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Abstract We construct an explicit reversible symplectic integrator for the planar 3-body
problem with zero angular momentum. We start with a Hamiltonian of the planar 3-body
problem that is globally regularised and fully symmetry reduced. This Hamiltonian is a sum
of 10 polynomials each of which can be integrated exactly, and hence a symplectic integrator
is constructed. The performance of the integrator is examined with three numerical examples:
The figure eight, the Pythagorean orbit, and a periodic collision orbit.

Keywords Geometric integration · Explicit symplectic integration · Numerical integration ·
3-Body problem · Symmetry reduction · Hamiltonian system · Regularisation

1 Introduction

It is well known that the flow Ψ t
H of a Hamiltonian H of the form H = T (p)+ V (q) with

conjugate variables q and p can be approximated by splitting it into the integrable flow Ψ t
T

of T (p) and the integrable flowΨ t
V of V (q) and observing thatΨ t

H = Ψ t
T ◦Ψ t

V + O(t2) (see,
e.g. Channell and Neri 1996; Hairer et al. 2002; McLachlan and Quispel 2002; Leimkuhler
and Reich 2004). Thus a first order explicit symplectic integrator is obtained, and higher order
methods can be constructed along similar lines (Yoshida 1990). In an integrable and separable
Hamiltonian system of the form H = H1(q1, p1)+ H2(q2, p2) such splitting gives the exact
identityΨ t

H = Ψ t
H1

◦Ψ t
H2

. If instead the Hamiltonian is a product H = H1(q1, p1)H2(q2, p2)

again the system is integrable with integrals H1 and H2 and the flow can be written as

Ψ t
H = Ψ

t H2
H1

◦ Ψ t H1
H2

= Ψ
t H1
H2

◦ Ψ t H2
H1
.
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170 D. Rose, H. R. Dullin

In the superscript t Hi denotes multiplication of t by the (constant) value of Hi . A monomial
Hamiltonian is a special case that has the same structure. There are obvious generalisations to
more degrees of freedom. Hence any polynomial Hamiltonian is a sum of integrable mono-
mial Hamiltonians, and thus a splitting integrator can be constructed. Symplectic integration
of polynomial Hamiltonians has been discussed in Shi and Yan (1993), Gjaja (1994), Chan-
nell and Neri (1996), Blanes (2002), Quispel and Mclachlan (2004). In a recent paper by
Blanes and Iserles (2012) various methods for time step control in geometric integrators are
constructed and discussed. These methods could be useful in order to implement variable
time stepping on top of our method; see the discussion in Sect. 3.4.

In this paper we apply these methods to the polynomial Hamiltonian of the globally
regularised and symmetry reduced 3-body problem at angular momentum zero. For a review
of numerical and regularisation methods in the n-body problem we refer to Ito and Tanikawa
(2007). It is well known that binary collisions in the 3-body problem can be regularised.
Regularisation consists of a canonical transformations which essentially extracts a square root
near collision, and of a scaling of time so that the approach to the collision is slowed down.
The classical simultaneous regularisation of the (spatial) 3-body problem is due to Heggie
(1974). This increases the dimension of phase space from 18 to 24. Instead we would like to
decrease the dimension of phase space by using reduction at the same time as regularisation.
The simultaneous regularisation of the planar 3-body problem is due to Lemaître (1964), and
we use a version due to Waldvogel (1982). This is a symmetric simultaneous regularisation
of the symmetry reduced planar 3-body problem and has the smallest possible 6-dimensional
phase space. The resulting Hamiltonian is a polynomial of up to degree 6 in the canonical
variables. A modern extension of these regularising transformations has recently been given
by Moeckel and Montgomery (2012), however, their Hamiltonians are not polynomial but
rational.

Our paper applies the methods for construction of an explicit symplectic integrator to
Waldvogel’s Hamiltonian with angular momentum zero. We also describe how a similar
integrator could be constructed for Heggie’s Hamiltonian, which works for non-zero angular
momentum and in the spatial problem.

2 The 3-body Hamiltonian

The classical 3-body problem has long been studied, but still many open questions regarding
its dynamics remain. For many questions, e.g. the study of relative periodic orbits, it is useful
to reduce by translational and rotational symmetries, so that the absolute rotation of an orbit
can be separated from shape dynamics in the centre of mass frame. Moreover, to study
collision or near-collision orbits it is essential to perform (global) regularisation of the binary
collisions. Following Waldvogel (1982) we are going to do both.

