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Abstract Flower Constellations (FCs) have been extensively studied for use in optimal
constellation design. The Harmonic FCs (HFCs) subset, representing the symmetric config-
urations, have recently been reformulated into 2-D Lattice Flower Constellations (2D-LFCs),
encompassing the complete set of HFCs. Elliptic orbits are generally avoided due to the dele-
terious effects of Earth’s oblateness on the constellation, but here we present a novel concept
for avoiding this problem and enabling more effective global coverage utilizing elliptic orbits.
This new 3D Lattice Flower Constellations (3D-LFCs) framework generalizes the 2D-LFCs,
Walker constellations, elliptical Walker constellations, and many of Draim’s global coverage
constellations. Previous studies have shown FCs can provide improved performance in global
navigation over existing Global Navigation Satellite Systems (GNSS). We found a 3D-LFC
design that improved the average positioning accuracy by 3.5 % while reducing launch Δv

requirements when compared to the existing Galileo GNSS constellation.

Keywords Satellites · Constellation design · Lattice flower constellation · Global
navigation satellite systems · GNSS constellation · J2 effect

1 Introduction

Satellite constellation design is generally considered more of an art than a science. With six
orbital elements as continuous design variables for each of n satellites in the constellation,
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340 J. J. Davis et al.

where n is typically tens of satellites, the design space itself presents a very large optimization
problem. When one also considers that the propagation of all of those satellites and evaluation
of the appropriate coverage metrics takes a non-trivial amount of time, the general problem
becomes intractable. To make the problem solvable, the constellation designer typically
assumes all of the satellites have orbits of the same size and shape and that subsets of the
satellites share orbital planes. Dutruel and Mora (1998) and Draim (2004) provide a thorough
survey of constellation design methods.

Flower Constellations (FCs) have been developed in recent years to provide a framework
for optimal constellation design (Mortari et al. 2004; Wilkins et al. 2004; Bruccoleri 2007).
The culmination of these efforts has been the development of the 2-D Lattice Flower Con-
stellation (2D-LFC) theory, partially presented in Avendaño et al. (2010) and fully described
in the companion article (Avendaño et al. 2013). These constellations share many features of
Walker constellations, but fundamentally approach the design of symmetric constellations
from different perspectives. Whereas the Walker constellation theory was formulated in an
inertial reference frame, 2D-LFCs were developed with respect to a generic rotating reference
frame (e.g., Earth-Centered Earth-Fixed). The 2D-LFC framework supports elliptical con-
stellations, but makes no special accommodations for taking advantage of this extra degree of
freedom or to handle the dynamics caused by Earth’s oblateness when dealing with elliptical
orbits.

The oblateness of the Earth is typically disregarded for initial constellation design because
its effects are slow and generally not significant for circular orbits. The dominant term in
the Earth oblateness is known as the J2 effect which captures the second spherical har-
monic describing the shape of the Earth’s gravitational field. Though J2 affects all of the
orbital parameters instantaneously, it causes only Right Ascension of the Ascending Node
(RAAN), argument of perigee, and mean orbital rate to vary secularly. For FCs, the effect on
RAAN and mean orbital rate can be easily corrected by slight changes to the compatibility
equation [see Eq. (1)]. The non-Keplerian rotation of the argument of perigee increases the
complexity of constellation design and analysis and is typically avoided by using circular
or critically inclined orbits. Requiring additional on-orbit corrections to halt perigee rota-
tion, which increase fuel costs, shorten mission life, and increase operational complexity
further discourage the use of elliptical orbits. Here we present a new constellation design
framework, the 3D Lattice Flower Constellations (3D-LFCs), to utilize, rather than avoid,
the J2 effect, enabling more effective global coverage utilizing elliptic orbits. Additionally,
elliptic orbits require less fuel to launch into than circular orbits of the same semi-major
axis, allowing for lower launch costs for the same altitude or higher altitudes for the same
launch cost.

The rotation of the argument of perigee is only meaningful in elliptic orbits. Though
orbits that are critically inclined at ≈ 63.4◦ (or ≈ 116.6◦) experience minimal rotation of
the argument of perigee, this inclination requirement eliminates one of the design variables
at the disposal of the constellation designer. Instead, we propose that satellites within a given
orbital plane be placed in multiple orbits with arguments of perigee distributed evenly from
0◦ to 360◦. Given that all orbits have the same inclination, eccentricity, and semi-major axis,
their rate of perigee rotation will be equal. Thus, as they each rotate, the relative perigee
spacing remains constant, and periodically the constellation resumes its original structure.
The concept is illustrated in Fig. 1. This approach is particularly well-suited for any mission
requiring global coverage.

Lattice Flower Constellations are particularly elegant for global coverage due to their uni-
formity of satellite distribution. How does one distribute satellites with multiple arguments
of perigee and still maintain some level of uniformity? Many issues must be considered.
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The 3-D lattice theory of Flower Constellations 341

Fig. 1 The 3D Lattice Flower Constellation concept

First, as the arguments of perigee rotate due to J2, occasionally the apogee (or perigee)
of an orbit on a given plane will align with the line of nodes where it intersects with
another plane. It would certainly not be uniform if an orbit on that second plane also had
apogee (or perigee) along that line of nodes, as then two satellites would be at apogee
above the same point on Earth. Second, standard 2D-LFCs design defines the distribution
within the plane by equally spacing satellites in mean anomaly space. With satellites in
different orbits within the same plane, does that mean anomaly space lose all meaning
from a uniformity standpoint? Lastly, 2D-LFCs design governs the interaction of satellites
between planes, and this too must be preserved. This section will answer those questions,
where we will use the 2D-LFCs framework wherever possible to provide uniform satellite
distributions.

