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Abstract This study outlines some aspects of the dynamics of a small body under the action
of a Maxwell-type N-body system with a spheroidal central body. The non-sphericity of the
central primary is described by means of a corrective term in the Newton’s law of gravitation
and is taken into account during the derivation of the equations of motion of the small body,
improving in this way, previous treatments. Based on this new consideration we investigate
the equilibrium locations of the small body and their parametric dependence, as well as the
zero-velocity curves and surfaces for the planar motion, and the evolution of the regions
where this motion is permitted when the Jacobian constant varies.

Keywords Particle dynamics in N-body ring systems · Oblateness ·
Zero-velocity curves and surfaces · Equilibrium positions

1 Introduction

The N-body problem is one of the most important issues in Astronomy and has frequently
inspired researchers in order to raise new problems. In the relevant literature there are many
pertinent cases, one of which is the so-called restricted N-body regular polygon problem (or
Maxwell-type configuration), where ν = N − 1 of the bodies-members of the system are
spherical, homogeneous with equal masses m, and are located at the vertices of an imaginary
regular ν-gon, while the Nth body has a different mass m0 and is located at the center of mass
of the system (Fig. 1). The relative equilibrium of such formations has been studied, among
others, by Elmabsout (1994) and Bang and Elmabsout (2004), while it has been proved (Salo
and Yoder 1988; Vanderbei and Kolemen 2007) that this configuration may exist for ν > 6.
A similar investigation was made by Vanderbei (2008) who assumed an oblate central mass.
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A small body, natural or artificial, moves in the vicinity of such a system under the influence
of all the primaries yet having no effect on their motion. The problem has been treated
by many investigators over the last few years and is also referred to as the ring problem
of (N + 1) bodies (Scheeres 1992; Kalvouridis 1999, 2008; Hadjifotinou and Kalvouridis
2005; Pinotsis 2005; Croustalloudi and Kalvouridis 2007; Barrio et al. 2008, 2009; Papadakis
2009; Bountis and Papadakis 2009; Barrabes et al. 2010; Garcia-Azpeitia and Ize 2011; etc).
The initial statement of the problem was based on the assumption that all big bodies create
Newtonian force fields. Newton’s theory dominated for many centuries, and still does, since
it has been able to explain the motion of the bodies in a very simple way. However, some
physical phenomena, such as the motion of the apsidal line of the Moon, which were already
known at that time, could hardly be explained within this framework. Newton himself knew
that his theory could not give a precise and convincing answer to this problem and for this
reason he proposed in the “margin” of his famous and classic work Philosophiae Naturalis
Principia Mathematica (Book I, Article IX, Proposition XLIV, Theorem XIV, Corollary 2)
an improvement of his universal law of gravity, by inserting a corrective term of the form
1/r3. Many years later, Maneff (1924) proposed a similar corrective term [see for a very well-
documented and detailed historical review, the work of Haranas et al. (2011)]. This corrective
term was adjusted by some authors to provide a justification of the perihelion advance of
Mercury, or to explain some relativistic effects without using the theory of relativity. In
2004, an improved and interesting version of the gravitational ring (N + 1)-body problem
was presented by Arribas and Elipe. It was based on the assumption that the central body
of the primaries’ configuration is a spheroid. This fact resulted in a corrective term which
was inserted directly in the force function of the system and could also reflect some special
physical properties of this body like radiation emission. A little later, Elipe et al. (2007) studied
the periodic motions of the particle in such a dynamical system. Here, this corrective term
is taken into account during the derivation of the equations of motion of the small body. We
improve in this way the expression of the force function of the dynamical system. Although
this small difference in the consideration of the problem does not create crucial changes
to some dynamical aspects of the problem when the parameter measuring the oblateness is
positive (oblate body), it may do so when this parameter is negative (prolate body). In Section
2 below, we give a short outline of the followed process for the derivation of the equations
of motion. Based on the new consideration our treatment mainly focuses on the equilibrium
locations of the small body and on the regions where planar solutions may exist, mainly
when the oblateness parameter is negative. The first issue is discussed in Section 3, where
we display the bifurcation diagrams which describe the transitions from a planar equilibrium
state to another, as well as the parametric variation of these equilibria. The second issue is
discussed in Sections 4 and 5, where we focus on the case of negative oblateness parameter.
The areas where the planar motion of the particle is permitted are determined by means of the
zero-velocity curves. We describe the evolution of these regions when the Jacobian constant
varies and we investigate the areas where the moving particle is trapped.