If the position and momentum of mass m j , for j = 1, 2, 3, are given by complex Cartesian
coordinates X j and Pj respectively, we can transform into symmetry-reduced coordinates
such that

Xl − Xk = a j e
φ j ,

where a j = |Xl − Xk | is the length of the triangle’s side opposite to m j , φ j is the angle
of that side in the original coordinate system (in the direction of mk to ml ), as illustrated in
Fig. 1, and ( j, k, l) represents cyclic permutations of (1,2,3).

This reduction results in coordinates a j and φ = 1
3 (φ1 + φ2 + φ3), which represents

the orientation angle of the triangle with respect to the original choice of Cartesian coor-
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Symplectic integrator for the 3-body problem 171

Fig. 1 Coordinates of a triangle
in the plane with centre of mass
at the origin O

Fig. 2 Physical significance of
the regularised coordinates α j

dinates, and corresponding canonical momenta p j and pφ . The Hamiltonian rewritten in
these coordinates is independent of φ, so pφ is a constant of motion. Hamilton’s equations
for (a j , φ, p j , pφ) give the reduced dynamics, including a differential equation for φ which
may be integrated along to be able to recover the unreduced position of the triangle.

The globally regularising transformation, illustrated in Fig. 2, goes from symmetry-
reduced to regularised coordinates, simultaneously regularising all the binary collisions.
Define α j for j = 1, 2, 3 such that a j = α2

k + α2
l . In this way α2

j is the distance from m j to
the point where the incircle of the triangle touches the sides adjacent to m j .

The space of coordinates (a j ) is the space of all triangles, not accounting for orientation.
Orientation is taken to be positive if, going clockwise around the triangle, the masses are
encountered in a cyclic permutation of (1,2,3) or negative otherwise. The space of all possible
oriented triangles is called the shape space, and the space of (α j ) is a four-fold covering of
this space, in which the sign of the product α1α2α3 determines the orientation of the triangle.
Thus the triangle formed by (α1, α2, α3) is the same as the ones formed by (α1,−α2,−α3),
(−α1, α2,−α3) and (−α1,−α2, α3).
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172 D. Rose, H. R. Dullin

Canonically conjugate momenta π j are introduced using a generating function. Finally
the time scaling

dt

dτ
= a1a2a3 (1)

together with Poincaré’s trick to make this Hamiltonian yields the regularised and symmetry
reduced polynomial Hamiltonian

K = (H − h)a1a2a3,

where H is the original Hamiltonian written in the new coordinates and h = H(α0,π0) is
the energy corresponding to the initial conditions (α0,π0), so only those solutions for which
K ≡ 0 are physically meaningful.

The Hamiltonian of the zero-angular momentum 3-body problem in regularised coordi-
nates is

K = K0 − ha1a2a3, (2)

where

K0 = 1

8
πT B(α)π −

∑
mkmlakal , (3)

in which

π = (
π1 π2 π3

)T

α = (
α1 α2 α3

)T

B(α) =
⎛

⎝
A1 B3 B2

B3 A2 B1

B2 B1 A3

⎞

⎠ ,

where

A j = a j

m j
α2 + ak

mk
α2

l + al

ml
α2

k ,

B j = − a j

m j
αkαl and

α2 = α2
1 + α2

2 + α2
3 .

The sum in (3) (and any hereafter where the index of summation is unspecified) is over cyclic
permutations of (1,2,3), so that ( j, k, l) is replaced by (1,2,3), (2,3,1), and (3,1,2) in turn,
and then the three corresponding terms are added together. When there is no summation the
indices ( j, k, l) take on the three possible cyclic permutations in turn, as, e.g., in the definition
of A j and B j above.

