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Abstract We continue the investigation of the dynamics of retrograde resonances initiated
in Morais and Giuppone (Mon Notices R Astron Soc 424:52–64, doi:10.1111/j.1365-2966.
2012.21151.x, 2012). After deriving a procedure to deduce the retrograde resonance terms
from the standard expansion of the three-dimensional disturbing function, we concentrate on
the planar problem and construct surfaces of section that explore phase-space in the vicinity
of the main retrograde resonances (2/−1, 1/−1 and 1/−2). In the case of the 1/−1 resonance
for which the standard expansion is not adequate to describe the dynamics, we develop a
semi-analytic model based on numerical averaging of the unexpanded disturbing function,
and show that the predicted libration modes are in agreement with the behavior seen in the
surfaces of section.

Keywords Resonance · Three-body problem · Surface of section · Co-orbital resonance

1 Introduction

The discovery of extrasolar planets that orbit their host stars in the direction opposite to the
star’s rotation has renewed interest in the dynamics of retrograde motion in gravitational
systems (Triaud et al. 2010). In the Solar System, retrograde motion is confined to smaller
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bodies such as satellites of the outer planets and long period comets. Understanding the
structure of retrograde motion and in particular retrograde resonances will help elucidate the
origin and evolution of the observed systems. Gayon and Bois (2008) performed numerical
integrations of systems with planets moving in opposite directions and observed that a retro-
grade resonance in two-planet systems is more stable than the equivalent prograde resonance
confirming the idea that when two bodies orbit in different directions, encounters occur at a
higher relative velocity during a shorter time and mutual perturbations are therefore weaker.
In Gayon et al. (2009) the authors obtained the 2/1 retrograde resonance disturbing func-
tion, and identified retrograde resonance angles. However, they were unable to find initial
conditions that correspond to libration in retrograde resonance, and did not identify the the-
oretical reason for the observed enhanced stability of retrograde resonances. In Morais and
Giuppone (2012) (hereafter Paper I) we compared the stability of prograde and retrograde
planets within a binary system. We observed that retrograde planets remain stable nearer to
the secondary star than prograde planets. We showed that instability is caused by single mean
motion resonances (MMRs) and the possible overlap of adjacent pairs. We used a standard
expansion of the disturbing function for the planar circular restricted three-body problem
(CR3BP) to obtain the retrograde resonance terms, and we explained how these terms show
why retrograde resonances are more stable than prograde resonances. Indeed, the magnitude
of the p/q resonance terms is proportional to a power of the eccentricity, which at the lowest
order, is ep+q in the retrograde case and ep−q in the prograde case.

In this paper, we continue our investigation of retrograde motion in the three-body prob-
lem by systematically studying the structure of the phase space near the main retrograde
resonances. We concentrate on the planar problem and examine in detail motion near the
2/1, 1/1 and 1/2 retrograde resonances. In Sect. 2, we explain how to obtain the retrograde
resonance terms from an expansion in Laplace coefficients of the three-dimensional disturb-
ing function. We also show that, in the planar problem, these coincide with the retrograde
resonance terms obtained in Paper I. Since Laplace coefficients diverge when the semi major
axes’ ratio is close to unity, in Sect. 3, we develop a semi-analytical model for the co-orbital
1/1 retrograde resonance based on numerical averaging of the unexpanded disturbing func-
tion. In Sect. 4, we present our numerical approach and results, and describe how retrograde
motion phase-space is structured and where stable motion is possible. Section 5 contains a
discussion of our results.

2 Differences between prograde and retrograde resonance

The encounter of two bodies in a retrograde configuration (orbiting in opposite directions)
occurs at a higher relative velocity during a shorter time than in a prograde configuration. This
implies that mutual perturbations are generally weaker for retrograde MMRs. In Paper I, we
studied retrograde MMRs analytically in the context of the planar CR3BP and compared their
relative strength and stability to prograde resonances. Here, we will explain how we obtain
the slow terms of the disturbing function for a p/q retrograde MMR in the three-dimensional
CR3BP.

2.1 Disturbing function

Consider a test particle that moves under the gravitational effect of a binary composed of a
primary with mass M� and a secondary with mass m � M�. The motion of m with respect to
M� is a circular orbit of radius a′ = 1 and longitude angle λ′. The reference plane is defined
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by the binary’s orbit. The test particle’s osculating Keplerian orbit with respect to M� has
semi-major axis a, eccentricity e, inclination I , true anomaly f , argument of pericentre ω,
and longitude of ascending node Ω . The disturbing function reads:

R = G m (1/Δ− r cosψ) (1)

where r is the radius of test particle, ψ is the angle between the radius vectors of the binary
and the test particle, Δ2 = 1 + r2 − 2 r cosψ , and

cosψ = cos(Ω − λ′) cos(ω + f )− sin(Ω − λ′) sin(ω + f ) cos I. (2)

The first term of R (direct perturbation) is the gravitational force from the mass m on the
test particle whereas the second term (indirect perturbation) comes from the reflex motion of
the star under the influence of the mass m as the standard coordinate system is chosen to be
centered on the star.