2 Equations of motion

We use an inertial coordinate system Oξηζ where plane Oξη coincides with the plane of
the primaries and a synodic one Oxyz centered at the mass center of the primaries formation
(Fig. 1), the plane Oxy of which coincides with Oξη plane. We assume that the primaries
are in relative equilibrium and rotate around the perpendicular axis Oζ ≡ Oz with constant
angular velocity ω. We take the line which connects the central primary P0 with a peripheral
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one, let us say P1, as the x-axis of the synodic system. The force exerted from the central
primary on a peripheral one, let us say P1, is

−−→
F1,0 =

[
k2m0m

(P1 P0)3 + 2
k2 Bm0m

(P1 P0)4

]−−→
P1 P0 = −

[
k2βm2

d2 + 2
k2β Bm2

d3

]
�i

where d = a
2 sin(π/ν)

is the distance P1 P0, a is the side of the regular ν-gon, k2 is the Gaussian
constant, β = m0/m is the ratio of the central mass to a peripheral one (mass parameter)
and B is the coefficient of the corrective term. In order that this term is consistent with the
Newtonian one, B must be expressed in length units. Here, we express it as the product of
a dimensionless coefficient e (oblateness parameter) and the physical quantity a (which is
expressed in length units), that is B = ea. This choice relates to the normalization process
of the physical quantities as it will be seen later in this paragraph. The forces exerted on P1

from each of the ν − 1 remaining peripheral bodies are given by the relations

−→
F1,i = k2m2 sin2(π/ν)

a2 sin2 [(ν − i + 1)(π/ν)]
−→pi

where −→pi , i = 2, 3, . . . , ν are the unit vectors along these directions. The projection of these
forces on the x-axis must satisfy the relation,

k2

a2 m	 + k2βmM2

a2 + 2
k2βemM3

a2 = ω2 a

M
, (1)

where

	 =
ν∑

i=2

sin2(π/ν)

sin [(i − 1)(π/ν)]
, M = a/d = 2 sin(π/ν)

From (1) we obtain,

k2m

a3ω2 = 1



(2)

where


 = M(	 + βM2 + 2βeM3)

The expression of 
 depends on all three parameters ν, β and e, a fact that is reflected on
all dynamical aspects of the system and, because of (2), it must always be positive.

Fig. 1 The configuration of the
problem with the two coordinate
systems employed; the inertial
frame Oξηζ and the synodic
Oxyz. S is the small body and
Pi , i = 0, 1, 2, . . . ν are the
primaries
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The motion of the small body S in the inertial coordinate system Oξηζ is then described
by the following equations in matrix form,

[
ξ̈ η̈ζ̈

]T = k2m

⎡
⎢⎢⎢⎢⎢⎢⎣

− βξ

r3
o/A

− 2eaβξ

r4
o/A

+
ν∑

i=1

ξi −ξ

r3
i/A

− βη

r3
o/A

− 2eaβη

r4
o/A

+
ν∑

i=1

ηi −η

r3
i/A

− βζ

r3
o/A

− 2eaβζ

r4
o/A

+
ν∑

i=1

−ζ

r3
i/A

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where

r2
o/A = ξ2 + η2 + ζ 2, r2

i/A = (ξi − ξ)2 + (ηi − η)2 + ζ 2, i = 1, . . .ν

are the distances of the particle from the primaries and symbol A denotes the inertial frame.
We normalize all physical quantities of (3) by using the transformation (Kalvouridis 1999),