The new Hamiltonian is a polynomial in α and π , and thus Hamilton’s equations of motion
for this system can be integrated with an explicit symplectic integrator obtained by splitting
into monomials. As we are going to show in the next section it is more efficient to split into
certain polynomials whose flow can be exactly solved.
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3 Construction of the symplectic integrator

The basic building blocks of the integrator are the exact solutions for monomial Hamiltonians
Hmn = qm pn in 1 degree of freedom. The flow of this Hamiltonian for m �= n is

ψ t
mn(q, p) = (qβn, pβ−m), where β = (

1 + (n − m)qm−1 pn−1t
) 1

n−m (4)

while for m = n it is

ψ t
m(q, p) = (qβ, p/β), where β = exp

(
m(qp)m−1t

)
. (5)

For the Hamiltonian we are studying, the cases that occur are n = m = 1, n = m = 2, and
m = 3, n = 1. We also recall that if the Hamiltonian is a function of positions or momenta
only (with any number of degrees of freedom) the flows are

ψ t
T (p)(q, p) = (q + (∇pT )t, p), and ψ t

U (q)(q, p) = (q, p − (∇qU )t). (6)

3.1 Integrable polynomial Hamiltonians

The basic building blocks just mentioned are now combined to form integrators for the terms
that appear in the Hamiltonian K . The main observation is that if the Hamiltonian is a product
of factors that depend on disjoint groups of degrees of freedom, then each factor is a constant
of motion. Each of the factors in our case is either depending on momenta or positions only
(denoted by T (p) or U (q)) or it is a single monomial in 1 degree of freedom (denoted by
Hmn) or a sum of monomials of disjoint degrees of freedom (denoted by G).

We now list the cases that are relevant in our case (recall that each of the factors depends
on disjoint groups of degrees of freedom):

Ha = T Hnm, ψa = ψ
t Hnm
T ◦ ψ tT

nm (7a)

Hb = T V, ψb = ψ tV
T ◦ ψ tT

V (7b)

Hc = G Hnm, ψc = ψ tG
nm ◦ ψ t Hnm

G (7c)

where G is a Hamiltonian which is the sum of Hamiltonians depending on disjoint degrees
of freedom G = H1(q1, p1) + H2(q2, p2) and thus ψG = ψH1 ◦ ψH2 . Note that all these
formulas are exact, and that the order of composition is irrelevant since the flows commute
and the individual factors are constants of motion.

3.2 Splitting

Let us now explain how to split K (2) into such terms. It is a polynomial Hamiltonian of
degree 6 in α and π with 34 monomials. There are 13 monomials dependent only on α,
of degrees 6 and 4, which may be treated as a single stage. The remaining 21 terms may
be grouped such that only 9 more stages are necessary to approximate the flow of the full
Hamiltonian to first order in the time step in 10 stages. Let K = ∑9

i=0 Hi , where we set
M j = mkml and N j = 1

mk
+ 1

ml
. Then the splitting is
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H0 = −∑
M jα

4
j − (∑

M j
) (∑

α2
kα

2
l

) − ha1a2a3 = C0

H1 = 1
8

(
N2α

2
2 + N3α

2
3

)
α2

1π
2
1 = 1

8 C1,23 C1,1

H2 = 1
8

(
N3α

2
3 + N1α

2
1

)
α2

2π
2
2 = 1

8 C2,31 C2,2

H3 = 1
8

(
N1α

2
1 + N2α

2
2

)
α2

3π
2
3 = 1

8 C3,12 C3,3

H4 = 1
8

(
N2α

4
2 + 2

m1
α2

2α
2
3 + N3α

4
3

)
π2

1 = 1
8 C4

H5 = 1
8

(
N3α

4
3 + 2

m2
α2

3α
2
1 + N1α

4
1

)
π2

2 = 1
8 C5

H6 = 1
8

(
N1α

4
1 + 2

m3
α2

1α
2
2 + N2α

4
2

)
π2

3 = 1
8 C6

H7 = − 1
4

(
1

m3
α2π2 + 1

m2
α3π3

)
α3

1π1 = − 1
4 C7,23 C7,1

H8 = − 1
4

(
1

m1
α3π3 + 1

m3
α1π1

)
α3

2π2 = − 1
4 C8,31 C8,2

H9 = − 1
4

(
1

m2
α1π1 + 1

m1
α2π2

)
α3

3π3 = − 1
4 C9,12 C9,3,

(8)

where each subindexed function Ci is a constant of motion in its associated Hamiltonian.
There are clearly four groups in Eq. (8), which we shall enumerate 0: {0}, 1: {1,2,3}, 2:

{4,5,6} and 3: {7,8,9}. H0 depends on coordinates only, so can be integrated by (6). Group
1 can be integrated by (7b), group 2 can be integrated by (7a), and finally group 3 can be
integrated by (7c) where G is a sum of Hmm Hamiltonians.

