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Abstract We study the dynamics of a viscoelastic body whose shape and position evolve
due to the gravitational forces exerted by a pointlike planet. We work in the quadrupole
approximation. We consider the solution in which the center of mass of the body moves on
a circular orbit, and the body rotates in a synchronous way about its axis, so that it always
shows the same face to the planet as the Moon does with the Earth. We prove that if any
internal deformation of the body dissipates some energy, then such an orbit is locally asymp-
totically stable. The proof is based on the construction of a suitable system of coordinates
and on the use of LaSalle’s principle. A large part of the paper is devoted to the analysis of
the kinematics of an elastic body interacting with a gravitational field. We think this could
have some interest in itself.

Keywords Spin orbit resonance · Viscoelastic satellite · Dynamical systems ·
Lyapunov stability · Lagrangian mechanics · Dissipative dynamics

1 Introduction

In this paper we study the dynamics of a deformable celestial body interacting with a planet.
In particular we are interested in understanding the interaction of the internal degrees of
freedom with the orbital and spin ones.

The study of such a problem goes back to Darwin (1879, 1880) (see also Ferraz-Mello
2008; Efroimsky and Williams 2009) and the theory he initiated has been developed by many
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authors (Alexander 1973; Goldreich 1966; Hut 1980; Kaula 1964; MacDonald 1964; Peale
et al. 1980). Such a theory consists of a procedure which allows to separate the internal
degrees of freedom (DOFs) from the orbital and spin ones. This is obtained by showing that,
in some approximation, the effect of the internal DOFs is just that of producing an effective
force acting on the orbital and spin DOFs. In particular one of the main issues of the theory is
that a dissipation acting on the internal DOFs induces an effective dissipation on the orbital
and spin DOFs (for a recent reference see Efroimsky 2012). We emphasize that Darwin’s
procedure is heuristic, and from a mathematical point of view, its range of validity is far from
being clear.

Our purpose in this paper is to prove the phenomenon of stabilization of orbital and spin
DOFs in a mathematically rigorous way, at least in one simple model. Our model is the fol-
lowing one: we first approximate the planet by a pure point. Then we model the satellite by an
elastic sphere, whose shape will change under the action of the gravitational and dynamical
forces.

From a dynamical system point of view, the system must be described by a system of
coupled differential equations governing both the evolution of the orbital and spin DOFs and
the internal (elastic) DOFs of the satellite. In particular the equations of motion for the elastic
DOFs are of course partial differential equations.

The first problem we address is that of writing in a resonable way the equations of motion
of the system. It turns out that this is possible, although nontrivial, by making very little
assumptions, at least in the quadrupole approximation. The introduction of suitable coordi-
nates occupies a large part of the paper.

Then we prove that, as expected, the so obtained equations have a particular stationary
solution in which the center of mass of the satellite moves uniformly on a circular orbit and the
satellite is stretched in the direction of the planet (of course the shape of the deformed body
corresponds to the standard Love equilibria). Then we prove that, if any internal deformation
dissipates energy, then such a stationary solution is asymptotically stable. In particular the
orbital DOFs relax to the circular ones. We emphasize that our theory is local, so in particular
it is valid only for small initial values of the eccentricity.

We also would like to mention that our approach also applies to satellites whose unper-
turbed shape is triaxial (like a rock), but in order to conclude the proof one needs to substitute
the argument of Sect. 5 with a different argument which will be the object of a separate paper.

We now briefly describe the proof and the structure of the paper.
The starting point of the proof is the remark that, in quadrupole approximation, the grav-

itational potential of an extended body in an external gravitational field is a function only of
the principal moments of inertia and of the directions of the principal axes of inertia. So it is
natural to use such quantities as coordinates in the configuration space of the elastic satellite.
We first prove that it is possible to complete such quantities to a system of coordinates. Fur-
thermore, due to the symmetries of the system, the kinetic energy and the potential energy of
the body have quite a simple form [see Eq. (4.2)]. For simplicity, we restrict ourselves to the
“planar situation” in which the center of mass lies in a plane, the spin axis is orthogonal to
such a plane and the deformations are such that one of the principal axes of inertia of the body
is always orthogonal to the plane of the orbit. We first study the dynamical system with such
a Lagrangian proving the existence of the above mentioned orbits, then we add dissipation
and use LaSalle’s principle in order to get the main result. Concerning dissipation, we only
assume that any internal deformation of the body produces some nonzero dissipation, and
that the stress at a given time is function of the strain and of its time derivative at that fixed
time, so that there are no memory effects.
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Asymptotic stability of synchronous orbits 257

We emphasize that the introduction of the coordinates is the most difficult part of the
proof, but we think that their construction could have some interest in itself.

The main difficulties one has to face are of two kinds: the first one, which will be discussed
in detail in Sect. 2, is that the separation between the rotational degrees of freedom and the
elastic ones relies on an arbitrary choice, which from a mathematical point of view consists of
the choice of a local section of a principal fibre bundle. Concerning this point we emphasize
that we are not looking for a local separation, which could be obtained by the classical local
analysis of the deformation, based on the polar decomposition of the displacement gradient.
Instead we are looking for a characterization of those deformations which globally do not
rotate either the body or its axes of inertia. The difficulty is that there exist purely elastic
deformations which produce nontrivial rotations of the axes of inertia the body. The second
difficulty is related to the fact that the principal axes of inertia do not define directly a coordi-
nate system, since they are defined up to orientation. In order to overcome such difficulty we
use some properties of the spaces obtained as the quotient of a Hausdorff space with respect
to the action of a finite group. The conclusion is that the wanted coordinates are a 24-fold
covering of the configuration space.

2 Coordinates in the configuration space

In this section we introduce suitable coordinates in the configuration space of the elastic
body. Such coordinates allow to separate between elastic degrees of freedom and coordinates
identifying the position and the orientation in space of the body. Though later, for simplic-
ity, we will restrict ourselves to the planar situation, the construction of coordinates of the
present section is fully general and is referred to three dimensional motion, with no planar
constraints.

2.1 General considerations

We will use the Lagrangian description of elasticity. In this approach one defines the so
called material space �, which is essentially an abstract realization of the elastic body in
some reference configuration. In our case we choose � to be a three dimensional sphere.
In the following we will assume that the body is invariant under rotations, in particular we
assume that its density function ρ : � → R

+ is invariant under rotations. We denote by m
the mass of the elastic body, i.e.

m =
∫

�

ρ(x)d3x.

The configuration of the body is a map ζ : � → R
3, which gives the position in space of

the the point x ∈ �.

Remark 2.1 Here and in the following, we identify the physical space, i.e. the target of the
configuration map ζ , with the three-dimensional real vector space R

3.