The first section of this paper briefly describes the 2D-LFCs framework to provide a
mathematical basis for the development of the 3D-LFCs in the next section. We then discuss
other design considerations for 3D-LFCs and their effects on the various design parameters.
Finally, we present a case study designing a Global Navigation Satellite System (GNSS)
using 3D-LFCs and compare the performance of the resulting design to the Galileo GNSS
constellation.

2 The 2-D Lattice Flower Constellations

The 2D-LFCs can be described by five integer parameters and three continuous parameters
(Avendaño et al. 2010, 2013). The integer parameters can be broken into two sets, the first
describing the phasing of the satellites and the second describing the orbital period (or semi-
major axis). The first set is {No, Nso, Nc} where No is the number of orbital planes, Nso is
the number of satellites per orbit, and Nc is a phasing parameter. The second (optional) set
is {Np, Nd} which satisfies the compatibility equation

Np Tp = Nd Td (1)

where Tp is the orbital period and Td is the period of the rotating reference frame
(e.g., the sidereal period of Earth’s rotation). This definition enforces the repeating space-
track requirement found in the original FCs, but is not required in the general 2D-LFC
framework.
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The phasing parameters define the RAAN (Ω) and initial mean anomaly (M) as
⎧
⎪⎨

⎪⎩

Ωi j = 2π

No
(i − 1)

Mi j = 2π

Nso
( j − 1) − Nc Ωi j

Nso

These equations can be rewritten in matrix notation as
[

No 0
Nc Nso

] {
Ωi j

Mi j

}

= 2π

{
i − 1
j − 1

}

(2)

where i = 1, . . . , No, j = 1, . . . , Nso, and Nc ∈ [1, No]. Satellite (i, j) is the j-th satellite
on the i-th orbital plane.

As developed in the companion article (Avendaño et al. 2013), the condition for all satel-
lites to have the same repeating ground track can be easily enforced in the 2D-LFC framework,
requiring only that two coprime integers μ and λ exist such that

Nd = λ Nso

Np = μ No + λ Nc

and (Np, Nd) are coprime.
The remaining parameters required to define the constellation are continuous parameters

that are the same for all orbits in the constellation: the inclination angle, the eccentricity, and
the argument of periapsis.

Note that since the 2D-LFCs separate the satellite phasing from the orbit size, non-
repeating space-tracks can be used without affecting the uniformity of the satellite distri-
bution. For additional properties of the new lattice framework and its relationship to Walker
constellations, see the companion article (Avendaño et al. 2013).

3 The 3-D Lattice Flower Constellations

Given the 2D-LFC mathematical framework, we now seek to develop a description of 3D-
LFCs that yields global symmetry and even spacing even in the presence of elliptical orbits
with perigee rotation.

3.1 Mathematical formulation

To define the 3D-LFCs, we use No to represent the number of orbital planes, Nω for the
number of unique orbits (with different arguments of perigee) on each plane, and N ′

so for the
number of satellites on each of those orbits. Thus, the total number of satellites is represented
by Ns = No Nω N ′

so.
We begin with the original 2D-LFCs equations, using phasing parameter N 1

c , but allow
the mean anomaly distribution to be affected by some unknown function of the argument of
perigee.

No Ωi jk = 2π(i − 1)

N ′
so Mi jk + N 1

c Ωi jk = 2π( j − 1) + h(ω) (3)

We assume here that h is a function of ω only, and not dependent on the orbital plane, which
helps ensure that we recover the original 2D-LFCs equations if satellites have the same
argument of perigee.
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The 3-D lattice theory of Flower Constellations 343

Next, we address the distribution of the arguments of perigee. Again we use the LFC
framework with phasing parameter N 3

c , this time replacing mean anomaly with argument of
perigee—thus treating each perigee as a “satellite” to provide a uniform distribution.

No Ωi jk = 2π(i − 1)

Nω ωi jk + N 3
c Ωi jk = 2π(k − 1) (4)

Lastly, we can consider the multiple orbits within the same plane as a planar 2D-LFC with
phasing parameter N 2

c , thus treating ω as if it were Ω and distributing M by the equations

Nω ωi jk = 2π(k − 1) + f (Ω)

N ′
so Mi jk + N 2

c ωi jk = 2π( j − 1) + g(Ω) (5)

Again, we allow these equations to be affected by functions of RAAN, since for constant
orbital plane, all satellites will still maintain a 2D-LFC within the plane.

Using the 2D-LFCs framework, we have addressed maintaining the satellites in LFCs
when they have the same argument of perigee, phasing satellites within the plane uniformly,
and distributing the arguments of perigee uniformly throughout the constellation. Comparing
Eqs. (4) and (5), it is clear that f (Ω) = −N 3

c Ω . Subtracting Eqs. (3) and (5), one arrives at
the equation

N 2
c ω + h(ω) = N 1

c Ω + g(Ω)

Since this equation must hold for all values of Ω and ω, the only solution is that g(Ω) =
−N 1

c Ω and h(ω) = −N 2
c ω. To be mathematically rigorous, both g and h could also include

an arbitrary added constant, but this constant is ignored because it does not affect the relative
satellite spacing.

