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Abstract We demonstrate the remarkable effectiveness of boundary value formulations
coupled to numerical continuation for the computation of stable and unstable manifolds in
systems of ordinary differential equations. Specifically, we consider the circular restricted
three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like
system. The CR3BP has many well-known families of periodic orbits, such as the pla-
nar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable
manifolds of selected vertical and halo orbits, which in several cases leads to the detection of
heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation
of these connecting orbits with a suitable end point condition and allowing the energy level to
vary leads to the further detection of apparent homoclinic connections from the base periodic
orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other
periodic orbits. Some of these connecting orbits are of potential interest in space mission
design.
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1 Introduction

Numerical continuation of solutions to boundary value problems (BVPs) has been used exten-
sively to study periodic orbits and their bifurcations, including homoclinic and heteroclinic
orbits, in a wide variety of systems. For a recent overview see the articles in Krauskopf et al.
(2007). In particular, these techniques have been applied to compute families of periodic
orbits in the Circular Restricted 3-Body Problem (CR3BP); see, for example, Doedel et al.
(2003). In recent years invariant manifolds such as those in the Lorenz system have also been
computed in detail using numerical continuation (Krauskopf and Osinga 2007; Aguirre et al.
2011; Doedel et al. 2011). At the same time, continuation methods have been developed for
computing and continuing homoclinic and heteroclinic connecting orbits between periodic
orbits and equilibria or periodic orbits (Doedel et al. 2008, 2009; Krauskopf and Rieß 2008).
In the current work we use a combination of these techniques to illustrate their effectiveness
in computing stable and unstable manifolds and connecting orbits in the CR3BP.

There is much literature on invariant manifolds and connecting orbits in the CR3BP; see
for example Gómez et al. (2004), Koon et al. (2008), Lo and Ross (1997), Davis et al. (2010,
2011), Tantardini et al. (2010), Delshams et al. (2008). In particular, connecting orbits in the
planar CR3BP are well understood. The existence of connecting orbits in the planar problem
has been proved analytically in Llibre et al. (1985), and by computer assisted methods in
Wilczak and Zgliczyński (2003, 2005). Furthermore, these orbits have been extensively stud-
ied numerically using initial-value techniques and semi-analytical tools; see Barrabés et al.
(2009), Canalias and Masdemont (2006) and references therein. In the case of initial-value
techniques the initial conditions are varied in order for an appropriately chosen end point
condition to be satisfied. This approach is commonly referred to as a “shooting method” and,
for a more stable version, “multiple shooting”. Initial-value techniques can also be very effec-
tive in the computation of invariant manifolds in the CR3BP. However, sensitive dependence
on initial conditions may leave parts of the manifolds unexplored, unless very high accuracy
is used. Other efficient methods for computing invariant manifolds include semi-analytical
approximations (Jorba and Masdemont 1999; Alessi et al. 2009; Gómez and Mondelo 2001).
The latter methods are very precise in a neighborhood of the center of expansion, and rely
on other methods to extend the manifolds outside these neighborhoods (Gómez et al. 2001).

Invariant manifold techniques around libration points have been used successfully in mis-
sion design (Lo et al. 2004). The Genesis spacecraft mission, designed to collect samples
of solar wind and return them to the Earth (Lo et al. 2001), is often considered as the first
mission to use invariant manifolds for its planning, while other missions have used libration
point techniques (Dunham and Farquhar 2003). Having a precise idea of the geometry of
invariant manifolds and their connections is desirable in the design of complex low thrust
missions.

Using our continuation approach we construct a continuous solution family in the man-
ifold as the initial value is allowed to vary along a given curve. The continuation step size
governs the distance between any computed trajectory and the next trajectory to be com-
puted. Here “distance” includes the change in the entire trajectory, and not only in the initial
conditions. In fact, this distance typically also includes other variables in the continuation
process, such as the integration time and the arclength of the trajectory. This formulation
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allows the entire manifold to be covered, up to a prescribed length, integration time, or
other termination criterion, even in very sensitive cases. Special orbits, such as connect-
ing orbits to saddle-type objects, can be detected during the continuation. For example, a
straightforward computation of the Lorenz manifold in this fashion yielded up to 512 con-
necting orbits having extremely close initial values, as reported in Doedel et al. (2006). In
related work, the intersections of the Lorenz manifold with a sphere are studied in Aguirre
et al. (2011) and Doedel et al. (2011). In the case of the Lorenz manifold, the sensitivity on
initial conditions results from the significant difference in magnitude of the two real negative
eigenvalues of the zero equilibrium that give rise to this manifold. Fixed precision integra-
tion in negative time may cover only part of this manifold, missing a portion in and near the
direction of the eigenvector of the smaller negative eigenvalue.

In this paper we give an overview of continuation techniques, as used to compute periodic
orbits, invariant manifolds, and connecting orbits. We also give several examples that illus-
trate how these techniques provide an effective and relatively easy-to-use tool for exploring
selected portions of phase space. The richness of the solution structure of the CR3BP limits
the extent of our illustrations. However, the techniques presented here are expected to be
useful in further studies. In this respect, the current version of the freely available AUTO
software (Doedel et al. 2010) includes demos that can be used to re-compute some of the
numerical results presented here, including their graphical representation. These demos can
also be adapted relatively easily to perform similar numerical studies of stable and unstable
manifolds of other periodic orbits in the CR3BP that are not considered in this paper, as well
as for entirely different applications.

