1

x0 =
(

T0
T

)log2

(
T1
T0

)

− 1 T1 < T < T0

(30)

having an extremely low computational cost also in view of the fact log2 admits efficient
implementaions. We can improve the expression for the T < T1 case making use of the
newly found result expressed in Eq. (23). We thus set

x0 =
(

T0
T

) 2
3 − 1, T ≥ T0

x0 = 5
2

T1(T1−T )
T (1−λ5)

+ 1, T < T1

x0 =
(

T0
T

)log2

(
T1
T0

)

− 1 T1 < T < T0

where we enforced the derivatives and values at x = 1 and x = ∞. We report the error
introduced by using these expressions in Fig. 5 where we also show, for comparison, the same
plot relative to the Gooding initial guess. The error is defined by the difference between the
initial guess computed for a given T ∗ and the actual value of x resulting in a time of flight T ∗.

4.2.2 Multiple revolutions

For the multiple revolution case, assuming a solution exists, there are two possible values
of x and thus we will need two starters. We obtain these by direct inversion of Eq. (29) that
define the two asymptotes.

123



12 D. Izzo

Fig. 5 Absolute errors introduced by the Gooding initial guess (left) and the proposed initial guess (right) for
the single revolution M = 0 case. Each line correspond to a different λ value ranging from −0.99 to 0.99

Algorithm 1 Lambert solver: inputs, r1 = [r11, r12, r13], r2 = [r21, r22, r23], t and μ
Require: t > 0, μ > 0

c = r2 − r1
c = |c|, r1 = |r1|, r2 = |r2|
s = 1

2 (r1 + r2 + c)

îr,1 = r1/r1, îr,2 = r2/r2

îh = îr,1 × îr,2
λ2 = 1 − c/s, λ =

√
λ2

if (r11r22 − r12r21) < 0 then
λ = −λ
ît,1 = îr,1 × îh , ît,2 = îr,2 × îr,2

else
ît,1 = îh × îr,1, ît,2 = îh × îh

end if
T =

√
2μ
s3 t

xlist , ylist = findxy(λ, T )

γ =
√
μs
2 , ρ = r1−r2

c , σ =
√
(1 − ρ2)

for each x, y in xlist , ylist do
Vr,1 = γ [(λy − x)− ρ(λy + x)]/r1
Vr,2 = −γ [(λy − x)+ ρ(λy + x)]/r2
Vt,1 = γ σ(y + λx)/r1
Vt,2 = γ σ(y + λx)/r2

v1 = Vr,1 îr,1 + Vt,1 ît,1
v2 = Vr,2 îr,2 + Vt,2 ît,2

end for

ξ0l = 2

3

(
log

π + Mπ

8
− τ

)

ξ0r = 2

3

(
τ − log

Mπ

8

)

The above equations may then be transformed back to the x-T plane so that the following
simple starters are derived:
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Revisiting Lambert’s problem 13

x0l =
( Mπ+π

8T

) 2
3 − 1

( Mπ+π
8T

) 2
3 + 1

x0r =
( 8T

Mπ

) 2
3 − 1

( 8T
Mπ

) 2
3 + 1

(31)

The above expressions approximate well the time of flight curves as |x | → 1. A great
advantage of these expressions is that they do not make use of Tmin , xmin (i.e. the minimum
of the time of flight curve and its extremal value) which would require a distinct set of iterations
to be found. We thus avoid bound the solution at each M , at the risk of allowing, during the
iterations, switches between short and long period solutions, a theoretical occurence, though,
that was never encountered in our experimental tests.

Algorithm 2 findxy(λ, T ): computes all x, y for single and muti-rev solutions
Require: |λ| < 1, T < 0

Mmax = f loor(T/π)

T00 = arccos λ+ λ
√

1 − λ2

if T < T00 + Mmaxπ and Mmax > 0 then
start Halley iterations from x = 0, T = T0 and find Tmin(Mmax )
if Tmin > T then