3.3 Higher order methods

An important ingredient in constructing higher order reversible methods is the adjoint (φt )∗
of a method φt which is defined to be (φ−t )−1. If φt = ψ t

1 ◦ ψ t
2 ◦ · · · ◦ ψ t

n and each ψ t
i is

self-adjoint, then the adjoint is obtained by reversing the order of composition. This follows
from the definition of the adjoint:

(φt )∗ = (φ−t )−1

= (ψ−t
1 ◦ ψ−t

2 ◦ · · · ◦ ψ−t
n )−1

= (ψ−t
n )−1 ◦ (ψ−t

n−1)
−1 ◦ · · · ◦ (ψ−t

1 )−1

= ψ t
n ◦ ψ t

n−1 ◦ · · · ◦ ψ t
1.

In our case the self-adjointness of the individual steps ψ t
i follows from the fact that they are

exact solution of Hamilton’s equations.
Channell and Neri (1996) offer a basic derivation of a reversible, symplectic map that is

accurate to second order in the time step. When the splitting is of the form H = T (p)+U (q)
this leads to the symplectic leapfrog integrator, by composing symplectic Euler with its
adjoint.

This construction also applies to the more complicated case with a first order integrator
composed of 10 self-adjoint maps as in our case. Given φt = ψ t

1 ◦ ψ t
2 ◦ · · · ◦ ψ t

n as above a
reversible second order method is found as

φt
2 = φ

t
2
1 ◦

(
φ

t
2
1

)∗

= ψ
t
2

1 ◦ · · · ◦ ψ
t
2

n−1 ◦ ψ t
n ◦ ψ

t
2

n−1 ◦ · · · ◦ ψ
t
2

1 .
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Yoshida (1990) gives a general method by which one may obtain integrators of arbi-
trary even order, if only one has, to start with, a reversible even-order integrator φt

2 such
as the symplectic leapfrog—or, more generally, symplectic midpoint. One can compose φt

2
to obtain a fourth order integrator φt

4, and compose this to obtain φt
6 and so on. In general,

given φt
2n ,

φt
2n+2 = φ

z1t
2n φ

z0t
2n φ

z1t
2n , (9)

where we define z0 = − 21/(2n+1)

2 − 21/(2(2n+1))
, z1 = 1

2 − 21/(2n+1)
to adjust the step size of the

lower order method.
This method is easy to construct and implement, but quickly becomes unwieldy. When

n = 2 (order 4), there are three evaluations of the second order method, but at orders 6 and 8
there are, respectively, nine and twenty-seven. As noted by Yoshida (1990), there are better
methods, and he gives coefficients for a sixth order method and several sets of coefficients
for eighth order methods. The construction of higher order methods is discussed extensively
in Hairer et al. (2002) and McLachlan and Quispel (2002). We will assess in Sect. 4 which
methods give good results for our problem comparing the methods whose coefficients are
given in Hairer et al. (2002) and those constructed by Yoshida (1990).

3.4 Regularisation and variable time stepping

There is a well known restriction on symplectic integration that such integrators must use a
constant step size, or the benefits of these methods for large integration times are lost due
to the introduction of new secular error terms. Various authors have discussed methods of
achieving adaptive step size in symplectic integration that avoids this problem; for example,
Mikkola (1997), Preto and Tremaine (1999), Blanes and Budd (2005), Blanes and Iserles
(2012).

In particular, Blanes and Iserles (2012) explore the use of Sundman and Poincaré transfor-
mations and give a good overview of the problem. In general the Sundman transformation is
non-symplectic, though with care the transformation can be made to respect geometric struc-
ture. In the their framework, the time scaling dt

dτ = a1a2a3 is called the monitor function.
Our situation is special because the regularisation transformation consists of two intimately
related steps. First there is the canonical extension of the transformation of coordinates from
distances a j to their “roots” α j (space regularisation), and second there is the time scaling
(time regularisation). The time scaling up to a constant factor is achieved using the square
of the Jacobian determinant of the transformation of the coordinates. Only the combination
of the two achieves global regularisation. Treating the time transformation separately as a
monitor function would mean to integrate singular equations, since the original equations
are singular at collision, and they are still singular after the spatial regularisation alone.
Slight modifications of the time scaling are possible, see the remark at the end of the next
section.

