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Abstract We investigate the dynamics of two satellites with masses μs and μ′s orbiting a
massive central planet in a common plane, near a first order mean motion resonance m+1:m
(m integer). We consider only the resonant terms of first order in eccentricity in the disturbing
potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We
obtain a two-degrees-of-freedom system, associated with the two critical resonant angles
φ = (m + 1)λ′ − mλ −� and φ′ = (m + 1)λ′ − mλ −� ′, where λ and � are the mean
longitude and longitude of periapsis of μs , respectively, and where the primed quantities
apply to μ′s . We consider the special case where μs → 0 (restricted problem). The symmetry
between the two angles φ and φ′ is then broken, leading to two different kinds of resonances,
classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Res-
onance (LER), respectively. We write the four reduced equations of motion near the CER
and LER, that form what we call the CoraLin model. This model depends upon only two
dimensionless parameters that control the dynamics of the system: the distance D between
the CER and LER, and a forcing parameter εL that includes both the mass and the orbital
eccentricity of the disturbing satellite. Three regimes are found: for D = 0 the system is
integrable, for D of order unity, it exhibits prominent chaotic regions, while for D large
compared to 2, the behavior of the system is regular and can be qualitatively described using
simple adiabatic invariant arguments. We apply this model to three recently discovered small
Saturnian satellites dynamically linked to Mimas through first order mean motion resonances:
Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure
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of each orbit, and their proximity to chaotic regions. This work may be useful to explore
various scenarii of resonant capture for those satellites.

Keywords Three-body planar problem ·Mean-motion resonance ·Hamiltonian formalism ·
Corotation · Lindblad · Resonant satellites · Aegaeon ·Methone · Anthe

1 Introduction

We consider the problem of two small bodies of masses μs and μ′s orbiting in a common
plane around a central massive body of mass Mp (μs, μ

′
s � Mp). In this paper, the central

massive body will be called the planet, while the two orbiting objects will be called the
satellites.1 We consider a configuration that is close to a first-order m + 1:m mean-motion
resonance:

(m + 1)n′ ≈ mn,

where m is an integer (positive or negative depending on whether μs orbit inside or outside
μ′s), and n and n′ are the mean motions of μs and μ′s , respectively. Near the resonance, the
dynamics of the satellites is described by a two-degree of freedom system with two critical
resonant angles φ and φ′:

φ = (m + 1)λ′ − mλ−�

φ′ = (m + 1)λ′ − mλ−� ′, (1)

where λ and � and their primed counterparts are the classical notations for the mean longitude
and longitude of periapsis of the satellites, respectively.

Having two degrees of freedom, the Hamiltonian describing the motion of μs and μ′s is
in general not integrable, and leads to chaotic behaviors in certain regions of phase space, as
shown herein.

The aims of this paper are:

(1) To describe the problem by a generic way, also to rescale the restricted problem (μs = 0)
so that it depends upon two dimensionless parameters only: the distance D between the
two resonances and a parameter εL that depends upon the mass and orbital eccentricity
of μ′s , thus allowing a generic approach of the problem. While the problem is integrable
when the D = 0, we show numerically that large chaotic regions appear for small
distances. For large D’s, the system tends again toward an integrable system that can be
solved using adiabatic invariance arguments.

(2) A second goal of this paper is to clearly distinguish the effects of the two kinds of res-
onances associated with φ and φ′. When μs �= 0 and μ′s �= 0, the two resonances have
indeed symmetric behaviors, but this symmetry is broken when for instance μs = 0,
that is, the planar restricted three-body problem. The angle φ then describes the so-
called Lindblad eccentric resonance (LER), while φ′ describes the corotation eccentric
resonance (CER). This terminology was originated from galactic dynamics, see e.g. Lind-
blad (1961, 1962), Lin and Shu (1964), Goldreich and Tremaine (1979), and it is used in
the case of planetary rings, however, it is not frequently used in Celestial Mechanics. As
recalled later, LER’s mainly excite orbital eccentricities (leaving semi-major axes largely
unaffected), while CER’s mainly change semi-major axes (leaving eccentricities largely
unaffected).

1 For sake of brevity, the masses Mp, μs and μ′s will denote at the same time the bodies and their masses.
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The CoraLin model 237

(3) The final goal of this paper is to discuss the integrability of the two-degrees-of-freedom
system in the presence of the two critical angles φ and φ′. There is a considerable amount
of literature for the case μs = 0 and e′ = 0 (the planar, restricted and circular three-body
problem), in which only the critical angle φ appears, reducing the problem to a one-degree
of freedom integrable system described by the classical Andoyer Hamiltonian given in
Eq. (24); see Henrard and Lemaitre (1983), Ferraz-Mello (1985, 2007). The problem
where both φ and φ′ are present has been treated by Sessin and Ferraz-Mello (1984) in
the Keplerian case (i.e. with a central potential ∝ −GMp/r , where G is the gravitation
constant and r is the distance to Mp) and for μs �= 0 and μ′s �= 0. These authors show
that the two-degrees-of-freedom system is then integrable. More precisely, they show that
the problem can be reduced to a one-degree-of-freedom system described again by an
Andoyer Hamiltonian. More discussion about this result and its developments is provided
in Sect. 2.2.

Our work can be applied in a general way to various problems involving ring and satellite
dynamics. This extends for instance the approach of Goldreich et al. (1986) and Porco (1991),
who proposed a model to explain the stability of Neptune’s incomplete rings (arcs) under the
combined effects of Lindblad and corotation resonances. More recently, Cooper et al. (2008)
and Hedman et al. (2009, 2010) have studied the motion of the small Saturnian satellites
Anthe, Aegaeon and Methone that are trapped in corotation resonances with Mimas, while
being perturbed by nearby Lindblad resonances (Sicardy 1991; Sicardy et al. 1999).

