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Abstract This paper examines the design of transfers from the Sun–Earth libration orbits,
at the L1 and L2 points, towards the Moon using natural dynamics in order to assess the
feasibility of future disposal or lifetime extension operations. With an eye to the probably
small quantity of propellant left when its operational life has ended, the spacecraft leaves the
libration point orbit on an unstable invariant manifold to bring itself closer to the Earth and
Moon. The total trajectory is modeled in the coupled circular restricted three-body problem,
and some preliminary study of the use of solar radiation pressure is also provided. The concept
of survivability and event maps is introduced to obtain suitable conditions that can be targeted
such that the spacecraft impacts, or is weakly captured by, the Moon. Weak capture at the
Moon is studied by method of these maps. Some results for planar Lyapunov orbits at L1

and L2 are given, as well as some results for the operational orbit of SOHO.

Keywords Coupled circular restricted three-body problem · Libration point ·
Weak capture · Lunar impact · Lunar capture · Solar radiation pressure · Survivability

1 Introduction

It has become increasingly accepted by the space community that once a spacecraft has
reached an end to its nominal mission lifetime it should be safely disposed of such that future
missions are not jeopardized. While this holds especially true for particularly busy orbits
around the Earth, such as low Earth and geosynchronous orbits, there is also a case to make
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for safely controlling the disposal of spacecraft in libration point orbits (LPOs) at the Sun–
Earth L1 and L2 libration points. Often these spacecraft will still have propellant left after
their mission has been completed, and it is therefore interesting to see what could be done
with these spacecraft in terms of disposal or mission extension. In this work we study the
disposal options towards the Moon from both Sun–Earth L1 and L2 libration points within the
framework of the coupled circular restricted three-body problem, or coupled CR3BP (Koon
et al. 2001a, b). This methodology has been used in the past to study trajectories between
the Sun–Earth libration points and the vicinity of the Earth and Moon, where a connection
is made using the unstable manifold flowing from the Sun–Earth libration point (within the
Sun–Earth CR3BP) and the stable manifold flowing towards the Moon L2 point (within
the Earth–Moon CR3BP) at low �v cost. Examples include the work done by Koon et al.
(2001a, b), Gómez et al. (2001), Canalias and Masdemont (2008) and Fantino et al. (2010).

This work introduces the concept of survivability map and event map to find target con-
ditions, in the vicinity of the Moon, that lead to lunar impact or lunar weak capture. These
maps aid in the design of trajectories and effectively replace the use of the stable manifold
to design the trajectory arc incoming towards the Moon in the Earth–Moon CR3BP. This
approach enables a very simple transfer design where one directly targets a state on the map
in order to get the desired capture orbit or impact. In the past, Poincaré maps at the pericentre
have been used to find useful target conditions that lead to a capture around a body (Villac
and Scheeres 2003; Haapala and Howell 2014). Here we look at finding target states further
away from the celestial body, using either variable or constant energy level, that give long
permanence within a given region in the configuration space. In doing so we identify also
possible capture, impact and escape states. Weak capture (or temporary ballistic capture)
is typically defined as a spacecraft moving to within the vicinity of the planet (in this case
the Moon) and staying there for some minimum period of time, or by performing at least a
single revolution about the planet. There is extensive work in the literature on weak capture
in particular to design transfers to the Moon with a reduced propellant cost with respect to a
more traditional Hohmann transfer. An algorithmic definition of the weak stability boundary
is given by Belbruno (2004), and later expanded upon by García and Gómez (2007). A quite
complete overview of the existing literature can be found in the work of Silva and Terra
(2012), and a clear definition of weak capture is given by Topputo et al. (2008).

This paper begins with a brief overview of the CR3BP, and the method of connecting
(often referred to as patching) multiple CR3BPs, in Sect. 2. Then, Sect. 3 introduces the
concept of the survival and event maps, which are used to acquire initial conditions (named
lunar target states) that lead to lunar impact or capture. Section 4 describes the overall process
used to find, and further optimize, transfers. The process of Sect. 4 is used to arrive at some
results for a planar Lyapunov orbit at L2, which are presented in Sect. 5. An initial study of
the use of solar radiation pressure to aid the design is given in Sect. 6, with an eye towards
future possibilities where smaller spacecraft with deployable structures may be disposed of
from (perhaps displaced) libration point orbits. Finally, a description of future efforts and
some concluding remarks are offered in Sect. 7.

2 Properties of the coupled CR3BP

The process of connecting (or patching together) three-body problems has been used success-
fully in the past to obtain suitable results that aid in the creation of transfers in a full ephemeris
model. For instance, the methodology has been employed in the study of multi-moon tours
(Koon et al. 2001a, b; Lantoine et al. 2011; Campagnola and Russell 2010) and in the context
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of the CR3BP (Koon et al. 2001a, b; Gómez et al. 2001; Marsden and Ross 2006; Canalias
and Masdemont 2008; Fantino et al. 2010). The definition and equations of motion of the
CR3BP (Sect. 2.1), its equilibrium points (Sect. 2.2), the flow near these equilibrium points
(Sect. 2.3), and the method of connecting two CR3BPs (Sect. 2.4) provide the background
theory from existing literature on which the subsequent sections (use of the survival maps
and the design of the transfers) rely.

The motion of a spacecraft from a Sun–Earth L1/L2 libration point orbit towards the Moon
is modelled in this work by using two coupled CR3BP models. This effectively divides a
trajectory into two separate segments, each using a different gravitational model, where the
initial segment is modelled within the framework of the Sun–Earth CR3BP while the second is
modelled within the framework of the Earth–Moon CR3BP. The partial trajectories from both
CR3BP models are connected at a specified point, via coordinate system conversion, to create
a single trajectory that would approximate the trajectory in the actual four-body dynamics.
The Sun–Earth CR3BP has as primary masses the Sun and the Earth–Moon barycentre (the
mass of the Earth–Moon barycentre is considered here to be the combined mass of the Earth
and the Moon).