In order to achieve variable time stepping a monitor function could be used in the way
described by Blanes and Iserles (2012) by integrating another equation on top of the regular-
isation (in space and time) we have done. This may be particularly useful when integrating
orbits with large distances between the bodies.
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176 D. Rose, H. R. Dullin

3.5 Finite time blowup

It must be noted that the solution of the Hamiltonian H = qm pn given in (4) can (for n �= m)
reach infinity in finite time. This occurs when

1 + (n − m) qm−1
0 pn−1

0 t = 0. (10)

This obviously makes step sizes comparable to this threshold risky when this form of
solution is used in the integrator. This singularity could be reached if the denominator is
negative and large during forward timesteps, or if the denominator is positive and large for
“backward” timesteps (as during the middle stage of Yoshida’s trick). This possibility arises
in Eq. (2) in the group 4 of the splitting (8), which have terms of the form α3

jπ
1
j . It may

appear that this finite time blowup is an artefact of the integrator. However, after the time
scaling the Hamiltonian K does have finite time blow up when particles escape to infinity.
In this light it seems less unexpected that a stage of the corresponding symplectic integrator
shows the same behaviour.

Blanes (2002) provides a means by which to avoid such singularities, by way of rewriting
the polynomial in terms of sums of binomials in the coordinates and momenta and finding
coefficients such that the two expressions are equal. We did apply this to the Hamiltonian H31

in our problem, and found a way to replace this with a Cremona map. However, it turned out
that the overall error of the method was worse than without this modification. Our method is
more expensive, since it needs to compute rational powers, but this additional cost is worth it.

A way to possibly avoid finite time blowup when the configuration of the system becomes
large would be to consider a rational—rather than polynomial—time scaling function as in
Moeckel and Montgomery (2012). One could consider, for example, dt

dτ = a1a2a3
α2γ (recalling

α2 = ∑
α2

j ), which tends to 0 for γ = 3 or to a j/4 for γ = 2 as α j → ∞. For negative
energy, the only possible escape to infinity is of one single mass and a hard binary; in
regularised coordinates this is exactly one coordinate tending to infinity while the other two
remain bounded. Such a time scaling would inevitably require that the Hamiltonian be split
differently, possibly with more stages and complexity. In principle the methods described
in this paper apply as long as exact solutions can be found for the partial Hamiltonians.
Unfortunately we have not been able to solve all of the resulting rational Hamiltonians.

3.6 Other polynomial globally regularised Hamiltonians

Our main concern in this paper is the zero-angular momentum reduced and regularised planar
3-body problem, which has 3 degrees of freedom. Other well known globally regularised
polynomial Hamiltonians are due to Waldvogel (1972) for the planar 3-body problem and to
Heggie (1974) for the spatial 3-body problem. These Hamiltonians are not fully symmetry
reduced and have 4 degrees of freedom (planar arbitrary angular momentum) and 12 degrees
of freedom (spatial arbitrary angular momentum).

Heggie’s simultaneously regularised Hamiltonian for the spatial 3-body problem (Heggie
1974) in canonical variables Q ji and conjugate Pji , j = 1, 2, 3, i = 1, . . . , 4 has the form

H = H0 + H4 + H5 + H6 + H−1

H0 = −ha1a2a3 −
∑

m j mka j ak,
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Symplectic integrator for the 3-body problem 177

H3+l = 1

8

a j ak

μ jk
|pl |2, l = 1, 2, 3

H−1 = 1

4

∑ a j

m j
(Ak Pk) · (Al Pl)

where μ jk = m j mk/(m j + mk), and a j = ∑4
i=1 Q2

j i , |p j |2 = ∑4
i=1 P2

j i . In addition

Pl = (Pl1, Pl2, Pl3, Pl4)
T and Al is the KS-matrix Kustaanheimo and Stiefel (1965) of the

form

Al =
⎛

⎝
Ql1 −Ql2 −Ql3 Ql4

Ql2 Ql1 −Ql4 −Ql3

Ql3 Ql4 Ql1 Ql2

⎞

⎠

The terms H0 and H4,5,6 are analogous to the previous ones. The terms in H−1 can be split
into 9 terms of the form a j fk gl where the functions fk and gl only depend on the degrees of
freedom k and l, respectively. These terms are somewhat similar to the Hamiltonians H1,2,3

in Waldvogel’s case. Thus the Hamiltonian can be split into 13 polynomials of degree up to
6 each of which is integrable.