2 General case

2.1 Derivation of the Hamiltonian

We use here standard notations: a, e, n, λ and � denote the semi-major axis, orbital eccen-
tricity, mean motion, mean longitude and longitude of periapsis of μs , respectively, with
similar primed quantities for μ′s . For an oblate planet, this elements denote the geomet-
ric elements (and not the osculating elements). See Borderies-Rappaport and Longaretti
(1994), Renner and Sicardy (2006) for details. In that case, the quantities �̇s and �̇ ′s will
denote the secular time variations of �s and � ′s (precession rates) arising from the planet
oblateness, i.e. the variations that are not due to the resonances themselves.

We assume that the semi-major axes of μs and μ′s remain close to reference values a0

and a′0, respectively, where the mean motions are n0 and n′0, with n0 =
√

G Mp/a3
0 and

n′0 =
√

G Mp/a′30 . Those reference values are chosen in a uniquely defined way so that

(m+1)n′0−mn0−�̇ ′s = 0, and so that the total orbital energy of μs and μ′s is−GMpμs/2a0−
GMpμ

′
s/2a′0. Then (m + 1)n′0 − mn0 − �̇s = �̇ ′s − �̇s , which defines the distance (in

term of frequency) between the two resonances. This is more clearly evident by noting that
�̇ ′s−�̇s = φ̇−φ̇′. This choice for the reference values a0 and a′0 is arbitrary, and is motivated
by the fact that we will study later the behavior of a test particle near the corotation resonance,
where (m + 1)n′ − mn − �̇ ′s = 0. We define:

ξ = a − a0

a0
, ξ ′ = a′ − a′0

a′0
,

as the relative differences of the semi-major axes with respect to the reference radii. We
finally assume that μs and μ′s stay far apart, in the sense that their orbital eccentricities

123



238 M. El Moutamid et al.

and excursions in semi-major axes are small compared to their relative orbital separation:
ξ, ξ ′, e, e′ � |a − a′|/a′ ∼ 1/m.

The expansion of the disturbing function acting on μs and μ′s to first order in eccentricities
yields two terms slowly varying with time: Gμsμ

′
seA ·cos(φ) and Gμsμ

′
se′A′ ·cos(φ′), where

φ and φ′ are given in Eq. (1). Those terms include both direct and indirect parts from the
perturbing function. The quantities A and A′ are combinations of Laplace coefficients b(m)

1/2 ;
see Shu (1984) and Ellis and Murray (2000) for details. For numerical purposes, it is useful
to note that A and A′ have opposite signs, and that

A = Am(α) = 1

2a′
[2(m + 1)+ αD] b(m+1)

1/2 (α) ≈ +0.802m

a′

A′ = A′m(α) = − 1

2a′
[(2m + 1)+ αD] b(m)

1/2 (α) ≈ −0.802m

a′
,

(2)

where α = a/a′, D = d/dα, and where the approximations hold in the case of large m’s.
Note that A and A′ have the dimension of the inverse of a distance.

The derivation of the Hamiltonian of the system is classical and is described in many
works, see e.g. Laskar and Robutel (1995) for a general approach. Averaging the rapidly
varying terms to zero, and keeping only the terms containing φ and φ′, we obtain the averaged
Hamiltonian:

H1 = −μ3(GM)2

2Λ2 − μ′3(GM ′)2

2Λ′2
+ Gμμ′A

√
2Γ

Λ
· cos(φ)

+Gμμ′A′
√

2Γ ′
Λ′
· cos(φ′)− �̇sΓ − �̇ ′sΓ ′. (3)

If μ′s orbits inside μs , then M = Mp(Mp + μs + μ′s)/(Mp + μ′s), M ′ = M3
p/(Mp +

μ′s)2, μ = μs(μ
′
s + Mp)/(μs + μ′s + Mp) and μ′ = μ′s(μ′s + Mp)/Mp , see Sessin and

Ferraz-Mello (1984). Equivalent expressions may be derived if μs orbits inside μ′s . In all
cases, the orbital elements refer to the center of mass of Mp and the innermost satellite. Note
that since μs, μ

′
s � Mp , we have M ≈ M ′ ≈ Mp, μ ≈ μs and μ′ ≈ μ′s .

Moreover, since the functional dependence of the state vectors of μ and μ′ upon the
geometric elements is the same as for Keplerian case, to first order in eccentricities, the values
of A and A′ can be directly derived from the formulae (2), provided geometric elements are
used instead of osculating elements.

The actions Λ, Γ, Λ′ and Γ ′ are the Poincaré variables, which are respectively conjugates
to the angle variables λ, −�, λ′ and −� ′ as shown below:

λ←→ Λ = μ
√GMa

−� ←→ Γ = μ
√GMa(1−√1− e2) ≈ μe2

√GMa/2
λ′ ←→ Λ′ = μ′

√GM ′a′
−� ′ ←→ Γ ′ = μ′

√GM ′a′(1−√1− e′2) ≈ μ′e′2
√GM ′a′/2.

(4)

Because H1 depends only on φ and φ′, it is convenient to use the new pairs of conjugate
variables:

λ←→ J = Λ+ m(Γ + Γ ′)
λ′ ←→ J ′ = Λ′ − (m + 1)(Γ + Γ ′)
φ←→ Θ = Γ

φ′ ←→ Θ ′ = Γ ′,

(5)

and introduce the new actions Λ, Γ, Λ′ and Γ ′ into H1.
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The CoraLin model 239

2.2 Physical interpretation of the actions

In order to better understand globally the motions of μ and μ′, it is instructive to consider the
various actions entering in the system. Because H1 does not depends on λ and λ′, J and J ′ are
constants of motion. Consequently, the initial four-degree of freedom system (two satellites
moving in a common plane) reduces to a two-degree of freedom system. It is generally not
integrable (see e.g. Fig. 5), unless �̇s − �̇ ′s = 0, as discussed later.

Turning back to J and J ′, we have:
⎧
⎪⎪⎨
⎪⎪⎩

J + J ′ = μ
√

GMa(1− e2)+ μ′
√

GM ′a′(1− e′2) = constant

J

m
+ J ′

m + 1
≈ 2

mn0
·
[
−GMμ

2a
− GM ′μ′

2a′

]
= constant.