These equations can now be reformulated into matrix notation, similar to Eq. (2)
⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦

⎧
⎨

⎩

Ωi jk

ωi jk

Mi jk

⎫
⎬

⎭
= 2π

⎧
⎨

⎩

i − 1
k − 1
j − 1

⎫
⎬

⎭
(6)

where i = 1, . . . , No, j = 1, . . . , N ′
so, k = 1, . . . , Nω, and N 1

c ∈ [1, No], N 2
c ∈ [1, Nω],

and N 3
c ∈ [1, No]. Note that the limits on these parameters result from the repetitious nature

of the constellation. Values outside of those ranges are perfectly valid, but they describe
satellites (or configurations) equivalent to ones defined within the specified ranges, as in
modular arithmetic.

3.2 Properties

The 3D-LFCs can be considered a generalization of the 2D-LFCs. Many of the properties of
2D-LFCs identified in Avendaño et al. (2010) can be applied to 3D-LFCs as well, as shown
in this section.

First, we could generalize the 3D-LFC concept to include any matrix E ∈ Z
3×3 with

det(E) �= 0 in the form

E

⎧
⎨

⎩

Ωi jk

ωi jk

Mi jk

⎫
⎬

⎭
= 2π

⎧
⎨

⎩

i − 1
k − 1
j − 1

⎫
⎬

⎭

This matrix represents a 3-Dimensional torus, where the intersections of the three planes
defined by the three rows of E define the locations of the satellites. Any matrix E with the
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above properties can be reduced by integer row operations to a unique lower triangular form
presented in Eq. (6), known as the Hermite Normal Form (Knuth 1997) of E, which we call
EH . Whereas 3D-LFCs can be represented by any 3×3 integer matrix, this is a non-minimal
representation, so in practice the lower Hermite Normal Form, with six intuitively understood
parameters (No, Nω, N ′

so, N 1
c , N 2

c , N 3
c ), is the best representation for design optimization

work.
Still, if the general integer (lattice) matrix E is used, certain properties of the constellation

can be easily computed:

1. The total number of satellites is Ns = | det(E)|.
2. The number of satellites per orbit is N ′

so = | gcd(e13, e23, e33)|, where gcd is the greatest
common denominator.

These can be easily shown by reducing E to its Hermite Normal Form, EH , and evaluating
these same expressions.

When 3D-LFCs are used to describe circular orbit constellations, the argument of perigee
becomes ill-defined and multiple 3D-LFCs describe the same satellite distribution, creating an
equivalency problem. To find the 2D-LFC equivalent of a circular 3D-LFC, first the 3D-LFC
equations can be rewritten as

ω = 2πk − N 3
c Ω

Nω

(7)

and

M = 2π j − N 1
c Ω − N 2

c ω

N ′
so

. (8)

Substituting Eq. (7) into Eq. (8) yields

M = 2π j Nω − N 1
c NωΩ − 2πk N 2

c + N 2
c N 3

c Ω

N ′
so Nω

(9)

With zero eccentricity, M and ω are no longer independent, so define θ = M + ω. Unique
values of θ produce unique positions within the constellation. Using Eqs. (7) and (9) we find

N ′
so Nωθ = 2π

[
Nω j + (N ′

so − N 2
c )k

] − [
N 3

c (N ′
so − N 2

c ) + N 1
c Nω

]
Ω (10)

Using an integer identity, we can say

Nω j + (N ′
so − N 2

c )k = gcd(Nω, N ′
so − N 2

c )m

where m is any integer. This allows us to rewrite Eq. (10)
[

Nω N ′
so

gcd(Nω, N ′
so − N 2

c )

]

θ +
[

N 1
c Nω + N 3

c (N ′
so − N 2

c )

gcd(Nω, N ′
so − N 2

c )

]

Ω = 2πm

which can be simply rewritten into the original 2D-LFCs equation

Nsoθ + NcΩ = 2πm

As such, if the constellation is made of circular orbits (e = 0) then the 3D-LFCs is equivalent
to the 2D-LFCs (with e = 0):

[
No 0
Nc Nso

] {
Ωi j

Mi j

}

= 2π

{
i − 1
j − 1

}
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where

Nc =
[

N 1
c Nω + N 3

c (N ′
so − N 2

c )

gcd(Nω, N ′
so − N 2

c )

]

mod (No)

and

Nso = Nω N ′
so

gcd(Nω, N ′
so − N 2

c )

Note that, if gcd(Nω, N ′
so − N 2

c ) �= 1 then the circular case of the 3D-LFCs degenerates as
there are not Ns unique slots for satellites.

Since satellites must have the same argument of perigee to travel on the same repeating
ground-track, the number of unique values of argument of perigee, Nuω, for a given 3D-LFCs
is of interest. To find this, first we look at the sub-matrix, Es that governs the values of ω

when the 3D-LFC is written in lower Hermite Normal Form (the last row of EH , governing
the values of mean anomaly, has no impact on the values of ω):

Es =
[

No 0
N 3

c Nω

]

Matrix Es can be rewritten into upper Hermite Normal Form using elementary row operations:

E ′
s =

[
Noω N ′3

c
0 Nuω

]

Clearly, Noω is the greatest common denominator of the first column of E ′
s . The elementary

row operations do not affect this result, such that it is also equal to the greatest common
denominator of the first column of Es . Therefore, Noω = gcd(No, N 3

c ).
We can also define the number of unique orbits, Nuo = No Nω = det(Es). Again, the

determinant is unchanged by elementary row operations, so det(E ′
s) = Noω Nuω = Nuo =

No Nω. This yields

Nuω = No Nω

Noω

= Nω

(
No

gcd(No, N 3
c )

)

For two satellites to be on the same relative trajectory, they must have the same argument
of perigee. The symmetry of the constellation allows us to evaluate the number of satellites on
a single relative trajectory, because that number will be the same on all relative trajectories.
Considering just the first relative trajectory with all satellites having ω = 0 reveals the
requirement

No Ω = 2π (i − 1) (11)

N 3
c Ω = 2π ( j − 1) (12)

which means that we can solve for the values of Ω that result in the same argument of perigee
as

Ω = 2πl

gcd(No, N 3
c )

, where l ∈ Z.