This paper is organized as follows. In Sect. 2 we recall some well-known facts about the
CR3BP, namely, its equilibria, the libration points, and the basic periodic solution families
that will be considered in this paper, namely the planar Lyapunov orbits and the vertical, halo
and axial families. In Sect. 3 we review how boundary value techniques are used to compute
periodic orbits in conservative systems, and how these techniques can also be used to com-
pute the eigenfunctions associated with selected Floquet multipliers. These data provide a
linear approximation of the unstable manifold of the periodic orbit.

Section 4 describes the continuation method used for computing unstable manifolds of
periodic orbits. This involves first setting up an extended system with both the periodic orbit
and its eigenfunction. Using the resulting information an initial orbit within the manifold is
computed. This orbit is then continued, as its starting point is free to vary along a line that is
tangent to a linear approximation of the unstable manifold, thereby tracing out the manifold.
The algorithm, using pseudo-arclength continuation, is not guaranteed to compute the whole
manifold in a single computation, because obstacles may be encountered during the continua-
tion. In such cases the manifold may be completed, for example, by additional continuations
from different starting orbits, or by using a suitably adapted continuation procedure as is
done in Doedel et al. (2011). However, the obstacles themselves are also of interest. They
may correspond to orbits in the unstable manifold that require an arbitrary long time interval
to reach a specified termination plane, because they pass arbitrarily close to a connecting
orbit between the original unstable periodic orbit and another invariant object. In this way
connecting orbits can be detected, as was done to detect the 512 heteroclinic connections
presented in Doedel et al. (2006).

In Sect. 5 we show the results of computations of unstable manifolds of vertical V1 and
halo H1 orbits. When the manifolds are computed to a sufficient distance from the original
periodic orbit, we find what appear to be heteroclinic connecting orbits from the original
periodic orbit to an invariant torus. The tori found this way must have saddle-type instability,
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since the connecting orbit approaches it, but ultimately also leaves the neighborhood of the
torus. Such connecting orbits may be more difficult to find with initial value integration.

In Sect. 6 we describe a method for continuing the periodic-orbit-to-torus connections as
solutions of an 18-dimensional ODE, when the energy is allowed to vary. These computations
lead to the detection of other interesting connecting orbits. Section 7 discusses three repre-
sentative examples. First we consider a family of connections from H1 halo orbits. These
connections loop once around the Earth before approaching an invariant torus, which is itself
close to the H1 orbit. We refer to such a torus as a quasi-H1 torus. During the continuation,
with changing energy of the originating H1 halo orbit, we encounter a number of interesting
connecting orbits. Specifically, we find a homoclinic orbit from an H1 halo orbit to itself
that loops once around the Earth, a heteroclinic connection from a northern H1 halo orbit
to its southern counterpart, a heteroclinic connection to a planar L1 Lyapunov orbit, and a
connection to a 5:1 resonant orbit on a torus near the corresponding southern halo orbit. We
also find a connecting orbit from an H1 halo orbit to a torus on which the orbit bounces
back and forth between a northern axial A1 orbit and its southern counterpart. Each of these
special connecting orbits occurs for a specific energy of the originating H1 halo orbit (and
of course, by conservation of energy, the orbit it connects to has the same energy). Secondly
we study a family of connecting orbits from an H1 halo orbit that loop four times around the
Earth. We find connections to an L2 Lyapunov orbit, an H2 halo orbit, and to a 5:1 and a 6:1
resonant torus near the libration point L2. Thirdly, we consider a family of connecting orbits
on the Moon-side of the unstable manifold of the H1 halo orbits that connect directly (without
looping around the Earth) to a torus near L2. We find an example of a direct connecting orbit
from an H1 halo orbit to a planar L2 Lyapunov orbit. To the best of our knowledge, these
connecting orbits have not been found before. We must stress, however, that from a space
mission design point of view, these orbits are sensitive to initial conditions and would require
control techniques to stay on them.

In Sect. 8, we discuss global theoretical aspects of our results and their relation to the
existing literature. In particular we see that the connecting orbits from H1 halo orbits to A1

axial orbits or to L1 or L2 planar Lyapunov orbits are codimension-one in the dynamical
systems sense, and hence should occur for specific values of the energy of the originating H1

halo orbit, as we observed numerically. In contrast, homoclinic and heteroclinic connecting
orbits between H1 halo orbits, which were observed numerically, are codimension-two, and
so should not normally occur. We show that the connecting orbits from the H1 halo orbits
to quasi-H1 tori are generic, and suggest that the numerically observed homoclinic and het-
eroclinic connecting orbits between H1 halo orbits are actually connections to quasi-H1 tori
where the minor radius of the torus is so small as to make the torus visibly (and for the
purpose of space mission design) indistinguishable from the H1 halo orbit that it envelopes.

Finally in Sect. 9 we discuss some computational aspects of our numerical computations,
such as the discretization used, and typical computer time needed.