The classic series of the disturbing function is expanded in powers of sin2(I/2). This
is adequate for nearly coplanar prograde motion since sin2(I/2) ≈ 0 but not for nearly
coplanar retrograde motion since sin2(I/2) ≈ 1. Therefore, for nearly coplanar orbits, we
define β � 1 such that I = β or I = 180◦ − β, respectively, for prograde or retrograde
motion. We may therefore write:

cosψ = (1 − s2) cos
(

f + ω ± (Ω − λ′)
) + s2 cos

(
f + ω ∓ (Ω − λ′)

)
, (3)

where s2 = sin2(β/2) � 1, and the ± sign applies to prograde or retrograde cases, respec-
tively.

Next, we writeΔ2 = 1 + r2 − 2 r cos( f +ω± (Ω − λ′))− 2rΨ , where Ψ is defined as:

Ψ = cosψ − cos
(

f + ω ± (Ω − λ′)
) = 2 s2 sin

(±(Ω − λ′)
)

sin(ω + f ). (4)

Expanding the direct perturbation term Δ−1 in the vicinity of Ψ = 0 (as s2 � 1), we may
write:

1

Δ
=

∞∑

i=0

(2i)!
(i !)2

(
1

2
rΨ

)i 1

Δ2 i+1
0

, (5)

where Δ2
0 = 1 + r2 − 2 r cos( f + ω ± (Ω − λ′)).

Finally, defining ε = r/a − 1 = O(e) and expanding Δ−(2 i+1)
0 around ε = 0:

1

Δ2 i+1
0

=
(

1 +
∞∑

k=1

1

k! ε
k αk dk

dkα

)
1

ρ2 i+1 , (6)

with α = a/a′, and

1

ρ2 i+1 = (
1 + α2 − 2α cos

(
f + ω ± (Ω − λ′)

))−(i+1/2)
,

=
∑

j

1

2
b j

i+1/2(α) cos
(

j ( f + ω ± (Ω − λ′))
)
, (7)

where b j
i+1/2(α) are Laplace coefficients. For α < 1, they may be expanded as convergent

series in α (Ellis and Murray 2000).
Therefore, for retrograde orbits (I ≈ 180◦) the disturbing function (Eq. 5) is expanded

in powers of cos(I/2) � 1, whereas for prograde orbits (I ≈ 0) it is expanded in powers
of sin(I/2) � 1. Yokoyama et al. (2005) studied the effect of Triton’s retrograde orbit on
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the motion of Neptune’s satellites. They used computer algebra to expand the disturbing
function in powers of sin(I ) � 1, and compared direct numerical integrations of the equa-
tions of motion with results obtained from the integration of Lagrange’s equations using the
retrograde disturbing function. The advantage of our approach is that it allows us to obtain
the retrograde disturbing function directly from the well known prograde disturbing func-
tion, without the need for specific computer algebra. We will now explain that procedure in
detail.

Examination of the angles in the expression of Ψ (4) and that of ρ (7) show that there
are two ways with which the expansion of the disturbing function for retrograde motion
can be obtained from the expansion of the disturbing function for prograde motion. The
two ways are equivalent as they depend on whether one chooses to invert the motion of the
inner body or that of the outer one.1 Inverting the motion of the outer body gives the first
transformation: I � = 180◦− I, λ′� = −λ′, ω� = ω−π andΩ� = −Ω−π . In this case, the
longitude of pericentre� = ω+Ω is transformed into�� = ω−Ω and the mean longitude
λ = M+ω+Ω into λ� = M+ω−Ω where M is the mean anomaly. Equivalently, this means
applying the generating function F1 = −λ′Λ′�+(λ+2z)Λ�+(g−2z)��−(z −π)Z� to the
usual Poincaré action-angle variables. Inverting the motion of the inner body gives the second
possible transformation: I � = 180◦− I, f � = − f, ω� = π−ω andΩ� = π+Ω that may be
obtained with the generating function F2 = λ′Λ′� − (λ+ 2z)Λ� − (g − 2z)�� + (z −π)Z�.
We note however that these two transformations are passive in that they allow us only to
obtain the expression of the resonant arguments. Once the arguments are obtained formally,
the assumption that λ̇ > 0 and λ̇′ > 0 always holds. This is in contrast to the approach
adopted in Paper I where an active transformation was used to study the planar dynamical
problem by choosing explicitly from the outset the convention λ̇ > 0 and λ̇′ < 0. A similar
transformation has been used by Saha and Tremaine (1993) to analyze long-term numerical
integrations of the retrograde Jovian satellites.

2.2 Resonant terms

Now that we have shown how the expansion of the disturbing function for I = 180◦ − β

is obtained from that with I = β, we may use the literal expansion of Ellis and Murray
(2000) valid for prograde motion and transform the relevant resonance terms to describe the
corresponding retrograde resonance. We will use the first transformation described above
with s� = cos(I/2), λ� = M + ω −Ω and �� = ω −Ω .

The 2/1 retrograde resonance terms are of type e3 cos(λ� − 2 λ′ − 3��) [term 4D3.1
with j = 2], and e s2

� cos(λ� − 2 λ′ − �� + 2Ω) [term 4D3.5 with j = 2]. The 1/2
retrograde resonance has direct and indirect terms of type e3 cos(2 λ� − λ′ − 3��) [terms
4D3.4 with j = 2 and 4I3.6], and e s2

� cos(2 λ�−λ′ −��+ 2Ω) [terms 4D3.10 with j = 2
and 4I3.13]. The 1/1 retrograde resonance has direct and indirect terms. These are of type
e2 cos(λ�−λ′ −2��) [terms 4D2.1 with j = 1 and 4E2.2], and s2

� cos(λ�−λ′ +2Ω) [terms
4D2.4 with j = 1 and 4E2.6]. However, the 1/1 resonance direct terms cannot be obtained
from the literal expansion of the disturbing function (since Laplace coefficients diverge
when α → 1). We develop a semi-analytic model for the co-orbital resonance in the next
section.