2.1 Definition of the CR3BP

The circular restricted three-body problem (CR3BP) is a particular case of the three-body
problem (being in itself a special case of the more general n-body problem). The restricted
problem has been studied extensively in the past, and can be described as two masses (or
primaries) of symmetric mass distribution (i.e. they may be considered as point masses) that
revolve around their centre of mass in a circular motion. A third massless particle moves
within the system of the two revolving primaries without influencing their motion (thus
the problem is considered restricted). The CR3BP describes the motion of this third body.
The equations of motion of the CR3BP can be derived in several ways, and many reference
texts provide a detailed description of the problem formulation. A comprehensive Newtonian
approach may be found in the book of Szebehely (1967), and a Lagrangian approach can be
found in the book of Meyer et al. (2009). It is convenient to make the system non-dimensional
by giving the system a unit of mass (or m1 + m2 = 1), by choosing the distance between the
primaries to be a unit of length, and by choosing the unit of time such that one full orbital
period of both primaries is 2π . As a result of this last choice the angular velocity of the
two primaries about the barycentre is ω = 1 (thus making the gravitational constant unity
due to this fact and the fact that the total mass is 1). The masses are made dimensionless by
dividing each mass by the total system mass. If we assume that m1 > m2 we may write for
the dimensionless masses μ1 = 1 − μ and μ2 = μ. The system is now solely defined by the
mass ratio of the primaries μ. Due to the rotation of primaries the equations of motion contain
the time explicitly in the inertial system. The explicit appearance of time in the equations of
motion is commonly eliminated by using a suitable rotating system (non-inertial) where the
more massive primary is placed along the x axis at (−μ, 0, 0) and the less massive primary
is placed at (1 − μ, 0, 0). The resulting equations can be written in vectorial form as

d2r
dt2 + 2ω × dr

dt
+ ∇U (r) = 0, (1)

where r is the position vector of the massless third body. The angular velocity vector ω of
the rotating frame is defined as

ω = ωez, (2)
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Fig. 1 Diagram showing the
equilibrium points in the CR3BP
in the rotating frame (with the
barycentre being the origin of the
axes x and y) and the forbidden
region (shown in grey) for a
particular value of the Jacobi
constant

where ez is the positive unit vector along the z axis (as stated above, the magnitude of the
angular velocity is ω = 1 in the non-dimensional problem). The three-body gravitational
potential is defined by

U (r) = −
(

1

2
|ω × r|2 + 1 − μ

r1
+ μ

r2

)
. (3)

In this work, a mass ratio of μEM = 1.2150587 × 10−2 is used for the Earth–Moon set
of primaries, and a mass ratio of μSE = 3.0404234 × 10−6 is used for the Sun–Earth set
(here the smaller primary is considered to be the summed mass of the Earth and Moon). The
positions of the third body (i.e. the spacecraft) w.r.t. the primary r1 and primary r2 are

r1 = [x + μ, y, z] ,

r2 = [x + μ − 1, y, z] . (4)

This system of equations has a first integral, named the Jacobi integral, which relates the
value of the Jacobi constant with the gravitational potential and the velocity components of
the massless particle. The integral is given by

J = − (
ẋ2 + ẏ2 + ż2) + 2U (x, y, z). (5)

2.2 Equilibrium points and Hill’s region

The CR3BP is known to have five equilibrium points; three unstable collinear points are
located along the x axis (named L1, L2, L3) and two equilateral points (named L4 and L5),
which are stable for the mass ratios considered here. All five equilibrium points lie in the
plane of rotation of both primaries (see Fig. 1 for a plot of their locations). These can be found
by solving ∇U (r) = 0 under the assumption of a planar configuration (i.e. all out-of-plane
z components are equal to zero). For a particular energy level of the system (by setting a
constant value for the Jacobi constant) the regions around the primary can be divided into
a region where the particle may travel (known as the Hill’s region) and a forbidden region
(shown for an example energy level as the grey area in Fig. 1) which the particle may not
access for the given value of the Jacobi constant.
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Fig. 2 Illustration of the
unstable (red) and stable (blue)
invariant manifolds, and their
direction of flow, associated to a
periodic orbit at L1 in the
Earth–Moon system

2.3 Periodic orbits and their flow

As we are studying the departure of spacecraft from periodic orbits at Sun–Earth L1 and L2

and their arrival towards the Moon via L2 from the exterior region in the Earth–Moon system
we restrict our discussion to the motion about L1 and L2. There are four possible motions
(Conley 1968) near each of these two equilibrium points: transit orbits that allow passage
between the exterior and the interior regions, non-transit orbits where the particle approaches
the equilibrium region but returns back into the region the particle came from, and unstable
periodic orbits where the particle remains in the vicinity of the equilibrium point. The 4th type
is the particle asymptotically joining or leaving the periodic orbit. These asymptotic orbits
are part of a larger structure of invariant manifold ‘tubes’ (McGehee 1969; Gómez et al.
2001). The borders of these tubes form the boundary between the transit (inside the tube) and
non-transit orbits (outside the tube). There are four manifold ‘tubes’; two stable manifolds
where the particle flows towards the equilibrium region and two unstable manifolds where
the particle flows away from the equilibrium region. These are shown in Fig. 2 for an example
periodic orbit at the L1 libration point in the Earth–Moon system. There exist a number of
periodic orbits near the collinear libration points; for instance horizontal Lyapunov orbits
(in the plane of the primaries), vertical Lyapunov orbits (figure eight shape where the orbit
intersects the plane of the primaries in a single location in the rotating reference frame), and
three-dimensional halo orbits. The existence of quasi-periodic orbits has also been shown:
the Lissajous family of orbits that are around the vertical Lyapunov orbits, as well as the
quasi-halo orbits that are around the halo orbits (Gómez et al. 2000a, b).