Of course the map ζ describes both the deformation of the body and its position and
rotation in space, so it is natural to try to decompose ζ into a translation, a rotation and an
internal deformation. To start, define the center of mass of the body by

X = 1

m

∫

�

ζ(x)ρ(x)d3x, (2.1)
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and decompose the configuration vector field ζ as

ζ(x) = X + v(x), (2.2)

where v is such that ∫

�

v(x)ρ(x)d3x = 0. (2.3)

Assumption 1 As discussed in the introduction, we assume that X lies in the plane generated
by e1 and e2.

Here and below we denote by e1, e2, e3 the vectors of the canonical base of R
3.

Denote by C the space of the v’s such that (2.3) holds.

Remark 2.2 The field v : � → R
3 contains all the information both about the deformation

and about the rotation of the satellite. For instance, one has that v(x) − x vanishes for all
x ∈ � if and only if the satellite is both undeformed and non-rotated with respect to the
reference configuration.

Remark 2.3 In principle, the space C should be an infinite dimensional function space, so
in order to discuss the dynamics one should introduce a suitable topology in it, prove an
existence and uniqueness theorem for the solutions of the Cauchy problem and, in order to
use energy conservation (or dissipation) to prove dynamical properties, one should also prove
that dynamics is well posed in the energy space, which is in general unknown (Marsden and
Thomas Hughes 1983).

In the present paper we do not want to enter such a kind of mathematical problems, so
we cut the effective number of degrees of freedom to get an arbitrary but finite number of
variables, i.e. we make the following approximation.

Approximation. We assume that the configuration space C has dimension n + 9, i.e. we
restrict the allowed deformations to a finite-dimensional space.1

Then we would like to factor out rotations in a way similar to translations, however this
requires a careful discussion. The point is that it is clear what it means to rotate a body, but
it is not clear how to say that a deformation does not rotate the body: as we will see, this is
not a well defined concept.

To understand this point, we recall the standard analysis of the local deformation in elas-
ticity theory. Fix a point x0 ∈ �. Then, the displacement gradient is the matrix A := ∇ζ(x0).
The standard local analysis consists in splitting the displacement gradient A according to
the polar decomposition theorem: A = RS (or S R), where R is a rotation matrix and S is
a symmetric positive-definite matrix representing the deformation. However, this separation
between deformation and rotation is well-defined and completely standard only at a local
level (in a neighborhood of a fixed x0).

On the other hand, when considering the global configuration, the situation is more com-
plicated, because it is not trivial at all to answer the following question. Let the configuration
ζ be assigned. Is it a “pure deformation”, in the sense that it does not “globally rotate the

1 The number n + 9 arises from the introduction of the coordinates, which will be performed in the present
section. We choose the dimension of C to be n +9 so that, after the reduction with respect to two actions of the
rotation group SO(3) (which has dimension 3) and after isolating the three coordinates I j corresponding to the
principal moments of inertia, the number of remaining coordinates z j will be exactly (n +9)−2 ×3−3 = n.
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body”, or is it given by the composition of a rotation of the body with some “pure deforma-
tion”?

The answer to this question is easy if one considers only affine deformations, i.e. if one
allows only displacements whose gradient is spatially constant. In fact, in this case, the rota-
tion is simply described by the skew-symmetric part of the gradient of the displacement
(evaluated at any point, since it is constant).

Instead we are here interested in general nonlinear rotations, and we want to define a
concept of global rotation of the body, not depending on the point x ∈ �.

We will conclude in a while that there is no natural way of defining what it means that a
displacement does not globally rotate the body. On the contrary, it is trivial to explain what it
means to rotate a body. Mathematically, this corresponds to the fact that there exists a group
action A1 of the rotation group SO(3) on the configuration space C, defined by 2

A1 : SO(3)× C → C
(�, v) �→ �v, (2.4)

namely the configuration obtained by rotating the body in space with the rotation �. This
group action allows one to introduce a structure of principal fibre bundle in C, the base man-
ifold being the quotient M := C/SO(3). The elements of such a quotient manifold are what
one could call “pure deformations”.

The fact that the quotient of a manifold under a group action is still a manifold is not
always true, so we have to recall some basic facts about group actions in order to justify our
assertion.

Definition 2.4 Let G be a group acting on a set X . The action is said to be free if the fol-
lowing condition is verified: if there exist x ∈ X and g ∈ G such that gx = x , then g is the
identity.

Definition 2.5 The action of a Lie group G on a topological space X is said to be proper if
the mapping

G × X → X × X : (g, x) �→ (gx, x)

is proper, i.e., inverse images of compact sets are compact.

The following classical results hold (see e.g. Lee 2003).

Theorem 2.6 Let G be a Lie group acting on a topological space M. If G is compact, then
the action is proper.

Theorem 2.7 If a Lie group G acts freely and properly on a smooth manifold, then the
quotient M/G is a smooth manifold.

In our case, the fact that SO(3) is a compact group and that the action A1 is free implies
that M is a manifold. To see that A1 is free, suppose that for some � ∈ SO(3), v ∈ C we
have�v(x) = v(x) for all x ∈ �. Then, consider x1, x2 ∈ � s.t. v(x1), v(x2) are independent
vectors of R

3. (Such x1, x2 exist since the satellite is a 3-dimensional body.) The condition
�v(xi ) = v(xi ) for i = 1, 2 implies that� is a rotation about the v(xi )-axis. The only element
of SO(3) to be at the same time a rotation about two independent axes is the identity.

As usual in this geometric context, it is useful to introduce coordinates in which a point
of C is represented by an element of SO(3) and an element of the base manifold. However a

2 See Remark 2.1.
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concrete representation of the elements of the quotient manifold can be obtained only locally,
by introducing a local section of the bundle, namely by choosing a submanifold S of C, trans-
versal to the group orbit. Now it is clear that there are infinitely many possible choices of the
section of the bundle. Nonetheless, the physics is independent of the choice of the section S:
a change in the choice of the section simply results in a change of coordinates. The fact that
the section is only local is not a problem, as long as only small deformations are allowed.

Now, let v0 ∈ C be the vector field corresponding to the reference configuration (i.e.,
v0(x) := x). Let A1(SO(3))v0 be the orbit of the reference configuration under the action
of the group SO(3). Once the section S has been chosen, it naturally induces a smooth one-
to-one correspondence between a neighborhood of A1(SO(3))v0 and SO(3) × S. Such a
correspondence allows one to parameterize the space C of configurations through an element
of the group SO(3) and a point of the section S. The point is that, due to the isotropy of
space, the Lagrangian of the body is going to be independent of the element of SO(3) and
will depend only on the point in S.

We remark that the machinery we have just introduced describes a general fact, which is
independent of all the assumptions we will make later in the paper. We can summarize the
result of our discussion in the following theorem:

Theorem 2.8 Let v0 ∈ C be fixed and let S be a section of C through v0. Then there exist a
neighborhoodU ⊂ C ofA1(SO(3))v0 and a one-to-one smooth function f : SO(3)×S → U
with the property that f (�,w) = A1(�)w. Therefore, � and w can be used as coordinates
on the configuration space C.