When setting Q ji and Pji with i = 3, 4 equal to zero Heggie’s Hamiltonian describes a
planar problem. However, this still has 6 degrees of freedom. We can reduce the number of
degrees of freedom to 4 by instead using Waldvogel’s Hamiltonian (Waldvogel 1972; Gruntz
and Waldvogel 2004). This Hamiltonian is a polynomial of degree 12 and can be split into
15 terms in a way similar to the two cases discussed above.

4 Numerical examples

In this section we will show some numerical results achieved using our integrator in a selection
of orbits ranging from far from collision to close encounters to a collision orbit.

Figure 3 shows the energy error for various integration methods in a “work-precision”
diagram. The error is averaged over several different initial conditions integrated over a fixed
time interval. The error is displayed as a function of the computational cost. The methods

Fig. 3 Averaged error,
integrating a fixed time interval
for varying integration costs.
Time step size at the minimal
error is listed for each order, as
well as our source for the method
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compared are the base method of order 21, the integrators of Yoshida (1990) (43, 69, and 827)
and other higher order symmetric compositions of symmetric methods of various authors,
whose coefficients are given in Hairer et al. (2002), section V.3.2; see also the references
therein. The subscript with each method’s order indicates the number of second order substeps
in the evaluation of a single time step, indicating the cost of each method, where the second
order method is given the base cost of 1. A close look at the graph reveals that integrator 817

achieves the lowest error with a step size of about 0.0027, though it is a close call between
any of the three best methods 815, 817 and 1035. Reducing the step size further creates larger
round-off errors. All of the following examples are calculated with the 817 integrator and
step size 0.0027, unless otherwise mentioned.

Consider the figure-8 choreography, discovered by Moore (1993), proved to exist by
Chenciner and Montgomery (2000) and explored by Simó (2002, 2001). We choose initial
conditions

α0 = (0, 1.134522804969261, 1.134522804969261)T

π0 = (1.506773685132772, 0.694233777317562,−0.694233777317562)T

in regularised coordinates, with h = −1 and equal unit masses. In scaled time, the figure-8
has a period of 2.221813718; in physical time its period is 9.2371333. The trajectory in
regularised coordinates is shown in Fig. 4a and b and the energy error over 25 orbits with
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Fig. 4 The figure-8 choreography with scaled period 2.221813718. a Regularised coordinates. b Regularised
momenta. c Energy error for 25 periods with 200 time steps per period. d Two-way integration error over 25
periods
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Fig. 5 Trajectory of figure-8
choreography in α-space, lying
nearly in a plane. Colour gradient
represents the moment of intertia
(lighter is higher)

large time steps given by the period divided by 200 is shown in Fig. 4c. Figure 5 shows the
trajectory of this orbit in the 3-dimensional space (α j ). Note that each crossing of a plane
α j = 0 corresponds to a syzygy with m j in the middle of the configuration (Fig. 5).

Next we look at the Pythagorean orbit (Szebehely and Peters 1967), whose regularised
trajectory is shown in Fig. 6, for m1 = 3,m2 = 4,m3 = 5, with initial conditions as given
in Gruntz and Waldvogel (2004), which, in regularised coordinates, are

α0 = (1,
√

3,
√

2)T

π0 = (0, 0, 0)T .

This orbit has a close encounter between masses 1 and 3 at around t = 15.8 in phys-
ical time (about τ = 1.52 in scaled time). Waldvogel’s analysis regularises the system,
albeit slightly differently, and his integration is not symplectic. The final motions of
this orbit compare well with other studies; plotting the orbit in physical space produces
results indistinguishable from Szebehely and Peters (1967) and Gruntz and Waldvogel
(2004).

The regularisation of the 3-body problem allows our integrator to cope well when the
distances between any two masses are small. The result of the time scaling is that the regu-
larised system has a finite time blowup for any escape orbit. If one continues to integrate the
Pythagorean orbit past τ=8.105, the error in the energy grows exponentially and the results
become inaccurate.