1 A retrograde orbit with inclination I > 90◦ can be obtained from a prograde orbit with inclination 180◦ − I
by inverting the direction of motion which implies a swap between ascending and descending nodes.
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A similar analysis for any p/q retrograde resonance shows that there are resonant terms2

ep+q−2 k s2 k
� cos

(
qλ� − pλ′ − (p + q − 2 k)�� + 2 kΩ

)
. (8)

with k = 0, 1, 2, . . . and p + q ≥ 2 k.
If β � 1 then s� � 1, hence the term with k = 0 is dominant. Since we restrict our study

to planar retrograde resonance (s� = 0), only the term ep+q cosφ remains, where

φ = qλ� − pλ′ − (p + q)��. (9)

We thus recover the retrograde resonant angle from Paper I (with the expected change of sign
for the term in λ′). Following Paper I, we use the notation p/−q resonance when referring to
a p/q retrograde resonance.

3 A model for co-orbital resonance

Consider a test particle in the co-orbital region of the secondary (|a−1| � 1). The disturbing
function may be expressed using the natural angles: the fast epicyclic motion represented
by the mean longitude λ of the particle and the guiding centre phase represented by the
relative mean longitude τ = λ − λ′. To obtain the resonant Hamiltonian, the disturbing
function, R (Eq. 1), is averaged with respect to the fast angle λ. The corresponding function
is the ponderomotive potential S = 〈R〉 used in our previous work on the co-orbital reso-
nance (Namouni 1999; Namouni et al. 1999). When the relative longitude τ is introduced,
we may write:

cosψ = 1

2
(1 + cos I ) cos( f − M + τ)+ 1

2
(1 − cos I ) cos( f + M − τ + 2ω), (10)

and the ponderomotive potential is given as:

S = 1

2π(1 − e2)1/2

2π∫

0

R r2d f, (11)

where r = a(1 − e2)/(1 + e cos f ), and the average over the mean anomaly M has been
replaced by an average over f using the conservation of angular momentum. The mean
anomaly M is related to the true anomaly by the eccentric anomaly tan(E/2) = (1 −
e)1/2(1 + e)−1/2 tan( f/2) and Kepler’s equation M = E − e sin E .

The expansion-free expression of ψ gives the natural resonant angles for planar motion.
For prograde motion (cos I = 1), libration occurs around φ = τ whereas for retrograde
motion (cos I = −1), libration occurs around φ = τ − 2ω.3 Figure 1 (1st and 2nd rows)
shows the shape of the potential S as a function of the resonant argument φ = τ − 2ω for
planar retrograde motion where a − 1 = 0.01. At low eccentricity, libration occurs only
around φ = 180◦ and the potential is quite shallow. This explains why in the next section we
observe that low eccentricity libration orbits for relatively large mass ratios (e.g. μ = 0.01)
are difficult to set up as the larger the mass ratio the stronger the mutual perturbations, the more
destructive the close encounters. We shall show that such librations are quite stable at smaller

2 D’Alembert rule is not obeyed because the canonical transformations described in Sect. 2.1 imply that angles
for the test particle are measured in the opposite direction of the binary’s motion.
3 Here, we define λ = M + ω + Ω . If we define λ� = M + �� with �� = ω − Ω then the retrograde
resonant angle is φ = λ� − λ′ − 2�� in agreement with the conclusions of the previous section.
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Fig. 1 Ponderomotive potential S of the 1/−1 resonance as a function of the resonant angle. The relative
semi-major axis is 0.01. The 1st and 2nd rows illustrate the planar potential whereas the 3rd and 4th rows
apply to three dimensional orbits with small inclination. For the latter, τ − 2ω is no longer the only possible
resonant argument and S is plotted as a function of τ for a fixed ω

mass ratios. As the eccentricity is increased, the collision boundary appears and librations
may occur around 0 or 180◦. The extent of the libration amplitude depends on eccentricity, for
0.1 � e � 0.7, libration around zero has the largest amplitude. Libration around 180◦ regains
some importance as e approaches unity. As the ponderomotive potential S is derived for three-
dimensional orbits, it is instructive to see how the introduction of a small inclination modifies
the dynamics as realistic orbits in the planetary three-body problem never lie exactly on the
same plane. Moreover, in the co-orbital resonance, inclination is known to mitigate collisional
encounters and facilitate stable orbital transitions (Namouni 1999; Namouni et al. 1999).
Figure 1 (3rd and 4th rows) shows how S is modified when the retrograde orbits have a mutual
inclination of 10◦ and ω is set to zero. As expected, collision singularities are absent. There
appears a bifurcation near e = 0.161 where librations around 0 and 180◦ have comparable
amplitudes and may be associated with the same energy level. The remaining features of the
planar problem are present: the potential’s shallowness for low eccentricity and the dominance
of libration around zero for more eccentric orbits. We remark that the potential’s amplitude
and bifurcation modes depend on the relative semi-major axis. Figure 1 only illustrates

123



Retrograde resonance in the planar three-body problem 411

the similarities and differences with the planar problem. We also note that in the fully three
dimensional problem, the time evolution of the argument of pericenter modifies the potential’s
shape and equilibria whereas for planar orbits, the potential depends on the combined phase
φ = τ − 2ω. We shall present the study of the three-dimensional retrograde co-orbital
resonance elsewhere.