2 The circular restricted 3-body problem

The CR3BP describes the motion of a satellite S with negligible mass in three-dimensional
physical space. The motion is governed by the gravitational attraction of two heavy bodies,
which are assumed to rotate in circles around their common center of mass; see Fig. 1a. In
this paper we call the heaviest body the “Earth” E , and the other heavy body the “Moon” M ,
and we use their actual mass ratio, namely, μ ≈ 0.01215. Any other mass ratio is allowed,
such as for the Sun–Jupiter system, with a mass ratio of μ ≈ 0.0009537. Without loss of
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(a) (b)

Fig. 1 a Schematic representation of the circular restricted three-body problem. b The five libration points

generality the total mass can be scaled to 1, so that the Earth and Moon have mass 0.98785
and 0.01215, respectively.

The equations of motion of the CR3BP as given in Danby (1992) are

ẍ = 2 ẏ + x − (1 − μ)
x + μ

r1
3 − μ

x − 1 + μ

r2
3 ,

ÿ = −2ẋ + y − (1 − μ)
y

r1
3 − μ

y

r2
3 , (1)

z̈ = −(1 − μ)
z

r1
3 − μ

z

r2
3 ,

where (x, y, z) is the position of the zero-mass body, and where

r1 =
√

(x + μ)2 + y2 + z2, r2 =
√

(x − 1 + μ)2 + y2 + z2,

denote the distance from S to the Earth and to the Moon, respectively. The CR3BP has one
integral of motion, namely, the energy E :

E = ẋ2 + ẏ2 + ż2

2
+ U (x, y, z),

U (x, y, z) = −1

2
(x2 + y2) − 1 − μ

r1
− μ

r2
− μ

1 − μ

2
,

where U (x, y, z) is the effective potential. Astronomers also often use the Jacobi constant C,
defined as C = −2E .

Libration points, in both the planar and three-dimensional spatial system, are equilibrium
points in a co-rotating frame; see Fig. 1b. As already used, we denote the libration points by
L1, L2, . . ., L5. There are families of periodic orbits (in the co-rotating frame) that bifur-
cate from each of these libration points, and we refer to these as the primary families. Many
more families subsequently bifurcate from the primary families. We refer to the bifurcation
points as branch points. Several families of periodic solutions of the Earth–Moon system
are represented in Fig. 2; see also Doedel et al. (2003, 2007) and references therein. In the
present work we focus on four families, namely, the vertical orbits Vi, the planar Lyapunov
orbits Li, the halo orbits Hi, and the axial orbits Ai. The families of planar Lyapunov orbits
Li and the vertical orbits Vi emanate directly from the libration points Li ; these are primary
families (Fig. 3). The families of halo orbits bifurcate from the families of Lyapunov orbits
Li, while the families of axial orbits connect and bifurcate from the Vi and Li families.
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(a) (b)

Fig. 2 Bifurcation diagrams of families of periodic solutions of the Earth–Moon system bifurcating from
the libration points a L1 and b L2. A detailed description of the families represented in this diagram can be
found in Doedel et al. (2007). The “thick” portions of the curves labeled H1 and H2 denote periodic orbits
where all 6 Floquet multipliers are on the unit circle: 1, 1, exp(±ic), exp(±id). For thin solid portions exactly
two real Floquet multipliers are off the unit circle: 1, 1, a, 1/a, exp(±ic). The dotted portions denote periodic
orbits where all 6 Floquet multipliers are real: 1, 1, a, 1/a, b, 1/b. Here a, b, c, d ∈ R, |a| > 1, |b| > 1, and
c, d ∈ (0, π). The small squares labeled Lij and Vi1 denote branch points

(b)(a)

Fig. 3 a A selection of periodic orbits from the planar Lyapunov family L1, which bifurcates from the libra-
tion point L1, as seen in the bifurcation diagram in Fig. 2a. Labeled are the special Lyapunov orbits L11 from
which the halo family H1 emanates, and L12 from which the axial family A1 bifurcates. In this and subsequent
figures the small cubes denote libration points. b Selected orbits from the vertical family V1, which also
bifurcates from the libration point L1. In the linear approximation near L1 these orbits are indeed “vertical”,
i.e., x and y are constant along it, with y = 0, while z oscillates around zero. The axial family bifurcates from
the orbit labeled V11

We refer to the halo and axial orbits as secondary families (Fig. 4). These families are all
well-documented in the literature, but their names are sometimes different. For example, the
halo, axial, and vertical orbits are known as type “A”, “B”, and “C”, respectively, in Goudas
(1961) and Hénon (1973). Farquhar (1968) coined the name “halo” for that family. The term
“axial” comes from Doedel et al. (2007), whereas Doedel et al. (2003) used the term “Y” for
“yellow”.

123



Manifolds and connecting orbits in the circular restricted three body problem 83

(b)(a)

Fig. 4 a Selected orbits from the halo family H1 that bifurcates from the Lyapunov family L1 at L11. b
Selected orbits from the axial family A1 that connects to the Lyapunov family L1 at L12 and to the vertical
family V1 at V11: see also Fig. 2

3 BVPs for periodic orbits and eigenfunctions

In this and the next section, we describe the algorithms used in the various stages of the
computations in some detail, so that it will be possible for the reader to replicate the algo-
rithms in other applications, and to better understand the functioning of the downloadable
CR3BP demos (Doedel et al. 2010). Specifically, in this section we explain the preliminary
computations that precede the actual computation of stable and unstable manifolds of peri-
odic orbits, namely, the computation of the periodic orbits themselves and of their associated
eigenfunctions. The discussion follows that in Doedel et al. (2003, 2008).

