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Abstract The singularity for the big bang state can be represented using the generalized
anisotropic Friedmann equation, resulting in a system of differential equations in a central
force field. We study the regularizability of this singularity as a function of a parameter,
the equation of state, w. We prove that for w > 1 it is regularizable only for w satisfying
relative prime number conditions, and for w ≤ 1 it can always be regularized. This is done
by using a McGehee transformation, usually applied in the three and four-body problems.
This transformation blows up the singularity into an invariant manifold. The relationship of
this result to other cosmological models is briefly discussed.

Keywords Blow up · Collision set · Regularization · Singularity · Invariant manifold ·
Stable manifold theorem · Central force

1 Introduction

It is well known that the Kepler problem, which defines the motion of two bodies moving in a
Newtonian gravitational inverse square central force field, can be regularized at the collision
of the two bodies. Letting r represent the distance between the two bodies, then the regulari-
zation of collision implies that there exists a change of position and velocity coordinates, and
time, so that in the new coordinates and time the state corresponding to r = 0 is well defined.
Moreover, the flow of the transformed differential equations in position and velocity space is
smooth(real analytic) in a neighborhood of collision, and also on the entire associated fixed
energy surface. This implies that solutions can be smoothly extended across collision as a
function of time. The Levi-Civita transformation is a classical example of a regularization
that accomplishes this in the two-dimensional Kepler problem (Levi-Civita 1920 ). Physi-
cally, this means that the two bodies perform a smooth bounce at collision. Within the field of
Celestial Mechanics, there are many other regularizations for binary collisions in the Kepler
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22 E. Belbruno

problem. These include the use of geodesic flow equivalent transformations, due to Moser
and this author (Moser 1970; Belbruno 1977 ), and the Kustaanheimo–Stiefel transformation
(Kustaanheimo and Stiefel 1965).

Regularization transformations can be applied to problems other than the classical Newto-
nian inverse square gravitational force, to which they have been generally historically focused.
The regularization of the collision of a zero mass particle, e.g. a photon, with a Schwarzs-
child black hole was described in a recent paper by F. Pretorius and this author (Belbruno
and Pretorius 2011). This is accomplished by equivalently viewing the motion of the particle
as being in an inverse forth power central force. The differential equations describing this
motion can be transformed using a mapping due to McGehee (1981), which blows up the
collision state into an invariant manifold. This transformation describes the motion of the
particle about the black hole is a way that eludicates the entire phase space in a surprisingly
clear fashion. At the same time, the collision state of the particle with the black hole can be
regularized. This turns out to be a ’branch regularization’, where individual solutions have
unique extensions across collision as a function of time, which, in position coordinates, are
only continuous at collision and not differentiable there. The key point is that the extension
across collision is uniquely defined. This implies that when the particle collides with the
black hole, it performs a continuous, but not differentiable, bounce to a unique extension, or
bounce, from the black hole.

In this paper we can gain interesting information about the dynamics in a neighbor-
hood of the singularity due to the big bang using a McGehee transformation, following
the same approach used in Belbruno and Pretorius (2011). We first show that dynamical
flow near the big bang singularity can be reduced to a central force field, when modeled
by an anisotropic Friedmann equation, under a number of assumptions. This force field
is defined with inverse powers of a, a−κ , κ ≥ 5, where a is the expansion factor of the
universe and a = 0 corresponds to the big bang. We then apply the McGehee transfor-
mation to the central force field, yielding unique branch extensions of solutions through
a = 0.

We prove that the big bang can be branch regularized, provided that one of the parame-
ters, the equation of state variable, w > 1, satisfies relative prime number conditions, which
are a set of measure zero. In other words, for w > 1, except for a set of measure zero,
the big bang is not branch regularizable. Under these assumptions, this implies that if we
consider a universe prior to ours, for t > 0 that collapsed to a = 0 at time t = 0, then as
a function of time, our universe for a(t) > 0, with t < 0, cannot be defined as a branch
extension, from the previous universe for w > 1, except for a set of measure zero. How-
ever, for w ≤ 1, the singularity can always be branch regularized. The equation of state, w,
is a key parameter in cosmology. w = P/ρ, where P is the pressure and ρ is the energy
density of the universe. The parameter w and relevance of w = 1 is explained further in
Sect. 4. It is noted that we have chosen the convention that t > 0 prior to the big bang
singularity and t < 0 after the big bang. This is chosen for convenience to be consistent
with the time convention used in McGehee (1981), since McGehee (1981) is referred to
frequently.

This result can be related to other cosmological models, which we do in Sect. 4. It is
important to note that our results are purely mathematical in nature and we are not making
any assertions to the relevance of these results to reality.

