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Abstract We obtain an approximate solution Ẽ = Ẽ(e, M) of Kepler’s equation E −
e sin(E) = M for any e ∈ [0, 1) and M ∈ [0, π ]. Our solution is guaranteed, via Smale’s
α-theory, to converge to the actual solution E through Newton’s method at quadratic speed,
i.e. the n-th iteration produces a value En such that |En − E | ≤ ( 1

2 )2n−1|Ẽ − E |. The
formula provided for Ẽ is a piecewise rational function with conditions defined by polynomial
inequalities, except for a small region near e = 1 and M = 0, where a single cubic root is
used. We also show that the root operation is unavoidable, by proving that no approximate
solution can be computed in the entire region [0, 1) × [0, π] if only rational functions are
allowed in each branch.

Keywords Kepler’s equation · Smale’s α-theory · Newton’s method · Optimal starter

1 Introduction

Kepler’s laws describe the way planets move in their orbits about the Sun. Geometrically,
they state that the planets move in planar elliptical orbits with eccentricity e ∈ [0, 1) and that
the area swept by the line joining the planet and the Sun increases linearly with time, which
leads immediately to Kepler’s equation E − e sin(E) = M , relating mean and eccentric
anomalies. The mean anomaly is a fictitious angle M that increases linearly with time at
a rate M = 2π t/T , where T is the orbital period, and the eccentric anomaly E gives
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28 M. Avendano et al.

the coordinates of the planet in its orbit plane as (x, y) = (a cos(E), b sin(E)). Here, the
xy-plane has origin at the center of the ellipse with the x-axis pointing to the perihelion,
and the values a and b are the semi-major and semi-minor axis of the ellipse. Therefore,
finding the exact location of a planet at a given time requires solving an instance of Kepler’s
equation for some M , assuming that the values a, b, e and T are known (actually, only a and
e are needed, since b = a

√
1 − e2 and T can be obtained from a using the third law). For a

derivation of these formulas and a detailed introduction to Kepler’s equation, see Battin
(1987).

By a symmetry argument, the equation can be easily reduced to the case M ∈ [0, π].
The existence and uniqueness of solution E ∈ [0, π ] follows from the fact that the function
fe,M : [0, π] → [0, π] given by fe,M (E) = E − e sin(E) − M is strictly increasing.

Several solutions to the problem have been proposed since it was stated 400 years ago.
Some authors have tried non-iterative methods to solve the equation up to a fixed predeter-
mined accuracy (Markley 1995; Mortari and Clochiatti 2007). However, we want to calculate
the solution with arbitrary precision, hence our interest in iterative techniques.

Kepler himself proposed to use a fixed-point iteration to solve the equation (Chap. 1
of Colwell 1993), i.e. guess E0, an approximation of the exact solution E , and then iterate
En+1 = M +e sin(En). This sequence converges to E , since |En+1 − E | = |M +e sin(En)−
E | = e| sin(En) − sin(E)| ≤ e|En − E |, which implies that |En − E | ≤ en |E0 − E | −→ 0
as n → ∞. The problem with this approach is that the convergence is slow for values of
e near 1. For the orbit of Mercury, which has e ≈ 0.2, about five iterations are needed to
reduce the error by a factor of 10−3, while for values of eccentricity e > 0.5 the fixed-point
iteration is even slower than a bisection method.

Although the fixed-point iteration does not provide an efficient solution to Kepler’s equa-
tion, it exhibits the structure of most of the current methods to solve it: first, guess an approx-
imation Ẽ of the solution (called starter), and then use some iterative technique to produce
a sequence quickly converging to the actual solution (see Danby 1987; Danby and Burkardt
1983; Mortari and Elipe 2014; Palacios 2002). For the second part, Newton’s method seems
to be the most used iteration, mainly due to its conceptual simplicity, generality and fast con-
vergence. The guessing part, however, requires some specific understanding on the equation
and has been the subject of many recent papers (Calvo et al. 2013; Mikkola 1987; Ng 1979;
Nijenhuis 1991; Odell and Gooding 1986; Taff and Brennan 1989).

Starters have been compared (and optimized) using different criteria, such as the number
of iterations needed to reach certain precision, the distance to the actual solution, the number
of floating point operations needed for its computation, etc. For this purpose, we adopt a
criterion which is very specific to Newton’s method and guarantees that the iterations reduce
the error at quadratic speed. More precisely, we will only accept an approximate solution Ẽ
of the equation fe,M (E) = 0 if Newton’s method starting at E0 = Ẽ produces a sequence
En such that |En − E | ≤ ( 1

2 )2n−1|Ẽ − E | for all n ≥ 0.
Taking one of these starters satisfying Ẽ ∈ [0, π ], the initial error is at most π , so we

obtain an accuracy 10−N after only n = 	log2
(
1 + log2(π) + log2(10)N

)
 iterations. In
particular, ten iterations of Newton’s method starting from Ẽ give an error less than 10−307

for any input value of e and M .
We will use a simple test, due to Smale (1986) and later improved by Wang and Han

(1990), which depends only on the starter Ẽ and guarantees the speed of convergence that
we claim.
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Solving Kepler’s equation via Smale’s α-theory 29

Table 1 Classical starters Starter Formula

S1 M

S2 M + e sin(M)

S3 M + e sin(M)(1 + e cos(M))

S4 M + e

S5 M + e sin(M)
1−sin(M+e)+sin(M)

S6 M + e(π−M)
1+e

S7 min
{

M
1−e , S4, S6

}

S8 S3 + e4(π−S3)
20π

S9 M + e sin(M)(1 − 2e cos(M) + e2)
− 1

2

S10 s − q
s , where r = 3M

e , q = 2(1−e)
e and

s = [(r2 + q3)
1
2 + r ] 1

3

Definition 1.1 (Smale’s α-test) We say that Ẽ is an approximate zero of fe,M if it satisfies
the following condition

α( fe,M , Ẽ) = β( fe,M , Ẽ) · γ ( fe,M , Ẽ) < α0,

where

β( fe,M , Ẽ) =
∣∣∣∣∣

fe,M (Ẽ)

f ′
e,M (Ẽ)

∣∣∣∣∣
, γ ( fe,M , Ẽ) = sup

k≥2

∣∣∣∣∣
f (k)
e,M (Ẽ)

k! f ′
e,M (Ẽ)

∣∣∣∣∣

1
k−1

and α0 = 3 − 2
√

2 ≈ 0.1715728.