2.4 Connecting the CR3BPs

Connection between the two CR3BPs is accomplished by converting coordinates from one
system to the other. This conversion occurs when the spacecraft, on its way from the Sun–
Earth L1/L2 equilibrium region, crosses the x location of the second primary (the combined
mass of the Earth and Moon) in the Sun–Earth synodical system. Here it is assumed that both
systems are coplanar and that both pairs of primaries are in circular orbits around another.
To convert the position from Earth–Moon to Sun–Earth reference frame the relation

ηSE = lEM

lSE
eiαηEM + 1 − μSE, (6)

where complex notation is used, where the x and y components are given by

ηSE = xSE + iySE, ηEM = xE M + iyEM . (7)
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The distances between the Sun and Earth and Earth and Moon are given by lSE = 1.495979×
108 km and lEM = 384,400 km. The mass parameter μSE that defines the Sun–Earth system
is computed by

μSE = m E + mM

m E + mM + mS
. (8)

The masses are given for the Earth as m E = 5.973699 × 1024 kg, for the Moon as mM =
7.347673 × 1022 kg, and for the Sun mS = 5.973699 × 1030 kg. The angle α representing
the relative geometry of both systems (i.e. the angle between the axes spanned along both
sets of primaries) is computed using

α = α0 + (ωEM − ωSE)
tEM

ωEM
, (9)

where α0 is the initial relative geometry of the system. The angular velocities for both systems
are given by Kepler’s third law as

ωEM =
√

G(m E + mM )

l3
EM

(10)

for the Earth–Moon system, and for the Sun–Earth system as

ωSE =
√

G(m E + mM + mS)

l3
SE

. (11)

This gives an angular velocity of ωEM = 2.66531437 × 10−6 and ωSE = 1.99098670 ×
10−7 rad/s. The velocity from Earth–Moon rotating frame can be converted to Sun–Earth
rotating frame by

dηSE

dtSE
= lEM

lSE

ωEM

ωSE
eiα

(
i

(
1 − ωSE

ωEM

)
ηEM + dηEM

dtEM

)
. (12)

Because is it assumed that both rotating frames lie in the same plane (both systems are
coplanar) the conversion for any out-of-plane conversion is straightforward. The position is
converted using the relation

zSE = zEM
lEM

lSE
, (13)

and the velocity is converted using the relation

żSE = żEM
lEM

lSE

ωEM

ωSE
. (14)

For a comprehensive description of the conversion process (including details on the con-
version to and from the inertial reference frame, and from the Earth–Moon to Sun–Earth
synodical system) the reader is referred to the work of Castelli (2011).

3 Survival and event maps

Regardless of the application, one can be interested in what kind of conditions near the L2

libration point would be beneficial for establishing a long duration quasi-periodic orbit about
the Moon, and what conditions would lead to an impact on the lunar surface. To this end, one
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can analyse the case of a family of virtual spacecraft placed at x = xL2 and at interspaced
points along −0.25 < y < 0.25 within the Earth–Moon CR3BP. These spacecraft can then
be assigned a velocity, for which two methods are provided in this paper. The first assumes a
parallel flow along the x axis, and the second derives the velocity for each point on the basis of
a specified value of the Jacobi constant. In the first method, the spacecraft are then given initial
velocity components ẏ = 0 and ẋ sampled uniformly from the domain −0.2 < ẋ < 0.2 (all
values in the non-dimensional system) such that the initial flow at x = xL2 is always parallel
to the x axis within the Earth–Moon rotating frame. Without loss of generality one can start
by restricting the analysis to the planar case so that the position and velocity along the z axis
are neglected. This leads to a group of initial states where x and ẏ are constant, and y and ẋ
are varied. The state of the spacecraft can be generally written as

xSC = [
xL2 , y, 0, ẋ, 0, 0

]T
. (15)

This group of states (henceforth referred to as lunar arrival states in this work) is then indi-
vidually propagated forward in time until the orbit is no longer deemed stable or until the
maximum propagation time of 3 months is met. In the framework of this discussion an orbit
is considered stable when the spacecraft remains between the locations of the L1 and L2

points along the x axis, and does not impact upon the Moon, i.e. when a set of coordinates
(x, y) fulfils

xL1 < x < xL2 (16)

and √
x2 + y2 > RMoon. (17)

The result of this propagation can be seen in the survival map shown in Fig. 3.
It can be seen in Fig. 3a that large swaths of the map are accompanied by a low lifetime.

Naturally those areas where the value of ẋ are positive correspond to a low orbit lifetime as
the initial condition will tend to cause the spacecraft to immediately exit the Earth–Moon
system past xL2 . The central area in Fig. 3a, however, shows promising areas where the orbit
duration is higher. Note that the reason why the areas with positive ẋ as initial condition have
a non-zero lifetime is because the limit at which the propagation is halted is slightly further
out from the Moon than xL2 . This is to allow for a degree of flexibility where the spacecraft
may initially move in the opposite direction before moving towards the Moon. Additionally,
there is the practical consideration of preventing the propagation from already ceasing at the
initial point. To understand which areas of initial conditions are suitable for lunar impact, and

a b

Fig. 3 a Lunar survival map and b corresponding lunar propagation event map with constant x and ẏ and y
and ẋ varied along axes
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which are suitable for lunar capture, the cause of propagation termination is also recorded.
This is shown in the event map in Fig. 3b. The possible outcomes are stability (shown in
white) as defined previously in Eqs. (16) and (17) for the propagation duration of 90 days,
impact on the lunar surface (shown in light grey), passing outside the lunar region via xL1