The paper is organized as follows: In Sect. 2 the problem is formulated. Section 3 gives
the solution to the problem and the main results. Block regularization is discussed at the end
of Sect. 3. In the final section, Sect. 4, we briefly discuss the relevance of our results to other
cosmological models.
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Regularizability of the big bang singularity 23

2 Formulation of problem

To formulate the problem, we begin with the cosmological principle. This states that at any
moment in time, the universe presents the same aspect from every point, except for local
irregularities. This equivalently means that the universe is isotropic and homogeneous.

Assume that we know the distribution of the total finite number of galaxies at time t0 of
distance ri from a fixed origin O, i = 1, . . . , N where N is the total number of galaxies.
Then the cosmological principle implies that ri (t) = a(t)ri (t0), where t ∈ � is time. a(t)
is called the Friedmann–Robertson–Walker (FRW) scale factor. That is, the cosmological
principle implies a uniform expansion or contraction. Hubble’s law implies,

H2 = ȧ2

a2 , (1)

where H = H(t) is the Hubble parameter, a = a(t),. ≡ d/dt. H(t0) is the Hubble
constant, which is the current expansion rate of the universe.

We consider the Friedmann equation that approximates cosmic evolution,

H2 = 8πG

3

(
ρ0

m

a3 + ρ0
τ

a4 + ρ0
w

a3(1+w)

)
− K

a2 + σ 2

a6 , (2)

where a = a(t) is normalized, so that for today(t = t0 < 0) a(t0) = 1. ρ0
j is the present

value of the energy density for component j , where m represents non-relativistic matter,
τ represents radiation and w represents an energy component with equation of state w. The
last two terms on the right-hand side represent the spatial curvature and anisotropy, respec-
tively. K is the curvature and σ is the anisotropy parameter(see Garfinkle et al. 2008).

We are interested in studying solutions where a → 0. This is initially assumed to take
place in a contracting phase of the universe, just prior to the big bang, where t > 0. This
assumption is consistent with current alternative theories in cosmology to the standard big
bang inflationary model, such as the cyclic or ekpyrotic models (Steinhardt and Turok 2005;
Garfinkle et al. 2008), where the universe undergoes a period of slow contraction with w > 1
prior to the big bang. We are assuming that the big contraction(crunch) converges to a = 0.

The goal of this paper is to understand under what conditions solutions a = a(t) can
be continued, in a well defined manner, with t > 0, as a function of time to t = 0, which
corresponds to the start of the big bang, and then for t < 0 beyond the big bang. The way
this will be done is to see under which conditions, the function a(t) can be regularized at
t = 0. The type of regularization we are using is branch regularization, mentioned in the
Introduction, where the trajectory for a(t) for t > 0 is smooth(analytic) and can be uniquely
extended to t ≤ 0, which is continuous, at t = 0 and analytic for t < 0 (see McGehee 1981).
Branch regularization yields a continuous well defined unique bounce at t = 0 for the given
trajectory with initial condition in the contracting phase for t > 0. We explain how this can
be accomplished in the next section, where branch regularization is carefully defined.

3 Assumptions, differential equations, and results

Friedmann’s equation, (2), gives rise to a second order differential equation for a(t) under
some assumptions on the cosmology model we are using.

Assumption A Let t = t1 be the initial time for a(t) in the contracting phase of the universe
prior to the big bang at t = 0, so that 0 < t1 � 1. Since it is assumed that a → 0 as
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24 E. Belbruno

t → 0+ (0+ means t → 0 with t > 0), then a(t1) is assumed to be sufficiently small, say
0 < a(t1) < δ � 1.

Assumption B w and K are constant. σ, ρ0
m, ρ0

τ , ρ0
w are positive constants.

It is reasonable to fix these parameters in a neighborhood of a = 0. For example, in the
ekyprotic model of the big bang, where w ≥ 1, numerical computations show that these
parameters generally converge to constant values (Garfinkle et al. 2008).

Under Assumption B, we differentiate (1) with respect to t. We first substitute (2) into(1),
which yields

ȧ2 − σ 2

a4 + K − 8πG

3

(
ρ0

m

a
+ ρ0

τ

a2 + ρ0
w

a3(1+w)−2

)
= 0. (3)

Applying d/dt to both sides of (3) yields

äȧ + 2σ 2

a5
ȧ + 4πG

3
ȧ

(
ρ0

m

a2 + 2ρ0
τ

a3 + ρ0
w[3(1 + w) − 2]

a3(1+w)−1

)
= 0. (4)

We can divide through both sides of (4) by ȧ which is nonzero. This follows from (3)
which implies that as a → 0, |ȧ| → ∞. After rearranging terms, we obtain,

ä = −2σ 2

a5
− 4πG

3

(
ρ0

m

a2 + 2ρ0
τ

a3 + ρ0
w[3(1 + w) − 2]

a3(1+w)−1

)
(5)

The differential equation given by (5) for a = a(t) plays a key role in our analysis. It
defines the behavior of a(t) as a function of w. We will consider three cases: w < 1, w = 1,
and w > 1.