Given that all satellites satisfying this condition have ω = 0 allows us to write the following
requirement for all satellites with the same repeating relative trajectory:

⎡

⎣
gcd(No, N 3

c ) 0
N 1

c N ′
so

Np Nd

⎤

⎦

{
Ω

M

}

= 2π

⎧
⎨

⎩

l − 1
j − 1
n − 1

⎫
⎬

⎭
, where l, j, n ∈ Z
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This matrix can be reduced using elementary row and column operations to the simple
⎡

⎣
α 0
0 β

0 0

⎤

⎦

{
Ω

M

}

= 2π

⎧
⎨

⎩

l − 1
j − 1
n − 1

⎫
⎬

⎭
, where l, j, n ∈ Z

which has αβ unique solutions. The number of unique solutions of this matrix can be given
by the greatest common denominator of the determinants of the 2 × 2 sub-matrices. Since
elementary row and column operations have no effect on the number of solutions or the gcd
of the sub-matrix determinants, the number of solutions can be defined as

Nsr = gcd

(∣
∣
∣
∣
gcd(No, N 3

c ) 0
N 1

c N ′
so

∣
∣
∣
∣ ,

∣
∣
∣
∣
gcd(No, N 3

c ) 0
Np Nd

∣
∣
∣
∣ ,

∣
∣
∣
∣

N 1
c N ′

so
Np Nd

∣
∣
∣
∣

)

(13)

The number of relative trajectories is clearly Nrt = Ns/Nsr . Substituting Nsr =
N ′

so gcd(No, N 3
c )/m, where m ∈ Z allows us to rewrite this equation in terms of the number

of unique values of argument of perigee as Nrt = m Nuω.
Given the desirable properties of having multiple satellites on the same repeating ground-

track, a method for achieving the minimum number of unique ground-tracks (Nrt = Nuω)
is desired. This can be accomplished by letting (Np, Nd) be two coprime integers satisfying
the following formula:

Np = λ gcd(No, N 3
c ) + μN 1

c (14)

Nd = μN ′
so (15)

where μ, λ ∈ Z produces exactly Nuω unique relative trajectories. Substituting these equa-
tions for Np and Nd into Eq. (13) yields Nrt = Nuω.

3.3 Generalizations

Not only do 3D-LFCs share many properties with 2D-LFCs, but 2D-LFCs are actually a
subset of 3D-LFCs. A 3D-LFC with Nω = 1, N 2

c = 0, and N 3
c = 0 is equivalent to a 2D-

LFC. Since the 2D-LFCs framework also encompasses all Walker constellations as proved
in Avendaño et al. (2013), the 3D-LFCs include those as well. The 2D-LFCs are represented
in the 3D-LFCs framework (using 2D-LFCs variable definitions) by the matrix

⎡

⎣
No 0 0
0 1 0
Nc 0 Nso

⎤

⎦

Walker constellations are similarly represented (using Walker variable definitions):
⎡

⎣
P 0 0
0 1 0
−Fmod (P) 0 S

⎤

⎦

Dufour (2003, 2004) introduced elliptical Walker constellations with a single orbit per
plane, where the arguments of perigee were distributed according to the equation

ωi j = ω1 + 2πG

Ns
(i − 1)

where G ∈ [1, No] is a phasing parameter. If the denominator was No instead of Ns , we could
claim that 3D-LFCs also encompassed all of Dufour’s elliptical Walker constellations by
setting N 3

c = 0, Nω = 1, and N 2
c = −Gmod (No). In fact, Dufour’s own limits on the values
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The 3-D lattice theory of Flower Constellations 347

of G indicate that this is the correct denominator. Additionally, using Ns as the denominator
leads to non-uniform constellations, where ω is not uniformly distributed between orbital
planes. Whereas the Δω between subsequent orbital planes is typically 2πG/Ns , the Δω

between the first and last planes is 2πG/Ns − 2πG/Nso. In the case where Ns = No or
G = 1, the two different denominators produce the same constellation. Of the more than 50
constellations presented in by Dufour (2003, 2004), only one does not satisfy either of those
conditions. We thus conclude that 3D-LFCs can legitimately be considered a generalization
of the elliptical Walker constellations proposed by Dufour.

Also of interest are the elliptical constellations for global coverage developed by Draim
(1986, 1987, 1991), Draim et al. (2012). Dufour notes that all of these constellations can
be described using the elliptical Walker constellation framework, and since all of Draim’s
constellations in Draim (1986, 1987, 1991), Draim et al. (2012) utilize Ns = No, they are
unquestionably also a subset of 3D-LFCs. The elliptical Walker constellations are represented
in the 3D-LFCs framework by:

⎡

⎣
P 0 0
−Gmod (P) 1 0
−Fmod (P) 0 S

⎤

⎦

The fact that 3D-LFCs can be used to represent such a broad range of existing constel-
lation design methodologies makes it a powerful framework for constellation designers. By
developing tools and running analyses based on the 3D-LFC framework, these engineers can
explore all of these options simultaneously while also expanding into the elliptical design
space offered only by 3D-LFCs.