2.2 Spherical symmetry and adapted coordinates

In order to introduce explicitly the wanted set of coordinates, we recall the definition of prin-
cipal moments and axes of inertia. The matrix of inertia of the body is a symmetric matrix
I = {

Ii j
}3

i, j=1 whose elements are3

Ii j = Ii j (v) := ei ·
∫

�

v(x) ∧ (e j ∧ v(x))ρ(x)d3x. (2.5)

The eigenvalues of such a matrix are called the principal moments of inertia and will be
denoted by I1, I2, I3. The eigenvectors of I are called principal axes of inertia and will be
denoted by u1, u2, u3.

We make the assumption that the satellite is spherically symmetric, i.e.:

(i) � is a three dimensional ball centered at the origin;
(ii) the corresponding density function ρ0(x) is a purely radial function of x, i.e. ρ0 =

ρ0(‖x‖)
(iii) the Lagrangian of the satellite (when ignoring the gravitational interaction with M) is

invariant under the action A1 already introduced and also under the action A2 defined
in the following way:

A2 : SO(3)× C → C
(R, v) �→ Rv ◦ R−1. (2.6)

Remark 2.9 This assumption implies that the satellite is spherical in its reference configura-
tion: in particular, all the principal moments of inertia are equal. However, in order to obtain

3 See Remark 2.1.
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the stability of the 1:1 spin-orbit resonance, the fact that the principal moments of inertia are
not all equal at the equilibrium plays a crucial role. As we will analyse later, in our model the
difference between the principal moments of inertia is only a consequence of the elasticity
of the satellite and of the action of the tidal forces.

The group action A2 has the following meaning. Imagine that the satellite is experiencing
some deformation, which corresponds to a body configuration v. Then, applying A2(R) to v
corresponds to producing a configuration which looks exactly like the previous one, except
for the fact that the “direction” of the deformation inside the body has been rotated through
the matrix R. We mean that if, for example, the initial configuration is an ellipsoid with some
principal axes, then the second one is an ellipsoid with the same shape, but with axes which
have been rotated inside the body. This is a true elastic deformation.

The action A2 is not free: in fact, consider for instance the reference configuration
v0(x) := x. It is immediate to verify that A2(R)v0 = v0 for all R ∈ SO(3). More in
general, all body configurations which are symmetric with respect to a (continuous or dis-
crete) subgroup of SO(3) have a nontrivial stabilizer4 under the group action A2. Therefore,
it is convenient to consider also the action A3, combination of the actions A1 and A2, defined
by

A3(R)v := A1(R)A2(R
−1)v = v ◦ R (2.7)

and study the couple of actions A1 and A3. It is easy to verify that the group action A3 is
free.

We introduce now an adapted set of coordinates in a neighborhood of the “identical”
deformation v0 (excluding however such a configuration). To this end we need to introduce
a few objects:

(1) Define

C 
= = {v ∈ C|I1 
= I2, I1 
= I3, I2 
= I3} (2.8)

and its complement

C= = {
v ∈ C|Ii = I j for some i 
= j

}
. (2.9)

This is useful since the principal axes u1, u2, u3 are uniquely determined in C 
=.
(2) Define

D := {v ∈ C|I (v) is diagonal}. (2.10)

We also define D 
= := D ∩ C 
=. Observe that D is a codimension 3 submanifold of C,
invariant under the action A3 (we will show in the proof of Lemma 2.15 that the action
A3 leaves invariant the matrix of inertia) and observe that v0 ∈ D. Moreover, as we will
prove in Lemma 2.15, on D ∩ C 
= the action A1 is independent of the action A3, and is
transversal to D.

(3) Consider the group orbit A3(SO(3))v0 ⊂ D, and let S ⊂ D be a codimension 3
(in D) manifold transversal to such a group orbit and passing through v0. Actually we
are interested in the restriction of such a section to a small neighborhood of v0. We still
denote by S such a local section. The existence of such an S is assured by the fact that
the action A3 is free and therefore defines a foliation of D.

4 The stabilizer of v ∈ C under the group action A2 is the set of R ∈ SO(3) s.t. A2(R)v = v
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(4) Finally define F to be the tube constituted by the orbits of A1 ◦ A2 starting in S ∩ C 
=,
namely

F := A1(SO(3))A2(SO(3))(S ∩ C 
=). (2.11)

We remark that F = A1(SO(3))A3(SO(3))(S ∩ C 
=).

Remark 2.10 The eigenvalues I j , as functions of the matrix elements {Ii j } (and therefore of
the configuration v), are smooth functions on C 
=; however, the first derivatives of the I j ’s
have a singularity at C=, therefore the I j ’s can be used as Lagrangian coordinates only on
C 
=.

Remark 2.11 When restricting to the submanifold D, the eigenvalues I j coincide with the
matrix elements on the main diagonal, and therefore they are obviously smooth functions of
the configuration.

We make the following assumption.

Assumption 2 We assume that the functions I j : D → R, j = 1, 2, 3 are independent in a
neighborhood of v0.

Remark 2.12 The previous assumption is satisfied, for instance, if for any j there exists a
deformation which modifies I j , leaving unaltered the other pincipal moments of inertis Ik

(k 
= j). The same assumption would not be satisfied if, for example, one added some addi-
tional constraint, like the incompressibility constraint. In that case, one would have to drop
one degree of freedom.

In the rest of the section we will prove the following Theorem:

Theorem 2.13 There exist functions (z1, z2, . . . , zn), with

z j : S → R ( j = 1, 2, . . . , n)

such that:

(i) (I1, I2, I3, z1, z2, . . . , zn) is a set of smooth coordinates on S.
(ii) the map

SO(3)× SO(3)× (S ∩ C 
=) � (�, R, I1, I2, I3, z1, z2, . . . , zn) �→ A1(�)A2(R)w ∈ F
(2.12)

is a 24-fold covering of F; here we denoted w = (I1, I2, I3, z1, z2, . . . , zn).

Remark 2.14 The number 24 arises as the order of the chiral octahedral group. More pre-
cisely it corresponds to the number of ways in which an oriented triple of orthonormal vectors
can be rotated in such a way that the vectors lie on a triple of unoriented fixed orthogonal
axes.

2.2.1 Proof of Theorem 2.13

To begin with, we prove the existence of (z1, z2, . . . , zn) satisfying (i). Observe that S
is a smooth submanifold of C. Then, since I1(w), I2(w), I3(w) are independent func-
tions, it is possible to complete the triple (I1, I2, I3) to a local system of coordinates
(I1, I2, I3, z1, z2, . . . , zn) ∈ S near v0.

In the rest of the section, we will prove (ii). As a first step, we show that the two actions
of SO(3) on C 
= are independent, which is implied by the following Lemma.
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Lemma 2.15 For any fixed v̂ ∈ C 
=, we consider two subspaces of Tv̂C 
=, tangent to the
group orbits A1(SO(3))v̂ and A3(SO(3))v̂, namely

T1 := Tv̂A1(SO(3))v̂ T3 := Tv̂A3(SO(3))v̂ .