ξ∗ = ξ/a, η∗ = η/a, ζ ∗ = ζ/a, mo = βm, t∗ = ωt = t

The asterisk denotes the dimensionless quantities and in the final form we omit it. Without
loss of generality we assume that ω = 1. By transforming the normalized equations in the
synodic system, we obtain the following system of second-order differential equations,

ẍ − 2 ẏ = ∂U

∂x
= Ux , ÿ + 2ẋ = ∂U

∂y
= Uy, z̈ = ∂U

∂z
= Uz (4)

where

U (x, y, z) = 1

2
(x2 + y2) + 1




[
β

(
1

r0
+ e

r2
0

)
+

ν∑
i=1

1

ri

]
(5)

r0 = (
x2 + y2 + z2)1/2

, ri = [(x − xi )
2 + (y − yi )

2 + z2]1/2

From Eqs. (4) we obtain a Jacobian-type integral of motion,

ẋ2 + ẏ2 + ż2 = 2U (x, y, z) − C (6)

3 Equilibrium points and equilibrium zones: parametric evolution

The equilibrium positions of the small body are the solutions of the nonlinear algebraic
system

∂U

∂x
= Ux = 0,

∂U

∂y
= Uy = 0,

∂U

∂z
= Uz = 0 (7)

and are obtained numerically. Among the existing numerical methods we have chosen to
apply the well-known Newton–Raphson method which is simple, and adequately efficient.

In the gravitational case of the ring problem, Kalvouridis (1999) proved that all equilibrium
positions lie on the xy-plane of the synodic system. In this case, the three quantities 	, M
and 
, are positive, since the two parameters ν and β are always positive. This means that
the last Eq. of (7)
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Uz = −z




(
β

r3
o

+ 2eβ

r4
o

+
ν∑

i=1

1

r3
i

)
= 0,

in the case of e = 0, is satisfied only if z = 0. The equilibrium positions can be grouped on
either five (A1, A2, B, C2, C1) or three (A1, C2 and C1) equilibrium zones, each one with
ν equidistant equilibria. All the equilibria which belong to a particular zone are “dynamically
equivalent” positions in the sense that they are characterized by the same Jacobian constant
and have the same status of stability. For each ν there is a unique marginal value β = lν at
which a transition (bifurcation) from five to three equilibrium zones occurs (Croustalloudi
and Kalvouridis 2007).

In a similar way we can prove that if e > 0, then all the equilibrium points lie on the
xy-plane. The equilibria are distributed on either five or three equilibrium zones as in the
previous purely gravitational case. However, this transition occurs along a bifurcation curve
which is different for each ν. We must stress that, for the considered problem the symmetric
distribution of the equilibrium points is preserved regardless of the value of parameter e.
Figure 2 shows the evolution of the bifurcation curve in the (e, β) plane for ν = 7. In the area
below this curve (area I) there are five equilibrium zones, while in the area above it (area II)
there are only three equilibrium zones. As ν increases, the corresponding bifurcation curves
are displaced towards the upper part of the diagram and thus towards larger values of β.

In the diagrams of Fig. 3 we show the variations with e > 0 of the distance (rad) of
the equilibrium zones from the origin (Fig. 3a) as well as, of the Jacobian constant C of
these zones respectively (Fig. 3b), for a sample case where ν = 7 and β = 2. As it is seen,
the distances of the three zones A1, C2 and C1 slightly change when parameter e increases.
Regarding B and A2 zones, their distances vary in such a way, that the two curves finally meet
at a point. This occurs at a value of e which, together with the considered value of β, gives a
point on the bifurcation curve of Fig. 2 drawn for ν = 7. A similar situation is observed in
Fig. 3b, where the curves showing the variation of the Jacobian constant of all zones evolve
almost linearly. The curves of the A1, C2 and C1 zones are characterized by almost the same
constant slope and follow a decreasing path as parameter e increases. The curves of the A2

and B zones approach each other until a particular value of e, where these two curves meet
(Fig. 3b). This meeting point is the same as the one discussed in the previous diagram of
Fig. 3a.