(shown in dark grey), and passing outside the lunar region via xL2 (shown in black).
The map in Fig. 3a provides an indication of which initial conditions are suitable to

achieve a lunar capture or a lunar impact, but provides no information about the feasibility of
reaching the desired initial condition from a Sun–Earth libration point orbit. This is addressed
by propagating backwards in time the same set of initial conditions that was used to construct
the survivability map in order to ascertain which regions of the map are reachable from Sun–
Earth libration point orbit. This process is relatively quick as the propagation from an initial
state is immediately halted when the arc passes x = xL1 . The value of y at xL1 is checked
when this occurs, to verify that the state is now in the exterior region (i.e. outside the surfaces
of Hill) of the Earth–Moon system. Conversely, states that are inside the Earth–Moon system
have originated from within the interior region of the surfaces of Hill. These states are
unreachable from Sun–Earth libration point orbit and thus are filtered out of the set of valid
initial conditions. A graphical representation of this is shown in Fig. 4, where the unreachable
initial conditions are set to a lifetime of zero (indicated in Fig. 4 by a shade of dark red).
It can be seen that the regions of interest are not adversely affected in this case. One can
observe a central symmetry here (due to the symmetric properties of the CR3BP), where the
states leading to exit via L1, lunar impact, and 90 days stability are point reflected via the
centre of the plot to the filtered out regions on the map. To illustrate this, a state (−ẋ,+y)

on the map with positive survival time leads to motion about the Moon and has originated
from the exterior region. This point is reflected to become (+ẋ,−y), and will now show
opposite behaviour; the spacecraft immediately leaves the lunar vicinity. It can be seen that
those states leading to exit via L2 (as indicated by Fig. 3b) are generally not reflected onto the
filtered part of the map. This stands to reason as any state leading to immediate exit towards
the exterior region would, when point reflected, lead to movement towards the Moon and
thus a non-zero lifetime.

In addition to the first method of specifying velocity one may also create a survival map
by setting an energy level of the system, or in other words choosing a value of the Jacobi
constant of motion

Fig. 4 Lunar survival map with
constant x and ẏ and y and ẋ
varied along axes with filtering of
unreachable initial conditions
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J = − (
ẋ2 + ẏ2 + ż2) + x2 + y2 + 2

(
1 − μ

r1
+ μ

r2

)
, (18)

obtained from the Jacobi integral of the three-body problem (Szebehely 1967) where r1 and
r2 are the scalar lengths of the vectors given by Eq. 4. Since this paper focuses only on the use
of two dimensional maps, the z components will be disregarded (z = ż = 0). By choosing a
value of the Jacobi constant, assuming a value of x = xL2 , and given a mesh of values of y
and ẋ , the corresponding value of ẏ (and −ẏ) can be computed. Then, as for the previous map
the entire set of initial conditions can be propagated forwards in time to study the behaviour.
The resulting maps for the set of Jacobi constants J = [3.00, 3.05, 3.10, 3.15] is given in
Fig. 5a, along with the corresponding event map in Fig. 5b. The plots contain empty regions,
due to no valid real value of ẏ existing for particular combinations of the Jacobi constant
and the other state parameters. The states that are stable for at least 90 days are only found
for J = 3.00 and for clarity’s sake are marked in the event map in Fig. 5b as green dots
on the event map. As the Jacobi constant increases the forbidden zone of the Hill’s regions
increases, and thus the region of interest on the maps becomes smaller and smaller. As a
result, increased resolution is generally needed to reveal the structures on the map. This
increased resolution comes at an additional computational cost, which is offset by the fact
that the region of interest on the maps has also shrunk.

An example lunar target state from each category of event is taken from the survival map
shown in Fig. 3 and propagated both forwards and backwards in time. The results are shown
in Fig. 6 for a lunar target state leading to weak capture, impact, and exit from the vicinity
of the Moon via L1 and L2.

a b

Fig. 5 a Set of four lunar survival maps and b corresponding set of four lunar propagation event maps with
constant J and y and ẋ varied along axes

Fig. 6 Example lunar target
states (left four subplots) in the
Earth–Moon rotating reference
frame leading to a weak capture,
b impact, c leaving the vicinity of
the Moon towards the interior
region, and d leaving the vicinity
of the Moon towards the exterior
region. Right Plots e through h
are the corresponding plots in the
inertial reference frame centred at
the Earth

a b

c d

e f

g h
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Note that the methodology used to create these maps can also be used for non-planar
problems by extending the maps with the addition of the z components for position and
velocity. Keeping in mind that the maps define a set of target states with associated surviv-
ability, one possible extension features the definition of a plane normal to the x axis vector.
Points are sampled on this plane, providing a set of positions (x, y, z) where x is fixed.
By assuming a value of the Jacobi constant the velocity components (ẋ, ẏ, ż) can be com-
puted using two free angles. For every pair of coordinates in the y–z plane one can select
the optimal velocity components that maximise survivability. This extension merely requires
a more involved initial computation to generate the map. Other extensions are possible but
require additional assumptions on the velocity components. These extensions, however, are
not required to complete the analyses in this paper and are left for future work. Finally, it
should also be noted that these maps can be constructed for transfers entirely within one
CR3BP, for example interior transfers between the Earth and Moon (Van der Weg and Vasile
2012). The resulting set of initial conditions, their corresponding orbit lifetime, and their
category of decay (impact or exit via libration points) can now serve as the basis for the
design of transfers from Sun–Earth libration point orbits towards the Moon.

4 Transfer design using the maps

As described briefly in Sect. 2, the transfer between Sun–Earth libration point orbit and
Moon is modelled in two parts: the initial leg in the Sun–Earth CR3BP and the leg describing
the motion nearer to the Earth and Moon in the Earth–Moon CR3BP. The transfer from
Sun–Earth L1/L2 libration point orbit (which defining parameters are given) to the Moon
consists initially of following the branch of the unstable manifold, generated from the periodic
orbit, towards the Earth–Moon barycentre in the Sun–Earth CR3BP. Instead of utilizing the
stable manifold branch (originating from a libration point orbit at L2 in the Earth–Moon
system) in the Earth–Moon CR3BP to bring the spacecraft towards the Moon (as would
be typical for a WSB transfer, see Koon et al. 2001a, b), use is made of the lunar arrival
states on the survival map to directly target desired conditions near the Moon (such as weak
capture or impact). The procedure outlined in this section is usable for both planar as well
as non-planar cases. However, the results generated in the following section assume the two
connected CR3BPs to be coplanar and make use of planar survival maps. The procedure
remains unchanged; merely z and ż are always equal to zero for this case. Both individual
transfer legs are described here by their position (x, y, z) and their velocity (ẋ, ẏ, ż) along a
discretized period of time, effectively giving two 6 × N matrices (where N differs for both
legs due to numerical integration and the period of time thereof). The initial leg modelled in
the Sun–Earth CR3BP is denoted by slpo, and the second leg modelled in the Earth–Moon
CR3BP is denoted by σm . An example of a stable branch of an invariant manifold in the
Earth–Moon CR3BP, as well as a subset of arcs leading to lunar capture and impact, is shown
in Fig. 7. The stable branch denoting the flow towards the Moon from the exterior regions is
shown in black, whereas the weak capture (shown in blue) and impact (shown in red) arcs are
obtained from a representative sampling of the survival map in Fig. 3. Figure 7 illustrates that
the collection of capture and impact arcs show the same behaviour as the manifold structure
flowing towards its associated libration point orbit.