To formulate a suitable boundary value problem in AUTO, the second order system of
ODEs (1) first needs to be rewritten as a six-dimensional first order system,

u̇(t) = f̂(u(t), μ), f̂ : R
6 × R → R

6,

where u = (x, y, z, vx , vy, vz) = (x, y, z, ẋ, ẏ, ż). As usual, when we plot the orbits graph-
ically we project into R

3 by only plotting the spatial coordinates (x, y, z). Time is scaled to
the interval [0, 1] in the BVP formulation for computing a periodic orbit, which changes the
system of differential equations to

u̇(t) = T f̂(u(t), μ),

where T is the period of the periodic orbit. In addition, for a conservative system with one
conserved quantity, we need to add a term with an “unfolding parameter” in order for the BVP
continuation computations to be formally well-posed (Doedel et al. 2007; Muñoz-Almaraz
et al. 2003); see also Muñoz-Almaraz et al. (2007). A suitable and convenient choice in the
specific case of the CR3BP is the term σd(u), where d(u) = (0, 0, 0, vx , vy, vz). The vector
field with the unfolding term then becomes

u̇(t) = T f̂(u(t), μ) + σd(u(t)),

which from here on we simply write as
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u̇(t) = T f(u(t), σ ), (2)

also omitting the mass-ratio parameter μ, as it is typically fixed in the computation of families
of periodic orbits. Notice that the specific choice of unfolding term d(u) used here would
represent a damping (or forcing) term if σ �= 0, which would preclude the existence of
periodic orbits. However, the unfolding parameter σ is one of the unknowns in the continu-
ation procedure, and will always be zero (to numerical precision) once solved for. Thus the
unfolding term is simply a technical device necessary to obtain well-posedness of the BVP,
and we do not force or damp the equations of motion.

Written in full, the system is therefore given by

ẋ = T vx ,

ẏ = T vy,

ż = T vz,

v̇x = T [2vy + x − (1 − μ)(x + μ)r−3
1 − μ(x − 1 + μ)r−3

2 ] + σvx ,

v̇y = T [−2vx + y − (1 − μ)yr−3
1 − μyr−3

2 ] + σvy,

v̇z = T [−(1 − μ)zr1
−3 − μzr2

−3] + σvz .

(3)

To complete the BVP formulation we need to add the periodicity equations

u(1) = u(0) . (4)

If u(t) solves Eqs. (3) and (4) then uα(t) = u(t +α) is also a solution for any time-translation
α. To specify a unique solution we impose the phase constraint (Doedel 1981)

1∫

0

〈u(t), u̇0(t)〉dt = 0, (5)

where u0(t) is the preceding computed solution along the solution family. Furthermore, for
the purpose of continuing a family of periodic solutions, we add Keller’s pseudo-arclength
constraint (Keller 1977), which in the current setting takes the form

1∫

0

〈u(t) − u0(t), u′
0(t)〉dt + (T − T0)T

′
0 + (σ − σ0)σ

′
0 = �s, (6)

where (u0, T0, σ0) corresponds to a computed solution along a solution family, (u, T, σ ) is
the next solution to be computed, and �s is the continuation step size. The notation “ ′ ”
denotes the derivative with respect to �s at �s = 0 and 〈·, ·〉 denotes the dot product. Since
we are dealing with a conservative system, we already have families of periodic solutions
even when the mass-ratio μ is fixed. For a computed solution (u0, T0, σ0), and a given step
�s, the unknowns to be solved for in any continuation step are the periodic orbit u(t), its
period T , and the unfolding parameter σ . Eq. 6 forces all of these unknowns to be close to
those of the previous solution. In particular, u(t) must be close to u0(t) for all t , and not just
for t = 0. We reiterate that the unfolding parameter σ is an active unknown in the computa-
tions that regularizes the boundary value formulation, although it will be found to be zero to
numerical precision. During the continuation the Floquet multipliers of the periodic solution
are monitored by computing a special decomposition of the monodromy matrix that arises
as a by-product of the decomposition of the Jacobian of the collocation system (Fairgrieve
and Jepson 1991).
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For the purpose of computing a stable or unstable manifold of a periodic orbit we need
the corresponding Floquet eigenfunction. Specifically, we assume that the periodic orbit has
a single, real, positive Floquet multiplier outside the unit circle in the complex plane, which
gives rise to a two-dimensional unstable manifold of the periodic orbit in phase space. The
eigenfunction corresponding to this multiplier provides a linear approximation to the mani-
fold close to the periodic orbit. In Doedel et al. (2008) it is shown that this eigenfunction can
be obtained as a solution v(t) of the BVP

v̇(t) = T fu(u(t), 0)v(t) + λv(t),

v(1) = ±v(0),

〈v(0), v(0)〉 = ρ,

(7)

where v(1) = +v(0) in the case of a positive multiplier, and v(1) = −v(0) in the case of
a negative multiplier. Here, λ is the characteristic exponent and the corresponding Floquet
multiplier is given by ±eλ. Eq. (7) represents the Floquet eigenfunction/eigenvalue relation
for the linearization of Eq. (2) about a periodic orbit u(t). The norm of the value of the
eigenfunction at time t = 0 is normalized to be