Then, T1 ∩ T3 = {0}. Moreover, if v̂ ∈ C 
= ∩ D, then T1 is transversal to D.

Proof In order to prove the thesis, we start by showing that the action A1 rotates the matrix
of inertia, while the action A3 leaves it invariant. We have

Ii j (�v̂) = ei ·
∫

�

�v̂(x) ∧ (e j ∧ �v̂(x))ρ(x)d3x

= �−1ei ·
∫

�

v̂(x) ∧ (�−1e j ∧ v̂(x))ρ(x)d3x , (2.13)

which shows that the I (A1(�)v̂) is the matrix of I (v̂), just referred to a rotated basis. On the
other hand, we have

Ii j (v̂ ◦ R) = ei ·
∫

�

v̂(Rx) ∧ (e j ∧ v̂(Rx))ρ(x)d3x. (2.14)

Setting y = Rx, we have

Ii j (v̂ ◦ R) = ei ·
∫

�

v̂(y) ∧ (e j ∧ v̂(y))ρ(y)d3y, (2.15)

which means that the action of A3 leaves the matrix of inertia invariant. This implies

d I (v̂)v3 = 0 ∀v3 ∈ T3 (2.16)

while

d I (v̂)v1 
= 0 ∀v1 ∈ T1 \ {0} (2.17)

from which the independence follows.
To get the transversality when v̂ ∈ C 
= ∩ D, we remark that A1 rotates the principal axes

of inertia, then, since the three eigenvalues are distinct, it destroys the diagonal structure of
I . ��
Remark 2.16 As an obvious corollary of Lemma 2.15, we also have that A1 and A2 are
independent at any point v̂ ∈ C 
=, in the sense that T1 is transversal to the tangent space
T2 := Tv̂A2(SO(3))v̂.

Moreover, we observe that in C 
= the three eigenvalues of the matrix of inertia are dis-
tinct, so the eigenvectors u1, u2, u3 are well determined. Furthermore the dependence of the
eigenvalues and eigenvectors on the configuration v ∈ C 
= is smooth.

Now, we want to represent any configuration v ∈ F in the form

v = A1(�)A2(R)w, w ∈ S ∩ C 
=. (2.18)

Let us first represent any v ∈ C 
= in the form

v = A1(�̃)w̃, w̃ ∈ D 
=. (2.19)
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Proposition 2.17 The map

� : SO(3)× D 
= → C 
=
(�̃, w̃) �→ A1(�̃)w̃

is a 24-fold covering map.

The proof will make use of the following Theorem, which is an immediate corollary of
Hatcher (2002), Proposition 1.40, p. 72.

Theorem 2.18 If G is a finite group, acting freely on a Hausdorff space X, then the quotient
map X → X/G is a covering map.

Proof of Proposition 2.17 We observe that each v ∈ C 
= has many distinct representations
of the form (2.19): since the three principal moments of inertia are distinct from one another,
the directions of the principal axes of inertia are well-determined, but the same is not true
for what concerns their orientation; moreover, any of the principal axes may be labeled u1

as well as u2 or u3. In order to make this rigorous, consider the equation

A1(�̃1)w̃1 = A1(�̃2)w̃2 , (2.20)

with w̃1, w̃2 ∈ D
=. This implies

w̃2 = A1(�̃
−1
2 �̃1)w̃1. (2.21)

Therefore, since w̃1, w̃2 ∈ D
=, the rotation �̃−1
2 �̃1 must transform the set {u1,u2,u3} to

a set of unit vectors having the same directions. It is easy to see that the set of rotations
satisfying this property is the subgroup of SO(3) generated by the three rotations

R1 =
⎡
⎣ 1 0 0

0 0 −1
0 1 0

⎤
⎦

R2 =
⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦

R3 =
⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦ .

Such a subgroup, which we will denote by O , is isomorphic to the group of the orientation
preserving symmetries of the cube, which is a group of order 24, known as the chiral octa-
hedral group. This argument shows that the possible representations of the form (2.19) are
at most 24. On the other hand, for any w̃ ∈ D 
= and �̃ ∈ SO(3), we have that the expression

A1(�̃�O)[A1(�
−1
O )w̃] (2.22)

yields 24 different representations of the same configuration, as �O varies within the group
O . Therefore, each configuration v ∈ C 
= has exactly 24 distinct representations of the form
(2.19) and a natural identification arises between C 
= and (SO(3)×D 
=/O , where the action
of O on SO(3)× D 
= is defined by

[�O , (�̃, w̃)] �→ (�̃�O ,A1(�
−1
O )w̃) . (2.23)

Now, applying Theorem 2.18 with X = SO(3)× D 
= and G = O , we get the thesis. ��

123



Asymptotic stability of synchronous orbits 265

The above Proposition given as a global statement applies also to a small tube of orbits
originating in S. Precisely, define T := A3(SO(3))(S ∩ C 
=): then we have

Corollary 2.19

� : SO(3)× T → F
(�̃, w̃) �→ A1(�̃)w̃

is a 24-fold covering map.

Proof The only thing we have to prove is that F is the image of SO(3) × T through �.
However, this is obvious, since

�(SO(3)× T ) = A1(SO(3))(T ) = A1(SO(3))A3(SO(3))(S ∩ C 
=) = F . (2.24)

��
End of proof of Theorem 2.13. The last step consists in factoring out the group action A3.
This is easy, since the action A3 is free. Therefore, one can decompose

T � w̃ = A3(R̃)w (w ∈ S ∩ C 
=) (2.25)

in a unique way, and moreover the map

w̃ �→ (R̃, w)

is smooth. Therefore, a 24-fold covering of F is naturally induced by the map

(�̃, R̃, w) �→ A1(�̃)A3(R̃)w. (2.26)

Now, setting

� := �̃ R̃

R := R̃−1,

we find that also

(�, R, w) �→ A1(�)A2(R)w (2.27)

is a 24-fold covering of F , which completes the proof of (ii) and of Theorem 2.13.

3 Kinematics

3.1 Elastic potential energy

Let us study the form of the elastic potential energy and of the potential energy of self-
gravitation in the coordinates just introduced. With an abuse of terminology, we will call the
sum of these two potential energies simply “elastic potential energy” and we will denote it by
Ve; furthermore, we will refer to the corresponding forces as to the “elastic forces”, leaving
understood that they include also the forces related to self-gravitation.

Assumption 3 The identical deformation v0(x) = x is a minimum of the elastic (and self-
gravitational) potential energy.
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Remark 3.1 This Assumption means that we have chosen the material space� as represent-
ing an abstract realization of the equilibrium configuration of the compressed elastic sphere
under the effect of self-gravitation (and not the totally undeformed elastic body).

In the equilibrium state, because of the rotational invariance, all three principal moments
of inertia are equal to the same constant I0. For simplicity, we use the differences between
the I j ’s and I0 as configuration variables instead of the I j ’s themselves, so we define

Ji := Ii − I0, (i = 1, 2, 3), (3.1)

and we assume (without loss of generality) that

z j (v0) = 0 ∀ j.