4 Constellation design considerations

Fully specifying a 3D-LFC requires additional parameters beyond the six integer parameters
described above. The semi-major axis (a), eccentricity (e), and inclination (i) that are common
to all satellites must be selected. Additionally, the RAAN (Ω1), argument of perigee (ω1),
and mean anomaly (M1) of the first satellite can also be selected arbitrarily without affecting
the relative phasing within the constellation. We can rewrite Eq. (6) as

⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦

⎧
⎨

⎩

Ωi jk − Ω1

ωi jk − ω1

Mi jk − M1

⎫
⎬

⎭
= 2π

⎧
⎨

⎩

i − 1
k − 1
j − 1

⎫
⎬

⎭
(16)

Thus, a 3D-LFC requires six integer parameters and six continuous parameters. Essentially,
the six continuous parameters define the orbit elements of the first satellite, and the six integer
parameters phase all other satellites relative to that one.

We will refer to the first satellite as the reference satellite. The orbit parameters of the
reference satellite provide the basis for the orbit parameters of all remaining satellites in
the constellation. In global coverage contexts, the RAAN, argument of perigee, and mean
anomaly of the reference satellite are irrelevant, whereas these can play a significant role in
regional coverage problems as they determine the ground-tracks followed by every satellite.

These six continuous parameters are required in every other design method, including the
most common Walker and streets-of-coverage constellations, though most of those specify
eccentricity to be zero, thus eliminating eccentricity and argument of perigee from the design
space. The analysis of these orbit elements is based on assuming Keplerian orbits with first
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order J2 effects. No additional disturbances are considered as they would increase compu-
tational complexity without providing additional insight in this initial constellation design
optimization. Each of the continuous parameters is subject to particular considerations as
described in the following sections.

4.1 Semi-major axis and eccentricity

The orbit semi-major axis and eccentricity are common among all satellites in the constella-
tion, and are typically bounded by some minimum and maximum altitudes. Typically these
bounds are a result of sensor or antennae limitations. Requiring hardware that can operate at
varying altitudes is a significant limitation on the use of elliptic orbits.

The semi-major axis can also be chosen to provide repeating ground-tracks as in the
Walker or LFCs theories. Satellites with the same argument of perigee can also be placed on
the same repeating ground-track through judicious selection of the parameters (Np, Nd) as
discussed in the previous section.

4.2 Inclination

The inclination of the orbits has significant impact on the coverage provided by a 3D-LFC.
In addition to directly affecting the latitudes covered by a given constellation, the inclination
plays a key role in the minimum approach distance experienced by satellites within the
constellation, and, thus, the uniformity of the coverage. Even in circular orbit constellations,
certain inclinations result in satellites colliding, whereas others permit near perfect phasing
as a satellite from one plane passes directly between two satellites from another plane.

As developed in Speckman et al. (1990), two satellites in circular orbits with the same
altitude have a closest approach distance, ρmin, that can be analytically computed from the
equations

⎧
⎪⎪⎨

⎪⎪⎩

ΔF = ΔM − 2 arctan [− tan(ΔΩ/2) cos i]
cos β = cos2 i + sin2 i cos ΔΩ

ρmin = 2

∣
∣
∣
∣

√
1−cos β

2 sin(ΔF/2)

∣
∣
∣
∣

(17)

where ΔM and ΔΩ are the difference in orbit elements of the two satellites and i is the
inclination angle common to both. Note that ρmin must be scaled by the orbit radius to find
the physical approach distance. The minimum distance encountered within a constellation of
circular orbits can be computed by calculating this approach distance for all pairs of satellites.
We can scale the minimum approach distance such that zero corresponds to collision and
one corresponds to half the distance between two consecutive satellites in the same orbit (the
maximum possible value of ρmin within a constellation). Using this scaling, the results for
the 27/3/1 Walker constellation are plotted in Fig. 2 as a function of inclination angle. Note
the peak near an inclination of 56◦, the chosen inclination for the Galileo GNSS system (Piriz
et al. 2005).

This indicates that even though inclination is technically a continuous parameter, there
exist discrete values of inclination that maintain high levels of uniformity in the distribution
of satellites. Equation (17) only applies to circular orbits, but similar computations can be
made for constellations of elliptic orbits and may prove insightful in the design process.
We can also use Eq. (17) to address the approach distances of apogees and perigees—an
issue raised in the previous section. As in the development of 3D-LFCs, we can consider the
arguments of perigee to be their own 2D-LFC, all of which rotate at the same rate, just like
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Fig. 2 Minimum encounter
distance in the 27/3/1 Walker
constellation as a function of
inclination

a constellation of circular orbits. Thus, this method can be used to choose an inclination to
achieve successful phasing of the apogees and perigees.

4.3 Selecting Ω1, ω1, and M1

The values of (Ω1, ω1, M1) provide the three angular elements of the reference satellite
(i, j, k) = (1, 1, 1). Though each of them could be drawn from [0, 2π), each can be further
bounded by constellation considerations once the 6 integer parameters have been chosen.
For local or regional coverage constellations, bounding these continuous parameters reduces
the size of the design space. For global coverage constellations, bounding the range of mean
anomaly and argument of perigee reduce the range over which the constellation must be
propagated.

For instance, it is readily apparent that each of these parameters can be bounded by the
following ranges without any loss of generality, what we call the naive bounds:

Ω1 ∈
[

0,
2π

No

)

, ω1 ∈
[

0,
2π

Nω

)

, and M1 ∈
[

0,
2π

N ′
so

)

.