(6)

We remind that this approximation is valid only when ξ, ξ ′ � 1/m. Consequently, the
conservations of J and J ′ merely express the conservation of the total angular momentum
and energy of the system. More precisely, the Hamiltonian H1 describes the motion of two
satellites that would orbit a motionless central massive planet. Thus, the exchange of energy
and angular momentum occurs only between the satellites, and not between the satellites
and the planet. In terms of ξ, e, ξ ′ and e′, the two equations (6), under the assumption that
M ∼ M ′, read:

⎧
⎪⎪⎨
⎪⎪⎩

μ(ξ−e2)

a2
0 n0
+ μ′(ξ ′−e′2)

a′20 n′0
= constant

μξ
a0
+ μ′ξ ′

a′0
= constant

(7)

We now define Jc = Λ+mΓ = J −mΘ ′ and J ′c = Λ′ − (m + 1)Γ ′ = J ′ + (m + 1)Θ ,
which are averaged versions of the Jacobi quantity, or Tisserand parameter; see e.g. Murray
and Dermott (2000). It can be shown that, to within additive constants:2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Jc = μa2
0n0

2

[
ξ + me2]

J ′c =
μ′a′20 n′0

2

[
ξ ′ − (m + 1)e′2

]
.

(8)

The conservations of J and J ′ thus impose J̇c = m∂H1/∂φ′ and J̇ ′c = −(m + 1)∂H1/∂φ,
or:

⎧
⎨
⎩

d
dt

(
ξ + me2

) = − 2mGμ′
a2

0 n0
A′e′ · sin(φ′)

d
dt

[
ξ ′ − (m + 1)e′2

] = 2(m+1)Gμ

a′20 n′0
Ae · sin(φ).

(9)

As expected, the Jacobi quantity Jc (resp. J ′c) is constant if e′ = 0 (resp. e = 0).
On the other hand, we have Γ̇ = ∂H1/∂� and Γ̇ ′ = ∂H1/∂� ′, so that:

{
d(e2√GMa)

dt = 2Gμ′Ae · sin(φ)
d(e′2
√GM ′a′)

dt = 2GμA′e′ · sin(φ′),
(10)

2 The notation Jc is used later for a local version of the Jacobi constant, see Table 1. It is the same quantity
as used here, except for a multiplicative constant.
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The quantity e2
√GMa (resp. e′2

√GM ′a′) is the action associated with the fast, radial
motions of μ (resp. μ′). In effect, the particle radial motion has an amplitude Δr ≈ ae, while
its radial velocity has an amplitude Δpr ≈ aen ∝ a−1/2e, from Kepler’s third law. Thus,∮

pr dr ∝ e2a1/2.
In the case of a Keplerian central potential −GMp/r , we have �̇s = �̇ ′s = 0. The two-

degrees-of-freedom system described by H1 then admits a second integral of motion (besides
the Hamiltonian itself), and is thus integrable. This second integral was found by Sessin and
Ferraz-Mello (1984) for the general case μ �= 0, μ′ �= 0 and extended to the restricted
case by Wisdom (1986), while being further analyzed by Henrard and Lemaitre (1986). The
existence of this second constant can be demonstrated by using canonical transformations
in which the sum μμ′Ae · cos(φ) + μμ′A′e′ · cos(φ′) in Eq. (3) is replaced by a unique
term
√

2Φ · cos(ϕ), and by showing that the new Hamiltonian only depends on the conjugate
variables Φ, ϕ, reducing the system to a one-degree-of-freedom integrable problem.

A more geometrical demonstration of the existence of a second constant of motion for H1 is
provided here by posing σ = (m+1)λ′−mλ and by defining the vectors u = [cos(σ ), sin(σ )]
and v = [− sin(σ ), cos(σ )]. Note that ∂u/∂σ = −v. We also define the eccentricity vectors
of μ and μ′ as

⎧
⎨
⎩

e = (p, q) = [e cos(�), e sin(�)]

e′ = (p′, q ′) = [e′ cos(� ′), e′ sin(� ′)].
(11)

For the Keplerian case, �̇s = �̇ ′s = 0, the Hamiltonian H1 now reads:

H1K = −μ3(GM)2

2Λ2 − μ′3(GM ′)2

2Λ′2
+ Gμμ′A(e · u)+ Gμμ′A′(e′ · u). (12)

Using the approximations e � 1 and Λ ≈ Λ0 = μ
√GMa0, we obtain ṗ = (∂H1K /∂q)/

Λ0 and q̇ = −(∂H1K /∂p)/Λ0, so that ė = −(Gμμ′A/Λ0)v. Likewise, ė′ =
−(Gμμ′A′/Λ′0)v. Using Kepler’s third law and noting that A and A′ have opposite signs,
the two latter equations provide the following vectorial constant of motion:

Λ0

A
e− Λ′0

A′
e′ ∝ μ

a0|A|n0
e+ μ′

a′0|A′|n′0
e′ = etot = constant, (13)

where the vector etot defined here is called the “total eccentricity” of the system. Moreover,
Λ̇ = −∂H1K /∂λ = m∂H1K /∂σ = −m(Λ0e · ė+Λ′0e′ · ė′). Using the conservation of etot,
and performing the same calculation for Λ̇′, we obtain:

A2Λ̇
mΛ0
= − [

Ae+ A′e′
] · Aė

A′2Λ̇′
(m+1)Λ′0

= + [
Ae+ A′e′

] · A′ė′.

Subtracting these two equations and noting that Λ̇/Λ0 ≈ ξ̇ /2 and Λ̇′/Λ′0 ≈ ξ̇ ′/2, we finally
arrive at:

Jc,relat = A2ξ

m
− A′2ξ ′

m + 1
+ (|A|e− |A′|e′)2 = constant. (14)

Comparison with Eq. (8) shows that the second constant of motion can be interpreted as
a “relative Jacobi constant”, which extends the notion of Jacobi constant to the non-circular
3-body problem. Equation (14) tells us that the exchange of energy between the satellites
only depends on the relative eccentricity vector erelat = |A|e − |A′|e′. Moreover, Eq. (7)
tells us how this energy is distributed between μ and μ′. Finally, Eq. (13) shows that the
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The CoraLin model 241

interaction between μ and μ′ conserves the total eccentricity of the system etot . For large
m’s, |a0 An0| ≈ |a′0 A′n′0|, and the total eccentricity is just proportional to μe+μ′e′. This is a
classical result already obtained by Hénon and Petit (1986) for the Hill’s Keplerian limiting
case and by Foryta and Sicardy (1996) for the generalization to an oblate planet.