The term ’branch regularization’, mentioned in the Introduction, is formally defined as in
McGehee (1981). We define it for a general first order system of differential equations,

ẋ = F(x) (6)

where . ≡ d/dt, x ∈ Rn, n ≥ 2. Assume F is a real analytic vector field on an open set
U ⊂ Rn .

We first define the term ’singularity’,

Definition 1 Let x(t) be a solution for (6), defined in U for b < t < a, with initial condition
x(t0), −∞ ≤ b < t0 < a ≤ ∞.(b, a) is assumed to be the maximal interval the solution can
be extended. If −∞ < b then the solution is said to begin at t = b and if a < ∞, then the
solution is said to end at t = a. In either case, t∗ = a or t∗ = b is said to be a singularity for
x(t).

The terms ’branch extension’ and ’branch regularization’ are defined in Definitions 2, 3
respectively,

Definition 2 Let X1(t), X2(t) be two solutions of (6). Suppose that X1 ends in a singularity
at t∗ and X2 begins in the singularity at the same time. Assume there is a multivalued analytic
function having a branch at t∗, and extending both X1, X2, where we regard t as complex.
Then X1 is said to be a branch extension of X2 and X2 is said to be branch extension of X1.

Definition 3 A solution X of (6) which either begins or ends in a singularity at time t∗ is
called branch regularizable at t∗ if it has a unique branch extension at t∗.
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Regularizability of the big bang singularity 25

It is important to note that in Definitions 2, 3, time t is assumed to be complex. The solu-
tions X1, X2 are real analytic, taking on real values for real t . However, they are extensions
of each other through complex t . This definiton of branch regularization is well defined for
one degree of freedom, n=1, as is seen, using time as a complex variable.

We are interested in obtaining branch extensions for (5) at t = t∗ = 0. (5) is written
as a first order system analogous to (6) by setting x = (a, ȧ). We need only find a branch
extension for for a(t) since that automatically yields one for ȧ(t).

Branch regularization is defined along trajectories of solutions. Its main feature is that it
yields unique extensions at singular points whose solutions are not defined in the original
coordinates. Branch regularization at a = 0 for (5) will be proven by a change of coor-
dinates and time, a, ȧ, t , respectively, with an explicit transformation, to new coordinates,
r, v, s, respectively, where the state a = 0, |ȧ| = ∞ is well defined, corresponding to
r = 0, v = ±√

2. In this way, the singular state at a = 0 is resolved. The solution, a(t), is
then well defined and continuous at t = 0. This is obtained through an explicit formula.

It is remarked that although McGehee’s work (1981) is formulated in general for two
degrees of freedom, it can be reduced to one degree of freedom, as we have applied in this
paper, in a straight forward manner, when extending a solution a(t) from t > 0 to t ≤ 0. The
proof of a unique extension in McGehee (1981), in general, requires knowing the explicit
dependence of the solution, in this case a(t), as a function of t near t = 0 by transforming a
and ȧ to regularized coordinates, r, v, using the original time coordinate t . In the regularized
coordinates, the explicit form of the solution r(t) can be obtained using the stable manifold
theorem, where uniqueness is established using both r, v. This yields a unique branch in these
coordinates. Transforming from r to a yields a unique branch for a(t). This is described in
more detail in the proof of Theorem 5.

We are now able to state our results.

Theorem 1 (a) If |w| ≤ 1, then every solution a → 0 can be branch regularized at a = 0.
(b) If |w| > 1, then a branch regularization of a = 0 can be done on a countable set (measure
zero), Qw , of w values, or equivalently, a branch regularization of a = 0 does not exist for
almost all values of w (i.e. outside the set Qw). The set Qw is given by

Qw = {w = 2
3

q
p − 1 |(p, q) ∈ ℘},

where p, q are positive integers and

℘ = {(p, q)|0 < p < q, (p, q) relatively prime, q odd}.

The condition of regularizability with w ∈ Qw is both necessary and sufficient.

We now show how this theorem is proven in a series of theorems.
A preliminary constant time scaling is done from t to τ (this use of τ is not to be confused

with its earlier use in the symbol, ρ0
τ ),

t =

⎧⎪⎨
⎪⎩

2(2)−1/2σ−1τ, if w < 1,

2C−1/2τ, if w = 1,

((4/3)πGρ0
w)−1/2τ, if w > 1,

(7)

where
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C = 2σ 2 + (16/3)πGρ0
w.