Remark 3.2 Due to the A1- and A2-invariance, the elastic potential energy does not depend
on � and R.

We also assume that the minimum is nondegenerate and that the body is very rigid. Sum-
marizing we make the following Assumption:

Assumption 4 The elastic potential energy has the form

Ve(J, z) = 1

ε
V0(J, z) ≡ 1

ε
[Q(J, z)+ V3(J, z)] , (3.2)

where ε is a small parameter, Q a nondegenerate quadratic form and V3 has a zero of order
three at the origin.

We want to study more in detail the form of the elastic potential near the equilibrium, but
we have to cope with the fact that our coordinates are singular at the equilibrium configuration
v0(x) = x.

Lemma 3.3 The elastic potential energy has the form

Q(J, z) = A

2
(J1

2 + J2
2 + J3

2)+ B(J1 J2 + J1 J3 + J2 J3)

+
n∑

j=1

C j z j (J1 + J2 + J3)+ 1

2

n∑
j,k=1

D jk z j zk, (3.3)

where the constants A, B,C j , D jk are such that the quadratic part Q(J, z) is a positive
definite quadratic form in the variables (J, z). In particular, this implies A > B.

Remark 3.4 By Remark 2.10, such an expression can be used to compute the Lagrange
equations only outside C=.

Proof Any v ∈ F can be represented as A1(�)A2(R)w, for some �, R ∈ SO(3) and
w ∈ S ∩C 
=. Moreover, due to the group action invariance, the potential energy associated to
the configuration v must be the same as the potential energy associated to the configuration
w. Therefore the potential energy is a function of the variables J, z only, it can be computed
working in S and then the obtained form holds on the whole of F .

The rotational invariance implies that the expression of the elastic potential energy must
be symmetric with respect to permutations of the indices i = 1, 2, 3, and the expression of
Q(J, z) in (3.3) is the most general expression of a quadratic form with such a property. ��
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3.2 Planar restriction

We are going to study the dynamics of the satellite in the special case when the spin axis
of the body is orthogonal to the plane of the orbit and coincides with one of the principal
axes of inertia of the body. For this reason, in the rest of the paper we will restrict to “planar
deformations” and “planar rotations”. Precisely, we make the following assumptions.

Assumption 5 (Planar deformations) The configuration is such that e3 is an eigenvector of
I . We label the principal axes of inertia so that u3 = e3.

In other words, we are assuming the matrix of inertia of the satellite to be of the form

I (v) =
⎡
⎣ I11(v) I12(v) 0

I12(v) I22(v) 0
0 0 I33(v)

⎤
⎦ (3.4)

so that I3(v) ≡ I33(v).

Assumption 6 (Planar rotations) � is a rotation about the e3-axis, i.e. it has the form

� = �(α) :=
⎡
⎣ cosα − sin α 0

sin α cosα 0
0 0 1

⎤
⎦ . (3.5)

As a consequence of these two assumptions, R is also a rotation about the e3-axis, i.e.
there exists an angle β such that

R = R(β) :=
⎡
⎣ cosβ − sin β 0

sin β cosβ 0
0 0 1

⎤
⎦ . (3.6)

Remark 3.5 The assumptions 5 and 6, together with Theorem 2.13, imply that
(α, β, I1, I2, I3, z1, z2, . . . , zn) are good Lagrangian coordinates for the body configuration.
Actually, by following the proof of Theorem 2.13 one can show that such coordinates form
a 4-fold covering of the configuration space restricted to planar configurations.

The fact that dynamics remains confined for all times within the set F will be guaranteed
by the local stability result proved in the following sections.

3.3 Kinetic energy

By König’s second Theorem, the kinetic energy T can be written as the sum of two terms:
the former is the kinetic energy of the center of mass

Tcm = m

2

(
Ṙ2 + R2ψ̇2) , (3.7)

where R, ψ are the polar coordinates of the center of mass X, and the latter is the kinetic
energy of the satellite with respect to its center of mass

Tr := Tr (α̇, β̇, J̇1, J̇2, J̇3, ż; J1, J2, J3, z). (3.8)

Remark 3.6 Tr is independent of α and β due to the rotational invariance of the satellite.
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We will use the notation

Tr := 1

2

5+n∑
i,k=1

aik(J, z)q̇i q̇k, (3.9)

where q = (α, β, J1, J2, J3, z). Observe that the coefficients aik(J, z) are such that the
quadratic form is positive definite on F .

Lemma 3.7 The coefficients aik(J, z) satisfy:

(i)

a11(J, z) = I3 = I0 + J3 (3.10)

(ii)

lim
(J,z)→0

a12(J, z) = 0. (3.11)

Proof For w ∈ S, we set

wde f (x) := w(x)− v0(x) = w(x)− x. (3.12)

and

u := A2(R(β))wde f . (3.13)

We remark that A2(R(β))v0 = v0.
Now, let us evaluate the kinetic energy Tr . For v ∈ F we have

v(x) = A1(�(α))A2(R(β))(x + wde f (x)) = �(α)(x + u(x)) . (3.14)

Taking the derivative with respect to time, we get

v̇(x) = d�(α)

dt
(x + u(x))+ �(α)u̇(x). (3.15)

Therefore,

Tr = 1

2

∫

�

[v̇(x)]2ρ(x)d3 = 1

2

∫

�

[�(−α)v̇(x)]2ρ(x)d3x

= 1

2

∫

�

[
�(−α)d�(α)

dt
(x + u(x))+ u̇(x)

]2

ρ(x)d3x

= 1

2

∫

�

{ω ∧ [x + u(x)]}2 ρ(x)d3x

+
∫

�

〈ω ∧ [x + u(x)] , u̇(x)〉ρ(x)d3x + 1

2

∫

�

[u̇(x)]2 ρ(x)d3x, (3.16)

where ω is the angular velocity of the satellite, defined by ω ∧ (·) = [�(−α)][ d
dt �(α)](·).

Under our assumptions, ω = α̇u3.
As the vector field u(x) is independent of α, we observe that Tr is the sum of three

integrals, the first of which gives the term in α̇2, while the third one is a quadratic form in
(β̇, J̇1, J̇2, J̇3, ż) and the second one gives mixed terms in α̇ and in the other velocities.
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Therefore, one gets

a11(J, z) =
∫

�

{u3 ∧ [x + u(x)]}2 ρ(x)d3x, (3.17)

and it can easily be seen that this expression equals the moment of inertia related to the
vertical axis, thus proving (i).