Odell and Gooding (1986) compiled a list of starters that have been proposed in the
literature by many authors. Table 1 provides a formula for those that will be studied in this
paper.

In Sect. 2 we present an analytical study of the starters Ẽ = 0, π, M, M
1−e using the notion

of approximate zero. More precisely, for each of these starters, we obtain in Theorems 2.2, 2.3,
2.4 and 2.5 regions where they satisfy Smale’s α-test, thus providing approximate solutions.
We also show in Theorem 2.6 that Ng’s starter S10 (Eq. 9 of Ng 1979), which is obtained by
solving a cubic equation, gives an approximate solution on the entire domain.

Similarly, in Sect. 3 we compare the remaining starters S2, . . . , S9, and the improved S7

starter obtained by Calvo et al. (Prop. 1, 2013). More precisely, we check numerically where
those starters satisfy Smale’s α-test on a very fine grid of points in [0, 1) × [0, π].

In Sect. 4 we prove Theorem 1.2, showing a simple starter Ẽ = Ẽ(e, M) that satisfies
the α-test for all e ∈ [0, 1) and M ∈ [0, π ]. The starter is a piecewise-defined function that
requires a single cubic root in a small part of the region close to the corner e = 1, M = 0.
Apart from that root, the rest of the expressions involved are constant or rational functions
that can be computed with at most two arithmetic operations. The highlights of this starter are
its computational simplicity and the fact that it is formally proven to converge at quadratic
speed since the first iteration, thus providing arbitrary precision with a very few Newton’s
method steps. It should be noted that reducing the initial error (i.e. the distance from the
starter to the exact solution) is not our design goal.
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Fig. 1 The points where Ẽ = M ,
Ẽ = 3π

2 and Ẽ = π
2 satisfy the

α-test for fe,M (E) are shown in
blue, red and green respectively.
The ones of Ẽ = M

1−e and

Ẽ = 3√
6Me2
e − 2(1−e)

3√
6Me2

appear

in yellow and orange

Theorem 1.2 The starter

Ẽ(e, M) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M if e ≤ 1
2 or M ≥ 2π

3
2π
3 if e ≥ 1

2 and π
4 ≤ M ≤ 2π

3
π
2 if e ≥ 1

2 and π
7 ≤ M ≤ π

4

M
1−e if e ≥ 1

2 , M ≤ π
7 and M <

4√12α(1−e)
3
2√

e
3√

6Me2

e − 2(1−e)
3√

6Me2
otherwise

is an approximate zero of fe,M for all e ∈ [0, 1) and M ∈ [0, π].

This way of constructing an approximate solution by a piecewise function (see Fig. 1)
can be compared to Ng’s approach (see Figure 2 of Ng 1979). However, our function is
computationally simpler because Ng’s formula outside the corner uses rational functions
involving many terms and near the corner uses S10, which requires at least a cubic and a
square root for its computation.

The region near the (1, 0) corner where a cubic root is needed can be reduced as much
as desired but cannot be completely avoided, as can be seen in Theorems 1.3 and 1.4, which
will be proven in Sect. 5. Other authors have found similar obstructions in handling values
of the eccentricity near 1 (Mikkola 1987; Ng 1979; Nijenhuis 1991).

Theorem 1.3 For any ε > 0, there is a piecewise constant function Ẽ defined in ([0, 1) ×
[0, π]) \ ([1 − ε, 1] × [0, arccos(1 − ε)]) that satisfies the α-test.

Theorem 1.4 Let Ẽ be a piecewise rational function in [0, 1)×[0, π] with a finite number of
branches defined by polynomial inequalities. Then there exists (e0, M0) such that Ẽ(e0, M0)

is not an approximate zero of fe0,M0 .

The starter defined in Theorem 1.3 can be extended if ε < 1− cos( π
7 ) to the whole region

by using M
1−e and

3√
6Me2

e − 2(1−e)
3√

6Me2
in the corner, as in Theorem 1.2. This result is the basis

for constructing lookup tables of starters.
Finally, Theorem 1.4 and Remark 5.1 show that the classical starters S1, . . . , S8 and the

improved S7 of Calvo et al. (2013) will necessarily fail near the corner (1, 0), as Figs. 3, 4, 5
and 6 will later illustrate. Our theorem also excludes the possibility of using truncated power
series (with integer exponents) for approximate zeros near the corner.
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Solving Kepler’s equation via Smale’s α-theory 31

2 Analytical study of classical starters via α-theory

In this section we find regions where the starters Ẽ = 0, π, M, M
1−e are approximate zeros

of Kepler’s equation in Theorems 2.2, 2.3, 2.4 and 2.5. We compare these with the regions
computed numerically on a fine grid in Figs. 2 and 3. We also show that Ng’s starter S10

works in the entire region in Theorem 2.6.
Throughout the paper, we will need the following technical result.

Lemma 2.1 Let n ≥ 2 and x ≥ n!
(n+1)n−1 . Then, the sequence {( x

k! )
1

k−1 }k≥n is decreasing.

Proof It is enough to show that ( x
k! )

1
k−1 ≥ ( x

(k+1)! )
1
k for all k ≥ n, which is equivalent to

the inequality ( x
k! )

k ≥ ( x
(k+1)! )

k−1, or more simply x ≥ k!
(k+1)k−1 . Note that the sequence

k!
(k+1)k−1 is decreasing, since

(k + 1)!(k + 1)k−1

k!(k + 2)k
= (k + 1)k

(k + 2)k
< 1.

In particular, x ≥ n!
(n+1)n−1 ≥ k!

(k+1)k−1 for all k ≥ n, as we needed. �

Theorem 2.2 Ẽ = 0 is an approximate zero of fe,M (E) in the region R1 ∪ R2, where

R1 =
{

0 ≤ M ≤ 4α0(1 − e), 0 ≤ e ≤ 3

11

}
,

R2 =
{

0 ≤ M ≤
√

6α0(1 − e)
3
2√

e
,

3

11
≤ e < 1

}

.