4 Retrograde resonance phase space

Poincaré surfaces of section are useful tools to study the phase space structure in the three-
body problem. In what follows, we define how we set up surfaces of section for the phase
space of the 2/−1, 1/−1 and 1/−2 resonances. We then examine the types of orbits involved,
as well as their potential stability.

4.1 Surface of section construction

In the barycentric rotating frame, the planar CR3BP has two degrees of freedom (x, y) and
one integral of motion, the Jacobi constant (Murray and Dermott 1999):

C = x2 + y2 − (ẋ2 + ẏ2)+ 2 (1 − μ)

r1
+ 2μ

r2
, (12)

where μ < 1 is the mass ratio of the secondary and the primary, r2
1 = (x + μ)2 + y2 and

r2
2 = (x − 1 +μ)2 + y2. Orbits therefore lie on a 3D subspace C(x, y, ẋ, ẏ) = C embedded

in the 4D phase space. Points of an orbit that intersects a given surface, e.g. y = 0, in a given
direction, e.g. ẏ > 0, lie on a 2D surface of section (x, ẋ). An order k resonance corresponds
to a set of k islands on the surface of section (Winter and Murray 1997a,b). Here, we prefer
to define the surface of section by ẋ = 0, allowing us to follow orbit intersections in the
(x, y)-plane.

We choose a mass ratio μ = 0.01 that is small enough for perturbation theory to apply
and Keplerian osculating elements to be used. These elements (a, e,�) vary on a longer
scale than the orbital period. We then set at t = 0, ẋ0 = 0, so that:

ẏ0 = ±
√

x2
0 + y2

0 + 2 (1 − μ)

|x0 + μ| + 2μ

|1 − (x0 + μ)| − C . (13)

The transformation from barycentric variables (x0, y0, ẋ0, ẏ0) to astrocentric (centered on
the primary) variables (x1, y1, ẋ1, ẏ1) is given as:

x1 = x0 + μ ẋ1 = ẋ0 − y1 (14)

y1 = y0 ẏ1 = ẏ0 + x1 (15)

When ẋ0 = 0 and y0 = 0 we have ẋ1 = 0 and ẏ1 = ẏ0 + x1. Hence, to set up prograde
orbits we choose x1 > 0 and ẏ0 > 0, or x1 < 0 and ẏ0 < 0. However, to set up retrograde
orbits we must have x1 > 0 and ẏ0 < −x1, or x1 < 0 and ẏ0 > −x1. By replacing y0 = 0
and ẏ0 = −x1 into Eq. (13), we obtain a limit range on the Jacobi constant

C <
2 (1 − μ)

|x0 + μ| + 2μ

|x0 − 1 + μ| − μ(μ+ 2 x0), (16)

such that, within this range of C , choosing x1 > 0 and ẏ0 < 0, or x1 < 0 and ẏ0 > 0 ensures
that the orbits are retrograde. When |x1| < 3, this limit is C � 0.7.
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Fig. 2 Level curves of C at
values (from left to right)
0.6,0.3,0,−0.3,−0.6,−0.9,−1.2,−1.5,−1.8.
Initial condition at conjunction
and pericenter (a), conjunction
and apocenter (b), opposition and
pericenter (c), opposition and
apocenter (d). The magenta and
blue lines locate collision with
secondary at pericenter or
apocenter. The red vertical lines
show location of 2/−1, 1/−1 and
1/−2 resonances

(a) (b)

(c) (d)

We construct surfaces of section defined by ẋ = 0 and ẏ × ẏ0 > 0 so that the initial
condition lies on the surface of section. We vary x0 between −3 and 3 with increments of
0.05, and y0 between 0 and 0.8 with increments of 0.1. The Jacobi constant in the range
−1.9 ≤ C ≤ 0.7 is incremented by 0.1. We use Eq. (13) to obtain ẏ0 and choose ẏ0 > 0
if x1 < 0 and ẏ0 < 0 if x1 > 0. This ensures that the initial conditions always correspond
to retrograde orbits (as C � 0.7). The equations of motion of the CR3BP were numerically
integrated for up to 106 binary periods using a Burlisch–Stoer algorithm with accuracy 10−14.
A selection of the surfaces of section will be discussed in Sect. 4.3. The full set of surfaces
of section can be seen as online Supplementary Material 2.

We show the level curves of constant C in (a, e) space for initial conditions at conjunction
i.e. x1 > 0 and y = 0 (Fig. 2a, b) and for initial conditions at opposition i.e. x1 < 0 and
y = 0 (Fig. 2c, d). The chosen range −1.9 ≤ C ≤ 0.7 spans semi-major axes between 0.5
and 1.5, thus includes the 2/−1, 1/−1 and 1/−2 resonance regions.