For the second part of the Lemma, we have to study the coefficient of the term α̇β̇. Observe
that such a term arises from the integral∫

�

〈ω ∧ [x + u(x)] , u̇(x)〉ρ(x)d3x

in (3.16). Here, the α̇ factor comes from the angular velocity ω, while the β̇ factor is hidden
in u̇(x). Using

u(x) = R(β)wde f [R(−β)x], (3.18)

we get

u̇(x) = R(β)
{
ẇde f [R(−β)x]

} + β̇
∂R(β)

∂β
wde f [R(−β)x]

+β̇R(β)∇wde f [R(−β)x] · ∂R(−β)
∂β

x. (3.19)

Here, we notice that the first of the three addenda is independent of β̇, so we have

a12(J, z) = 1

2

∫

�

〈
u3 ∧ {

x + R(β)wde f [R(−β)x]}, ∂R(β)

∂β
wde f [R(−β)x]

+ R(β)∇wde f [R(−β)x] · ∂R(−β)
∂β

x
〉
ρ(x)d3x, (3.20)

which goes to zero when wde f → 0, i.e. when (J, z) → 0; this completes the proof
of (ii). ��

3.4 Gravitational potential energy

Now we evaluate the gravitational potential energy of the satellite subject to the gravitational
field of a pointlike center (planet) having mass M .

To start with, we fix some notation: (R, ψ) are the polar coordinates of the center of mass
of the satellite in the plane of the orbit. We denote with γ the angle between the principal
axis u1 and the line joining the planet to the center of mass of the satellite. Such a line is
usually referred to as the line of centres. Observe that γ = α + β − ψ . Furthermore, we set
χ := α−ψ , i.e. χ is the angle of rigid rotation of the satellite, measured with respect to the
line of centres.

Proposition 3.8 In the quadrupole approximation the gravitational potential energy of the
body in the field generated by the mass M is given by

Vg(X, J1, J2, J3, γ ) := −G Mm

R
+ G M

R3 [−J1 + 2J2 − J3 + 3(J1 − J2) cos2 γ ]
(3.21)
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Proof See “Appendix”. A proof of this result can also be found in the book Bertotti and
Farinella 1990. ��

4 Conservative dynamics

After having described our model of satellite, we are ready to study the dynamics of our sys-
tem. At first, we neglect the dissipative effects and study the dynamics of the corresponding
conservative system.

The Lagrangian

L = T − V (4.1)

of the system is the difference between the kinetic energy T and the total potential energy.
Therefore, collecting the above results one has:

L = m

2

(
Ṙ2 + R2ψ̇2) + Tr (χ̇ + ψ̇, J̇ , β̇, ż; J, z) (4.2)

+G Mm

R
+ G M

R3

[
J1 − 2J2 + J3 + 3(J2 − J1) cos2(χ + β)

] − Ve(J, z; ε).
Now, we observe that the Lagrangian does not depend on the cyclic coordinateψ , so the total
angular momentum

p := ∂L
∂ψ̇

= m R2ψ̇ + (J3 + I0)(χ̇ + ψ̇)+ 2
5+n∑
k=2

a1k(J, z)q̇k, (4.3)

is a constant of motion. We can invert relation (4.3), to get the expression of ψ̇ as a function
of the other variables:

ψ̇ = p − (J3 + I0)χ̇ − 2
∑5+n

k=2 a1k(J, z)q̇k

m R2 + I0 + J3
. (4.4)

Then, we can drop one degree of freedom and study the reduced Lagrangian

L∗ = L − ψ̇
∂L
∂ψ̇

, (4.5)

where ψ̇ must be thought of as a function of the other Lagrangian coordinates and velocities.
After some calculations, we get

L∗ = T2 + T1 − Ṽ , (4.6)

where

T2 = m

2
Ṙ2 + Tr (χ̇, J̇ , β̇, ż; J, z)−

[
(J3 + I0)χ̇ + 2

∑5+n
k=2 a1k(J, z)q̇k

]2

2(m R2 + I0 + J3)
(4.7)

T1 =
p

[
(J3 + I0)χ̇ + 2

∑5+n
k=2 a1k(J, z)q̇k

]

m R2 + I0 + J3
(4.8)

Ṽ = p2

2(m R2 + I0 + J3)
(4.9)

+ − G Mm

R
− G M

R3

[
J1 − 2J2 + J3 + 3(J2 − J1) cos2 γ

] + Ve(J, z; ε).
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Such a system has the conserved quantity

E := T2 + Ṽ =
5+n∑
k=1

ẏk
∂L∗

∂ ẏk
− L∗ , (4.10)

where
y := (R, χ, β, J1, J2, J3, z1, z2, . . . , zn)

and the strict minima of Ṽ are Lyapunov-stable equilibria of the system.
Let R0 be a nondegenerate minimum of the function

VG0(R) := −G Mm

R
+ p2

2(m R2 + I0)
. (4.11)

Then we have the following

Lemma 4.1 For any ε small enough, there exist R̄, J̄ , z̄, s.t.

(1) the manifold

M := {
(R̄, χ, β, J̄1, J̄2, J̄3, z̄)|χ + β = 0

}
,

is composed by critical points of Ṽ .
(2) M is a minimum of Ṽ which is nondegenerate in the transversal direction.
(3) One has ( J̄1, J̄2, J̄3, z̄) = O(ε) and |R̄ − R0| = O(ε).
(4) Finally J̄1 < J̄2 < J̄3.

Remark 4.2 Point (4) guarantees that M ⊂ C 
=. If ε is sufficiently small, then we have
M ⊂ F .

Remark 4.3 M is the manifold corresponding to 1:1 spin orbit resonance.

Proof We look for a minimum of Ṽ in the domain J1 ≤ J2 and |J | ≤ Cε for some fixed C .
First remark that, as a function of γ = χ+β, Ṽ has a minimum at γ=0 (strict if J1 < J2).

Consider now Ṽ
∣∣
γ=0; as a function of R it has a nondegenerate minimum at some point

R = R(J, z) fulfilling

|R(J, z)− R0| ≤ Cε.

Consider now the restriction V̄ = V̄ (J, z) of Ṽ to the manifold γ = 0, R = R(J, z); since

V̄ (J, z) = 1

ε
[Q(J, z)+ V3(J, z)] + O(1) , (4.12)

such a function has a nondegenerate minimum close to zero.
Then (1), (2) and (3) follow provided one shows that J̄1 < J̄2. We are now going to prove

(4) which in particular implies the thesis.
To this end, observe that at the critical point one has

0 = ∂ Ṽ

∂ J1
= 2G M

R̄3
+ A

ε
J̄1 + B

ε
( J̄2 + J̄3)+ 1

ε

n∑
j=1

C j z̄ j + O(ε) (4.13)

0 = ∂ Ṽ

∂ J2
= −G M

R̄3
+ A

ε
J̄2 + B

ε
( J̄1 + J̄3)+ 1

ε

n∑
j=1

C j z̄ j + O(ε). (4.14)
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0 = ∂ Ṽ

∂ J3
= − p2

2(m R̄2 + I0 + J̄3)2
− G M

R̄3

+ A

ε
J̄3 + B

ε
( J̄1 + J̄2)+ 1

ε

n∑
j=1

C j z̄ j + O(ε). (4.15)

Subtracting (4.14) from (4.13), we obtain

3G M

R̄3
+ A − B

ε
( J̄1 − J̄2)+ O(ε) = 0 . (4.16)

The positive definiteness of the quadratic form Q implies A − B > 0. Therefore, if ε is
sufficiently small, we have J̄1 < J̄2. Subtracting (4.15) from (4.14), we get

p2

2(m R̄2 + I0 + J̄3)2
+ A − B

ε
( J̄2 − J̄3)+ O(ε) = 0 . (4.17)

Hence, for ε sufficiently small, we have J̄2 < J̄3. ��
Corollary 4.4 The critical manifold M is an orbitally stable equilibrium for the Lagrangian
system of equations

d

dt

∂L∗

∂ ẏk
= ∂L∗

∂yk
. (k = 1, 2, . . .) (4.18)

5 Dissipative dynamics

In the previous section, we have studied the dynamical properties of the conservative system.
However, we are interested in considering the effects on the dynamics caused by friction
within the satellite.