Fig. 2 The regions of
Theorems 2.2 and 2.3 are shown
in blue. Red color shows the
points where Ẽ = 0 and Ẽ = π

satisfy the α-test for fe,M (E)

that are not in the blue region

Fig. 3 The regions of
Theorems 2.4, and 2.5 are shown
in blue. Red color shows the
points where Ẽ = M and
Ẽ = M

1−e satisfy the α-test for
fe,M (E) that are not in the blue
region
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32 M. Avendano et al.

Proof It is enough to show that α( fe,M , 0) < α0, which is equivalent to

M

1 − e
sup
k≥3

k odd

(
e

k!(1 − e)

) 1
k−1

< α0,

since f (0) = −M , f ′(0) = 1 − e, f (even)(0) = 0 and f (odd)(0) = ±e. When e ∈ [ 3
11 , 1),

we have e
1−e ≥ 3

8 , and by Lemma 2.1,

sup
k≥3

k odd

(
e

k!(1 − e)

) 1
k−1 =

√
e

6(1 − e)
.

In this case, Smale’s α-test translates into M
√

e√
6(1−e)3/2 < α0, which corresponds to the region

R2. For the remaining case, e ∈ [0, 3
11 ], we have that e

1−e ≤ 3
8 , so

(
e

k!(1 − e)

) 1
k−1 ≤

(
1

16

) 1
k−1 ≤ 1

4
∀ k ≥ 3.

This means that Smale’s condition is implied by M
4(1−e) < α0, which corresponds to the

region R1. �
Theorem 2.3 Ẽ = π is an approximate zero of fe,M (E) in the region R3 ∪ R4, where

R3 =
{
π − 4α0(1 + e) < M ≤ π, 0 ≤ e ≤ 3

5

}
,

R4 =
{

π −
√

6α0(1 + e)
3
2√

e
< M ≤ π,

3

5
≤ e < 1

}

.

Proof Since f (π) = π − M , f ′(π) = 1 + e, f (even)(π) = 0 and f (odd)(π) = ±e, Smale’s
α-test is equivalent to

π − M

1 + e
sup
k≥3

k odd

(
e

k!(1 + e)

) 1
k−1

< α0.

For any e ∈ [0, 3
5 ], we have e

1+e ≤ 3
8 . This gives the following estimate for the supremum:

(
e

k!(1 + e)

) 1
k−1 ≤

(
3
8

k!

) 1
k−1

≤
(

1

16

) 1
k−1 ≤ 1

4
, ∀ k ≥ 3.

This means that Smale’s condition is implied by π−M
4(1+e) < α0, which corresponds exactly to

the region R3. For the other case, where e ∈ [ 3
5 , 1), the supremum is

√
e

6(1−e) by Lemma 2.1,

so the α-condition is reduced to

(π − M)
√

e√
6(1 + e)

3
2

< α0,

which corresponds to the region R4. �
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Solving Kepler’s equation via Smale’s α-theory 33

Theorem 2.4 Ẽ = M is an approximate zero of fe,M (E) in the region
{

0 ≤ e ≤ 1

2

}
∪
{

2π

3
≤ M ≤ π

}
∪ R2,

where R2 is defined as in Theorem 2.2.

Proof Consider first the strip M ≥ 2π
3 .

β( fe,M , M) =
∣
∣
∣
∣

e sin(M)

1 − e cos(M)

∣
∣
∣
∣ ≤
∣
∣
∣
∣

sin(M)

1 − cos(M)

∣
∣
∣
∣ = cot

(
M

2

)
≤ cot

(π

3

)
= 1√

3
.

By Lemma 2.1, we have that for any even integer k ≥ 2,

∣
∣
∣
∣

e sin(M)

k!(1 − e cos(M))

∣
∣
∣
∣

1
k−1 ≤

∣
∣
∣
∣
∣
∣

1√
3

k!

∣
∣
∣
∣
∣
∣

1
k−1

≤ 1

2
√

3
,

and for any odd integer k ≥ 3,

∣∣∣∣
e cos(M)

k!(1 − e cos(M))

∣∣∣∣

1
k−1 ≤

∣∣∣∣∣

1
2

k!

∣∣∣∣∣

1
k−1

≤ 1

2
√

3
.

The last two inequalities together imply γ ( fe,M , M) ≤ 1
2
√

3
and α( fe,M , M) ≤ 1

6 < α0.

This proves that the starter Ẽ = M satisfies the α-test in the strip M ≥ 2π
3 .

In the region
{

π
2 ≤ M ≤ 2π

3 , 0 ≤ e ≤ 1
2

}
, we have that sin(M) ∈ [

√
3

2 , 1] and cos(M) ∈
[− 1

2 , 0], so

β( fe,M , M) =
∣∣∣∣

f (M)

f ′(M)

∣∣∣∣ =
e sin(M)

1 − e cos(M)
≤ 1

2
.

On the other hand, using Lemma 2.1 gives us

sup
k≥2

k even

∣∣∣∣∣
f (k)(M)

k! f ′(M)

∣∣∣∣∣

1
k−1

≤ sup
k≥2

k even

∣∣∣∣
1

2k!
∣∣∣∣

1
k−1 = max

⎧
⎨

⎩
1

4
, sup

k≥4
k even

∣∣∣∣
1

2k!
∣∣∣∣

1
k−1

⎫
⎬

⎭

= max

{
1

4
,

1
3
√

48

}
= 1

3
√

48
≈ 0.2752,

sup
k≥3

k odd

∣∣∣∣∣
f (k)(M)

k! f ′(M)

∣∣∣∣∣

1
k−1

≤ sup
k≥3

k odd

∣∣∣∣
1

4k!
∣∣∣∣

1
k−1 = max

⎧
⎨

⎩
1√
24

, sup
k≥4

k even

∣∣∣∣
1

4k!
∣∣∣∣

1
k−1

⎫
⎬

⎭

= max

{
1√
24

,
1

4
√

480

}
= 1

4
√

480
≈ 0.2136.