4.2 Resonant angles

The chosen initial conditions are λ = λ′ = 0 (conjunction: y = 0 and x + μ > 0) or
λ = 180◦ and λ′ = 0 (opposition: y = 0 and x + μ < 0). The points on the surface of
section (ẋ = 0) with y = 0 correspond to the osculating orbits’ pericenter (λ = � ) or
apocenter (λ = � + 180◦), depending on the x and C values.

Starting in conjunction and at pericenter (apocenter) corresponds to the resonant angle
φ = q λ − p λ′ − (p + q)� = 0 ([p + q] × 180◦). In this case, φ = 0 (180◦) if p + q is
even (odd). Starting at opposition and at pericenter (apocenter), φ = −p × 180◦ (q × 180◦).
Hence for opposition at pericenter, φ = 0 (180◦) if p is even (odd) and at apocenter φ = 0
(180◦) if q is even (odd). Therefore, even order resonant angles (such as that of the 1/−1
resonance) may librate around 0 for initial conditions at conjunction, or around 180◦ for
initial conditions at opposition. Odd order resonant angles with p even (such as that of the
2/−1 resonance) may librate around 180◦ for initial conditions at apocenter, or around 0 for
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Fig. 3 Orbits in 2/−1 resonance
seen in synodic frame: C = 0.6
mode A (top left) and mode B
(top right); C = 0.3 mode A (low
left) and mode B (low right). A
unit radius circle in blue helps
identify the crossing orbits and
non-crossing orbits
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initial conditions at pericentre. Odd order resonant angles with an odd p (such as that of the
1/−2 resonance) may librate around 180◦ for initial conditions at conjunction and apocenter,
opposition and pericenter, or around 0 for initial conditions at conjunction and pericentre,
opposition and apocenter.

4.3 Results of numerical integrations

4.3.1 Resonant configurations

We examine a selection of orbits in the vicinity of the 2/−1, 1/−1 and 1/−2 resonances shown
in the frame rotating with the binary. These orbits are periodic when at exact resonance and
quasi-periodic otherwise.

Figure 3 shows 2/−1 resonant orbits. The top left panel shows an orbit with C = +0.6
that starts at conjunction or opposition (y = 0), and pericenter (mode A). The top right panel
shows an orbit with C = +0.6 that starts at conjunction or opposition (y = 0), and apocenter
(mode B). Resonant libration occurs around 0 in mode A and around 180◦ in mode B (Fig.
OR 1 in online Supplementary Material 1). The low left panel shows an orbit with C = +0.3
that starts at conjunction or opposition (y = 0), and pericenter (mode A). The low right panel
shows an orbit with C = +0.3 that starts at conjunction or opposition (y = 0), and apocenter
(mode B). The latter orbit is very close to collision with the secondary.

Figure 4 shows 1/−1 resonant orbits. The top left panel shows an orbit with C = +0.6
that starts at x1 > 0 and y = 0, or x1 < 0 and y = 0 (mode I). Resonant libration occurs
around 0 and disruptive close encounters are avoided despite the high eccentricity (Fig. OR
2 left, mode I, in online Supplementary Material 1). The top right panel shows an orbit with
C = +0.6 that starts at x1 < 0 and y = 0 (mode II). The 1/−1 resonant angle librates around
180◦ (Fig. OR 2 right, mode II, in online Supplementary Material 1) but the orbit is close to
collision and becomes unstable when C < 0.6. Both orbits are described by the equilibria of
the ponderomotive potential S in Fig. 1 (2nd row, rightmost panel).
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Fig. 4 Orbits in 1/−1 resonance
seen in synodic frame: C = 0.6
mode I (top left) and mode II (top
right); C = −0.9 mode I (mid
left); C = −1.1 mode III libration
(mid right); C = −1.2 mode I
(low left) and mode III circulation
(low right). A unit radius circle in
blue helps identify the crossing
orbits and non-crossing orbits −2
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The mid left panel of Fig. 4 shows an orbit with C = −0.9 and moderate eccentricity
that starts at x1 > 0 and y = 0, or x1 < 0 and y = 0 (mode I). The 1/−1 resonant angle φ
librates around 0. The mid right panel of Fig. 4 shows an orbit with C = −1.1 that is nearly
circular and has initially x1 < 0 and y = 0 (mode III). This crossing orbit is very close to
collision and we expect resonant libration around 180◦ (Fig. OR 3 right, mode III, in online
Supplementary Material 1). What happens is an interesting behavior best seen if we integrate
a similar orbit for smaller mass ratios thus reducing the jitter due to close encounters. In Fig.
5, left panel, we plot in the (φ, e)-plane, a similar orbit but with μ = 10−4. The resonant
argument alternates periodically between libration and circulation in a state that is stable
over long time scales. Observing libration around φ = 180◦ requires a finer search which
becomes easier as the mass ratio is decreased (Fig. 5, right panel). The low left panel of Fig. 4
shows an orbit with C = −1.2 that has small eccentricity and starts at x1 > 0 and y = 0,
or x1 < 0 and y = 0 (mode I). This crossing orbit is also close to collision and the resonant
angle φ librates around 0 (Fig. OR 3 left, mode I, in online Supplementary Material 1). The
low right panel of Fig. 4 shows an orbit with C = −1.2 that is nearly circular and starts at
x1 > 0 or x1 < 0, and y = 0 for C = −1.2. This is a non-crossing orbit just exterior to the
secondary’s orbit and the resonant angle circulates.