When e < 0, and by taking relation (2) into account, we must exclude those values of e
which make 
 negative or zero. Therefore the values of e must satisfy the relation,

e > −	 + βM2

2βM3 (8)

Fig. 2 Bifurcation curve for
ν = 7
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Fig. 3 Variations of equilibrium zones for ν = 7, β = 2. a Variation of their distances with e, b variation of
their Jacobian constants with e

Fig. 4 Distribution of the planar
equilibrium locations. The large
black dots show the positions of
the primaries, while the tiny
triangles, squares and circles
show the positions of the
equilibria

In this case, besides the equilibrium zones known from the gravitational case, two new
equilibrium zones which lie on the same plane Oxy, namely E1 and E2, may appear. These
locations evolve inside the circle of the peripheral primaries and very close to the central
primary (Fig. 4). The equilibria of E1 zone lie on the radii, where the equilibria that belong
to A1 and C1 zones also appear (collinear equilibria), while those of E2 zone lie on the same
radii, where the equilibria of A2, B and C2 are traced (triangular equilibria).

Figure 5 is a bifurcation diagram showing the number of the existing equilibrium zones on
the xy-plane for ν = 7 and for various values of e and β. There are three bifurcation curves,
BC0, BC1 and BC3 which intersect, converge or coincide in some parts of the diagram,
this way dividing the area (e, β) into five sub-regions. We have found that there are some
general rules which govern the number and the type of the existing equilibrium zones in these
sub-regions. These are summarized as follows:

• On the left side of BC0, B and A2 zones appear.
• On the left side of BC1, E1 and A1 zones disappear.
• On the left side of BC2, A2 and E2 zones do not exist.

Provided that in region II five equilibrium zones exist, namely, C2, E2, E1, A1, C1 zones,
then according to these rules, in region I there are seven zones, namely, C2, B, A2, E2, E1, A1

and C1, in region IV five equilibrium zones exist, namely, C2, B, A2, E2 and C1 zones and
in region III there are three zones, namely C2, E2 and C1. Finally, in region V the existing
zones are three; C2, B and C1. The bifurcation diagram is very useful and must be plotted
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Fig. 5 ν = 7. The three
bifurcation curves BC0, BC1 and
BC2 and the five regions (I–V)
with the number of the existing
equilibrium zones on the xy-plane

0

2

0-0.2

   e

radC1

C2

B

A2

E2

E1

A1

(b)(a)

Fig. 6 Regular polygon configuration with ν = 7, β = 2. a Variation of the distances of the equilibrium
zones with e, b variation of the Jacobian constants of the equilibrium zones with e

for a particular configuration (ν) during the exploration of the equilibrium points and before
the investigation of any other dynamical aspect of the problem.

Figures 6a, b show respectively the variations of the distances (rad) from the origin and of
the Jacobian constants C of the equilibrium zones with e respectively for a configuration with
ν = 7, β = 2. It is observed that C1,B, and C2 zones retain virtually invariable distances
from the origin for the considered interval of values of e (Fig. 6a). This does not happen
with the remaining four zones which converge to a point. Beyond this point only the three
previously mentioned zones C1,B, and C2 exist. A similar situation is observed in Fig. 6b,
where the three curves showing the variation of the Jacobian constants C of C1,B, and
C2 zones have an increasing slope, which means that as the absolute value of e increases
their Jacobian constants increase too. The curves corresponding to the remaining four zones
converge to a point and then disappear. This change is due to the fact that when e takes
small absolute values, then the considered set of parameters (e, β) gives a point in region
I of the bifurcation diagram (Fig. 5), where all seven equilibrium zones exist. However, by
continuously increasing the absolute value of e, the set of parameters (e, β) lead to a point
in region V of the same diagram.

In addition to the planar equilibria when e < 0 and provided that condition (8) is satisfied,
two out-of-plane equilibria L−Z and L+Z appear on the z-axis of the synodic system and in
symmetric positions with respect to the xy-plane.