Assumption B, this time scaling is well defined, where C > 0.
As a → 0, we can take a sufficiently small so that the term with the largest power of a−1

in the right hand side of (5) dominates the behavior of ä. In fact, the following theorem is
directly obtained,

Theorem 2 In the scaled time variable, τ , given by (7), and where ′ ≡ d/dτ , the differential
equation (5), can be reduced to the following:

If w < 1,

a′′ = − 4

a5
− f1(a), (8)

where

f1(a) = a1a−2 + a2a−3 + a3a−(5−κ1), (9)

κ1(w) = 3(1 − w) > 0 is a constant, ak are constants, and κ1 → 0+ as w ↑ 1. If we
set c̃ = (4/3)πG, then a1 = 2σ−2c̃ρ0

m, a2 = 4σ−2c̃ρ0
τ , a3 = 2σ−2c̃(4 − κ1)ρ

0
w. Thus the

values of the powers of a−1 of f1 are less than that of the first term on the right side of (8).
If w = 1

a′′ = − 4

a5
− f2(a), (10)

where

f2(a) = b1a−2 + b2a−3, (11)

and bk are constants; b1 = 4c̃C−1ρ0
m, b2 = 8c̃C−1ρ0

τ .
If w > 1,

a′′ = −4 + κ2

a5+κ2
− f3(a), (12)

where

f3(a) = c1a−2 + c2a−3 + c3a−5, (13)

where κ2 = 3(w − 1) > 0 is a constant, ck are constants, and κ2 → 0+ as w ↓ 1;
c1 = ρ0

mρ0
w

−1
, c2 = 2ρ0

τ ρ0
w

−1
, c3 = 2σ 2ρ0

w
−1

. Thus, the values of the powers of a−1 of f3

are less than that of the first term on the right side of (12).
The coefficients ak, bk, ck are well defined by Assumption B.

The differential equations. (8), (10) (12), can be written as

a′′ = dV

da
, (14)

where V is a central force potential function,

V = 1

aα
+ f (a), (15)

where

α =
{

4, if w ≤ 1,

3(1 + w) − 2, if w > 1.

f (a) = O(a−y), y < α is a sum of terms of the form a−ρk , ρk < α.
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Regularizability of the big bang singularity 27

More exactly,

f (a) =

⎧⎪⎨
⎪⎩

a1a−1 + 1
2 a2a−2 + a3

4−κ1
a−(4−κ1), if w < 1,

b1a−1 + 1
2 b2a−2, if w = 1,

c1a−1 + 1
2 c2a−2 + 1

4 c3a−4, if w > 1,

where it is noted that the term a3/(4 − κ1) is well defined for κ1 = 4.
The new variables are now a, P = a′, τ and the new differential equation is (14). This

can equivalently be written as a first order Hamiltonian system of one degree of freedom,

a′ = ∂ H

∂ P
, P ′ = −∂ H

∂a
, (16)

where,

H = 1

2
P2 − V (a). (17)

H is an integral of the motion, so that each trajectory X (τ ) = (a(τ ), P(τ )) lies on the energy
manifold

� = {a, P|H(a, P) = h}, (18)

for some constant h ∈ R1. � is a one-dimensional curve. h is uniquely determined from the
initial value of X (τ ). It is seen that on each manifold, �, |P| → ∞ as a → 0.

It is noted that by the time scaling (7), multiplying t by a positive constant, A, τ = At ,
the results we obtain w.r.t. τ are immediately obtained for t , where τ → 0 is equivalent to
t → 0. Thus, we will present the results from this point on for (16) without loss of generality.

Set γ = (1 + β)−1 and β = α/2, We apply a transformation that smooths the singularity
at a = 0 so that |P| = ∞ gets mapped into a well defined set.

Theorem 3 The transformation TM : a, P → r, v, of (14), or equivalently (16), which
smooths the singularity at a = 0, is given by

a = rγ , P = r−βγ v, (19)

where, if w ≤ 1,

α = 4, β = 2, γ = 1/3, (20)

and if w > 1,

α = 3(1 + w) − 2, β = 3

2
(1 + w) − 1, γ = (1 + β)−1. (21)

This case implies that 0 < γ < 1/3 and β > 2.

The Hamiltonian energy (17) gets mapped into the transformed energy equation,

v2 − 2 = 2hrαγ + 2rαγ g(r), (22)

where

g(r) = f (rγ ).

The proof of Theorem 3 and (22) is obtained by noting that the transformation TM

is directly obtained from a more general map for two-degrees of freedom in McGehee
(1981)(see Equation 4.1, where w = 0, θ = 0, and Equation 4.7). It is similarly verified
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28 E. Belbruno

that (22) is obtained (see Equation 4.3 in McGehee 1981; see also Belbruno and Preto-
rius 2011). In our case, we have the additional term f (a) which gives rise to the term
2rαγ g(r) = O(r (α−y)γ ) in (22), where α − y > 0, and γ > 0. More exactly,

G̃(r) = 2rαγ g(r) =

⎧⎪⎨
⎪⎩

a1r + 1
2 a2r2/3 + a3

4−κ1
rκ1/3, if w < 1,

b1r + 1
2 b2r2/3, if w = 1,

c1rγ (3+κ2) + 1
2 c2rγ (2+κ2) + 1

4 c3rγ κ2 , if w > 1.