To this end, we modify the Euler-Lagrange equations (4.18) by adding to the r.h.s. the
terms − fk(ẏ, y). Namely we study the equations

d

dt

∂L∗

∂ ẏk
− ∂L∗

∂yk
= − fk(ẏ, y), (k = 1, 2, . . . , n + 6) (5.1)

where we assume that the functions fk are continuous in the arguments (ẏ, y) and where
y := (R, χ, β, J1, J2, J3, z1, z2, . . . , zn).

Now observe that, in the system of Eq. (5.1), the Lie derivative of the energy is given by

d E

dt
= d

dt

n+6∑
k=1

(
∂L∗

∂ ẏk
ẏk − L∗

)
=

n+6∑
k=1

[(
d

dt

∂L∗

∂ ẏk
− ∂L∗

∂yk

)
ẏk

]
= −

n+6∑
k=1

ẏk fk(ẏ, y) .

The property that the fk-terms represent a dissipative force is therefore summarized by
the following

Assumption 7 The functions fk satisfy

n+6∑
k=1

ẏk fk(ẏ, y) ≥ 0. (5.2)

Moreover, we assume that any deformation of the body dissipates some energy. We define
ye := (β, J, z) to be the vector of the variables describing the body deformation. Then we
state the following assumption.
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Assumption 8 The non-dissipation condition

n+6∑
k=1

ẏk fk(ẏ, y) = 0 (5.3)

is satisfied if and only if

β̇ = J̇ = ż = 0,

i.e. if ẏe = 0.

Remark 5.1 Assumption 8 implies that the terms f1 and f2 corresponding to the variables
R and χ are identically zero. Moreover, by continuity of the fk’s, this also implies fk = 0
whenever ẏe = 0.

Now we can state our main result:

Theorem 5.2 If ε is sufficiently small, the manifold M, defined in the previous section, is
an asymptotically stable equilibrium for the dynamical system of Eq. (5.1).

In order to prove this Theorem, we will use a common tool in the study of dynamical
systems, known as LaSalle’s invariance principle (see LaSalle (1976), §2.6), which allows
one to prove results of asymptotical stability in presence of a Lyapunov function E satisfying
a nonstrict inequality of the type Ė ≤ 0. To state this principle, we first recall the definition
of an invariant set.

Definition 5.3 A subset M of the phase space is called (positively) invariant if all solutions
starting in M remain in M for all future times.

We now state a version of LaSalle’s Theorem.

Theorem 5.4 (LaSalle’s invariance principle) Suppose that E is a real-valued smooth func-
tion defined on the phase space, satisfying Ė(y, ẏ) ≤ 0 for all (y, ẏ). Let M be the largest
invariant set contained in

{
(y, ẏ)|Ė(y, ẏ) = 0

}
. Then every solution that remains within a

compact subset of the phase space for t ≥ 0 approaches M as t → +∞.

Proof of Theorem 5.2 Let ND := {(y, ẏ)|ẏe = 0} be the subset of phase space where there
is no energy dissipation. Then, due to LaSalle’s invariance principle, any solution such that
(y(0), ẏ(0)) belongs to a sufficiently small neighborhood of (M, 0) (notice that such a solu-
tion will stay bounded for all t ≥ 0 due to the Lyapunov stability of M which has been
proved in the previous section) will get arbitrarily close to the largest invariant subset of
ND, for t → +∞. Therefore, the only thing we have to check is that the set ND contains
no orbit, apart from the points of the manifold M. To check this, observe that, if such an
orbit existed, it would satisfy Eq. (5.1). In particular, the orbit satisfies

d

dt

∂L∗

∂χ̇
− ∂L∗

∂χ
= 0 (5.4)

and

d

dt

∂L∗

∂β̇
− ∂L∗

∂β
= −∂F

∂β̇
. (5.5)
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When restricting to ND, these two equations become, respectively,

− (I0 + J3)
2χ̈

m R2 + I0 + J3
+ 2m R(I0 + J3)

2χ̇ Ṙ

(m R2 + I0 + J3)2

+(I0 + J3)χ̈ − 2pm R(I0 + J3)Ṙ

(m R2 + I0 + J3)2
= −∂ Ṽ

∂γ
(y) (5.6)

and

− a12(J, z)(I0 + J3)χ̈

m R2 + I0 + J3
+ 2m Ra12(J, z)(I0 + J3)χ̇ Ṙ

(m R2 + I0 + J3)2

r + a12(J, z)χ̈ − 2pm Ra12(J, z)Ṙ

(m R2 + I0 + J3)2
= −∂ Ṽ

∂γ
(y), (5.7)

where we took into account that the fk’s vanish on ND.
Multipliying (5.6) by a12(J,z)

I0+J3
and subtracting (5.7) we get

(
1 − a12

I0 + J3

)
∂ Ṽ

∂γ
= 0,

which, by (3.11), implies ∂ Ṽ
∂γ

= 0, and therefore χ + β = 0. Then, we have χ̇ = −β̇ = 0,

since β̇ = 0 on ND. Now , substituting χ̇ = χ̈ = 0 into equations (5.6) and (5.7), we find
Ṙ = 0. Finally, we observe that now we have

χ̇ = β̇ = Ṙ = J̇ = ż = 0, (5.8)

which is true on the equilibrium manifold M only.
We have thus proved that the only orbits contained in ND are the points of the 1:1 spin-

orbit resonance manifold M, which implies the asymptotic stability of M. ��
This concludes the proof of the asymptotic stability of the synchronous resonance for the

system with dissipation.

Acknowledgments We thank Alessandra Celletti, Michael Efroimsky, Sylvio Ferraz-Mello and Antonio
Giorgilli for some discussion on this problem, which led to considerable improvements of the result.