3 Restricted case

When μ = 0, the actions describing the motion of μ must be expressed in terms of unit
mass, we remind that μ′ is a dimensionless parameter. Thus, the Hamiltonian H1 must be
divided by μ. This new Hamiltonian is not autonomous anymore, since λ′ and � ′ are now
linear functions of time: λ′ = n′t and � ′ = �̇ ′s t . This yields the Hamiltonian:

H2 = − (GM)2

2Λ2 −
μ′(GM ′)2

2μΛ′2
+ Gμ′A

√
2Γ

Λ
· cos(φ)

+Gμ′A′e′ · cos(φ′)− �̇sΓ + n′Λ′

μ
− �̇ ′sΓ ′, (15)

where the angle-action variables are now:

λ←→ Λ = √GMa
−� ←→ Γ = √GMa(1−√1− e2) ≈ e2

√GMa/2
λ′ = n′t ←→ Λ′ = √GM ′a′
−� ′ = −�̇ ′s t ←→ Γ ′ = √GM ′a′(1−√1− e′2) ≈ e′2

√GM ′a′/2

(16)

Note that for μ = 0, Λ′ and Γ ′ being constants, the corresponding terms above can be
dropped from the Hamiltonian. Then, the treatment of H2 proceeds in the same way as for the
general case previously considered, i.e. by defining the same transformations as in Eq. (5).
Again the Hamiltonian is reduced to that of a two-degrees-of-freedom system which is in
general not integrable, except for the special case of a central Keplerian potential −GMp/r .
In this case, ξ ′ and e′ are constant, so that Eq. (14) can be re-written:

Jc,relat = ξ + m

(
e−

∣∣∣∣
A′

A

∣∣∣∣ e′
)2

= constant, (17)

which generalizes the expression of the Jacobi constant ξ + me2 associated with μ, where
the eccentricity vector e has been replaced by the relative eccentricity vector

erelat = e−
∣∣∣∣

A′

A

∣∣∣∣ e′. (18)

Physically, this means that, at the first order approximation in eccentricities used here, the
exchange of energy between the satellite and the particle (described by ξ̇ ) only depends on
the relative eccentricity vector erel.

Finally, both Eqs. (14) and (17) show why the relative Jacobi constant is destroyed when
the central potential departs from the Keplerian form −GMp/r . In fact, a general potential
induces a differential secular precession rate �̇s − �̇ ′s between the vectors e and e′, which
causes a drift of the angle between e and e′ which is imposed “from outside”, i.e. independent
of the interactions between μ and μ′.

We conjecture that as soon as �̇s �= �̇ ′s , the Hamiltonians H1 and H2 (Eqs. 3 and 15) are
not integrable, as shown for instance in Fig. 5. The demonstration of such a result is beyond
the scope of this paper, however, and will be accepted on numerical grounds.
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4 Lindblad versus corotation resonances

Equations (9) and (10) show that the term A′ · sin (φ′) modifies the Jacobi quantity of μ

and the radial action of μ′. Conversely, the term A · sin (φ) modifies the Jacobi quantity of
μ′ and the radial action of μ. Consequently, the resonances associated with φ and φ′ play
symmetrical roles, and cannot be distinguished, as it is clearly apparent from the form of H1

(Eq. 3).
This symmetry is broken, however, when the mass of one of the satellites tends to zero

(restricted case), and the different roles played by the two resonances clearly appear. Taking
for instance μ = 0, the resonance associated with φ is then called the LER, while the
resonance associated with φ is called the CER.3 This nomenclature comes from galactic and
ring dynamics, where those resonances were studied; see Goldreich and Tremaine (1979)
and the references already quoted in the introduction.

If we consider the LER alone (i.e. taking A′ = 0), then ξ + me2 is constant. Using
ξ = (a − a0)/a0, this yields

δa

a
= −2me2 · δe

e
. (19)

Thus, the LER mainly excites the orbital eccentricity of μ, and much less its semi-major
axis. This is physically understandable by noting that the LER corresponds to (m + 1)n′ −
mn− �̇s = 0, i.e. κ = (m+1)(n−n′), where κ = n− �̇s is the epicyclic, radial oscillation
of the particle. The quantity n − n′ is the synodic frequency, i.e. the frequency at which
the satellite and the particle are in conjunction. Thus, n − n′ is the frequency at which μ′
perturbs μ through periodic kicks in the radial direction. For κ = (m + 1)(n − n′), those
kicks resonantly excite the radial action of μ (Eq. 10). On the other hand, because they are
radial, the kicks essentially conserve the energy of the particle, and thus, its semi-major axis,
as shown in Eq. (19).

Conversely, let us consider the case where the LER is far away from the CER. Then φ

varies rapidly in H2, and the corresponding term can be zeroed, which is equivalent to taking
A = 0, so that the radial action Γ ∝ e2a1/2 is constant. This imposes

δe

e
= − δa

4a
. (20)

The comparison of Eqs. (19) and (20) shows that the corotation resonance affects much less
the orbital eccentricity of the particle than the Lindblad resonance.

This is physically understandable by noting that the CER corresponds to (m + 1)n′ −
mn − �̇ ′s = 0, i.e. n = n′ + κ ′/m, where κ ′ = n′ − �̇ ′s is the epicyclic, radial oscillation of
the satellite μ′. Then, the mean motion of μ matches the pattern speed npattern = n′ + κ ′/m
of one of the harmonics of the disturbing potential of μ′, hence the denomination corotation.
Those resonances are in fact identical in essence to the classical 1:1 co-orbital resonance, but
they occur at radii that are different from a′.