Mmax = Mmax − 1
end if

end if
T1 = 2

3 (1 − λ3)
compute x0 from Eq. (30)
start Householder iterations from x0 and find x, y
while Mmax > 0 do

compute x0l and x0r from Eq. (31) with M = Mmax
start Householder iterations from x0l and find xr , yr
start Householder iterations from x0r and find xl , yl
Mmax = Mmax − 1

end while

5 New solver performances

To test the performances of our new algorithm we start by assessing its accuracy. We consider,
for an assigned M , a random λ ∈ [−0.999, 0.999] and a random xtrue ∈ [−0.99, 3] (or
xtrue ∈ [−0.999, 0.999] whenever M > 0) and we compute the resulting time of flight T .
We then use Housholder iterations starting from the appropriate initial guess to find back the
x value. We find that stopping the iterations whenever the difference between the x value
computed at two successive iterations is <10−5 (10−8 whenever M > 0) is a good setting.
We record, for each of such trials, the number of iterations made by the Householder method
i t , and the error defined as ε = |xtrue − x |. This is repeated 1,000,000 times for M = 0
and then 100,000 times for each M = 1, 2, . . . , 50. The result is shown in Fig. 6. In the
vast majority of cases we obtain an error <10−13. Few cases have a slightly larger error (up
to <10−11) and these are mainly corresponding to multirevolution cases where T ≈ Tmin .
We also note, on the proximity of λ = 1 values, a distinct rise in the absolute error. This is
due to the M = 0 case and the loss of precision in the computation of y from λ, a problem
that can be avoided computing y directly from the problem geometry, but it is here deemed
as not necessary. Looking then at the number of iterations, we compute the mean over all
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14 D. Izzo

Fig. 6 Absolute error
ε = |x − xtrue| of our Lambert
solver as a function of λ. This is
achieved, on average over the
M = 0 cases, in two iterations

instances having the same M value. We obtain, for the single revolution case, an average of
2.1 iterations while, in the multiple revolution case, we get an average of 3.3 iterations to
convergence. Note how in these tests we do not find a case where a switch occurs between
the short period and long period solution during the root solving procedure. Such a switch
would infact immediately appear in Fig. 6 as a point with a large absolute error ε.

We then turn to the anaysis of our algorithm complexity with respect to the known Gooding
algorithm, considered by many as the most accurate and efficient Lambert solver up to date.
First we note that in terms of accuracy, Gooding algorithm is comparable to ours. We then
run a speed test. For the purose of this test we reimplement both our and Gooding algorithm
in pure Python language (i.e. no C++ bindings) and we record the execution time to solve
the same 100,000 randomly generated problems (using the same bounds as above). In the
case M = 0, the proposed algorithm resulted to be faster by a factor 1.25, while in the multi
revolution cases by a factor 1.5. This type of test is very sensitive to implementation details
and to the underlying computing architecture and even if we did our best to pay as much
attention to them in both cases, we support our result with more general considerations. The
main difference between our algorithm and Gooding’s is in the initial guess generation and
in the iteration method. Gooding algorithm employs Halley iterations, while we make use of
Householder iterative scheme. While Halley’s method has a slighlty lower complexity and
does not need to compute also the third derivative from Eq. (22), our iterative scheme reaches,
in the case M = 0, a comparable accuracy in only two iterations on average compared to the
three iterations needed for the Gooding case. For M > 0 the number of required iterations
is comparable in both cases but the initial guess used in Gooding algorithm has, in general,
a higher complexity as it makes use of a higher number of square roots and exponentiations.
In the M > 0 case Gooding initial guess also requires the determination of xmin, Tmin

via a further Halley iterative scheme, while the initial guess we use does not make use of
any particular value, while still allowing the Householder method to converge within a few
iterations and in all cases. We must, though, note once more that as we do not compute
xmin, Tmin we also cannot bound the solution during the root solver iterations and thus allow
for the theoretical possibilty of a switch between short and long period solutions. Such a rare
event never appeared in our extensive testing of the new routine.

Finally, we measure the error also in terms of the computed terminal velocities by com-
paring all v2, returned by our Lambert solver, to the same values as computed via numerical
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propagation (using Lagrange coefficients) from r1, v1. We do this by instantiating at random
r1, r2 with each component in the range [−4, 4] and t ∈ [0.1, 100]. For the purpose of this
test we consider μ = 1 and we measure the norm of the resulting vector of the velocity dif-
ference. Repeating this experiment for a total cumulative 10,000,000 Lambert’s Problems,
an average error of 10−13 is obtained, with a maximum error measured to be 10−8.

6 Conclusion

We revisit Lambert’s problem building upon the results of Lancaster and Blanchard and
finding some new properties of the time of flight curves. We propose a new transformation of
such curves able to further simplify the problem suggesting efficient approximations to the
final solution. Using our results to design a new procedure to solve the Lambert problem we
are able to build a low complexity algorithm that we find able to provide accurate solutions
in a shorter time when compared to the state of the art Gooding’s algorithm.
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