A connection between the arcs slpo and σm from both Sun–Earth and Earth–Moon CR3BPs
can be made by transforming one set of states into the reference frame of the other σm(α0) →
sm , and subsequently searching for intersections on a given Poincaré section. The initial orbital
phases αSE

0 and αE M
0 of both CR3BPs control the geometry of the connection, but this is
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Fig. 7 Stable manifold branch
flowing towards the Moon from
the exterior of the Earth–Moon
system (shown in black), the flow
towards the Moon based on a
representative selection of lunar
arrival states targeting weak
capture selected from Fig. 3
(shown in blue), and the flow
towards the Moon based on a
representative selection of lunar
arrival states targeting lunar
impact selected from Fig. 3
(shown in red)

Fig. 8 a Both unstable manifold from Sun–Earth L1 (black) and stable manifold from Earth–Moon L2 (blue)
shown in Sun–Earth synodical barycentric reference frame, b unstable manifold from Sun–Earth L1 LPO
(black) and initial states leading to lunar impact (blue) shown in Sun–Earth synodical barycentric reference
frame, and c unstable manifold from Sun–Earth L1 LPO (black) and initial states leading to lunar quasi-capture
(blue) shown in Sun–Earth synodical barycentric reference frame

reduced to a single parameter α0 (=αE M
0 − αSE

0 ) as only the relative phasing between Sun–
Earth and Earth–Moon systems is necessary (Fantino et al. 2010). The concept is illustrated
in Fig. 8a, where a segment of arcs in the Earth–Moon system (shown in blue) has been
converted into the Sun–Earth barycentric synodical reference frame.

A wide selection of lunar arrival states from the lunar survival map that lead to successful
capture and to lunar impact are propagated backwards in time and the obtained arcs are
translated into the Sun–Earth CR3BP. The resulting plot of lunar arrival states resulting in
impact are shown in Fig. 8b, and for capture in Fig. 8c, for an initial orbit phasing of α0 = 0.
In both figures, these arcs (a group of arcs sm) are shown in blue while a segment (a group
of arcs slpo) of an unstable invariant manifold is plotted in black for the sake of comparison.

The connection between the trajectory arcs from both CR3BPs is made on a plane P at
x = 1 − μ in the Sun–Earth CR3BP (the barycentre of the Earth–Moon system) whose
normal vector is ex = [1, 0, 0]. An arc σm flowing towards the Moon—after having its states
converted σm (α0) → sm from Earth–Moon to Sun–Earth reference frame—thus has a certain

position and velocity s1−μ
m when it intersects the plane P. This arc must then be connected

to an arc slpo on the unstable manifold leading away from the Sun–Earth system libration

point. This second arc also intersects plane P, but at s1−μ
lpo . For the matching of the arcs to
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Fig. 9 Poincaré sections of
ẏ − y (left) and ẋ − y (right)
phase space at x = 1 − μ in the
Sun–Earth CR3BP, showing the
intersections from the unstable
manifold from the L1 LPO (black
line) and the intersections from
the initial states leading to lunar
impact (blue points)

Fig. 10 Poincaré sections of
ẏ − y (left) and ẋ − y (right)
phase space at x = 1 − μ in the
Sun–Earth CR3BP, showing the
intersections from the unstable
manifold from the L1 LPO
(black) and the intersections from
the initial states leading to lunar
capture (blue)

be correct the y and z (if the problem is entirely planar z components can be disregarded)
position components of s1−μ

m should be equal to those of s1−μ
lpo . The two connecting arcs will

have a certain disparity in velocity, which is corrected for by manoeuvre. Poincaré sections at
x = 1 − μ (the barycentre of the Earth–Moon system) in the Sun–Earth CR3BP for velocity
components ẋ and ẏ illustrate this in Fig. 9, which shows the intersection of the unstable
manifold from the Sun–Earth libration point orbit in black and the intersecting points of
the flow leading towards selected lunar impact states in blue for the case of an initial orbit
phasing of α0 = 0. The insets show the (exaggerated in this case for the sake of clarity)
velocity change of ẋ and ẏ to jump from the Sun–Earth CR3BP unstable manifold unto a
selected arc intersection s1−μ

m . Figure 10 shows the same intersections as in Fig. 9, but for
selected lunar capture, instead of impact, states.

If the arcs sm leading towards the Moon are numerically integrated for a sufficiently
long period of time, they will cross the intersection plane multiple times. For each of these
intersections a connection can be attempted with the unstable manifold. Naturally, transfer
duration will increase when the connection is made at a later intersection (the increase in
transfer time is dependent on the specific arc). Another consideration for a trajectory where
the connection is delayed until a later intersection is the gravitational influence of the Sun.
As the arc leading from the intersection plane towards the Moon takes more and more time
(and also generally starts further out on plane P) the ability of the Earth–Moon CR3BP to
approximate the full body dynamics degrades.