For a regional coverage constellation, for which the values of (Ω1, ω1, M1) impact the results,
the selection of any of these upper bounds produces an identical constellation to having
that parameter equal zero due to the symmetry of the constellation. For global coverage
constellations, the mean anomaly and argument of perigee of the reference satellite need to
be propagated only over these ranges before the constellation pattern repeats itself. We seek
to minimize each of these ranges to minimize either the design space or the propagation time.
Note that limiting these ranges simply eliminates the duplication of designs or the repetition
of evaluating the same constellation configuration (assuming Keplerian orbits) and do not
entail any approximations or loss of generality.

To find the optimal bounds, start by assuming that the set {Ω�,ω�, M�} is the set of
satellite locations given (Ω1, ω1, M1) = (0, 0, 0). To generate an identical set for particular
values of (Ω1, ω1, M1) (a repetition interval), Eq. (16) must still be satisfied for all values of
(i, j, k):
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⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦

⎧
⎨

⎩

Ω�
i jk − Ω1

ω�
i jk − ω1

M�
i jk − M1

⎫
⎬

⎭
= 2π

⎧
⎨

⎩

i − 1
k − 1
j − 1

⎫
⎬

⎭

This condition can be rewritten as three separate equations involving (Ω1, ω1, M1):

NoΩ1 = 2π(i − 1) (18)

N 3
c Ω1 + Nωω1 = 2π(k − 1) (19)

N 1
c Ω1 + N 2

c ω1 + N ′
so M1 = 2π( j − 1) (20)

The task is to find the minimum values of (Ω1, ω1, M1) that satisfy the above equations.
Solving Eq. (18) yields:

Ω1 = 2π

No
(i − 1)

The smallest value of Ω1 occurs when i = 1, thus establishing the upper limit on Ω1. Solving
Eq. (18) for Ω1 and substituting that into Eq. (19) results in:

ω1 = 2π

No Nω

[
No(k − 1) − N 3

c (i − 1)
] = 2π

No Nω

gcd(No, N 3
c )m

Again, m = 1 represents the smallest value of ω1 before the pattern repeats. Similarly, solving
Eqs. (18) and (19) for Ω1 and ω1, respectively, and substituting them into Eq. (20) yields
the result

M1 = 2π

Ns

[
No Nω( j − 1) − N 2

c No(k − 1) − (
N 1

c Nω − N 2
c N 3

c

)]

= 2π

Ns
gcd(No Nω, N 2

c No, N 1
c Nω − N 2

c N 3
c )n

In summary, the optimal bounds on these parameters can be given by

Ω0 ∈
[

0,
2π

No

)

ω0 ∈
[

0,
2π

No Nω

gcd
(
No, N 3

c

)
)

M0 ∈
[

0,
2π

Ns
gcd

(
No Nω, N 2

c No, Nω N 1
c − N 2

c N 3
c

)
)

The naive bounds can easily be shown to be the worst case bounds allowed by the optimal
bounds. First, the bounds on Ω1 are identical. Second, since the value of N 3

c is always less
than the value of No, the maximum value of gcd(No, N 3

c ) is No, and the maximum value of
the optimal bound is 2π/Nω. Finally, the gcd in the bounds on M1 has a maximum value of
No Nω since neither of those parameters is allowed to be zero. Therefore, M1 is bounded by
2π/N ′

so in the worst case.
All 3D-LFCs can be described by values within these ranges due to their uniform, sym-

metric nature. For general 3D-LFCs with a global coverage mission, the design parameters
can simply be taken as zero and the bounds used to limit propagation ranges and reduce
computation times. The optimal bounds can reduce the computation time by a factor of No

for ω and a factor of No Nω for M for a total possible reduction factor of N 2
o Nω. In the global

navigation example of the next section, with 27 satellites in 3 orbital planes, the optimal
bounds reduce propagation time by a factor of ≈ 7.5 over the naive bounds when averaged
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over all 117 3D-LFCs tested. Some of those 117 3D-LFCs see a reduction in propagation
time of a factor of 81 (No = 3, Nω = 9)!

To complete the picture with respect to other design methods, Walker’s phasing parameter
found in Walker (1977) is equivalent to our M1. Dufour includes an ω1 in his elliptical Walker
constellations that is a multiple of another integer parameter he introduces, but the range of
ω1 is limited to [−π/2, π/2] rather than the full allowable range of [−π, π] (Dufour 2003,
2004). The continuous parameter used here clearly includes the discrete values of Dufour
(2003, 2004).

5 Global navigation satellite system

To examine the effectiveness of the 3D-LFCs framework for designing a global coverage
constellation, we use the example of global navigation. As one of the few applications for
which a large constellation has been developed and fielded (multiple times), there exists a
large body of literature concerning the designs and comparing various constellation design
methodologies. Flower Constellations were first studied for use in GNSS by Park et al. (2004),
who found improvements over the Galileo GNSS constellation by using a combination of two
Harmonic Flower Constellations (HFCs) found by trial and error. Tonetti (2009) ran a Genetic
Algorithm (GA) to improve upon Park’s results. Both of these FCs were designed for 30
satellites and utilized large numbers of orbital planes (15 and 30 respectively). Alternatively,
Bruccoleri (2007) found a HFC with 24 satellites that showed improved performance over the
GPS constellation. All three studies considered only circular orbits rather than be restricted
to a critically inclined FC with elliptic orbits. In this study, in order to validate the proposed
design methodology, we consider a 27 satellite, 3 orbital plane 3D-LFCs for comparison to
the Galileo constellation as it is currently designed. We have not considered the combination
of two or more 3D-LFCs into the same constellation, as was done by Park et al. (2004), nor
utilizing a large number of orbital planes, but either may yield additional improved results.