Therefore, γ ( fe,M , M) ≤ 1
3√48

and the α-test holds because 1
2

1
3√48

< α0.

In the region
{
0 ≤ M ≤ π

2 , 0 ≤ e ≤ 1
2

}
,

e sin(M)

1 − e cos(M)
≤

1
2 sin(M)

1 − 1
2 cos(M)

≤ 1√
3

(1)
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and using Lemma 2.1 we obtain that

sup
k≥2

k even

∣
∣
∣
∣
∣

f (k)(M)

k! f ′(M)

∣
∣
∣
∣
∣

1
k−1

≤ max

⎧
⎨

⎩
g2, g4, sup

k≥6
k even

∣
∣
∣
∣
∣

1
2 sin(M)

k!(1 − 1
2 cos(M))

∣
∣
∣
∣
∣

1
k−1

⎫
⎬

⎭

≤ max

⎧
⎨

⎩
g2, g4, sup

k≥6
k even

∣
∣
∣
∣

1

k!
∣
∣
∣
∣

1
k−1

⎫
⎬

⎭
= max

{

g2, g4,
5

√
1

6!

}

,

where gk =
(

1
2 sin(M)

k!(1− 1
2 cos(M))

) 1
k−1

for k = 2, 4. Similarly,

sup
k≥3

k odd

∣
∣
∣
∣
∣

f (k)(M)

k! f ′(M)

∣
∣
∣
∣
∣

1
k−1

≤ max

⎧
⎨

⎩
g3, g5, sup

k≥7
k odd

∣
∣
∣
∣
∣

1
2 cos(M)

k!(1 − 1
2 cos(M))

∣
∣
∣
∣
∣

1
k−1

⎫
⎬

⎭

≤ max

⎧
⎨

⎩
g3, g5, sup

k≥7
k odd

∣
∣
∣
∣

1

k!
∣
∣
∣
∣

1
k−1

⎫
⎬

⎭
= max

{

g3, g5,
6

√
1

7!

}

,

where gk =
(

1
2 cos(M)

k!(1− 1
2 cos(M))

) 1
k−1

for k = 3, 5. Therefore,

γ ( fe,M , M) ≤ max

{

g2, g3, g4, g5,
5

√
1

6! ,
6

√
1

7!

}

= max

{

g2, g3, g4, g5,
5

√
1

6!

}

.

As an immediate consequence of the second inequality in (1), we get g2 < g4,
1
2 sin(M)

1− 1
2 cos(M)

g4 <

α0 and
1
2 sin(M)

1− 1
2 cos(M)

5
√

1
6! < α0. It remains to see that

1
2 sin(M)

1− 1
2 cos(M)

gk ≤ α0 for k = 3, 5, which is

equivalent to proving

sin3(M) cos(M)
(
1 − 1

2 cos(M)
)3 < 48α2

0 ≈ 1.41, and
sin4(M) cos(M)
(
1 − 1

2 cos(M)
)5 < 3840α4

0 ≈ 3.33.

In both cases, the left-hand side function has a maximum and the inequalities are true at it.
Finally, note that fe,M (M) = −e sin M ≤ 0 and fe,M is increasing, so 0 ≤ M ≤

E , where E represents the exact solution of Kepler’s equation. In particular, M is always
closer to E than 0, hence for any point in R2, the starter Ẽ = M gives an approximate
solution. �
Theorem 2.5 Ẽ = M

1−e is an approximate zero of fe,M (E) in the region R5 ∪ R6, where

R5 =
{

0 ≤ M < min

{
4
√

12α0
(1 − e)

3
2

e
1
2

,
3
√

24α0
(1 − e)

4
3

e
1
3

}

, 0 ≤ e ≤ 3

11

}

,

R6 =
{

0 ≤ M <
4
√

12α0
(1 − e)

3
2

e
1
2

,
3

11
≤ e < 1

}

.

This region contains the region of Theorem 2.2.
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Solving Kepler’s equation via Smale’s α-theory 35

Proof In this case we have

| f (Ẽ)| = e

∣
∣
∣
∣

M

1 − e
− sin

(
M

1 − e

)∣∣
∣
∣ ≤

eM3

6(1 − e)3 ,

| f ′(Ẽ)| ≥ 1 − e and | f (k)(Ẽ)| ≤ e for all k ≥ 2. Besides,

γ

(
fe,M ,

M

1 − e

)
≤ max

{
e M

1−e

2(1 − e)
, sup

k≥3

∣
∣
∣
∣

e

k!(1 − e)

∣
∣
∣
∣

1
k−1
}

.

In particular, Smale’s α-test is satisfied if

M4e2

12(1 − e)6 < α0 and
eM3

6(1 − e)4 sup
k≥3

∣
∣
∣
∣

e

k!(1 − e)

∣
∣
∣
∣

1
k−1

< α0.

The first condition is equivalent to M <
4√12α0(1−e)

3
2

e
1
2

, which is true in both R5 and R6. The

second inequality needs to be discussed depending on the value of e.
When e ∈ [ 3

11 , 1), we have by Lemma 2.1 that

sup
k≥3

∣∣∣∣
e

k!(1 − e)

∣∣∣∣

1
k−1 =

√
e

6(1 − e)
,

so the second inequality becomes M <
√

6 3
√

α0
(1−e)3/2

e1/2 , which is automatically true in R6

since
√

6 3
√

α0 > 4
√

12α0.
In the other case, i.e. when e ∈ [0, 3

11 ], we have e
1−e ≤ 3

8 . In particular, we can estimate
the supremum from above as follows:

sup
k≥3

∣∣∣∣
e

k!(1 − e)

∣∣∣∣

1
k−1 ≤ sup

k≥3

∣∣∣∣
3

8k!
∣∣∣∣

1
k−1 = 1

4
,

where we have used Lemma 2.1. Therefore, in the case e ∈ [0, 3
11 ], the α-test is satisfied

when

M <
4
√

12α0(1 − e)
3
2

e
1
2

and M <
3
√

24α0
(1 − e)

4
3

e
1
3

,

which is the definition of the region R5.
Finally, the inclusion R2 ⊆ R6 follows immediately from