(23)

Thus, the energy manifold � is mapped into

M = {r, v|v2 − 2 = 2hrαγ + G̃(r)} (24)

Since a = 0 is mapped into r = 0, and G̃(0) = 0, then this defines the ’collision manifold’
N (see McGehee 1981), which represents the big bang singularity,

N = {(r, v) ∈ M |r = 0, v = ±√
2}.

Thus, |P| = ∞ is mapped into v = ±√
2. A set analogous to this is defined in Belbruno

and Pretorius (2011) for the problem of motion about a black hole, using the two-degree of
freedom version of TM . N is an invariant manifold for the transformed flow in a new time
variable we define below. This proves Theorem 3.

The transformation TM smooths the singularity at a = 0 in the sense that |P| = ∞ is
mapped into a finite set of points. To see if a solution a = a(τ ) can be extended through
collision as a function of τ , it is necessary to examine the transformed differential equations.

Set

Qγ = {γ = p

q
|(p, q) ∈ ℘.} (25)

Adapting a theorem in McGehee (1981) of two degrees of freedom to one degree of free-
dom, and in particular to our system (16), and also using Eq. (28), proven to exist below in
the proof of Theorem 5, we have

Theorem 4 (McGehee) Every singular solution a → 0 to (16) can be branch regularized if
and only if γ ∈ Qγ .

This implies that if γ /∈ Qγ , then no singular solution can be branch regularized, and if
γ ∈ Qγ , then every singular solution can be branch regularized.

The relative prime number condition in Theorem 4 is a key condition for this analysis. It
results from a more general theorem in McGehee (1981), proven for the more general case
of two-degrees of freedom for (16), where, more generally, a = (a1, a1), P = (P1, P2), and
in (17), P2 ≡ |P|2, aα ≡ |a|α . However, it can be applied to our case of a single degree of
freedom in a straight forward manner, as is verified.

Before we look at the transformed flow and the explicit form of the solution a(τ ), we
discuss the set Qγ .

The prime number condition that γ ∈ Qγ is equivalent to a prime number condition on
α and w. This follows from the definition of γ = (1 + (α/2))−1 which implies,

α = 2(γ −1 − 1)

This yields the condition that

α ∈ Qα,
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Regularizability of the big bang singularity 29

where

Qα = {α = 2(γ −1 − 1)|γ ∈ Qγ }.
We also obtain a prime number condition on w. This follows from the condition α = 3(1 +
w) − 2 in Theorem 3 for w > 1, which implies,

w = α − 1

3
.

This implies that for w > 1, using the prime number condition in Qα for α,

w ∈ Qw =
{
w = 2

3
γ −1 − 1|γ ∈ Qγ

}

that was given in Theorem 1. By Theorem 4, branch regularizability is guaranteed.
It is noted that for the case of w ≤ 1 in Theorem 3, γ = 1/3 ∈ Qγ guaranteeing branch

regularizability.

This proves Theorem 1.

Why is the condition that γ ∈ Qγ required?

Let a = F1(τ ) be the singular solution branch f1(t) in the scaled time variable τ , where
F1 → 0 as τ → 0+, ( t = 0 is mapped into τ = 0). We prove below, using the stable
manifold theorem, what the exact form of F1 is in terms of powers of τ which is given by
(28). This yields an expression for F1(τ ) where the term τγ appears. If γ were irrational
or of the form p/q, p > 0, q > 0 with q even, p, q relativly prime, then τγ would not be
defined for τ < 0, and F1(τ ), τ ≥ 0, could not be extended to a branch F2(τ ) for τ < 0.
This gives an obstruction to the continuation of a solution a(τ ) through τ = 0 due to the
appearance of imaginary time.

We now state the result on the transformed flow and the form of the solution a(τ ).

Theorem 5 TM , together with the transformation of time from τ to s, dτ = rds, maps (16)
into the first order system

dr

ds
= (β + 1)rv,

dv

ds
= β(v2 − 2) − G(r), (26)

defined on M, where

G(r) =

⎧⎪⎨
⎪⎩

a1r + a2r
2
3 + a3r

κ1
3 , if w < 1,

b1r + b2r
2
3 , if w = 1,

c1rκ2γ+3 + c2rκ2γ+2 + c3rκ2γ , if w > 1,

(27)

The solution for a = F1(τ ) → 0 as τ → 0+ can be written in explicit form as

a = F1(τ ) = τγ �(τω1 , τω2), τ > 0, (28)

(ω1, ω2) = (αγ /4, κ1/3), (1/3, 1), (κ2γ, γ ) for w < 1, w = 1, w > 1, respectively, where
�(X, Y ) is a uniquely determined real analytic function of X, Y for (X, Y ) in a sufficiently
small neighborhood of (0, 0),

�(0, 0) = (
√

2(β + 1))γ .
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30 E. Belbruno

If γ ∈ Qγ , then the unique branch extension of F1(τ ) to τ < 0, where |τ | � 1, is given by
a = F2(τ ) = F1(τ ) > 0 if p is even,
a = F2(τ ) = −F1(τ ) > 0 if p is odd,

where F1(0) = F2(0) = �(0, 0).