Figures 7a, b show respectively the variation of the distance (rad) from the origin and of
the Jacobian constant C respectively, with e for ν = 7 of the out-of-plane equilibria for two
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Fig. 7 ν = 7, β = 2 and β = 5. a e-rad curves, b e-C curves

values of β (β = 2 and β = 5). In Fig. 7a, we observe that as e decreases, the distance of
these points from the origin increases and the two curves drawn for β = 2 and β = 5, decline.
In Fig. 7b we observe that for very small absolute values of e, the out-of-plane equilibria are
characterized by very large values of the Jacobian constant. As this absolute value increases
there is an abrupt decrement of the curves and after that, the Jacobian value remains almost
constant. Both curves drawn for β = 2 and β = 5 evolve very close to each other. This
means that the Jacobian constant C displays nearly identical variety patterns every time we
have relatively small mass parameters.

We have numerically investigated the linear stability of the equilibria by computing
the roots of the characteristic polynomial of their variational equations for ν ≤ 36, β ∈
[1.0, 500.] , e ∈ [−0.3, 0.8] (considering only the triads ν, β, e for which 
 > 0) and we
have found that for these values the existing equilibria are unstable.

4 Zero-velocity curves and surfaces in the planar motion

By means of relation (6) and by assuming particle motions on the xy-plane, we draw the
networks of zero-velocity curves which for each value of C , separate the regions of this
plane where motion is permitted (positive kinetic energy) from those where this motion is
forbidden (negative kinetic energy). By considering a third axis which counts the values
of the Jacobian constant C , we obtain, for each zero-velocity diagram, a corresponding
three-dimensional plot like the one shown in Fig. 8b, called zero-velocity surface of particle
planar motion. The gravitational case has been studied in a previous paper by Kalvouridis
(1999). In the 3D plot, a “chimney” evolves around each primary. The particle is permitted to
move inside the “chimney” and under the zero-velocity surface. The “chimneys” around the
peripheral primaries are exactly the same in size since these primaries are assumed to have
equal masses. However, the size of the central “chimney” depends on the value of parameter
β. If β > 1, then the central “chimney” is larger than a peripheral one. Similar pictures are
obtained if we consider that for the central primary e > 0. In the latter case, the size of the
central “chimney” is influenced by both parameters β and e.

The situation changes when e < 0. Then a “folding” of the central “chimney” that sur-
rounds the central primary, starts to form (Fig. 8b, c). As a consequence, a closed area of
non-permitted motion in the immediate vicinity of P0 is created (dark area around the central
primary of Fig. 8a). This region is surrounded by another narrow annular region of permitted
motion.
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Fig. 8 a Networks of zero-velocity curves, b zero-velocity surface for β = 2 and e = −0.05, c detail of the
“folding” in the neighborhood of the central primary

5 Evolution of particle motion regions

For a particular set of parameters, the way that the regions of permitted motion on the
xy-plane evolve, depends on the CLi values of the Jacobian constants of the equilibria. At
these values, bifurcations of the topology occur and, as a result, the evolution of permitted
motion regions is directly related to the CLi sequence. Trapping regions of the small particle,
that is regions where its motion is bound, are formed for certain values of the Jacobian constant
(Kalvouridis 1999). A similar evolution occurs when e > 0. However, changes happen when
e < 0. Figure 9 shows the evolution of the areas where planar motion is permitted in an
application with ν = 7, β = 2 and e = −0.05. Then,

CE1 ≈ CE2 > CB > CA1 > CA2 > CC1 > CC2

When C > CE1 ≈ CE2 (Fig. 9a), there are only: (1) ν closed areas of permitted motion
which evolve around the ν peripheral primaries and constitute areas of trapped motion and
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Fig. 9 Evolution of the regions of permitted motion (white areas) for ν = 7, β = 2, e = −0.05, a C = 12, b
C = 11.9, c C = 7.85, d C = 7.57197553, e C = 7.54, f C = 7.50317263, g C = 7.45, h C = 7.41838529,
i C = 7.37392456, j C = 7.2, k C = 7.1