The general solution space for a set of lunar arrival states and a particular libration point
orbit can be effectively and quickly mapped by computing and storing the unstable manifold
trajectory arcs slpo from the Sun–Earth libration point orbit and the trajectory arcs σm flowing
towards the lunar target states. Once this is computed, the transformation of the lunar target
state arcs from Earth–Moon to Sun–Earth synodical barycentric reference frame (σm(α0) →
sm) can be performed for a range of values of the orbital phasing angle α0. For each lunar
target state trajectory arc and value of orbital phasing angle α0 the best matching arc flowing
from the Sun–Earth libration point orbit can be found. The criterion is the lowest �v to
connect both arcs, which at the same time satisfies the positional difference on the Poincaré
section (on plane P) to within set tolerance. Promising pairs of intersections can then be
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refined further by way of an optimization process. A number of matching pairs can be found
based on ranking, which then serve as initial guesses for an optimization process using an
SQP gradient solver (Nocedal and Wright 2006). The optimization initially only accounts
for two design parameters α0 and β. This can be expressed as the design variable vector

x = [α0 β], (19)

where α0 is the initial orbit phasing and β is the position along the Sun–Earth libration point
orbit expressed as a curvilinear coordinate within the domain of [0, 2π ] where 0 is chosen
as the position on the libration point orbit at y = 0 and with the smallest value for x . The
same position along the circuit of the libration point orbit is reached at 2π after clockwise
rotation. Note that for initial optimization both parameters are assumed to be independent of
each other. When translating this problem to a full ephemeris model an initial time will both
proscribe the geometry of the planets α0 as well as the position of the spacecraft on the LPO
β, reducing the number of variables to 1. The state of the arc slpo flowing from the libration

point orbit at the intersection with plane P at x = 1 − μ is denoted as s1−μ
lpo = [

plpo, ṗlpo
]
,

where plpo and ṗlpo are the three element position and velocity vectors at plane P in the
Cartesian coordinate system in the Sun–Earth synodical reference frame, respectively. In a
similar fashion, the state from the arc sm flowing towards the lunar vicinity at the intersection
with the plane P is denoted as s1−μ

m = [
pm, ṗm

]
. The objective of the optimization is to

minimize the velocity change necessary to change the velocity at the intersection such that
the velocity is matched between s1−μ

lpo and s1−μ
m . This can be expressed as

f (x) = �v = ||ṗlpo − ṗm ||. (20)

The positional difference between the two arcs as they meet at plane P is added as an equality
constraint

c(x) = ||plpo − pm || (21)

to the optimization process. This ensures any remaining gap between the arcs meeting at
plane P is closed. Once a single optimization pass has been completed (after having either
satisfied constraint tolerances or having reached the maximum number of evaluations) the
design variable vector is expanded to

x = [
α0 β �vlpo γlpo δlpo �vm γm δm

]
, (22)

where two manoeuvres are introduced at departure from the libration point orbit and at
arrival near the Moon (at the position of the chosen lunar target state). �vlpo and �vm are
the magnitudes of the manoeuvres, γlpo and γm are the respective in-plane right ascensions
of the manoeuvres (counted from the tangential direction of the velocity change vector to its
projection on the orbital plane), and δlpo and δm are the respective out-of-plane declinations
of the manoeuvres (the angle between projection of the velocity change vector on the orbital
plane and the velocity change vector itself). In the case of a planar transfer from a planar
Lyapunov orbit the out-of-plane declinations for both manoeuvres are zero. The optimization
process is now repeated with the same objective and constraints.

5 Disposal results for an L2 Lyapunov orbit

As a case study, the prior described algorithm, lunar survival map, and event map are now
used to generate �v maps for both capture and impact transfers from an initial libration orbit
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Fig. 11 Representation of
Herschel orbit in the CR3BP
(back) and a planar Lyapunov
orbit (blue) sharing the same
amplitude along x and y axes

Fig. 12 �v map of the 1st
intersection for lunar capture
from Lyapunov orbit at L2

(in this case a planar Lyapunov orbit) at L2 that shares the in-plane amplitude characteristics
of the Herschel spacecraft (ESA 2013). Both of these orbits are shown in Fig. 11. The orbit
is defined in the Sun–Earth CR3BP by a Jacobi constant of J = 3.00080469, an x amplitude
of 3.2816 × 10−3 and a y amplitude of 1.03808 × 10−2 (non-dimensional units).

An online supplement is available separately, which also includes two further test cases:
a second planar Lyapunov orbit representing a planar image of the operational orbit of the
SOHO spacecraft (Felici 1995) at L1 and a full CR3BP representation of the operational
orbit of SOHO (with out-of-plane z component) to test the sensitivity of the procedure (using
planar lunar arrival states from the survival map) to non-planar transfers.

Given the libration orbit defined above, a subset of lunar arrival states is selected for the
generation of the results. In the case of capture, states with an excellent survival time of
at least 65 days are selected from the map (regardless of whether the orbit deteriorates by
impacting the Moon, or escaping past L1 or L2). For the case of impact, only those states
that impact the Moon, and with a not too long survival time (<30 days) are selected.

The results for lunar capture are provided in Figs. 12 and 13. These results were created
by sampling the initial orbital phasing angle values α0 at 1◦ intervals. The results presented
in the figures are before optimization but fulfil relatively strict constraints on the distance
between the meeting points s1−μ

lpo and s1−μ
m of the arcs at plane P. In the worst case the
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Fig. 13 a �v maps of the first six intersections for lunar capture from Lyapunov orbit at L2 and
b �v map of the best results from the first six intersection for lunar capture from Lyapunov orbit at L2

Fig. 14 �v map of the 1st
intersection for lunar impact from
Lyapunov orbit at L2

constraint violation at plane P may be up to 1500 km, but most transfers have a difference of
a few 100 km. These constraint violations can be reduced by using the optimization process in
Sect. 4. Figure 12 shows the �v cost in m/s (ranging from 0 to 100 m/s) for each selected lunar
arrival state for the very first intersection that occurs at the intersection plane P. Figure 13a
shows the �v cost in m/s for the first six intersections of each arc sm with the intersection
plane. Multiple crossings are achieved by increasing the numerical integration time for each
arc; instead of halting propagation after the first intersection it is halted after a number of
successive intersections with plane P. A plot showing the best �v value found from among
all first six intersections per lunar arrival state is given in Fig. 13b.

The lower area of Fig. 12 for the L2 ranges from near-zero to ca. 30 m/s �v cost. The
lowest value found in the first intersection is 1.526 m/s (before optimization). �v cost is
not substantially improved in the second intersection (Fig. 13a) with the lowest value being
1.424 m/s. Sampling further sections provides no performance benefit in this case.