√
ρ, where typically we use ρ = 1. If only

one Floquet multiplier is real and greater than one in absolute value, this gives a unique (up
to sign) unstable eigenfunction v(t). Likewise, a unique stable eigenfunction is obtained if
only one Floquet multiplier is real and less than one in absolute value. In our illustrations we
only compute unstable manifolds, so we have λ > 0 in Eq. (7); however all algorithms apply
equally well to stable manifolds. We also restrict to the case where the Floquet multiplier of
interest is positive, so v(1) = +v(0) in Eq. (7), and the corresponding manifold is orientable
rather than twisted. A linear approximation of the unstable manifold at time zero is then given
by

r(0) = u(0) + εv(0), (8)

for ε small.
An alternative formulation is to put the actual Floquet multiplier in the boundary condi-

tion rather than in the linearized differential equation, using the variational equation v̇(t) =
T fu(u(t), 0)v(t) and boundary condition v(1) = κv(0), where κ is the actual Floquet multi-
plier. However, the formulation in Eq. (7), as used here, has been found to be more appropriate
for numerical purposes (Doedel et al. 2008). This is related to the fact that the multipliers,
i.e., the values of κ = eλ, can be very large or very small.

The algorithmic steps that lead to the linear approximation of the unstable manifold are
then as follows; here described for the case of a halo orbit in the H1 family.

1. The libration points, which are the equilibria of Eq. (1), are easily determined (Szebehely
1967). In our continuation context we note that they have zero velocity components, as
well as z = 0, and that for varying μ their x and y components lie on connected curves,
as shown in Fig. 5. Starting from, for example, the curve of equilibria x2 + y2 = 1,
that exists when μ = 0 (the curve containing the point q in Fig. 5), the libration points
bifurcate from x = 1/2, y = ±√

3/2 and y = 0, x = ±1 and we can reach each of the
libration points at any given nonzero value of μ via a connected path. The eigenvalues
of the target libration point(s) are also computed.

2. Compute the target halo orbit in the H1 family for which the unstable manifold is to be
computed:
The libration point L1 has two pairs of purely imaginary eigenvalues and a pair of real
eigenvalues. The two pairs of purely imaginary eigenvalues correspond to the planar
Lyapunov family L1 and vertical family V1 that bifurcate from L1. Compute the family
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Fig. 5 Computation of the
libration points. The point q on
the circle of equilibria is a
suitable starting point for
determining the libration points
for a given nonzero value of μ by
continuation. For clarity, the five
libration points are indicated in
the diagram for the case
μ = 0.25, rather than for the
Earth–Moon case (μ = 0.01215),
as μ is close to zero in the latter
case. The small squares are
branch points

L1, using a standard starting procedure (Doedel 1981) at the libration point L1. The free
problem parameters in this continuation are the period T and the unfolding parameter
σ . Along L1 two branch points are located; see Fig. 3. Branch switching at the first of
these branch points gives the halo family H1.

3. Determine the eigenfunction of a selected halo orbit:
Select an appropriate periodic orbit in the H1 family that has one real Floquet multiplier
with absolute value greater than 1, so that its unstable manifold is two-dimensional.
Compute the corresponding unstable eigenfunction as follows: couple the boundary
value equations for v in Eq. (7) to those for u in Eqs. (2), (4), (5). Supplement this
extended system by an appropriate continuation equation of the form of Eq. (6), that
also includes v, λ, and ρ, with v and ρ initialized to zero, and λ initialized to the desired
Floquet exponent as obtained from the decomposition of the Jacobian of the collocation
equations. Written out, this gives

u̇(t) = T f(u(t), σ ),

u(1) = u(0),

1∫

0

〈u(t), u̇0(t)〉dt = 0,

v̇(t) = T fu(u(t), 0)v(t) + λv(t), (9)

v(1) = v(0),

〈v(0), v(0)〉 = ρ,

1∫

0

〈w(t)−w0(t), w′
0(t)〉dt+〈p−p0, p′

0〉 = �s, w(t) = (u(t), v(t)), p = (σ, λ, ρ).

In our continuation context we observe that the target period orbit u(t), together with
v(t) ≡ 0 and p = (σ, λ, ρ) = (0, λ, 0)), corresponds to a branch point, from which
a solution family (u, v; σ, λ, ρ) bifurcates. Along this bifurcating family the orbit u(t)
remains equal to the target periodic orbit, the Floquet exponent λ and the period T of
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u(t) remain constant, while the unfolding parmameter σ remains zero; all to numer-
ical precision. On the other hand, the Floquet eigenfunction v(t) becomes nonzero,
and consequently ρ also becomes nonzero. In fact, one continuation step along the
bifurcating family would be enough to obtain the nonzero eigenfunction v(t). However,
for numerical purposes we typically do a few continuation steps along the bifurcating
family until ρ is equal to 1, i.e., until the norm of the Floquet eigenfunction equals 1.
This simple procedure to determine the Floquet eigenfunction fits well into the contin-
uation and branch-switching algorithms in AUTO, it is numerically stable, and has the
additional advantage that the Floquet eigenfunction, once computed, can be continued
with fixed nonzero ρ and varying energy. In that case p = (σ, λ, T ) in the last constraint
of Eq. (9). This allows the determination of the eigenfunction v in highly sensitive cases,
for example, for very large or very small Floquet multipliers.