Note in particular that the CER slowly modulates the azimuthal potential acting on the
particle since Gμμ′e′A′ · cos(φ′) ≈ Gμμ′e′A′ · cos[m(θ − npatternt)], where θ is the true
longitude of μ. This periodic potential creates a small, slowly varying azimuthal acceleration
on the particle that slowly modifies its semi-major axis a. As a slowly varies, the radial action
of μ, Γ ∝ e2a1/2 is conserved, as expressed in Eq. (20). More exactly, this conservation is
actually the adiabatic conservation of the fast radial action e2a1/2, as the azimuthal action

3 Lindblad and corotation resonances associated with orbital inclinations are also possible, hence the specific
term “eccentric” used here.
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The CoraLin model 243

√GMpa slowly varies. More discussions about the conservation of e2a1/2 in various contexts
can be found in Fleming and Hamilton (2000) and Sicardy and Dubois (2003).

While the separate effects of LER and CER are easy to describe in term of 1-degree-
of-freedom systems, the problem is complex when they are coupled. The following section
provides the simplest equations that permit to explore this complexity.

5 The CoraLin model

The restricted case μ = 0 can be studied through the Hamiltonian H2 (Eq. 15). The derivation
of the equations of motion stemming from H2 is standard, see for instance Murray and
Dermott (2000). Near a0, the actions Λ and J can be written Λ = Λ0+ΔΛ and J = J0+ΔJ ,
respectively, where ΔJ = ΔΛ+m(Θ+Θ ′) is a constant of motion. The Hamiltonian H2 is
then expanded to second order in ΔΛ, providing an approximation of the Hamiltonian valid
near a0.

At this point, it is useful to consider the Jacobi quantity Jc = ΔΛ + mΓ that appears
in the first line of Eq. (5), from which we obtain Jc = ΔJ − mΘ ′. Consequently, J̇c =
−mΘ̇ ′ = m∂H2/∂φ′ and φ̇′ = −m∂H2/∂ Jc. These are almost the canonical Hamiltonian
equations, but not quite, because of the appearance of the factor−m. This suggests to take φ′
and Jc as conjugate variables, after redefining the action Jc and the Hamiltonian H2 to within
multiplicative and additive factors. The choice of those factors is rather arbitrary. We choose
them so that to simplify as much as possible the expression of H2, so that to obtain the form
in Eq. (22). Moreover, as the particle remains close to the corotation resonance radius a0, it
is convenient to use the new time scale τ = nct , where nc is the libration frequency of φc

near the corotation fixed point in the absence of the Lindblad resonance, see Table 1.
As discussed in Sect. 4, the resonances associated with φ and φ′ can be separated into

LER and CER types, respectively. To enhance this distinction, we will use from now on the
conjugate variables (φc, φL , Jc, JL ) instead of (φ

′
, φ,Θ

′
,Θ). The actions Jc (proportional

to ΔΛ + mΓ ) and JL (proportional to Θ) are defined in Table 1. Moreover, the angles φc

and φL are defined by:

⎧
⎨
⎩

φc = +φ′ + π = +(m + 1)λ′ − mλ−� ′ + π if m > 0 (μ inside μ′)
φc = +φ′ = +(m + 1)λ′ − mλ−� ′ if m < 0 (μ outside μ′)
φL = −φ = −(m + 1)λ′ + mλ+�

(21)

Table 1 Quantities entering in the Hamiltonian H (Eq. 22), where A and A′ are a combination of Laplace
coefficients given by (2) and a0 is the reference value of the corotation

Constant parameters

nc =
(

3m2a0|A′|e′ μ
′

M

)1/2

· n0 D = (�̇ ′s − �̇s )

nc
εL =

(
a0

3m2
μ′
M

)1/4

· A
(|A′|e′)3/4

Actions

Jc = sgn(m)

(
3

4a0|A′|
M

μ′e′
)1/2

· (ξ + me2) JL =
(

3m2

2a0|A′|
M

μ′e′
)1/2 · e2

Note that the time scale used in Eq. (23) is τ = nct . Those definitions relate the actual parameters of the
problems (mass of the satellite, semi-major axis, orbital eccentricity, etc…) and the non-dimensional variables
used in Eqs. (22) and (23)
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Fig. 1 Scheme of the CoraLin
model. In the absence of the
Lindblad resonance (LER), the
pendular motion forced by the
corotation resonance (CER) is
confined into the red separatrix
curve, whose full width is given
by Δχ = ±2. In the absence of
the CER, the LER radius is at
χ = −D (dotted blue line). The
coupling between the two
resonance strongly depends on
D, see Fig. 5

-D

2

-2

 = Jc-JL

c

The particular choice for φc is motivated by the fact that it allows a unique form of H,
avoiding a±1 factor in front of the term cos(φc) in Eq. (22). With this convention, the stable
corotation point is always at φc = 0. Moreover, the minus sign used to define φL from
φ stems from the requirement that we retrieve the canonical equations ḣ = −∂H/∂k and
k̇ = +∂H/∂h with the correct signs in the system (23).

Using the equations (m+ 1)n′0−mn0− �̇ ′s = 0 and (m+ 1)n′0−mn0− �̇s = �̇ ′s − �̇s

(see Sect. 2.1), and the quantities D, εL , Jc and JL defined in Table 1, we finally obtain
the following Hamiltonian with the two pairs of conjugate variables (Jc, φc) and [h =√

2JL · cos(φL), k = √2JL · sin(φL)]:

H = (Jc − JL)2

2
− D JL − cos(φc)− εL h. (22)

The associated equations of motion are:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d Jc
dτ
= − ∂H

∂φc
= − sin(φc)

dφc
dτ
= + ∂H

∂ Jc
= Jc − [JL ]

dh
dτ
= − ∂H

∂k = +([Jc] − JL + D)k
dk
dτ
= + ∂H

∂h = −([Jc] − JL + D)h − εL ,

(23)

where τ = nct and JL = (h2+k2)/2. Note from Eq. (2) and Table 1 that sgn(εL) = sgn(m).
Note that D (defined in Table 1) depends on both e′ and μ′. Our choice of D is such that the
width of corotation resonance is fixed to ±2, (see Fig. 1).