(2) another larger limit curve which surrounds all the ν closed areas, beyond which the
motion of the particle is free on the xy-plane. In this case there is no closed curve around the
central primary where motion is permitted. At C = CE1 ≈ CE2 we have the first bifurcation
point since, for lower values of C , two new closed zero-velocity curves which surround the
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central primary appear. Initially, these curves which form a narrow ring area that surrounds
the central primary, are very close to each other (Fig. 9b and embedded detail). However,
as C decreases (CE1 ≈ CE2 > C > CB) this ring area enlarges (Fig. 9c). The particle is
trapped either inside this ring area, or inside the closed areas around the peripheral primaries
(white areas), while it is free to move outside the external closed zero-velocity curve which
surrounds all the primaries.

When C = CB, the closed areas around the peripheral primaries touch each other at ν

points which coincide with the points of the B zone (Fig. 9d). Then, for CB > C > CA1, a
united closed area of permitted motion is created (Fig. 9e). Therefore, for these values of C,
two trapping regions exist.

Another bifurcation in the evolution of the zero-velocity curves occurs when C = CA1

(Fig. 9f). For lower values of C(CA1 > C > CA2)ν channels of communication between
the two previously described trapping regions are created (see the white area in Fig. 9g) and
ν isolated “islands” of non-permitted motion in the vicinity of the peripheral primaries are
formed. However, the particle, as we have previously mentioned, is free to move outside the
external limiting zero-velocity curve. For C = CA2 these “islands” are reduced to points
which coincide with the equilibria of the A2 zone, while for even lower values of C(CA2 >

C > CC1) a new united large, closed area of permitted motion is created around all the
primaries (Fig. 9h). This area encircles a very small closed region which evolves around
the central primary. When C = CC1, the ν parts of the colored forbidden area touch each
other at the equilibria of the C1 zone. From this point on, ν channels of intercommunication
between the internal area of permitted motion and the external one are created (Fig. 9i). As
C decreases (CC1 > C > CC2), the ν “islands” of non-permitted motion shrink until, at
C = CC2, they disappear. Finally, for even lower values C ≤ CC2, the motion of the particle
is free in the xy-plane, except in a very small closed area around the central primary (Fig. 9k).

6 Conclusions and remarks

We have reprocessed the ring (N + 1)-body problem with a spheroidal central mass and we
have studied some aspects of the dynamics of the small body in such a system. Examining
the corrective term that describes the influence of the oblateness from a fresh perspective, we
have presented some results which mainly concern the case where the oblateness parameter e
is negative (prolate body). We have observed that the folding of the central “chimney” in the
zero-velocity surfaces towards its interior occurs immediately after e becomes negative and
for very high values of the Jacobian constant. As a consequence, when C decreases, the zero-
velocity curves on the xy-plane which evolve near the central primary form a small, almost
circular area inside which the motion of the particle is forbidden. This area is surrounded by a
narrow, almost circular ring-type area where motion is both permitted and trapped. Regarding
the equilibrium positions of the particle, two new equilibrium zones (E1 and E2), as well as
two out-of-plane equilibria appear. These zones may be seven, five or three according to the
values of β and e. The relative bifurcation diagram, consists of three bifurcation curves which
intersect and divide the (β, e)-plane into five regions. Within each region a different number
of equilibrium zones or even different zones exist. Regarding the permitted motion regions,
as well as the trapping ones, their evolution depends on the β and e and consequently on the
number and the types of the existing equilibrium zones for a particular pair (β, e). It also
depends on the Jacobian constants CLi of the existing zones and is directly related to the
sequence of CLi. At the values C = CLi, bifurcations of the topology occur which directly
influence the number of the trapping regions.
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Closing this article we would like to express our intention to enrich the information
concerning this dynamical system by investigating various types of particle planar and three-
dimensional motions, such as simple and multiple periodic ones, symmetric and asymmetric
orbits, etc.
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