√
6α0 < 4

√
12α0 and R1 ⊆ R5

from the fact that 4α0(1 − e) < 4
√

12α0
(1−e)

3
2

e
1
2

and 4α0(1 − e) < 3
√

24α0
(1−e)

4
3

e
1
3

for all

e ∈ [0, 3
11 ]. �

Theorem 2.6 The exact solution of the cubic equation Ẽ(1 − e) + e Ẽ3

6 − M = 0 is an
approximate zero of fe,M (E) in the entire region [0, 1) × [0, π].
Proof First, note that the derivative of the left-hand side of the equation is (1−e)+eẼ2/2 > 0,
so the expression is increasing. This means that the cubic has only one real root. Moreover,

the values of the cubic at 0 and π are −M ≤ 0 and π(1 − e) + e π3

6 − M ≥ π − M ≥ 0
respectively, so the real root Ẽ must be in [0, π ]. In particular, we have that Ẽ <

√
42, so

| f (Ẽ)| = |Ẽ − e sin(Ẽ) − M | =
∣∣∣∣∣
Ẽ(1 − e) + e

(
Ẽ3

3! − Ẽ5

5! + · · ·
)

− M

∣∣∣∣∣
≤ e

Ẽ5

120
.
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Let us now consider two different cases depending on the value of Ẽ .

If Ẽ ≤ π
2 , we have that f ′(Ẽ) ≥ 1 − cos(Ẽ) = 2 sin2( Ẽ

2 ) ≥ 4
π2 Ẽ2 and

γ ( fe,M , Ẽ) ≤ sup
k≥2

∣
∣
∣∣

1

k!(1 − cos(Ẽ)

∣
∣
∣∣

1
k−1 ≤ sup

k≥2

∣
∣
∣∣

π2

4k!Ẽ2

∣
∣
∣∣

1
k−1

= π2

8Ẽ2

by Lemma 2.1. Therefore, the α-test follows if we prove

e Ẽ5

120
4
π2 Ẽ2

π2

8Ẽ2
<

π4 Ẽ

3840
< α0 ⇔ Ẽ <

3840α0

π4 ≈ 6.76,

which is always true in this region.
If Ẽ > π

2 , then γ ( fe,M , Ẽ) = max{g2, g3, g4, g5}, where

g2 = 1

2(1 − e cos(Ẽ))
, g3 =

√
| cos(Ẽ)|

6(1 − e cos(Ẽ))
,

g4 = sup
k≥4

k even

∣
∣
∣
∣

1

k!(1 − e cos(Ẽ))

∣
∣
∣
∣

1
k−1 = 3

√
1

24(1 − e cos(Ẽ))
,

g5 = sup
k≥5

k odd

∣∣∣∣
1

k!(1 − e cos(Ẽ))

∣∣∣∣

1
k−1 = 4

√
1

120(1 − e cos(Ẽ))
≤ g4.

Therefore, the α-test is satisfied if eẼ5

120(1−e cos(Ẽ))
gi < α0 for i = 2, 3, 4.

Since g2, g3 and g4, are increasing in M , it is enough to prove the inequalities when
M = π . Moreover, Ẽ(e, π) is decreasing, so Ẽ(e, π) ∈ [ 3

√
6π, π] and 1− e cos(Ẽ(e, π)) ≥

1 − e cos( 3
√

6π).

We also have that π = e Ẽ3(e,π)
6 + (1 − e)Ẽ(e, π) ≥ e Ẽ3(e,π)

6 + (1 − e) 3
√

6π , hence

Ẽ(e, π) ≤
3

√√√√6
(
π − (1 − e) 3

√
6π
)

e
. (2)

Let us now study the three different cases.
When i = 2, it is enough to prove that

eẼ5

120(1 − e cos(Ẽ))
g2 <

eẼ(e, π)5

240(1 − e cos( 3
√

6π))2
< α0,

which is true using that Ẽ ≤ π in e ∈ [0, 0.17], Ẽ(e, π) ≤ 2.92 in e ∈ [0.17, 0.3],
Ẽ(e, π) ≤ 2.84 in e ∈ [0.3, 0.4] and Eq. (2) in e ∈ [0.4, 1].

When i = 3, it suffices to show that

eẼ5

120(1 − e cos(Ẽ))
g3 <

eẼ5(e, π)

√
|cos(Ẽ(e, π))|

120
√

6(1 − e cos( 3
√

6π))
3
2

< α0,

which is true using that

– Ẽ ≤ π and
√

|cos(Ẽ(e, π)| ≤ 1 in e ∈ [0, 0.2],
– Eq. (2) and

√
|cos(Ẽ(e, π)| ≤ 1 in e ∈ [0.2, 0.7],
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Fig. 4 The regions of S2, S3 and S4

Fig. 5 The regions of S5, S6 and S7

Fig. 6 The regions of S8, S9 and SC E M R

– Eq. (2) and
√

|cos(Ẽ(e, π)| < 0.91 in e ∈ [0.7, 1].
Lastly, the case i = 4 follows by using Ẽ ≤ π in e ∈ [0, 0.2] and Eq. (2) in e ∈ [0.2, 1].

�

3 Numerical comparison of classical starters via α-theory

We tested numerically the α-condition on a fine grid (dividing each axis in 1000 points) for
the starters S2, . . . , S9, defined in Odell and Gooding (1986), and the improved S7 starter
obtained in (Prop. 1 of Calvo et al. 2013), which we denote SC E M R . Note in Figs. 4, 5 and 6
that none of the starters produce approximate zeros near the corner (1, 0).

4 A simple new starter that covers the entire region

We devote this section to proving Theorem 1.2. We study each branch separately.

Theorem 4.1 Ẽ = 2π
3 is an approximate zero of fe,M (E) in the region

{
π

4
≤ M ≤ 2π

3
,

1

2
≤ e < 1

}
.