Finally, we show results in a periodic collision orbit, discovered during a search for peri-
odic orbits in the reduced space, with initial conditions

α0 = (0, 0.717162073833634, 1.683647749751810)T

π0 = (1.762174970761679, 0.177158588505747,−0.401743282150556)T ,

equal unit masses and h = −1. This orbit has two collisions between masses 1 and 2, as can
be seen by α1 = α2 = 0 at τ = 1.9362 and τ = 5.062 in Fig. 7a. This orbit is periodic in full
phase space and is shown in Figs. 7, 8 and 9. Its scaled period is 6.2520511, corresponding
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Fig. 6 The Pythagorean orbit integrated up to τ = 8.105 in scaled time. a Regularised coordinates.
b Regularised momenta. c Energy error. d Two-way integration error

to a physical period of 29.6117209. Note in Fig. 9 that the collisions happen on the α3-axis,
when α1 = α2 = 0.

Because Hamiltonian systems are time-reversible, it is desirable to have an integrator
with the same property. The second order map φt

2 is constructed as such, and Yoshida’s
formula for higher order integrators constructs them to be reversible as well. That means that
φt

2n φ
−t
2n = I d up to roundoff error. Figures 4d, 6d and 7d show how closely this integrator

returns to its initial condition after a certain number of time steps in one direction, followed
by the same number of iterations with a negative time step.

By this measure, the integrator has the most trouble with Pythagorean orbit, which clearly
shows signs that it exists within a chaotic region of phase space by the exponential growth
of error. However, energy is well preserved in this and the other cases.

5 Conclusion

We have constructed a symplectic integrator for the reduced and regularised planar 3-body
problem at zero angular momentum. The method works well, but it is not very efficient,
because each (first order) time step involves the computation of 10 individual maps. Our
interest is the computation of relative periodic orbits including collision orbits, and for this
task the method is appropriate. The detailed results about relative periodic orbits and their
geometric phase will be reported in a forthcoming paper.
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Fig. 7 A periodic collision orbit with scaled period 6.2520511 with 200 time steps per period. a Regu-
larised coordinates. b Regularised momenta. c Energy error for 5 periods. d Two-way integration error for 5
periods

Fig. 8 Reconstruction of
Cartesian trajectories from
regularised integration for a
periodic collision orbit
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Fig. 9 Trajectory of periodic
collision orbit in α-space. Colour
gradient represents the moment
of intertia of the configuration
(lighter is higher). The two big
dots mark the (regularised)
collisions

Appendix: Integrator stages

Section 3.1 described how to integrate a monomial Hamiltonian, and Sect. 3.2 described the
splitting of Eq. (2) into a minimal number of solvable parts and those solutions. Here we use
those solutions to build an explicit first order symplectic composition method for (2).

Let the timestep be Δτ , let μ j = (mk + ml), let the values of the system before and
after one timestep respectively be z0 = (α1,0, . . . , π3,0)

T and z1 = (α1,1, . . . , π3,1)
T and

intermediate steps be ξ i = (α1,.i−1, . . . , π3,.i−1)
T . Now

ξ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,0

α2,0

α3,0

π1,0 + 2α1,0

((
2α2

1,0 + a1,0

) (
ha1,0 + M1

) + m1α1,0μ1a1,0

)
Δτ

π2,0 + 2α2,0

((
2α2

2,0 + a2,0

) (
ha2,0 + M2

) + m2α2,0μ2a2,0

)
Δτ

π3,0 + 2α3,0

((
2α2

3,0 + a3,0

) (
ha3,0 + M3

) + m3α3,0μ3a3,0

)
Δτ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.1 exp
(

1
4

(
N2α

2
2,.1 + N3α

2
3,.1

)
α1,.1 π1,.1 Δτ

)

α2,.1

α3,.1

π1,.1 exp
(
− 1

4

(
N2α

2
2,.1 + N3α

2
3,.1

)
α1,.1 π1,.1 Δτ

)

π2,.1 − 1
4 N2 α

2
1,.1 π

2
1,.1 α2,.1Δτ

π3,.1 − 1
4 N3 α

2
1,.1 π

2
1,.1 α3,.1Δτ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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ξ3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.2

α2,.2 exp
(

1
4

(
N3α

2
3,.2 + N1α

2
1,.2

)
α2,.2 π2,.2 Δτ

)

α3,.2

π1,.2 − 1
4 N1 α

2
2,.2 π

2
2,.2 α1,.2Δτ

π2,.2 exp
(
− 1

4

(
N3α

2
3,.2 + N1α

2
1,.2

)
α2,.2 π2,.2 Δτ

)

π3,.2 − 1
4 N3 α

2
2,.2 π

2
2,.2 α3,.2Δτ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.3

α2,.3

α3,.3 exp
(

1
4

(
N1α

2
1,.3 + N2α

2
2,.3

)
α3,.3 π3,.3 Δτ

)