Once the periodic orbit and its appropriate eigenfunction have been computed, we can
proceed to compute the manifold.

4 Basic computation of unstable manifolds

Here we describe a method for computing unstable manifolds based on the continuation of
orbits that lie in it. These orbits start (as a function of time) in the linear approximation of the
unstable manifold that was computed above, and end in a section where one of the coordi-
nates is fixed. Other possibilities to constrain the end point include fixing the integration time
or the arclength; we found the fixed end section to be the most appropriate here. All these
approaches are robust against sensitive dependence on initial conditions; see also Krauskopf
and Osinga (2007).

We now explain the procedure for computing the unstable manifolds of a given periodic
orbit u(t) in some detail. We assume that u(t) has one real Floquet multiplier with absolute
value greater than 1, with associated eigenfunction v(t), computed as described in Sect. 3.
The starting data needed are a point on the periodic orbit, namely u(0), and the corresponding
value of the Floquet eigenfunction, namely v(0). For a given appropriately small value of
ε1, take the point r(0) = u(0) + ε1v(0) as the starting point of an orbit r(t) in the unstable
manifold; see Fig. 6. Here t denotes the time along the orbit r(t). Similar to the case of the
periodic orbit u(t) and its eigenfunction v(t), where for numerical reasons the time interval
was rescaled from [0, T ] to [0, 1], for the non-periodic orbit r(t) we also rescale time to the
unit interval. Select a section Σ , for example, at xΣ = 0 or xΣ = −0.25, where the orbit
r(t) is to terminate; i.e., r(1) ∈ Σ . (We may allow the orbit r(t) to cross Σ several times,
before it actually terminates in Σ .) The part of the manifold to be approximated is then given
by the set of orbits

{r(t) | r(0) = u(0) + εv(0) and r(1) ∈ Σ, for ε1 ≤ ε < ε2} . (10)

The range of values of ε, namely, [ε1, ε2), should be chosen to correspond to a fundamental
domain, see Fig 6. This ensures that the full manifold is swept out, at least locally near the
periodic orbit, as ε is allowed to vary from ε1 to ε2. If the interval [ε1, ε2) is chosen too
small then the manifold would be incomplete. Taking this interval too large would lead to
duplication of orbits, albeit having different lengths. A fundamental domain is such that the
orbit that starts at u(0) + ε1v(0) closely passes the line given by u(0) + εv(0) again, for
the first time, at u(0) + ε2v(0). For a given value of ε1, using fundamental properties of
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Fig. 6 Plot of a periodic orbit u(t) having Floquet eigenfunction v(t). Also shown is the orbit r(t) in the
unstable manifold that starts at the point r(0) = u(0) + ε1v(0) and ends in a section Σ . Here u(t) is an H1
halo orbit, where T = 2.3200, E = −1.5052, λ = 1.4534, ε1 = 0.05, and the section Σ is at x = 0. For
accuracy the absolute value of ε1 should be smaller, but for clarity of the diagram it is taken larger here

the eigenfunction v(t) we can compute the corresponding linear approximation of ε2 using
ε2 = eλε1.

We also note that if ε1 is too small in absolute value then the orbit r(t) remains close to
the periodic orbit for a long time before it escapes to ultimately reach the section Σ . If, on
the other hand, ε1 is too large in absolute value then the linear approximation of the manifold
is no longer accurate.

The boundary value problem for r(t) is then given by

ṙ(t) = Tr f(r(t), 0),

r(0) = u(0) + εv(0),

r(1)x = xΣ,

1∫

0

〈r(t) − r0(t), r′
0(t)〉dt + (ε − ε0)ε

′
0 + (Tr − Tr 0)Tr

′
0 = �s,

(11)

where σ = 0 in f(r(t), σ ), and Σ denotes the section x = xΣ . As done earlier for the peri-
odic orbit and for its eigenfunction, the actual integration time Tr of the orbit r(t) appears
explicitly in the differential equation, due to the above-mentioned scaling of the time t . The
pseudo-arclength constraint, the last equation in Eq. (11) plays a crucial role in the algorithm.
For a given step size �s the pseudo-arclength constraint ensures in particular that the next
computed orbit r(t) is close to r0(t) over the whole trajectory, and that also Tr is close to
Tr 0. The step size �s could in principle be constant, but for efficiency and robustness it is
adjusted after each successful continuation step, depending on the speed of convergence of
the Newton-chord iterations.

Given the point u(0) on the periodic orbit, and the point r(0) = u(0) + ε1v(0) in the
direction of the unstable manifold at time t = 0, the complete procedure to compute the
manifold is then as follows:

1. Compute a starting orbit in the manifold, using continuation to do the “time integration”.
More precisely, we use numerical continuation with Tr as free parameter to compute
a “family” of solutions, i.e., the same trajectory, but for a set of increasing integration
times Tr . The equations used are
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ṙ(t) = Tr f(r(t), 0),

r(0) = u(0) + ε1v(0),
(12)

which correspond to Eq. (11), but without the end point constraint. Note that ε is fixed at
ε = ε1 in each continuation step of this starting procedure. The continuation is stopped
when r(1) intersects the plane Σ . (This termination point need not necessarily be the
first such intersection.) The starting orbit in this continuation is the constant solution
r(t) ≡ u(0) + ε1v(0), with Tr = 0. Although it may appear inefficient to do a time-
integration by continuation, this approach has the advantage that it fits very well into
the continuation framework of the algorithms in this paper.