Proof First of all, we have that

β

(
fe,M ,

2π

3

)
≤

2π
3 −

√
3

2 e − π
4

1 + e
2

=
5π
12 −

√
3

2 e

1 + e
2

.
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On the other hand,

γ

(
fe,M ,

2π

3

)
= max

⎧
⎪⎨

⎪⎩
sup
k≥2

k even

∣
∣
∣
∣
∣

e
√

3
2

k!(1 + e
2 )

∣
∣
∣
∣
∣

1
k−1

, sup
k≥3

k odd

∣
∣∣
∣

e
2

k!(1 + e
2 )

∣
∣∣
∣

1
k−1

⎫
⎪⎬

⎪⎭
.

Since
e
2

1+ e
2

∈ [ 1
3 , 1

5 ], we can apply Lemma 2.1 for n = 4 and n = 5:

sup
k≥2

k even

∣
∣
∣
∣
∣

e
√

3
2

k!(1 + e
2 )

∣
∣
∣
∣
∣

1
k−1

= max

⎧
⎪⎨

⎪⎩

e
√

3
2

2!(1 + e
2 )

,

(
e

√
3

2

4!(1 + e
2 )

) 1
3

⎫
⎪⎬

⎪⎭
,

sup
k≥3

k odd

∣
∣
∣
∣

e
2

k!(1 + e
2 )

∣
∣
∣
∣

1
k−1

= max

⎧
⎨

⎩

( e
2

3!(1 + e
2 )

) 1
2

,

( e
2

5!(1 + e
2 )

) 1
4

⎫
⎬

⎭
.

Comparing the four functions, we obtain

γ

(
fe,M ,

2π

3

)
=
(

e
√

3
2

4!(1 + e
2 )

) 1
3

.

Therefore, the α-test is satisfied if

5π
12 −

√
3

2 e

1 + e
2

(
e

√
3

2

4!(1 + e
2 )

) 1
3

< α0.

Taking derivatives, it can be shown that the left-hand side of the inequality is a decreasing
function of e. Also, its value at e = 1

2 is approximately 0.1706, which is less than α0. �

Theorem 4.2 Ẽ = π
2 is an approximate zero of fe,M (E) in the region

{
π

7
≤ M ≤ π

4
,

1

2
≤ e < 1

}
.

Proof We have that fe,M ( π
2 ) = π

2 − e − M ≤ π
2 − e − π

7 = 5π
14 − e and f ′

e,M ( π
2 ) = 1.

Moreover, f (odd)( π
2 ) = 0, hence

γ
(

fe,M ,
π

2

)
= sup

k≥2
k even

∣∣∣
e

k!
∣∣∣

1
k−1 = max

⎧
⎨

⎩
e

2
, sup

k≥4
k even

∣∣∣
e

k!
∣∣∣

1
k−1

⎫
⎬

⎭
= max

{
e

2
, 3

√
e

24

}

by Lemma 2.1. The α-test is satisfied because

(
5π

14
− e

)
e

2
≤
(

5π

14
− 5π

28

) 5π
28

2
≈ 0.1573 < α0,

(
5π

14
− e

)
3

√
e

24
≤
(

5π

14
− 1

2

)
3

√
1
2

24
≈ 0.1711 < α0,

which ends the proof. �
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Theorem 4.3 Ẽ = 3√
6Me2

e − 2(1−e)
3√

6Me2
is an approximate zero of fe,M (E) in the region R7,

where

R7 =
{

8(1 − e)3/2

27
√

6α0e1/2
< M ≤ π

7
,

3

11
≤ e < 1

}
.

Proof The first condition we have to impose is that Ẽ ≥ 0, which is equivalent to M ≥√
2(1−e)

3
2

3α0e
1
2

and true in R7. We also show that Ẽ ≤ π
2 in [0, π

7 ] × [0, 1), which includes R7.

Indeed, Ẽ ≤ π
2 is equivalent to

h(e, M) =
3
√

36e
1
3 M

2
3

2(1 − e)
− π

3
√

6e
2
3 M

1
3

4(1 − e)
≤ 1. (3)

For a fixed e, the function h has a minimum at M = π3

384 e and no other critical points.
Therefore, the inequality (3) holds if and only if h(e, 0) ≤ 1 and h

(
e, π

7

) ≤ 1. The first one
is trivial since h(e, 0) = 0 and the second one is equivalent to

2 3
√

36
(π

7

) 2
3

e
1
3 − π

3
√

6
(π

7

) 1
3

e
2
3 − 4(1 − e) < 0.

The substitution e = x3 transforms the inequality above into

2 3
√

36
(π

7

) 2
3

x − π
3
√

6
(π

7

) 1
3

x2 − 4(1 − x3) < 0,

which is verified for all x ∈ [0, 1] since the expression in x is increasing and the inequality
is true at x = 1.

Substituting the expression for Ẽ and using the Taylor expansion of sin(Ẽ), we obtain

| f (Ẽ)| = |Ẽ − e sin(Ẽ) − M | =
∣∣∣∣∣
Ẽ(1 − e) + e

(
Ẽ3

3! − Ẽ5

5! + · · ·
)

− M

∣∣∣∣∣

≤
∣∣∣∣∣
Ẽ(1 − e) + e

Ẽ3

6
− M

∣∣∣∣∣
+
∣∣∣∣∣

Ẽ5

120

∣∣∣∣∣
= 2(1 − e)3

9eM
+
∣∣∣∣∣

Ẽ5

120

∣∣∣∣∣
,

where we have bounded the alternating series using Leibniz’s criterion (possible because
Ẽ <

√
42).

Since Ẽ ≤ π
2 , we have both f ′(Ẽ) ≥ 1−e and f ′(Ẽ) ≥ 1−cos(Ẽ) = 2 sin2( Ẽ

2 ) ≥ 4
π2 Ẽ2.

Therefore, the α-test follows if we prove the stronger conditions

2(1 − e)2

9eM
γ ( fe,M , Ẽ) <

3α0

4
and

∣∣∣∣∣
Ẽ3π2

480

∣∣∣∣∣
γ ( fe,M , Ẽ) <

α0

4
. (4)

The second one holds because

γ ( fe,M , Ẽ) ≤ sup
k≥2

∣∣∣∣
1

k!(1 − cos(Ẽ)

∣∣∣∣

1
k−1 ≤ sup

k≥2

∣∣∣∣
π2

4k!Ẽ2

∣∣∣∣

1
k−1

= π2

8Ẽ2
,

by Lemma 2.1, and
∣∣∣∣∣

Ẽ3π2

480

∣∣∣∣∣
π2

8Ẽ2
= π4 Ẽ

3840
<

α0

4
⇔ Ẽ <

960α0

π4 ≈ 1.69,
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which is true since Ẽ ≤ π
2 in R7.