Figure 6 shows 1/−2 resonant orbits. The top left panel shows an orbit with C = −1.5
that starts at conjunction and pericenter, or opposition and apocenter (mode A). The top right
panel shows an orbit with C = −1.5 that starts at conjunction and apocenter, or opposition
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Fig. 5 Co-orbital resonant libration at small eccentricity. The orbits’ initial conditions are M = 180◦, � = 0
and for μ = 10−5, a/a′ − 1 = 0.001, e = 0.01, whereas for μ = 10−4, a/a′ − 1 = 0.01, e = 0.08. For
better visibility, orbits are shown only for 100 periods

Fig. 6 Orbits in 1/−2 resonance
seen in synodic frame: C = −1.5
mode A (top left) and mode B
(top right); C = −1.2 mode A
(low left) and C = −1.8 mode B
(low right). A unit radius circle in
blue helps identify the crossing
orbits and non-crossing orbits
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and pericenter (mode B). Resonant libration occurs around 0 in mode A and around 180◦ in
mode B (Fig. OR 4 in online Supplementary Material 1). When C = −1.5 both mode A and
mode B orbits are close to collision with the secondary. The low left panel shows an orbit
with C = −1.2 that starts at conjunction and pericenter, or opposition and apocenter (mode
A). This is the only stable configuration when C > −1.3. The low right panel shows an orbit
with C = −1.8 that starts at conjunction and apocenter, or opposition and pericenter (mode
B). This is the only stable configuration when C = −1.8.

4.3.2 Surfaces of section

As seen in Figs. 3, 4, 6, an order k resonant orbit intersects the section ẋ = 0 at 2k different
points. However, owing to the constraint on the sign of ẏ, we only see k of these intersections
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Fig. 7 Surfaces of section for selected values of C. Primary is at (0, 0) and secondary is at (1, 0). Different
colors correspond to different libration modes, or circulation (see text)

on the surface of section (x1, y). Therefore, in the surfaces of section (Fig. 7) a set of k
intersections on the left hand side (x1 < 0) usually represents the same configuration (in the
synodic frame) as a set of k intersections on the right hand side (x1 > 0).
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Figure 7 shows a selection of surfaces of section with C = 0.6, C = 0.3, C = 0.0, C =
−0.9, C = −1.1, C = −1.2, C = −1.5 and C = −1.8. The full set of surfaces of section
(C between 0.7 and −1.9 at steps 0.1) can be seen as online Supplementary Material 2. At
these values of C many initial conditions correspond to crossing orbits (see Fig. 2) which
can only be stable in resonance. Non-crossing small eccentricity orbits exist in the regions
marked in green (left and right on Fig. 7). Other colors correspond to different libration modes
as described below. Empty areas in the surfaces of section correspond to initial conditions
that lead to collision or escape.

When C = 0.6, we see nearly circular non-crossing orbits in the vicinity of the 3/−1
resonance (green) for initial conditions at opposition (left) or conjunction (right). Collision
with the secondary occurs between the 3/−1 and 2/−1 resonances. We see islands of libration
in the 2/−1 resonance. The 2/−1 resonant orbits that start at pericenter (magenta on left and
right) correspond to the same configuration in the synodic frame (Fig. 3 top left panel: mode
A) where the resonant angle librates around 0 (Fig. OR 1 left in online Supplementary Material
1). The 2/−1 resonant orbits that start at apocenter (blue on left and right) also correspond
to the same configuration in the synodic frame (Fig. 3 top right panel: mode B) where the
resonant angle librates around 180◦ (Fig. OR 1 right in online Supplementary Material 1).

When C = 0.6, we also see islands of libration in the 1/−1 resonance that correspond to
orbits with very high eccentricity values. The 1/−1 resonant orbits that start at conjunction
(black on right) or with x1 < 0 and y = 0 (black on left) correspond to the same configuration
in the synodic frame (Fig. 4 top left: mode I) where the resonant angle librates around 0
(Fig. OR 2 left in online Supplementary Material 1). The 1/−1 resonant orbit that starts at
opposition (red) is close to collision (Fig. 4 top right: mode II) and the resonant angle librates
around 180◦ (Fig. OR 2 right in online Supplementary Material 1).

When C = 0.3, we see orbits the vicinity of the 2/−1 resonance for initial conditions
at opposition (left) or conjunction (right). The 2/−1 resonant angle can circulate for non-
crossing orbits (green on left and right), it can librate in mode A (Fig. 3 low left) for initial
conditions at pericenter (magenta on left and right), or it can librate in mode B (Fig. 3 low
right) for initial conditions at apocenter (blue on left and right). Collision with the secondary
occurs just outside the 2/−1 resonance separatrix. The 1/−1 resonant angle librates around
0 (mode I) for initial conditions at conjunction (black on right) or with x1 < 0 and y = 0
(black on left). There are also islands of libration in the 1/−2 resonance for initial conditions
at conjunction / pericenter (magenta on right) or opposition / apocenter (magenta on left).
These correspond to the same configuration in the synodic frame where the resonant angle
librates around 0 (Fig. 6 mode A).