2. Given an orbit that ends in Σ , as computed above, the unstable manifold is then approx-
imated by further continuation of this orbit, now using the boundary value problem in
Eq. (11), with the end point r(1) constrained to remain in Σ , and with ε and the integra-
tion time Tr allowed to vary. If ε varies along a full fundamental domain, the continuation
would sweep out the full unstable manifold, limited only by the termination condition.
However, the pseudo-arclength constraint in Eq. (11) limits the size of the change in the
orbit and in the the parameters in any continuation step. Hence the full unstable manifold
is only obtained if no “obstacles” are encountered, where for example Tr goes to infinity.
As will be seen in the next section, these obstacles can in fact be of much interest.

5 Example computations of unstable manifolds and connecting orbits to invariant tori

In this section we illustrate the basic boundary value technique described above by computing
unstable manifolds of the vertical family V1 and the halo family H1. For certain ranges of
their energy (the thin solid curves in Fig. 2) and period these families have periodic orbits with
one real, positive Floquet multiplier outside the unit circle, so that their unstable manifold
is indeed two-dimensional. The algorithm applies in principle also to higher-dimensional
unstable manifolds, by using a selected unstable Floquet multiplier, typically the largest one,
and its associated eigenfunction. As already mentioned, the algorithm also applies to stable
manifolds. However, here we restrict attention to examples with two-dimensional unstable
manifolds.

Figure 7 shows the computed unstable manifold of an orbit from the vertical family V1.
Here the section Σ is taken at xΣ = 0. As seen in the figure, the orbits in the manifold
terminate in Σ at their second intersection with this plane. Note also that the intersection
curve of the manifold with the section Σ has a similar shape as the figure-eight vertical orbit
from which the manifold originates.

Figure 8 shows the computed unstable manifold of a halo orbit from the H1 family. The
plane Σ is located at xΣ = −0.25. Note that the manifold changes shape as it propagates.
Here, as well as for the unstable manifold of the V1 orbit, there is no contradiction in the
fact that the cross section of the manifold with the plane Σ is a self-intersecting curve, since
we are viewing a projection of the manifold from R

6 (spatial and velocity variables) into R
3

(spatial variables only).
If the section is taken at certain other value-ranges of xΣ then one may encounter obsta-

cles that prevent the continuation to cover the full manifold. More specifically, the initial
value of the orbits, as determined by the value of ε, does not cover the entire fundamental
domain, but approaches a particular value where Tr → ∞. One possible scenario is that
the orbit picks up additional loops around a torus-like object near its end point, if such an
object exists, before returning to and ending in the plane Σ . This computational phenome-
non is not exceptional in the CR3BP; in fact it is easy to find specific examples. One such
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Fig. 7 The unstable manifold of a periodic orbit from the V1 family. The periodic orbit, labeled V1, is located
on the L1 side of the Moon, with period T = 3.7700 and energy E = −1.5164. The terminating plane Σ is
located at xΣ = 0. The first intersection of the manifold with Σ is indicated by the curve labeled Σ1, and the
second intersection, where the manifold computation is terminated, is labeled Σ2

Fig. 8 The unstable manifold of a periodic orbit (labeled H1) from the H1 family. The periodic orbit, which
is on the L1 side of the Moon, has period T = 2.5152 and energy E = −1.5085. The terminating plane Σ is
located at xΣ = −0.25, and the first and second intersections of the manifold with Σ are labeled Σ1 and Σ2

instance is given in Fig. 9, which again shows the unstable manifold of the vertical orbit in
Fig. 7, but with a superimposed longer orbit that lies in the same unstable manifold. This
longer orbit alone is shown separately in Fig. 10. As is evident from Fig. 10, the orbit returns
to a neighborhood of the original vertical orbit, where it winds around a torus-like object
(a quasi-vertical orbit).

More specifically, the phenomenon shown in Figs. 9 and 10 results from “growing” (see
step 1 at the end of Sect. 4) a longer initial orbit in the unstable manifold of the V1 periodic
orbit, with ε fixed, until it intersects a plane Σ located at xΣ = 0.5. Continuing this orbit

123



Manifolds and connecting orbits in the circular restricted three body problem 91

Fig. 9 Part of the unstable manifold of the V1 periodic orbit from Fig. 7, together with a superimposed longer
orbit in this manifold, computed as described in the text