The results for lunar impact are given in Figs. 14 and 15. As was the case for lunar capture,
the results were created by sampling the initial orbital phasing angle values α0 at 1◦ intervals.
The results presented in the figures are before optimization but fulfil the same constraints
on the distance between the meeting points s1−μ

lpo and s1−μ
m of the arcs at plane P as was the
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a b

Fig. 15 a �v maps of the first six intersections for lunar impact from Lyapunov orbit at L2 and
b �v map of the best results from the first 6 intersection for lunar impact from Lyapunov orbit at L2

Fig. 16 Plots of example
trajectories: a L1 lunar impact,
b L2 temporary lunar capture, c
L1 temporary lunar capture with
two intersections, and d
non-planar L1 capture in the
Sun–Earth synodic reference
frame

case for lunar capture. Figure 14 shows the �v cost in m/s (ranging from 0 to 150 m/s) for
each selected lunar arrival state for the very first intersection that occurs at the intersection
plane P. Figure 15a shows the �v cost in m/s for the first six intersections of each arc sm

with the intersection plane. Multiple intersections are achieved by increasing the numerical
integration time for each arc; instead of halting propagation after the first intersection it is
halted after a number of successive crossings with plane P. A plot showing the best �v value
found from among all first six intersections per lunar arrival state is given in Fig. 15b.

As can be seen from the figures the selected lunar arrival states that lead to impact cover
a much wider portion of the generated survival map than those states that lead to capture.
Connections between the libration point orbit and lunar impact can be achieved for a number
of lunar arrival states at near-zero �v cost within the first intersection, before optimization.
The lowest value found in the first intersection is 2.19 m/s. The �v cost remains between 1
and 3 m/s for succeeding intersections (Fig. 15a).

Four example trajectories, after optimization, are plotted in Fig. 16, where the libration
orbits are shown in red, the segments after the transfer has reached its lunar arrival state
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are shown in blue, and the connection manoeuvres for the trajectories are shown as stars.
The first trajectory (a) is a planar trajectory from the libration point orbit at L1 that leads to
impact upon the lunar surface, costing slightly <1 m/s to connect the two legs. The second
trajectory (b) is a planar trajectory from the libration point orbit at L2 that is captured
by the Moon for at least 3 months before the spacecraft exits the lunar vicinity via L1 in
the Earth–Moon system. This connection manoeuvre cost 1.6 m/s. The third trajectory (c)
shows a capture trajectory from L1 where two intersections occur before the Sun–Earth
and Earth–Moon legs are connected, costing 12 m/s. The fourth trajectory (d) shows a non-
planar example (costing 142 m/s to connect) of a lunar capture, including a side view of the
trajectory.

6 Redesign of the transfer using solar radiation pressure

This section investigates the use of a hybrid propulsion system, combining solar radiation
pressure and impulsive maneuvers, to complete the transfer. Alongside the classical definition
of the CR3BP, a modified version, adding solar radiation pressure (Simo and McInnes 2009),
is employed to study the trajectory in the Earth–Moon CR3BP. The larger primary m1 is the
Earth and the smaller primary m2 is the Moon. The two primaries move about their centre
of mass in a circular orbit while the third body is of negligible mass such that it is unable to
influence the movement of the two primaries (cf. Fig. 17).

The equations of motion now change from those given in Eq. (1) to

d2r
dt2 + 2ω × dr

dt
+ ∇U (r) = a, (23)

where a is the introduced acceleration of the solar radiation pressure. When the solar radiation
pressure is taken into account for the Earth–Moon set of primaries, the acceleration due to
the solar radiation pressure is defined as

a = a0 (S · n)2 n, (24)

where a0 is the magnitude of the solar radiation pressure acceleration, n is the unit vector
normal to the surface of the reflective surface of the spacecraft, and S is the direction vector
of sunlight given by

Fig. 17 Schematic geometry of
circular restricted three-body
problem (z-axis pointing out
from paper)
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S = [cos (ws t + S0) − sin (ws t + S0) 0], (25)

where ws is the angular rate of the sunlight vector in the synodic reference frame. S0 represents
the initial direction of the sunlight at t0 (if this term is omitted the direction of sunlight is
initially directly along the axis of the primaries from the larger primary Earth to the smaller
primary). The angular rate of the sunlight vector ws can be determined by subtracting the
dimensionless value of the rotation rate of the Earth about the Sun from the rotation rate of
the Moon about the Earth (equal to unity in the dimensionless system), obtaining ws = 0.923
as the angular rate of the sunlight in the dimensionless synodic reference frame.

The magnitude of the solar radiation pressure a0 within the dimensionless Earth–Moon
system is chosen based on the lightness number λ, which is a dimensionless parameter defined
by the ratio of the acceleration experienced by the reflective surface normal to the Sun line
and the Sun’s local gravity field. At 1 AU this is defined as

λ = ac

5.93 × 103 m/s2 , (26)

(from Dachwald et al. 2002) where ac is the characteristic acceleration given by

ac = Peff 1AU

A

m
= 2ηP01AU

A

m
. (27)

Here the area to mass ratio A/m is a parameter of the spacecraft and Pef f1AU is the effective
pressure acting upon the reflective surface at 1 AU distance from the Sun. An aluminium
coated plastic film with an efficiency of 85 % (η = 0.85) is assumed. The solar radiation
pressure at 1 AU is P01AU = 4.4563 × 10−6 N/m2. With these parameters and an assumed
value for the spacecraft’s area to mass ratio the lightness number can be computed and used to
serve as the acceleration magnitude a0. While the spacecraft moves within the Earth–Moon
CR3BP the distance from the Sun is considered to remain constant at 1 AU such that the
scalar magnitude of the solar radiation pressure remains constant throughout the trajectory
arc.