5.1 Cost function

As a cost function to drive these design studies, we consider the Geometric Dilution of
Precision (GDOP), a measure of the accuracy of a GNSS solution. The lower the value of
GDOP, the more accurate is the GNSS solution. GDOP is dependent entirely on the geometry
of the satellites within view of a specific ground site and relies on the visibility matrix, given
by

A =
[

r̂1 r̂2 . . . r̂n

1 1 . . . 1

]T

where r̂i is the unit vector from ground site to the i-th satellite, and n is the number of visible
satellites. We defined a minimum elevation angle of 10◦ to determine satellite visibility in
this simulation. We define the matrix H = AT A. GDOP can then be calculated

GDOP =
√

tr
(
H−1

)

This compact equation is simple, but requires a matrix inverse for every point (in time and
space) that needs to be evaluated, so here we derive a new equation with faster computation.
Since the trace of a matrix is the sum of its eigenvalues, and the eigenvalues of a matrix
inverse are the inverses of the original matrix eigenvalues, we can rewrite the computation
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of GDOP as

GDOP =
√

∑

i

1

λi

where λi are the eigenvalues of H. Note that
∑

i λi = 2n. This alternate form of GDOP
calculation reduced computation time in MATLAB by more than a factor of two.

To evaluate the accuracy of a given GNSS constellation, 1,000 points were distributed
uniformly around a spherical Earth using an iterative electrostatic repulsion method (also
known as the Thomson problem). The number of points was selected based on preliminary
studies that determined that adding more points did not change the calculated value of the
cost function, whereas fewer points produced significant quantization noise in the estimate of
mean GDOP for the constellation. A spherical Earth was used to simplify the calculations, and
all comparisons between the 3D-LFC and the Galileo constellation are based on calculations
using this model.

The constellation was propagated assuming Keplerian motion using an initial argument of
perigee of zero with 5◦ steps in mean anomaly, and GDOP was calculated for all ground sites
at each of those times. The argument of perigee was then rotated in 5◦ steps, repeating the
mean anomaly propagation at each value of argument of perigee. In reality, the argument of
perigee is rotating continuously as the satellites orbit, but the time constants of each of these
motions is such that the satellite completes tens of orbits while the argument of perigee has
only rotated a few degrees. As such, the method used here to propagate the mean anomaly
while the argument of perigee is held constant provides a useful approximation of the behavior
of the constellation while minimizing computational overhead. The values of GDOP from
all of these evaluations were averaged, and we sought to minimize this mean GDOP value.

5.2 Design study: 27 satellites

In this study, we compare performance to the Galileo constellation, designed as a 27/3/1
Walker constellation at 56◦ inclination and a semi-major axis of 29,600 km (Piriz et al.
2005; Mozo-Garcia et al. 2001). Initial design studies based on a variety of performance
and operational considerations led to this particular selection of the number of satellites and
number of orbital planes, so those were held constant in this design study. Once those numbers
are fixed, the Walker constellation framework allows for just two design variables: the phasing
parameter F and the inclination angle. The phasing parameter is restricted to just 3 possible
values. In contrast, the new 3D-LFCs framework allows for 117 unique combinations of
the parameters {Nω, N ′

so, N 1
c , N 2

c , N 3
c } and permits eccentricity to vary in addition to the

inclination angle. Additionally, elliptic orbits are cheaper to launch into than circular orbits
of the same semi-major axis, so holding launch cost constant allows 3D-LFCs with higher
altitudes. Thus, the search space is significantly expanded, yet still contains the original
Galileo constellation design.

A number of optimization strategies are available for designing a constellation using 3D-
LFC methods, including (but not limited to) localized steepest-descent methods or globalized
GAs. To demonstrate the computational efficiency of the 3D-LFC approach, the most com-
putationally expensive method, a brute force grid search, was used to perform this study
of GNSS constellations on a desktop computer. The search was broken into two stages, a
coarse grid search to reduce the design space, followed by a finer grid search to refine the
solution. Note that the optimization methods used here, including the discretization of the
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continuous parameters, are not unique to 3D-LFCs and are not particularly recommended
for future studies over other optimization strategies.

The coarse grid search consisted of evaluating all 117 3D-LFCs over four values of eccen-
tricity and eleven values of inclination:

e ∈ {0.1, 0.2, 0.3, 0.4} , i ∈ {
45◦, 47◦, . . . , 65◦}

Circular orbits were not considered because they all collapse to 2D-LFCs as shown previously.
The inclination range was chosen to place the Galileo optimal inclination of 56◦ in the middle.
The semi-major axis was held fixed at 29,655 km, corresponding to a repetition time of 17
orbits in 10 days. A satellite was considered in view if it was at least 10◦ above the horizon
(grazing angle).

The constellations were evaluated for both mean GDOP and maximum GDOP encoun-
tered throughout the propagation. To reduce the design space, only solutions with a maximum
GDOP below 6 were accepted, corresponding to the original requirements for the GPS con-
stellation (Parkinson and Spilker 1996a,b). There were nine 3D-LFCs out of the original 117
that satisfied this requirement at a variety of inclinations and eccentricities, all of the form

⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦ =
⎡

⎣
3 0 0
N 3

c 9 0
N 1

c 0 1

⎤

⎦

All of the minima for mean GDOP occurred in the inclination range i ∈ [53◦, 59◦] over the
full range of eccentricity.