For the first inequality in (4), we need

γ ( fe,M , Ẽ) ≤ max

{
e sin(Ẽ)

2!(1 − e)
, sup

k≥3

∣
∣
∣
∣

e

k!(1 − e)

∣
∣
∣
∣

1
k−1
}

≤ max

{
eẼ

2!(1 − e)
,

∣
∣
∣
∣

e

3!(1 − e)

∣
∣
∣
∣

1
2
}

,

true by Lemma 2.1 when e ≥ 3
11 . Therefore,

2(1 − e)2

9eM

∣
∣
∣
∣

e

3!(1 − e)

∣
∣
∣
∣

1
2

<
3α0

4
⇔ M >

8(1 − e)
3
2

27
√

6αe
1
2

,

which is one of the conditions of the region R7.
It only remains to show that

2(1 − e)2

9eM

eẼ

2!(1 − e)
= Ẽ(1 − e)

9M
<

3α0

4
,

which is equivalent to

M − 4

27α0
(1 − e)Ẽ > 0 or

3
√

6e2/3

(1 − e)2 M4/3 − 4 3
√

36e1/3

27α0(1 − e)
M2/3

g(e,M)

> − 8

27α0
.

This is true for every e ∈ [0, 1) and M ∈ [0, π ] because, if we fix e, the function g has a
minimum at M =

√
48

273α3
0

and

g

(

e,

√
48

273α3
0

)

= − 24

272α2
0

> − 8

27α0
.

�
Proof of Theorem 1.2 It follows immediately from Theorems 2.4, 2.5, 4.1, 4.2 and 4.3, and
the inequality 4

√
12α0 > 8

27
√

6α0
that implies that the “otherwise” region is included in the

one from Theorem 4.3. �

5 Approximate solutions near e = 1 and M = 0

In this section we will prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3 Given ε > 0, let us take a natural number N such that N > π+2
2α0ε2 .

Given two integers i ∈ {0, . . . , N−1} and j ∈ {0, . . . , N }, we define the constants E low
i j = π j

N

and Eup
i j = π , which satisfy

E low
i j − i

N
sin(E low

i j ) − π j

N
= − i

N
sin

(
π j

N

)
≤ 0,

Eup
i j − i

N
sin(Eup

i j ) − π j

N
= π − π j

N
≥ 0,
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respectively. By the bisection method, we can thus find Ei j such that

π j

N
= E low

i j ≤ Ei j ≤ Eup
i j = π and

∣
∣
∣
∣Ei j − i

N
sin(Ei j ) − π j

N

∣
∣
∣
∣ <

1

N
.

Given (e, M) ∈ ([0, 1) × [0, π ]) \ ([1 − ε, 1] × [0, arccos(1 − ε)]), we now define
Ẽ(e, M) = Ei j , where i = �Ne� ∈ {0, . . . , N − 1} and j = ⌈M N

π

⌉ ∈ {0, . . . , N }.
Therefore, Ẽ is a piecewise constant function and it only remains to show that it satisfies the
α-test.

Indeed, we have that

| f (Ẽ)| = |Ei j − e sin(Ei j ) − M |
=
∣
∣
∣
∣

(
Ei j − i

N
sin(Ei j ) − π j

N

)
−
(

e − i

N

)
sin(Ei j ) −

(
M − π j

N

)∣∣
∣
∣

<
1

N
+
∣
∣
∣
∣e − i

N

∣
∣
∣
∣+
∣
∣
∣
∣M − π j

N

∣
∣
∣
∣ ≤

π + 2

N
.

On the other hand, | f ′(Ẽ)| = 1 − e cos(Ẽ) ≥ ε because

| f ′(Ẽ)| ≥
⎧
⎨

⎩

1 − e ≥ ε if e ∈ [0, 1 − ε],
1 − cos(Ei j ) ≥ 1 − cos(M) ≥ ε if Ẽ ∈ [0, π

2 ], M ≥ arccos(1 − ε),

1 ≥ ε if Ẽ ∈ [π
2 , π],

where we have used that Ei j ≥ E low
i j = π j

N = π	 M N
π



N ≥ M .

Since | f (k)(Ẽ)| ≤ 1, we obtain using Lemma 2.1 and the hypothesis over N that

α( fe,M , Ẽ) ≤ π + 2

Nε
sup
k≥2

∣∣∣∣
1

k!ε
∣∣∣∣

1
k−1 ≤ π + 2

2Nε2 < α0,

which ends the proof. �
Proof of Theorem 1.4 We proceed by contradiction, i.e. we assume that Ẽ(e, M) is an
approximate zero of fe,M for all e ∈ [0, 1) and M ∈ [0, π]. Since the branches of Ẽ
are given by polynomial inequalities, there is an open set U ⊆ R

2 and ε > 0 such that
U ⊃ {1} × [0, ε] and Ẽ is a rational function on U ∩ ([0, 1) × [0, π]). We also assume that
U ⊆ [ 1

2 , 1) × [0, 0.0001].
By definition of approximate zero, we have that

| f (Ẽ)| max

⎧
⎨

⎩
e| sin(Ẽ)|

2(1 − e cos Ẽ)2
,

√
e| cos(Ẽ)|

6(1 − e cos Ẽ)3
,

3

√
e| sin(Ẽ)|

24(1 − e cos Ẽ)4

⎫
⎬

⎭

B

< α0.