π1,.3 − 1
4 N1 α

2
3,.3 π

2
3,.3 α1,.3Δτ

π2,.3 − 1
4 N2 α

2
3,.3 π

2
3,.3 α2,.3Δτ

π3,.3 exp
(
− 1

4

(
N1α

2
1,.3 + N2α

2
2,.3

)
α3,.3 π3,.3 Δτ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.4 + π1,.4

(
1
4

(
N2α

4
2,.4 + N3α

4
3,.4

)
+ 1

2m1
α2

2,.4α
2
3,.4

)
Δτ

α2,.4

α3,.4

π1,.4

π2,.4 + 1
2π

2
1,.4

(
N2α

3
2,.4 + 1

m1
α2,.4α

2
3,.4

)
Δτ

π3,.4 + 1
2π

2
1,.4

(
N3α

3
3,.4 + 1

m1
α3,.4α

2
2,.4

)
Δτ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.5

α2,.5 + π2,.5

(
1
4

(
N3α

4
3,.5 + N1α

4
1,.5

)
+ 1

2m2
α2

3,.5α
2
1,.5

)
Δτ

α3,.5

π1,.5 + 1
2π

2
2,.5

(
N1α

3
1,.5 + 1

m2
α1,.5α

2
3,.5

)
Δτ

π2,.5

π3,.5 + 1
2π

2
2,.5

(
N3α

3
3,.5 + 1

m2
α3,.5α

2
1,.5

)
Δτ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.6

α2,.6

α3,.6 + π3,.6

(
1
4

(
N1α

4
1,.6 + N2α

4
2,.6

)
+ 1

2m3
α2

1,.6α
2
2,.6

)
Δτ

π1,.6 + 1
2π

2
3,.6

(
N1α

3
1,.6 + 1

m3
α1,.6α

2
2,.6

)
Δτ

π2,.6 + 1
2π

2
3,.5

(
N2α

3
2,.5 + 1

m3
α2,.5α

2
1,.5

)
Δτ

π3,.6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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ξ8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.7

(
1 + 1

2

(
1

m3
α2,.7π2,.7 + 1

m2
α3,.7π3,.7

)
α2

1,.7Δτ
)− 1

2

α2,.7 exp
(
− 1

4m3
α3

1,.7π1,.7Δτ
)

α3,.7 exp
(
− 1

4m2
α3

1,.7π1,.7Δτ
)

π1,.7

(
1 + 1

2

(
1

m3
α2,.7π2,.7 + 1

m2
α3,.7π3,.7

)
α2

1,.7Δτ
) 3

2

π2,.7 exp
(

1
4m3

α3
1,.7π1,.7Δτ

)

π3,.7 exp
(

1
4m2

α3
1,.7π1,.7Δτ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.8 exp
(
− 1

4m3
α3

2,.8π2,.8Δτ
)

α2,.8

(
1 + 1

2

(
1

m1
α3,.8π3,.8 + 1

m3
α1,.8π1,.8

)
α2

2,.8Δτ
)− 1

2

α3,.8 exp
(
− 1

4m1
α3

2,.8π2,.8Δτ
)

π1,.8 exp
(

1
4m3

α3
2,.8π2,.8Δτ

)

π2,.8

(
1 + 1

2

(
1

m1
α3,.8π3,.8 + 1

m3
α1,.8π1,.8

)
α2

2,.8Δτ
) 3

2

π3,.8 exp
(

1
4m1

α3
2,.8π2,.8Δτ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ10 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,.9 exp
(
− 1

4m2
α3

3,.9π3,.9Δτ
)

α2,.9 exp
(
− 1

4m1
α3

3,.9π3,.9Δτ
)

α3,.9

(
1 + 1

2

(
1

m2
α1,.9π1,.9 + 1

m1
α2,.9π2,.9

)
α2

3,.9Δτ
)− 1

2

π1,.9 exp
(

1
4m2

α3
3,.9π3,.9Δτ

)

π2,.9 exp
(

1
4m1

α3
3,.9π3,.9Δτ

)

π3,.9

(
1 + 1

2

(
1

m2
α1,.9π1,.9 + 1

m1
α2,.9π2,.9

)
α2

3,.9Δτ
) 3

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= z1.
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