This initial analysis was completed at a fixed altitude, but one advantage of elliptical
orbits is their ability to launch into larger orbits for the same launch cost. The GIOVE-A
and GIOVE-B satellites, launched as test vehicles for Galileo, launched into 190 km altitude
circular parking orbits at an inclination of 51.8◦ (Flight ST 21 Launch Kit (GIOVE-B) 2008).
They were then boosted into their final orbit using a simple two-burn maneuver. Using the
limiting case of a 60◦ final inclination, a minimum eccentricity required to launch into an
orbit of a given semi-major axis with the same two-burn maneuver cost as Galileo can be
calculated.

Following the design guidelines laid out by the Galileo constellation design engineers,
we seek a constellation with a repeating ground-track with repetition times between 5 and
10 days (Mozo-Garcia et al. 2001). Shorter repetition times lead to the build up of pertur-
bations as the satellites pass over the same gravitational disturbances repeatedly, whereas
longer repetition times pose operational challenges (Mozo-Garcia et al. 2001). Given these
limitations and the desire to keep the apogee below GEO to eliminate collision possibilities,
we selected nine values of semi-major axis. Table 1 shows the different values of semi-major
axis, minimum eccentricity (for the same launch cost), and maximum eccentricity (for apogee
below GEO). Only values of semi-major axis larger than the planned Galileo system were
considered because Mozo-Garcia et al. (2001) shows that performance improves as altitude
increases (though with diminishing returns, and they considered only circular orbits).

For the second stage of the design study, another brute force grid search was completed with
inclination selected from i ∈ {52◦, 53◦, . . . , 60◦}, semi-major axis and e = emin selected
from Table 1, and the 3D-LFC parameters selected from the 9 3D-LFCs down-selected in
the first stage.

After selecting the optimal inclination angle for each 3D-LFC at each altitude (based
on mean GDOP), one 3D-LFC outperformed all others at all altitudes on the mean GDOP
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Table 1 Values of semi-major
axis used for GNSS optimization

Np Nd a (km) emin emax

17 10 29,655 0.045 0.424

13 8 30,561 0.078 0.382

8 5 30,878 0.089 0.368

11 7 31,252 0.101 0.351

14 9 31,464 0.107 0.342

13 9 33,057 0.151 0.277

10 7 33,302 0.157 0.268

7 5 33,753 0.168 0.251

11 8 34,161 0.177 0.236

metric:
⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦ =
⎡

⎣
3 0 0
2 9 0
0 0 1

⎤

⎦

As expected, the best performance occurred at the maximum altitude with a = 34,161 km
and e = 0.177. The optimal inclination was the same as that of Galileo: 56◦. The mean
GDOP of Galileo was calculated to be 2.32, whereas the mean GDOP of this 3D-LFC
designed constellation is 2.24—an improvement of 3.5 %. Given an inclination of only 56◦
(as opposed to 60◦), the minimum eccentricity to achieve the same launch cost to this much
larger orbit is 0.150. The mean GDOP varies only slightly (by 0.005) over the allowable
eccentricity range, so eccentricity can be chosen based on other considerations. For instance,
small eccentricity is attractive from an operational perspective, whereas larger eccentricity
increases the allowable on-orbit satellite dry mass.

This 3D-LFC exhibits an interesting property: the satellites share the same geometry of
the Galileo constellation at all times, they simply vary in altitude over time. The geometry is
not an exact match, as the rotation of the argument of perigee perturbs it somewhat, but the
two constellations bear great resemblance to one another. This “breathing” behavior, where
the 3D-LFC mimics a 2D-LFC but with varying altitude, will occur for any 3D-LFC of the
form

⎡

⎣
No 0 0
N 3

c Nω 0
N 1

c N 2
c N ′

so

⎤

⎦ =
⎡

⎣
No 0 0
Nc Nso 0
0 0 1

⎤

⎦

where No, Nso, and Nc are the parameters of the associated 2D-LFCs.
The original designers of Galileo chose a design point near the knee of the curve where

increasing number of satellites or altitude met with diminishing returns and optimized the
design using similar criterion and analysis to that shown here (albeit with higher fidelity) (Piriz
et al. 2005). Under such circumstances, merely matching the performance of Galileo would
demonstrate the efficacy of the 3D-LFC approach. Successfully finding a solution that
improves upon the positioning performance of Galileo without changing the number of
satellites or the number of orbital planes, and while reducing the launch costs, demonstrates
the power of incorporating elliptical orbits into the constellation designer’s toolbox in the
form of 3D-LFCs.
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6 Conclusions

We present here a new framework for constellation design, the 3D-LFCs. 3D-LFCs are
defined by six integer parameters and the six orbit elements of a reference satellite. Like the
2D-LFCs, 3D-LFCs have a rigorous mathematical basis that enables easy computation of
various properties of the constellation.

Rather than avoid or ignore the effects of J2, 3D-LFCs utilize those effects to produce
uniform constellations of elliptic orbits. The 3D-LFCs include as a subset, the 2D-LFCs,
Walker constellations, elliptical Walker constellations, and Draim’s uniform, elliptical, global
coverage constellations. As a generalization of all of these methodologies, 3D-LFCs can serve
as a single tool for constellation designers seeking to explore a broad design space, rather
than having to compare each method independently. This new framework also enables the
use of non-critically inclined elliptic orbits for global coverage.

The 3D-LFC framework was used to optimize a constellation for global navigation using
the same parameters as the Galileo constellation. The 3D-LFC provided a 3.5 % improvement
in positioning accuracy over Galileo with lower launch costs. The results demonstrate that
elliptical constellations can indeed provide improved performance.
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