Proof of Theorem 5 The explicit solution a = a(τ ), given by (28), is obtained by considering
(22) and (23), in the original time variable τ . This implies,

dr

dτ
= (1 + β)(2 + 2hrαγ + G̃(r))1/2. (29)

It is noted that α = 4, γ = 1/3 for w ≤ 1 and α = (4 + κ2), γ = (1 + α/2)−1 for
w > 1, κ2 > 0, 0 < γ < 1/3. It is verified that for w < 1, the right hand side of (29) can
be written as an analytic function f̃1(X, Y ), where X = rαγ/4, Y = rκ1/3; for w = 1, it
can be written as an analytic function f̃2(X, Y ), where X = r1/3, Y = r ; and for w > 1,
it can be written as an analytic function f̃3(X, Y ), X = rκ2γ , Y = rγ . The functions f̃k(X, Y )

are real analytic for (X, Y ) sufficiently near (0, 0) (to insure the square root is well defined)
where f̃k(0, 0) = √

2(1 + β). More exactly,

f̃1 = (1 + β)(2 + 2h X4 + a1 X3 + (1/2)a2 X2 + a3(κ1 − 4)−1Y )1/2,

f̃2 = (1 + β)(2 + 2h X4 + b1Y + b2 X2)1/2,

f̃3 = (1 + β)(2 + 2h XY 4 + c1 XY 3 + (1/2)c2 XY 2 + (1/4)X)1/2.

These functions can all be expanded as a convergent Taylor series about (X,Y) = (0,0) with
a positive radius of convergence. Thus, (29) can be written as

dr

dτ
= F(rω1 , rω2), (30)

where ω1(w) > 0, ω2(w) > 0, and F(0, 0) = √
2(1 + β), F(X, Y ) is real analytic for

(X, Y ) sufficiently near (0, 0). ((ω1, ω2) = (αγ /4, κ1/3), (1/3, 1), (κ2γ, γ ) for w < 1, w =
1, w > 1, respectively.) We can now apply the stable manifold theorem to (30) in an anal-
ogous manner that was done in McGehee (1981) (see Lemma 5.7). This implies that there
exists an analytic solution,

r(τ ) = τG(τω1 , τω2), (31)

for τ in a sufficiently small neighborhood of 0, G(0, 0) = √
2(1 + β). Setting a = rγ , we

obtain

a = τγ Gγ (τω1 , τω2),

and setting � = Gγ yields the solution in Theorem 5. It is necessary to prove that ω1, ω2

insure that τωk , k = 1, 2, is not imaginary for τ < 0. This follows immediately for w = 1,
since ω1 = 1/3, ω2 = 1. For w < 1, ω1 = αγ/4 = γ and ω2 = κ1/3 = 1 − w. But
w = (2/3)(p/q) − 1 so that ω2 = 2[1 − (1/3)(p/q)]. Finally, for w > 1, ω2 = γ and
ω1 = κ2γ = 3(w − 1)γ = 3(2[(1/3)(p/q) − 1])γ = 6[(1/3)(p/q) − 1]γ.

The system (26) of differential equations is obtained by transforming (16) using (19),
together with the transformation of time from τ to s, which is verified after some algebraic
simplification.

The concludes the proof of Theorem 5.
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Remark It is noted that the key result in Theorem 5 is Eq. (28) for τ ≥ 0 as τ → 0+ and its
continuation, F2(τ ), for τ ≤ 0 as τ → 0−, in the original physical coordinates a, τ . The flow
in the regularized coordinates r, v, s given by Eq. (26), described below, is not required to
conclude the extension of the solution. However, (26) is necessary to understand the nature
of the flow near a = 0.

Thus, by Theorem 5, a(τ ) = F1(τ ) → 0 as τ → 0+, and at τ = 0, F1(0) = 0, then as τ

passes to negative values of τ, a(τ ) = F2(τ ) increases. This motion of a provides a universe
bounce through a = 0 through a unique branch extension. This motion as a function of τ

can be done as function of t through the constant scaling (7). By Theorem 4, the condition
γ ∈ Qγ is required. The bounce is nondifferentiable at τ = 0, or t = 0, which is seen by
differentiation of F1 with respect to τ . This introduces the term τγ−1 that multiplies F1.
Since γ < 1, then τ = 0 is undefined.

Geometry of flow in branch regularized coordinates

Lemma 1 N is an invariant manifold for the flow of (26). As a trajectory approaches N as
τ → 0+, then this implies s → ∞.

This is proven from the definition of N , which implies r = 0 and v = ±√
2. These are

rest points for (26). Thus, N is an invariant manifold set for (26). This implies that in the
time variable s, s → ∞ as τ → 0+.