Appendix: Gravitational potential energy

Proof of Proposition 3.8: Define ρ̃ : ζ(�) −→ R as

ρ̃(ξ) := ρ(ζ−1(ξ))∣∣∣det ∂ζ
∂x (ζ

−1(ξ))

∣∣∣ ,

i.e. ρ̃(ξ) is the density of the satellite at the point ξ = ζ(x). Let (x1, x2, x3) be the Cartesian
coordinates referred to the system with origin X and axes u1u2u3. Then we introduce the
spherical coordinates (r, ϑ, φ) of the generic point P in the satellite, defined by:

x1 = r cosϑ cosφ (A.1)

x2 = r sin ϑ cosφ (A.2)

x3 = r sin φ. (A.3)
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In this frame, the products of inertia Ii j vanish, i.e.∫

ζ(�)

ρ̃(ξ)r2 cos2 φ cosϑ sin ϑd3ξ = 0 (A.4)

∫

ζ(�)

ρ̃(ξ)r2 cosφ sin φ cosϑd3ξ = 0 (A.5)

∫

ζ(�)

ρ̃(ξ)r2 cosφ sin φ sin ϑd3ξ = 0, (A.6)

and the principal moments of inertia are given by

I1 = I0 + J1 = K2 + K3 (A.7)

I2 = I0 + J2 = K1 + K3 (A.8)

I3 = I0 + J3 = K1 + K2, (A.9)

where

K1 = 1

2

∫

ζ(�)

ρ̃(ξ)r2 cos2 φ cos2 ϑd3ξ (A.10)

K2 = 1

2

∫

ζ(�)

ρ̃(ξ)r2 cos2 φ sin2 ϑd3ξ (A.11)

K3 = 1

2

∫

ζ(�)

ρ̃(ξ)r2 sin2 φd3ξ . (A.12)

The gravitational potential energy Vg is:

Vg = −
∫

ζ(�)

G M ρ̃(ξ)

|ξ | d3ξ = −
∫

ζ(�)

G M ρ̃(ξ)√
R2 + r2 − 2Rr cos η

d3ξ, (A.13)

where η is the angle between the line of centres and XP. Notice that the relation

cos η = cosφ cos (ϑ + γ ) (A.14)

holds. Let us recall now how the multipole expansion arises. We have

1

|ξ | = 1√
R2 + r2 − 2Rr cos η

= 1

R

1√
1 + ( r

R

)2 − 2
( r

R

)
cos η

. (A.15)

In terms of the Legendre polynomials Pn(z), one has

1√
1 + x2 − 2xz

=
∑
n≥0

xn Pn(z). (A.16)

In particular, we recall that

P0(z) = 1

P1(z) = z

P2(z) = 3z2 − 1

2
.
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Taking the quadrupole approximation means to cut the sum at n = 2. We get

1

|ξ | = 1

R

∑
n≥0

( r

R

)n
Pn(cos η) � 1

R

[
1 + r

R
cos η +

( r

R

)2 3 cos2 η − 1

2

]
, (A.17)

so the potential energy becomes

Vg = −
∫

ζ(�)

G M ρ̃(ξ)

R

[
1 + r

R
cos η +

( r

R

)2 3 cos2 η − 1

2

]
d3ξ . (A.18)

Here, the first term equals − G Mm
R ; the second one vanishes because X is the center of mass

of the satellite; the third term, namely

Vt := −
∫

ζ(�)

G M ρ̃(ξ)(3 cos2 η − 1)r2

2R3 d3ξ,

gives what we call the “tidal” potential energy. A brief manipulation shows that

Vt = −G M

R3

∫

ζ(�)

ρ̃(ξ)(3 cos2 η − 1)r2

2
d3ξ

= −G M

2R3

∫

ζ(�)

ρ̃(ξ)r2[3 cos2 φ(cosϑ cos γ − sin ϑ sin γ )2 − 1]d3ξ

= −3G M

R3 (K1 cos2 γ + K2 sin2 γ )+ G M

2R3

∫

ζ(�)

ρ̃(ξ)r2d3ξ

= −3G M

R3 (K1 cos2 γ + K2 sin2 γ )

+G M

2R3

∫

ζ(�)

ρ̃(ξ)r2[sin2 φ + cos2 φ(sin2 ϑ + cos2 ϑ)]d3ξ

= −3G M

R3 (K1 cos2 γ + K2 sin2 γ )+ G M

R3 (K1 + K2 + K3)

= G M

R3 [−J1 + 2J2 − J3 + 3(J1 − J2) cos2 γ ]. (A.19)

References

Alexander, M.E.: The weak friction approximation and Tidal evolution in close binary systems. Astrophys.
Space Sci. 23, 459–510 (1973)

Bertotti, B., Farinella, P.: Physics of the Earth and the Solar System: Dynamics and Evolution, Space Naviga-
tion, Space-Time Structure. Kluwer, Dordrecht (1990)

Darwin, G.H.: On the precession of a viscous spheroid, and on the remote history of the earth. Philos. Trans.
R. Soc. Lond. 170, 447–538 (1879)

Darwin, G.H.: On the secular changes in the elements of the orbit of a satellite revolving about a tidally
distorted planet. Philos. Trans. R. Soc. Lond. 171, 713–891 (1880)

Efroimsky, M., Williams, J.G.: Tidal torques. A critical review of some techniques. Celest. Mech. Dyn.
Astron. 104, 257–289 (2009)

Efroimsky M.: Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012)

123



Asymptotic stability of synchronous orbits 277

Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: The Darwin
theory re-visited Celest. Mech. Dyn. Astron. 101, 171–197 (2008). Errata 104, 319–320 (2009)

Goldreich, P.: Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Hut, P.: Stability of tidal equilibrium. Astron. Astrophys. 92, 167–170 (1980)
Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. Space

Phys. 2, 661–685 (1964)
LaSalle J.P.: The Stability of Dynamical Systems. Society for Industrial and Applied Mathematics, Phila-

delphia. With an appendix: “Limiting equations and stability of nonautonomous ordinary differential
equations” by Z. Artstein, Regional Conference Series in Applied Mathematics (1976)

Lee, J.M.: Introducion to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New York (2003)
MacDonald, G.J.F.: Tidal friction. Rev. Geophys. Space Phys. 2, 467–541 (1964)
Marsden J.E., Thomas Hughes J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York

(1994). (Corrected republication of the original published by Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1983)

Peale, S.J., Cassen, P., Reynolds, R.T.: Tidal dissipation, orbital evolution, and the nature of Saturn’s inner
satellites. Icarus 43, 65–72 (1980)

123


	Asymptotic stability of synchronous orbits for a gravitating viscoelastic sphere
	Abstract
	1 Introduction
	2 Coordinates in the configuration space
	2.1 General considerations
	2.2 Spherical symmetry and adapted coordinates
	2.2.1 Proof of Theorem 2.13


	3 Kinematics
	3.1 Elastic potential energy
	3.2 Planar restriction
	3.3 Kinetic energy
	3.4 Gravitational potential energy

	4 Conservative dynamics
	5 Dissipative dynamics
	Acknowledgments
	Appendix: Gravitational potential energy
	References