We call this system of equations the “CoraLin” model, as it describes the motion of a
particle near a corotation and a Lindblad resonances, for which, the centers occur respectively
at Jc = JL and Jc− JL = −D. It is completely non-dimensional and can be used in a generic
way to analyze the coupling between the two resonances. In fact, this system is parametrized
by only two quantities: D, which measures the distance between the two resonances, and εL ,
which measures the forcing of the particle orbital eccentricity by the satellite, while absorbing
the satellite’s orbital eccentricity. Finally, the time scale τ is parametrized by the quantity nc,
see Table 1.

The coupling between the two resonances comes from the bracketed terms in Eq. (23),
namely (i) the term JL in the second equation, which tells us how the particle orbital eccen-
tricity (mainly driven by the Lindblad resonance) perturbs the simple pendulum motion and
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(i i) the term Jc in the third and fourth equations, which tells us how the corotation resonance
affects the motion of (h, k) driven by the Lindblad resonance.

If we suppress the term cos(φc) in H in order to keep only the LER, then the Hamiltonian
takes the form

HAnd = J 2
L/2− (Jc + D)JL − εL h, (24)

where Jc is now a constant parameter. This is the classical Andoyer Hamiltonian that has
been extensively studied and reviewed in many publications in the last few decades, see
e.g. Henrard and Lemaitre (1983), Ferraz-Mello (1985) and Ferraz-Mello (2007).

On the other hand, if we make εL = 0, then JL is constant, H reduces to the Hamiltonian
of the simple pendulum:

Hpen = χ2/2− cos(φc), (25)

where we define χ = Jc − JL . Then we obtain φ̈c = − sin(φc), which describes the
stable oscillatory motion of the particle guiding center around the corotation fixed point
at φc = 0. Note that in this case, JL = constant, meaning that the particle orbital eccentricity
is conserved, as announced by Eq. (20).

An alternative form of the system (23), although not using conjugate variables, is:
⎧
⎪⎪⎨
⎪⎪⎩

χ̇ = − sin(φc)− J̇L

φ̇c = χ

ḣ = −(χ + D)k
k̇ = +(χ + D)h + εL .

(26)

If the corotation motion of the particle is not perturbed by the LER, then the librating zone
for φc has a width of Δχ = ±2, see Fig. 1. The exact LER occurs at χ = −D. Consequently,
the two resonances collapse into a single one for D = 0, and are well separated for |D|
significantly larger than 2. We now explore the dynamics of the system for intermediate
values of D, showing that significant chaotic zones appear in the phase space for those
intermediate cases.

6 Asymptotic behaviors

6.1 Superimposed resonances

If D = 0, the CER and LER are superimposed, and the problem is integrable (Sect. 2.2).
Poincaré surfaces of section taken at k = 0 are then regular, and they can be obtained
analytically by noting that the second constant of motion in Eq. (17) can be re-written:

S = Jc +
√

2JL

εL
cos(φc − φL), (27)

which is another expression of the relative Jacobi constant defined in Eq. (17).
Using Eqs. (22) and (27) and making k = 0, we obtain:

χ4 − 4Hχ2 + 8ε2
Lχ − 4 cos2(φc)+ 4H2 = 8ε2

L S, (28)

where H is the value of the Hamiltonian H. For H fixed, the surface of sections are the level
contours of the surface defined by Eq. (28) for various values of S. Note that these contours
are π-periodic, not 2π -periodic. The fixed points are given by the singular points of that
surface:
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Fig. 2 Phase portraits of the system (23) when the corotation and Lindblad resonances (CER and LER,
respectively) are superimposed, i.e. D = 0. We show Poincaré surfaces of section corresponding to k = 0,
with prescribed values H of the Hamiltonian H, and various values of the second constant of motion S
(Eq. 27). For both panels, εL = −0.123, which provides a critical value H0 = (27ε4

L/8)1/3 = 0.091. Left
panel H = −1 < H0, there is only one solution in χ for the fixed points. Right panel H = 1 > H0, there are
three solutions in χ for the fixed points. See text for details

⎧
⎨
⎩

χ3 − 2Hχ + 2ε2
L = 0

φc = k π
2 , k ∈ Z

The number of solutions in χ depends of the sign of the discriminant Δ = 32H3 − 108ε4
L .

Therefore, there exists a critical value H0 = (27ε4
L/8)1/3: for H < H0 the system has only

one solution in χ :

χ0 =
(

2ε2
L +
√−Δ/27

2

)1/3

+
(

2ε2
L −
√−Δ/27

2

)1/3

For H > H0 a pitchfork bifurcation occurs and provides three solutions:

χp = 2

√−2H

3
cos

[
1

3
arccos

(
−ε2

L

√
27/8H3

)
+ 2pπ

3

]

with p ∈ {0, 1, 2}.
Examples of surfaces of section with H < H0 and H > H0 are given in Fig. 2. Note that

orbits near the fixed elliptical points do not correspond to librations of φc (i.e. to particles
trapped in a CER). For instance the fixed point near φc = 0, χ = 0 in the left panel
corresponds to the trajectory shown in blue, for which φc is circulating.

6.2 Well separated resonances

We consider the situation in which the CER and LER are well separated, |D| � 2. Two cases
are discussed.