It is noted that the vector field defined by the system of differential equations (26) is not
differentiable at r = 0, with respect to r , due to the term G(r). This is seen by noting that
dG/dr is singular at r = 0. It is, however, locally Lipschitz continuous in a neighborhood of
r = 0, guaranteeing uniqueness. It is real analytic with respect to v at v = ±√

2 and r = 0.
It is remarked that this branch regularization can be viewed as a minimal type regular-

ization where the flow in the regularized coordinates can be smoothed to the extent where
the collision set results in rest points. This yields unique branch extensions in physical space
which are continuous but not differentiable. In other problems, e.g. the Newtonian inverse
square central force problem, collision can be regularized so that in the regularized coordi-
nates, the flow can be extended through the transformed collision set in finite time, where the
flow is smooth in a full neighborhood of collision. These are ’global’ regularizations, where,
moreover, the flow is smooth on the entire energy manifold. Examples of these are mentioned
in the Introduction, e.g. the Levi-Civita regularization or the geodesic equivalent flow maps
(Levi-Civita 1920; Moser 1970; Belbruno 1977; see also Belbruno 2004). These stronger
regularizations also imply that in the original coordinates for the Newtonian inverse square
central force law, each collision solution can be extended through collision in a bounce as
in the weaker branch regularization. The difference is that the global regularization yields a
smoother behavior of the flow near collision than in the branch regularization.

It is important to mention that another type of regularization of interest is ’block regulari-
zation’. In this case the flow of the differential equations is viewed in a compact neighborhood
of the singular set, called an isolating block. In one version of this, due to Conley and Easton
(1971 ), the singular set is an invariant set where the vector field is defined. In another var-
iation of this, due to Easton (1971) the vector field need not be defined on the singular set.
In either case, the flow is studied near the singular set within the isolating block. The flow is
called block regularizable, in a deleted neighborhood of the singular set, if it can be shown
to be diffeomorphic to the trivial parallel flow. It is proven in McGehee (1981), in the case
of a pure power law, a−α , given by (15) with f (a) = 0, that the flow is block regularizable
if and only if β = 1 − n−1, n = 1, 2, 3, . . .. This is done by showing an equivalence with
the flow resulting from applying a Levi-Civita type regularizing transformation. A similar

123



32 E. Belbruno

result may be true in our case when f (a) is included. However, in this paper, β ≥ 2. This
result seems to suggest that when f (a) is included, the flow may not be block regularizable,
although this is not proven.

Block regularization does not require looking at the flow at the singularity, but near it. If it
is block regularizable, then this implies a degree of uniformity of the flow near the singularity.
One could make the rough analogy that the flow could be combed. Physically, this would
imply that the dynamics of the system near the big bang, for example, would be fairly well
behaved. If it were not block regularizable, then the behavior of the flow near the big bang
would not be uniform in the sense that it would not be equivalent to a trivial parallel flow.

It is noted that branch regularization does not imply block regularization, and although
block regularization does imply branch regularization in the case of a pure power law, as is
proven in McGehee (1981), it is not necessarily the case in general that block regularization
implies branch regularization.

4 Relevance of results

The big bang singularity is not understood in reality. The big bang is thought to have occurred
approximately 13.75 billion years ago. The initial rapid expansion of the universe after this
state, modeled by the theory of inflation, is estimated to have occurred approximately within
10−36 and 10−32 s, with an expansion factor of minimally 1078 in volume. The initial temper-
ature near this period is estimated to have been 1032 ◦K, beyond our ability to experimentally
reach in particle accelerators. There are a number of cosmological theories that try to under-
stand the big bang. In this paper we have taken a purely mathematical approach, using a
Friedmann model which is generally used to understand the expansion and evolution of the
universe, and not the big bang singularity itself. We have applied a McGehee regularization
transformation to this model, to try and understand the dynamics in a neighborhood of the
big bang singularity, given by a = 0. This mathematical analysis does provide information
on the flow of the differential equations we are using in this neighborhood, derived from the
Friedmann model, yielding conditions on which solutions can be mathematically extended
through the singularity. The existence of such solutions is not intended to be applicable to
reality. Our analysis does not attempt to explain any of the physics or nature of this state.

It is instructive to make a very brief comparison of our methodology and results to other
cosmological models. For a comparison, we will use the Friedmann equation given by (2),
which results from general relativity. We will also use the equation of state w, since that plays
a key role in our results, and also for the sake of simplicity. The parameter w was defined in
the introduction. For a static universe, w = −1/3. When the universe expands, w < −1/3.
In Theorem 1, w = 1 is a transition case between extensions of solutions through a = 0 that
can be done, in general, for w ≤ 1 and for w > 1 where it is necessary that w ∈ Qw . As
is described in Erickson et al. (2004) , for w < 1, the anisotropy and curvature terms in the
Einstein field equations grow rapidly and become dominant as a → 0, that can cause chaotic
behavior that may destabilize the contraction process. However, if w > 1, these terms remain
negligible as compared to the energy density, ρ. In this sense, w = 1 represents a transition.
This is interesting to compare to the role w = 1 plays as being a transition for conditions
required for branch regularization.