The reflective surface can be controlled passively such that the spacecraft is generally
always facing the Sun via the use of particular shapes (e.g. a cone). A more active control
is considered here, where the reflective surface is controlled using a locally optimal con-
trol law obtained from maximising the change in velocity (in order to increase or decrease
the energy) along the velocity vector of the spacecraft. This is derived from studying the
geometry of the surface and incoming sunlight vector (McInnes 2004), and can be written
as

γ = atan

(
3 tan α

4
+

√
9 tan2 α + 8

4

)
. (28)

The angle α is defined as

α = −asin(ev · S), (29)

where ev and S represent the unit vector of velocity of the spacecraft and the unit vector of
the sunlight direction (see Eq. 25), respectively. The angle γ is the angle between sunlight
unit vector S and the unit vector n, which defines the spacecraft’s surface pointing direction.
This angle γ is measured in the plane spanned by S and ev . To locally maximize the increase
of energy the rotation is positive, while for local maximization of the decrease of energy the
rotation is in the opposite direction (−γ ). If S = 〈x, y, z〉 and S × ev = 〈u, v, w〉 then the
rotation can be written as
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n =
⎡
⎣−u (−ux − vy − wz) (1 − cos γ ) + x cos γ + (−wy + vz) sin γ

−v (−ux − vy − wz) (1 − cos γ ) + y cos γ + (wx − uz) sin γ

−w (−ux − vy − wz) (1 − cos γ ) + z cos γ + (−vx + uy) sin γ

⎤
⎦. (30)

Once the unit vector n is known the acceleration is known and the equations of motion can
be numerically solved. In essence, this control aims to close the gap in energy level between
the starting point at the LPO and the finishing point at the lunar target state. In both the
Sun–Earth and Earth–Moon problems the velocity of the spacecraft is changed locally in an
attempt to change the energy level (or Jacobi constant).

As a first indication of the influence of the solar radiation pressure and control law, transfers
are generated (as described in Sect. 4) for a set of lunar target states leading to weak capture.
This set is acquired by evenly sampling 1,000 times across the region of −0.05 < ẋ < 0 and
−0.05 < y < 0 in Fig. 4, and selecting only those states leading to a survival time >2 months.
An attempt is made to generate a valid transfer for each of the 1,000 lunar target states across
the range of possible orbital phasing angle α0 at increments of 1◦ (thus in effect producing
a theoretical maximum of 359,000 transfers). Each transfer consists of the most suitable arc
slpo flowing from the LPO and the arc sm flowing towards the selected lunar target state. If
the positional distance between the arcs at plane P is >1 km it is discarded. This analysis is
performed with and without the effect of solar radiation pressure (assuming an area-to-mass
ratio of 4). The plot in Fig. 18 shows the areas where improvement was able to be made using
a solar sail. Empty areas on the plot represent cases where either no improvement was found,
or no transfer was found with a position mismatch at plane P smaller than 1 km. Note that
the points (which size on the plot have been exaggerated for legibility) showing a maximal
(100 m/s) improvement are those where a transfer without solar pressure could not be found
for <100 m/s cost.

The computation with solar radiation pressure is unfortunately more involved than without,
as the initial orbital phasing angle α0 controls the initial direction of sunlight in the Earth–
Moon system. Thus, to accurately account for the acceleration due to solar radiation pressure
one must numerically integrate the arcs leading to the lunar arrival states for each particular
value of the phasing angle α0, effectively multiplying computation time by the number of
initial angles used. Using the simple control law in Eq. (28) it is already possible to achieve
a less costly connection for some—but not all—of the lunar target states. From the 1,000
states in Fig. 18 44.3 % of them scored a better �v cost at the first crossing with plane P, and
56.3 % if further crossings are taken into account (all values of phasing angle are taken into

Fig. 18 Solution space mapping
of the lunar target states leading
to weak capture showing the �v

improvement of using a sail as a
function of lunar target state and
the initial orbital phasing
angle α0
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Fig. 19 Poincaré sections of (a)
ẋ − y and (b) ẏ − y phase space
at plane P in the Sun–Earth
CR3BP, showing the intersections
from the unstable manifold from
the L1 LPO (black) and the
successive intersections from the
initial states at the Moon for a
spacecraft with area to mass
ratio 4

account per target state). Additionally, the better connections occur at different values of the
initial phasing angle α0. Although the phasing angle is effectively a selectable parameter in
the CR3BP it has an important effect when a transfer is translated into a full dynamic model
using actual ephemeris, where the phasing angle controls what dates a particular transfer can
be flown. This means that the use of the reflective surface can improve the launch window
of spacecraft by allowing for departure from the periodic orbit on more dates in a particular
month.

Corresponding Poincaré sections (at the previously defined plane P) for a spacecraft with
an area to mass ratio of 4 are shown in Fig. 19a for the y − ẋ phase space and in Fig. 19b
for the y − ẏ phase space for the case of an initial orbital phasing α0 = 0. The colouring
from light blue to purple in both figures indicates further intersections at a prior date (as the
numerical integration proceeds backwards in time). As can be seen, despite a fixed initial
orbital phasing, use of a sail can decrease the cost to connect arcs by bringing intersection
points closer to the unstable manifold flowing from the Sun–Earth libration point orbit on
the phase space.

7 Conclusions

An algorithm has been presented that efficiently generates transfers from Sun–Earth libra-
tion point orbit to the Moon. These transfers can then serve as the basis for further opti-
mization or as the starting point for a transfer in a full ephemeris model. It has been shown
that by using the presented survival and event maps lunar impact or weak capture can be
directly targeted at low cost in the planar problem. The computational intensive parts of
the algorithm have to be computed once; the maps are not linked to the particular problem
and thus can be stored for future use. Numerical propagation for the arcs from a partic-
ular LPO have to be performed only once and then stored. Due to these facts, the entire
search space (across the range of orbital phasing) can be quickly scanned in order to locate
where promising initial guesses to generate trajectories lie. Using a basic control law it has
been shown that the use of solar radiation pressure can be used to improve transfer cost to
achieve connection to particular regions of the survival maps. Future work will include the
generation and study of survival maps with differing Jacobi constant (for instance matching
the energy of the map and the LPO) and extending the maps to include a non-planar (z)
component.
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