It can be readily verified that B ≥ 0.14433 for all e ∈ [ 1
2 , 1) and any Ẽ ∈ R, so | f (Ẽ)| <

α0
0.14433 ≤ 1.1888 in U . By the triangle inequality, this implies that |Ẽ | < 1.1888 + e + M <

2.1889 in U . Repeating the argument, but using that |Ẽ | < 2.1889, it can be shown that
B ≥ 0.176, so |Ẽ | < α0

0.176 + e + M ≤ 1.975 in U . Doing this one more time, gives

B ≥ 0.2368 and the estimate |Ẽ | < 1.725 in U .
Since Ẽ is bounded in U , it can be extended analytically to {1} × (0, δ) for some 0 <

δ < ε ≤ 0.0001. To show this, recall that Ẽ(e, M) = p(e,M)
q(e,M)

for some polynomials p and
q with no common factors. Now, if q(1, M) were zero (as a polynomial), then q would be
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divisible by e − 1 and p would not, so Ẽ would not be bounded, in contradiction with our
previous result. This proves that q(1, M) �≡ 0, so we can take δ > 0 small enough to ensure
that q(1, M) has no roots in (0, δ), hence Ẽ(1, M) is well defined.

Denote Ẽ1(M) = Ẽ(1, M) for M ∈ (0, δ). Using that B ≥ e| sin(Ẽ)|
2(1−e cos Ẽ)2 , we get

|Ẽ − e sin Ẽ − M | ≤ 2α0(1 − e cos Ẽ)2

e| sin(Ẽ)| .

Taking limit as e → 1−, we obtain

|Ẽ1 − sin Ẽ1 − M | ≤ 2α0(1 − cos Ẽ1)
2

| sin(Ẽ1)|
= 4α0| sin( Ẽ1

2 )|3
| cos( Ẽ1

2 )|
≤ α0|Ẽ1|3

2| cos( Ẽ1
2 )|

< 0.133|Ẽ1|3

for all M ∈ (0, δ). By the power series expansion of sin(Ẽ1),
∣
∣
∣
∣
∣

Ẽ3
1

3! − Ẽ5
1

5! + · · · − M

∣
∣
∣
∣
∣
< 0.133|Ẽ3

1 |.

By the triangle inequality,
∣∣∣∣∣

Ẽ3
1

6
− M

∣∣∣∣∣
≤ 0.133|Ẽ3

1 | +
∣∣∣∣∣

Ẽ5
1

5! − Ẽ7
1

7! + . . .

∣∣∣∣∣

≤ |Ẽ3
1 |
(

0.133 + Ẽ2
1

120

(

1 + Ẽ2
1

6 · 7
+ Ẽ4

1

6 · 7 · 8 · 9
+ . . .

))

≤ |Ẽ3
1 |
(

0.133 + 1.7252

120

(
1 + 1.7252

62 + 1.7254

64 + . . .

))

≤ 0.161|Ẽ3
1 |,

for all M ∈ (0, δ). This implies that ( 1
6 − 0.161)|Ẽ3

1 | ≤ M , or equivalently,

|Ẽ1| ≤ 3

√
|M |

1
6 − 0.161

−−−−→
M→0+ 0.

This shows that Ẽ1 has a removable singularity at M = 0, so it can be extended analytically
to [0, δ) with Ẽ1(0) = 0. Moreover, Ẽ1(M) = Mr(M) for some analytic function r(M) in
[0, δ), since the power series of Ẽ1 cannot have a non-zero constant term.

Finally, by definition of approximate zero,

α0 >
| f (Ẽ)|

1 − e cos(Ẽ)
max

⎧
⎨

⎩
e| sin(Ẽ)|

2(1 − e cos Ẽ)
,

√
e| cos(Ẽ)|

6(1 − e cos Ẽ)

⎫
⎬

⎭

≥ | f (Ẽ)|
1 − e cos(Ẽ)

max

⎧
⎨

⎩
e| sin(Ẽ)|

√
6(1 − e cos(Ẽ))

,
e| cos(Ẽ)|

√
6(1 − e cos(Ẽ))

⎫
⎬

⎭

= e| f (Ẽ)|√
6(1 − e cos(Ẽ))

3
2

max{| sin Ẽ |, | cos Ẽ |} ≥ e| f (Ẽ)|√
12(1 − e cos(Ẽ))

3
2

,
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and taking limit as e → 1−,

|Ẽ1 − sin Ẽ1 − M | ≤ √
12α0(1 − cos(Ẽ1))

3
2

= √
96α0

∣
∣
∣
∣
∣
sin3

(
Ẽ1

2

)∣∣
∣
∣
∣
≤

√
96α0|Ẽ3

1 |
8

=
√

3

2
α0|Ẽ1|3.

Dividing by M , using that Ẽ1(M) = Mr(M) and taking limits as M → 0+,
∣
∣
∣
∣r(M) − sin(Mr(M))

M
− 1

∣
∣
∣
∣ ≤
√

3

2
α0 M2|r(M)|3,

which gives us the contradiction 1 ≤ 0. �
Remark 5.1 Note that in the proof of Theorem 1.4 we use the rationality of the function only
to show that it can be analytically extended to a small segment {1} × [0, ε] for some ε > 0.
If we start with an analytic function defined on [0, 1] × [0, π], this step is not necessary and
the same contradiction is obtained.

This shows that the classical starters S1, . . . , S8, as well as SC E M R , are not approximate
zeros in the entire domain, as Figs. 3, 4, 5 and 6 illustrate. The same argument can be used to
show that no starter which is a linear combination of the former ones (for instance, M + ke
with 0 ≤ k ≤ 1) gives an approximate zero in the entire region.

6 Conclusions

This paper proposes to quantify the efficiency of a starter for Kepler’s equation E−e sin(E) =
M by using Smale’s α-theory. We certify analytically regions where certain classical starters
give quadratic convergence under Newton’s method. We also study numerically how efficient
the classical starters are.

Our main contribution is the construction of a simple starter which converges quadratically
in the entire domain. This starter is given by a piecewise-defined function that uses constant
and rational functions everywhere except for a small part of the domain near the corner e = 1,
M = 0, where a single cubic root is needed.

In the final section, we provide a technical analysis of the difficulties of solving Kepler’s
equation. More precisely, we show that it is possible to find approximate solutions given
by piecewise-constant functions everywhere except for an arbitrarily small region near the
corner (1, 0). Additionally, we prove that no starter satisfying our efficiency criterion in the
entire region can be obtained if only rational (or analytic) functions are used, thus showing
that the cubic root in our proposed starter is unavoidable.
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