The cosmological theories to which we will be making comparisons with model the evo-
lution of the universe using a Freidmann equation, however, their modeling of the big bang
singularity are all quite different. It is important to note that there are many other factors
that can be used in making such comparisons between theories, however, since we are not
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attempting to understand the big bang, the Friedmann equation for the evolutionary behavior
plays a key role. Further analysis beyond this comparison is beyond the scope of this paper.
There are many cosmology theories, and we are considering a subset for comparison.

In 1998 , Gott and Lin discuss the possibility that our universe could expand from a = 0,
then stop expanding and eventually contract into a ’big crunch’ again to a = 0. This could
repeat cyclically. In the contraction phase immediately before a = 0, if w > 1, then by
our Friedmann model, Theorem 1 would imply that for an extension through a = 0, it is
necessary that w ∈ Qw , a set of measure zero. However, if, as a → 0, w < 1, then branch
extension can be done in general. In this case, however, chaotic behavior can occur.

Steinhardt and Turok, have put forward the ekpyrotic theory of the big bang (Steinhardt
et al. 2001). It is a cyclic universe theory that uses string theory. In this theory, the big bang
is hypothesized to have occured cyclically by the collision of branes, which are subspaces
derived from string theory. The resulting expansion and contraction is modeled using a Fried-
mann equation that is given by (2). In this theory, w > 1 and w → 1 as a → 0 (see Lehners
2008; Steinhardt and Turok 2005). This yields an interesting interpretation of results when
compared to our methodology: If the convergence of w to 1 is within the tolerances required
by physical considerations, including quantum fluctuations, yielding w = 1 in a neighbor-
hood of a = 0, then an extension through a = 0 is automatic by Theorem 1. However, if
w > 1 is maintained for a > 0 in the limit, no matter how small, then w would need to satisfy
relative prime number values on the set Qw prior to a = 0 to be consistent with Theorem
1, placing a restriction that w ∈ Qw. This condition, however, may be meaningless, since
when a goes below the Planck scale, the laws of physics are no longer well defined. It is
important to note that although there are issues for the ekpyrotic/cyclic models for w > 1 in
our analysis, quantum corrections, for any value of w, still allow an effective leading order
description of the evolution of the universe in terms of the scale factor, a, governed by the
Friedmann equation.

There are other cosmological theories that use string theory. For example, another is string
gas cosmology (Brandenberger 2011) put forth by Brandenberger and Vafa. This is a cosmo-
logical theory that incorporates a gas of strings within the four-dimensional space-time of
the early stages of the inflation of the universe. The additional dimensions given by strings,
offers a way to explain aspects of the universe in a way that is different than just looking at a
pure inflationary model. The reduction of the evolution of the universe based on a string gas
theory to a Friedmann equation was carried out by Kamenshchik and Khalatnikov (2012)
by viewing a string gas as a perfect fluid with w = −1/3. The Friedmann equation they
obtain is different from (2), so that we would have to repeat our analysis with this equation
to make conclusions on branch regularizability. Other theories using string theory include,
brane cosmology and string landscape, which are beyond the scope of this paper.

Another theory of the big bang we consider is by Hartle and Hawking (1983). Their theory
models the big bang using a quantum mechanical framework, where our universe is viewed as
a particle and the big bang is modeled as a wave function. The evolution of the universe after
the big bang uses general relativity. The Hartle–Hawking theory assumes that time does not
exist prior to the big bang singularity. This condition is inconsistent with the methodology of
our results since we require a continuous time flow through the big bang. However, another
theory of interest of the big bang using quantum mechanical ideas and quantized gravity,
is called loop quantum cosmology (Thiemann 2007). It is based on loop quantum gravity,
which is a quantization of general relativity, developed by A. Ashtekar. This theory gives rise
to a cyclical universe theory where time can be continued though the big bang. This approach
can be reduced to a modified Friedmann equation (Singh 2005). It is shown in Singh (2005)
that w ∈ [−1, 1]. Within our methodology, these values of w would automatically allow an
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extension of solutions through the big bang singularity. However, the Friedmann equation
used in this theory is a modification of (2), and we would have to repeat our analysis for this
equation to make definitive conclusions.

It is noted that Theorem 1 implies a ’unique’ branch extension from a previous universe
to ours. As noted in the previous sections, uniqueness results from Lipschitz continuity of
(26). A modification of the original Friedmann equation could result in nonuniqueness of
solutions at a = 0 for the transformed differential equations. Also, we have fixed a number
of variables as a → 0, such as w, and the curvature K , among others. Although fixing these
parameters seems consistent with numerical simulations in Garfinkle et al. (2008), it would
be interesting to study the approach taken in this paper if they were allowed to vary. This is
a topic for further study.
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