(a) The particle is trapped in the corotation region: In this case, the variations of (h, k) in the
systems (23) and (26) are much faster than the variations of (Jc, φc). Consequently, the
action

∮
hdk is adiabatically conserved. Since the vector (h, k) essentially describes a

circle centered on the forced value (−εL/(χ +D), 0), it means that (h, k) rapidly moves
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Fig. 3 Left: Poincaré surfaces of section k = 0 of the system (23) with D = 10 (the Lindblad resonance
is far away from the corotation radius at χ = −D = −10) and εL = −0.1. The phase portrait of the CER
is very close to that of a simple pendulum. Right: the vector (h, k) rapidly describes a circle centered on the
forced value (h = e f = |εL/(χ + D|, k = 0) that moves slowly as χ varies (red circles). When χ = 1.4
(green point at left), then e f = eA = (0.008, 0), corresponding to the green orbit at right. When χ = −1.4
(blue point at left), then e f = eB = (0.016, 0) (blue orbit at right)

Fig. 4 Poincaré surfaces of
section k = 0 of the system (23)
with D = 10 and εL = −0.1.
The particle is now close to the
Lindblad resonance, φc and χ

vary rapidly compared to h and k,
while keeping

∫
Jcdφc

adiabatically constant

 9.75
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 9.9

 9.95

 10

 10.05

-4 -3 -2 -1  0  1  2  3  4

 =
 J

c 
- 

J L

c

on a circle of constant radius, whose center slowly moves along the Oh axis, see Fig. 3.
In particular, if (h, k) starts at the forced value (−εL/(χ + D), 0), then it will stay at that
value as χ slowly changes. In other words, the orbital eccentricity of the particle will
permanently adjust itself so that e = |εL/(χ + D| as χ varies.

(b) The particle is trapped in the Lindblad resonance: The situation is now reversed: (h, k)

slowly varies as Jc as φc oscillates rapidly. Thus
∫

Jcdφc is adiabatically conserved. In
fact, the system:

{
J̇c = − sin(φc)

φ̇c = Jc − JL
(29)

correspond to a simple pendulum with a slowly varying parameter, JL . Thus, the particle
will librate around the slowly varying point (Jc = JL , φc = 0), while adiabatically
conserving

∫
Jcdφc, see Fig. 4.

123



248 M. El Moutamid et al.

Table 2 Critical angles and values of D, εL and H appropriates to Anthe, Methone and Aegaeon given by
CoraLin model. These parameters depend of the configurations of the small satellites in the Saturnian system

D εL H CER (φc) LER (φL )

Aegaeon −1.155 0.132 1.03 7λ′ − 6λ−� ′ 7λ′ − 6λ−�

Methone 0.129 −0.115 −0.62 15λ− 14λ′ −� ′ 15λ− 14λ′ −�

Anthe 0.286 −0.123 −0.27 11λ− 10λ′ −� ′ 11λ− 10λ′ −�

We note that for the inner (outer) moons D is positive (negative) and εL is negative (positive)

7 Intermediate cases

7.1 Chaoticity

We have explored numerically the transition from the integrable case D = 0 to the chaotic
regime for D of order unity. We consider here an illustrative case where εL = −0.1 and
H = −0.5. The value of H using the orbital elements is:

H = (3mΔa/a0)
2

8
√

εc
− 3Dm2e2

2
√

εc
− cos φc − εL

√
3m2e2

εc
1/4 cos φL ,

with εc = 3m2a0|A′|e′μ′/M . This choice is motivated by the fact that they are typical values
relevant to the small Saturnian satellites Anthe, Methone and Aegaeon, see Table 2.

Figure 5 shows that the phase portrait of system (23) is rapidly invaded by a chaotic
region for values of D as small as ∼ 0.01. As D increases, a central regular region appears,
corresponding to the trapping of the particle in the corotation site, i.e. to a libration of the
critical angle φc. Only for value of |D| significantly larger than 2 does the system retrieve its
regularity, and can the orbits be described using adiabatic invariant arguments, see Sect. 6. In
fact, Fig. 5 shows that for 0 < |D| < 2 the motion of the particle near the CER is dominated
by chaos. This is true for the actual Saturnian satellites that we examine now.

7.2 Numerical exploration of the chaoticity

In order to give a better and a global view of the dynamics in the intermediate cases, we
perform a more systematic analysis of the dynamics for all of the regimes: the two limit cases
(CER and LER) and the intermediate regime by measuring the Fast Lyapunov Indicator (FLI)
detailed in (Froeschlé et al. 1997; Morbidelli 2002). In practice, we have studied the FLI near
the separatrix (see Fig. 5) and corresponding to these initial conditions: χ = 0, φc = π, h =
0 and k = 0.

The values of FLI represent the irregularity degree for each orbit. We show in Fig. 6 a
FLI map for several values of D and εL . Here we are interested by the global dynamics of
the test particle, we note that for values of D between ∼ 0 and 2, the chaoticity area grows
gradually (clear colors). Beyond D = 6, the orbits become regular (dark colors) what is in
agreement with the previous discussion. For εL = 0, the trajectories becomes regulars as
expected, because the system is not perturbed as the mass of the perturber satellite is equal
to zero.
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Fig. 5 Poincaré surfaces of
section of system (23) using
εL = −0.1 and H = −0.5 for 11
different values of D. Each phase
portrait is obtained when k = 0
for sixteen different trajectories
with the same value of H . When
D = 0 and D = 10, the
trajectories are regular. For
intermediate cases, chaos is
prevalent. In the CoraLin system
(23), we can see that for
D = Jc − JL , the vector (h, k)

moves slowly, so that k passes
more rarely through zero,
explaining the rarefaction of
points along the line
D = Jc − JL
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Fig. 6 Maps of FLI, for 90000
trajectories, the initial conditions
used are: χ = 0, φc = π, h = 0
and k = 0. We integrated
numerically several orbits (90000
orbits) during 2000 years, with
these initial conditions:
χ = 0, φc = π, h = 0 and
k = 0, for 100 values of εL
between [−0.3, 0] and 900 values
of D between [0, 7.5]. A FLI of
400 corresponds to 5 years in
terms of divergence of two close
orbits, smaller values of the FLI
correspond to longer divergence
times that scale like 5 years/FLI.