When C = 0.0, we see nearly circular orbits in the vicinity of the 2/−1 resonance
(green) for initial conditions at opposition (left) or conjunction (right). The 2/−1 resonant
angle can only circulate and all these orbits are non-crossing. Collision with the secondary
occurs between the 2/−1 and 3/−2 resonances. The 1/−1 resonant angle librates around 0
(mode I) for initial conditions at conjunction (black on right) or with x1 < 0 and y = 0
(black on left). The 1/−2 resonant angle librates around 0 (mode A) for initial condi-
tions at conjunction / pericenter (magenta on right) or opposition /apocenter (magenta on
left).

When C = −0.9, all initial conditions correspond to crossing orbits hence they are only
stable in resonance. The 1/−1 resonant angle librates around 0 (mode I) for initial conditions
at conjunction (black on right) or with x1 < 0 and y = 0 (black on left). Collision with the
secondary occurs in the 1/−1 resonance region. The 1/−2 resonant angle librates around 0
(mode A) for initial conditions at conjunction / pericenter (magenta on right) or opposition
/apocenter (magenta on left).
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When C = −1.1, nearly circular orbits in the 1/−1 resonance starting at opposition (red
on left) correspond to libration around 180◦ (Fig. 4 mid right: mode III) although that is
not very clear from the behavior of the resonant angle (Fig. OR 3 right, mode III, in online
Supplementary Material 1) due to the effect of repeated very close encounters. These are
crossing orbits which are very close to the collision boundary. The nearly circular orbit
starting at conjunction (red on right) correspond to the 1/−1 resonance separatrix. The 1/−1
resonant angle can also librate around 0 (mode I) for initial conditions at conjunction (black
on left) or with x1 < 0 and y = 0 (black on right). These are also crossing orbits close to the
collision boundary. The 1/−2 resonant angle librates around 0 (mode A) for initial conditions
at conjunction / pericenter (magenta on right) or opposition /apocenter (magenta on left).

When C = −1.2, we see nearly circular orbits in the vicinity of the 1/−1 resonance
(green) for initial conditions at opposition (left) or conjunction (right). The 1/−1 resonant
angle circulates and the orbits are just exterior to the secondary’s orbit thus very close to
the collision boundary (Fig. 4 low right: mode III). The 1/−1 resonant angle can also librate
around 0 (Fig. OR 3 left, in online Supplementary Material 1, and Fig. 4 low left: mode I) for
initial conditions at conjunction (black on right) or with x1 < 0 and y = 0 (black on left).
These are crossing orbits close to the collision boundary. The 1/−1 resonance is no longer
possible when C = −1.3 (see online Supplementary Material 2). When C = −1.2, the 1/−2
resonant angle librates around 0 (mode A) for initial conditions at conjunction / pericenter
(magenta on right) or opposition /apocenter (magenta on left). When C = −1.3 (see online
Supplementary Material 2) the 1/−2 resonant angle can also librate around 180◦ (mode B)
for initial conditions at conjunction / apocenter or opposition / pericenter.

When C = −1.5, we see nearly circular orbits in the vicinity of the 2/−3 resonance
(green) for initial conditions at opposition (left) or conjunction (right). Collision with the
secondary occurs in the 2/−3 resonance region. There are islands of libration in the 1/−2
resonance. The 1/−2 resonant orbits that start at conjunction / pericenter (magenta on right)
and opposition / apocenter (magenta on left) correspond to the same configuration in the
synodic frame (Fig. 6 top left panel: mode A) where the resonant angle librates around 0
(Fig. OR 4 left in online Supplementary Material 1). The 1/−2 resonant orbits that start
at conjunction / apocenter (blue on right) and opposition / pericenter (blue on left) cor-
respond to the same configuration in the synodic frame (Fig. 6 top right panel: mode B)
where the resonant angle librates around 180◦ (Fig. OR 4 right in online Supplementary
Material 1).

When C = −1.8, there are nearly circular orbits in the vicinity of the 1/−2 resonance
(green) for initial conditions at opposition (left) or conjunction (right). The 1/−2 resonant
angle can circulate or it can librate around 180◦ (mode B) for initial condition at opposition
/ pericenter (blue on left) or conjunction / apocenter (blue on right). Collision with the
secondary occurs just outside the 1/−2 resonance separatrix. The 1/−2 resonant angle can
no longer librate around 0 (mode A).

4.4 Analytic model for 2/−1 and 1/−2 resonances

The structure of the 2/−1 and 1/−2 resonances, at low to moderate eccentricities, can be
described by the analytic model for 3rd order resonance presented in Murray and Dermott
(1999) and described in Paper I. The Hamiltonian is:

H = δ

2
(X2 + Y 2)+ 1

4
(X2 + Y 2)2 ∓ 2 X (X2 − 3 Y 2) (17)
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Fig. 8 a Trajectories in the vicinity of 2/−1 resonance obtained by numerical integration of the equations
of motion with μ = 0.01 at C = 0.051: near exact resonance (cyan), separatrix (red and green) and outer
circulation (magenta). b Trajectories in the vicinity of 1/−2 resonance obtained by numerical integration of
the equations of motion with μ = 0.01 at C = −1.886: near exact resonance in surface of section (red). The
equilibrium points predicted by the analytic model are marked by crosses

where δ measures the proximity to exact resonance, ∓ applies to 2/−1 or 1/−2 resonances,
X = R cos(φ/3), Y = R sin(φ/3), and R is a scaling factor specific for each resonance
and dependent on the resonance coefficient and on the mass ratio μ (Murray and Dermott