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05  0

L

 0.01

 0.03

 0.05

 0.07

 0.09

D

 0
 10
 20
 30
 40
 50
 60

 0.1

 0.3

 0.5

 0.7

 0.9

D

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

 1

 3

 5

 7

 9

D

 0
 50
 100
 150
 200
 250
 300
 350
 400

7.3 Real applications

In this section, we show that in some cases, a strong coupling between corotation and Lindbald
resonances may lead to chaotic behavior. We apply the CoraLin model to several recently
discovered small satellites dynamically linked to Mimas through first-order mean-motion
resonances: Anthe, Methone and Aegaeon (Cooper et al. 2008; Hedman et al. 2009, 2010),
all associated with arc of material. The presence of these structures are consistent with their
confinement by CER with Mimas : Aegaeon is trapped in an inner 7:6 CER with Mimas, while
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Fig. 7 Green curve Position of
Lindblad resonance at
Jc − JL = −D. Blue curve
Trajectory of the small satellite.
Red curve Surfaces of section of
a particle having the same
parameters of each satellites with
different initials conditions in
terms of χ = Jc − JL . Note that
the corotation site is very affected
by chaotocity due to the
interaction with LER
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Anthe and Methone are respectively near the outer 10:11 and a 14:15 CER resonances. All
satellites are trapped in CER with Mimas and perturbed enough (D < 2) by the associated
LER. Indeed, the phase space topology depends of two parameters (Table 2) which are
given by the configurations between the particle (one of these small moons) and Mimas (the
disturbing satellite) orbiting a central planet (Saturn). Poincaré surfaces of section reveal the
dynamical structure of each orbit, and for some of them, their proximity to chaotic regions
(Fig. 7).

Indeed the system (23) is numerically integrated for twenty separated trajectories and
(Jc − JL ) was plotted versus φc. From (Fig. 7), we see that this dynamical system displays
both regular and irregular orbits as most of the Hamiltonian systems. A surface of section
is obtained by getting back (Jc, φc) with period 2π or only when k = 0 and k̇ > 0. This
approach gives an idea on the structure of phase space for each of the moons, we see also
that the chaos results from a strong coupling between CER and LER, and that the chaotic sea
is very large occupying totally the corotation site. We notice that Anthe is close to a chaotic
region. The amplitude of libration is±26 km, i.e. about half of the corotation width (50.7 km).
The orbit of Methone is farther away from the chaotic zone than Anthe, with an amplitude
of libration of ±20 km and a corotation width of 55.36 km. The case of Aegaeon (inside the
orbit of Mimas) is slightly different, its orbit seems to be more stable than those of Anthe
and Methone, as it is far enough from the chaotic region, the width of the corotation site
is 31.62 km, and the magnitude of libration in terms of semi-major axis is ±4 km (Hedman
et al. 2009, 2010).

We notice that the chaotic region is surrounding by many regular trajectories, this behavior
means that the corotation stability is not affected. This result will be investigated in future
works by analysis of capture probability of this structures inside CER site.

8 Conclusion

We have studied the behavior of two satellites of masses μs and μ′s , revolving along coplanar,
small-eccentricity orbits around a planet of mass Mp � μs, μ

′
s . We have averaged the

equations of motion close to a first-order mean-motion commensurability m + 1:m, keeping
only perturbing terms of first order in eccentricity and accounting for the secular apsidal
precessions rates �̇s and �̇ ′s of the satellites. This allows to derive the classical Hamiltonian
of the system, with the two critical resonant arguments φ = (m + 1)λ′ − mλ − � and
φ′ = (m + 1)λ′ − mλ − � ′. Using the constants of motion (total energy and angular
momentum), the initial four-degree of freedom system reduces to a two-degree of freedom
problem that is not in general integrable.
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For �̇s−�̇ ′s = 0 (as it is the case for the Keplerian problem), the Hamiltonian is integrable,
a result initially derived by Sessin and Ferraz-Mello (1984). The integrability of the system
stems from the existence of a second constant of motion, besides the Hamiltonian. Here
we show that this constant is actually a generalized version of the Jacobi constant (Eq. 14),
where the orbital eccentricities of μs or μ′s are replaced by a quantity that we call the relative
eccentricity of the two orbits (Eq. 18). Secular terms forces a differential precession between
the two orbits (i.e. �̇s − �̇ ′s �= 0), and destroys the generalized Jacobi constant.

In the general case (μs �= 0, μ′s �= 0), the two satellites play symmetrical roles. This
symmetry is broken, however, in the restricted problem (e.g. μs = 0). The two critical
resonant angles φ and φ′, or their counterparts φL and φc, are then associated with two
resonances (Lindblad and corotation, or LER and CER, respectively) that plays very different
roles. While the LER mainly excites the orbital eccentricity of the test particle, leaving its
semi-major axis relatively unaltered (Eq. 19), the CER mainly changes its semi-major axis,
leaving its eccentricity almost constant (Eq. 20).

The two resonances may be simultaneously described by a reduced Hamiltonian (Eq. 22),
that depends upon only two dimensionless parameters that control the dynamics of the system:
(i) the distance D ∝ �̇s − �̇ ′s between the CER and LER, and (i i) the forcing parameter εL

that includes both the mass and the orbital eccentricity of the disturbing satellite, see Table 1.
The resulting equations of motion are summarized by four simple differential equations

that constitute the “CoraLin model” (see the system (23)). This system describes the coupling
between the motion of a simple pendulum (Eq. 25) that has a separatrix of width ±2, and
an Andoyer-type oscillator (Eq. 24) centered at χ = −D, see Fig. 1. It has the advantage to
permit a generic exploration of the dynamics of the system through simple numerical integra-
tions, Poincaré surfaces of section, etc…Furthermore, it uses dimensionless parameters that
encapsulate all the parameters of the systems (mass and orbital eccentricity of the perturber,
secular precessions of the orbits, etc…).

As an example, we have examined the phase portraits relevant to small Saturnian satellites
trapped in CER’s with Mimas: Aegaeon, Methone and Anthe. While the system is integrable
for D = 0, chaos is rapidly prevalent for values of D as small as about 0.01, see Fig. 5. Only
for large values of D � 2 is the system almost integrable again, with a behavior that can be
qualitatively described using simple adiabatic invariant arguments.

More specific integrations (Fig. 7) show that Aegaeon, Methone and especially Anthe
are close to prominent chaotic regions. Future works are now in order to explain how those
satellites may have been captured inside their respective corotation sites. The numerical
implementation of orbital migrations of Mimas and/or the small satellites in the CoraLin
system is in fact very simple, and we will use that model to explore various scenarii of
resonant capture.
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