1999). For the 2/−1 resonance φ = λ− 2 λ′ − 3� and R = 2
2
3 γ e, where γ = (3μ f82)

−1

and f82 = 0.402 is the amplitude of term 4D3.1 ( j = 2) when α = 0.623. For the 1/−2
resonance φ = 2 λ − λ′ − 3� and R = 22 γ e where γ = (3μ ( f85 − 0.5/α2))−1 where
f85 −0.5/α2 = 0.533 is the combined amplitude of the terms 4D3.4 ( j = 2) and 4I3.6 when
α = 0.623.

A resonant orbit corresponds to a set of 3 stable equilibrium points of the Hamiltonian
(Eq. 17). In Paper I we showed curves of constant Hamiltonian and location of equilibrium
points for several values of the parameter δ. This is in agreement with the behavior observed
in the surfaces of section near the 2/−1 and 1/−2 resonances (Fig. 7b, h). In particular, when
δ = 0 (exact resonance) there is a bifurcation at the origin, and the 3 stable equilibrium
points have R = 6 and φ = 0,±2π/3 (2/−1 resonance) or φ = π,±π/3 (1/−2 resonance).
Applying the scaling we see that, when μ = 0.01, the stable equilibrium points at the
2/−1 resonance have e = 0.05, while the stable equilibrium points at the 1/−2 resonance
have e = 0.03. In Fig. 8 we show real trajectories in the vicinity of the 2/−1 and 1/−2
resonances obtained by numerical integration of the equations of motion with μ = 0.01 at
Jacobi constant values (C) close to bifurcation at the origin. There is very good agreement
with the analytic model for the 2/−1 resonance (Fig. 8a) since the equilibrium points and
separatrix appear at the correct locations which implies that the scaling is correct. However,
for the 1/−2 resonance an orbit close to the stable equilibrium points in the surface of section
correspond to a large amplitude libration orbit in Fig. 8b, possibly due to the vicinity of the
separatrix at e = 0. It is also known that for exterior resonances it may be necessary to include
higher order terms in the analytic model in order to obtain the correct dynamics (Winter and
Murray 1997b). What is important for our purposes is that the scaling is still approximately
correct since the orbit encircles the equilibrium points predicted by the analytic model.
This test provides further assurance on the correct identification of the resonant terms in
Sect. 2.
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5 Discussion

This article is the continuation of our work on retrograde resonances (Paper I). We identified
the transformation that must be applied to the standard expansion of the three-dimensional
disturbing function in order to obtain the relevant resonance terms for retrograde motion and
analyze them quantitatively.

We explored the phase-space near the retrograde resonances 1/1, 2/1, and 1/2, by con-
structing surfaces of section for the planar CR3BP using a mass ratio 0.01. The resonant term
amplitude is of order e2 for the 1/−1 resonance, while those of the 2/−1 and 1/−2 resonances
are of order e3. Therefore, these are the strongest retrograde resonances.

We saw that for low eccentricity non-crossing orbits, libration in the 2/−1 resonance
occurs around 0 (corresponds to starting at conjunction or opposition and pericenter) whereas
libration in the 1/−2 resonance occurs around 180◦ (corresponds to starting at conjunction
and apocenter, or opposition and pericenter). These are the most stable configurations for
non-crossing resonant orbits, since they ensure that closest approach with the secondary
occurs always at pericenter for the 2/−1 resonance, and always at apocenter for the 1/−2
resonance. The behavior of low eccentricity 2/−1 and 1/−2 resonant orbits is in reasonable
agreement with an analytic model for 3rd order resonances based on the literal expansion
of the disturbing function. However, this analytic model is not valid for resonant crossing
orbits. We observed that moderate to large eccentricity crossing orbits in the 2/−1 resonance
or moderate eccentricity crossing orbits in the 1/−2 resonance may librate around 0 or 180◦,
while large eccentricity crossing orbits in the 1/−2 resonance may librate only around 0.

Recalling that the literal expansion of the disturbing function is not adequate for co-
orbital motion, we developed a semi-analytic model for the 1/1 retrograde resonance based
on numerical averaging of the full disturbing function and valid for large eccentricity and
inclination. We saw that this model correctly explains the 1/−1 resonant modes, namely
libration around 0 and around 180◦. Whereas 1/−1 resonant libration around 0 is quite
stable and occurs for a wide range of eccentricities, libration around 180◦ occurs only near
e ≈ 0 and e ≈ 1, hence it is located close to the collision separatrix with the secondary.
The disruptive effect of these close encounters implies that 1/−1 libration around 180◦ is
easier to setup for smaller mass ratios (� 10−4). We also expect that transitions between
different 1/1 retrograde resonant modes are possible in the three-dimensional problem, in
analogy with what is described for prograde 1/1 resonant orbits (Namouni 1999; Namouni
et al. 1999).

Shortly after completing this theoretical study of retrograde resonance we identified a
set of Centaurs and Damocloids that are temporarily captured in retrograde resonance with
Jupiter and Saturn (Morais and Namouni 2013).
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