Fig. 10 A separate view of the longer orbit from Fig. 9, which winds around a torus near the original V1
periodic orbit. The orbit ultimately returns to the plane Σ that is located at xΣ = 0.5. We remark that in
this and subsequent figures the orbit color changes from a deep sky blue [RGB code (0,0.5,1)] via gray [code
(0.5,0.5,0.5)] to dark orange [code (1.0,0.5,0)] as the scaled time increases from 0 to 1

with the end point constrained to remain in Σ , and with ε and Tr allowed to vary, then
results in it winding around a torus near the original V1 periodic orbit, before returning to
and terminating in the plane Σ . In contrast, trying to obtain such an orbit directly by shooting
techniques appears to be difficult, as such orbits approach but then divert from the torus; see
Fig. 11. Indeed, for the orbits to agree it may be necessary to compute the BVP orbits to
higher precision, i.e., more than the double precision used in AUTO. In particular, this would
yield the initial value to higher precision. Likewise, the initial value integration, starting from
such a more accurate initial value, may also need to be in high precision arithmetic.
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Fig. 11 An orbit obtained by initial value integration for the same value of ε, within numerical precision, as
used for the orbit in Fig. 10. Note that the orbit approaches but then diverts from the torus seen in Fig. 10,
without winding around it

Fig. 12 Continuation of longer orbit within the unstable manifold of a halo orbit with E = −1.5532 with the
plane Σ located at xΣ = 1.02, that is, on the L2-side of the Moon. This orbit winds around a torus near an
orbit from the halo family H2, before returning to and ending in the plane Σ

A similar result is shown in Fig. 12 for an extended orbit from the H1 manifold shown in
Fig. 8. Here an orbit in the unstable manifold of the H1 periodic orbit is grown until it reaches
a plane Σ located at xΣ = 1.02, i.e., on the L2-side of the Moon. Constraining the end point
of this longer orbit to remain in Σ , and allowing ε to vary, then results in the end portion of
the orbit to wind around a torus near an orbit from the halo family H2 (a quasi-halo orbit),
as shown in Fig. 12. Meanwhile the initial value r(0) of the orbit approaches a point in the
fundamental domain, without fully covering that domain. Ultimately the orbit returns to the
plane xΣ = 1.02, as required by the computational set-up.
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Similarly, in Fig. 13 an extended orbit from the H1 manifold is grown until it reaches a
plane Σ located at xΣ = 0.6, after going around the Earth once. Constraining the end point
of this orbit to Σ , while ε and the integration time Tr are allowed to vary, results in an orbit
that winds around a quasi-halo orbit near H1.

As a final example in this section we compute an initial orbit in the unstable manifold
of an H1 halo orbit, but now in the part of the unstable manifold on the side of the Moon.
The terminating plane Σ was taken at xΣ = 1.02. Further continuation of this orbit with
xΣ constrained to remain in Σ , and with ε allowed to vary, results in the end portion of this
orbit winding around a quasi-halo orbit near an H2 halo orbit, as shown in Fig. 14, before
returning to and ending in Σ .

In this section we have computed the unstable manifolds of some orbits in the H1 halo and
V1 vertical families. For certain values of ε we find what appear to be heteroclinic connecting
orbits from the original periodic orbit to an invariant torus. These connecting orbits appear to
be more difficult to obtain with shooting techniques. This was seen in Fig. 11, where shooting

Fig. 13 Continuation of a longer orbit within the unstable manifold of a halo orbit with E = −1.5631 with
the plane Σ located at xΣ = 0.6. This orbit winds around a torus near the orbit from the halo family H1 where
it started from, before returning to and ending in the plane Σ

Fig. 14 An orbit in the Moon-side part of the unstable manifold of an H1 periodic orbit. This orbit is found
by fixing its end point to remain in a plane Σ located at xΣ = 1.02, that is, on the L2-side of the Moon.
The orbit winds around a torus near an orbit from the halo family H2, before returning to and ending in the
plane Σ
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failed to reveal the invariant torus, when starting near the numerical value of ε for which the
heteroclinic connection was found in the BVP approach. This is in part due to the fact that the
tori are evidently unstable, with saddle-type stability since the connecting orbit approaches
it, but ultimately also leaves the neighborhood of the torus.

The next objective is to continue the orbit-to-torus connections as the energy E is allowed
to vary, and with it the base periodic orbit itself. In the following section we explain the
computational set-up, while examples are given in Sect. 7. In particular we will see in Sect. 7
how such continuation can lead to homoclinic and heteroclinic connecting orbits between
periodic orbits in the same or different families.

6 Continuation of connecting orbits

The examples in the preceding section provide evidence for the existence of orbits in the
unstable manifold of certain periodic orbits that connect to toroidal objects in phase space.
These connections exist for specific initial points in the fundamental domain, i.e., along the
line u(0)+εv(0), ε ∈ [ε1, ε2). The connecting orbits are generated numerically as the initial
value of the orbits approaches a final point inside the fundamental domain, as the integra-
tion time Tr increases and additional windings are generated near the end of the orbit. As
a consequence the fundamental domain is not fully covered, although this can be remedied
by repeating the entire sequence of steps in the algorithm, starting from a value of ε that
corresponds to a point in the part of the fundamental domain that is not covered.

The question arises as to what happens to the periodic-orbit-to-torus connections if the
periodic orbit is varied along one of the primary or secondary families. One approach would
be to repeat the computations for each one of a sequence of periodic orbits along a given
family, e.g., along the halo family H1. However, here also, continuation is a more effective
tool that allows interesting connecting orbits to be detected easily along the continuation path.

We are then led to consider the following approach: collect the equations that define the
periodic orbit (Eqs. (2), (4), (5)), the equations defining the Floquet multiplier and eigen-
function (Eq. (7)), and the equations for the orbit in the unstable manifold (Eq. (11)). For
clarity, this complete set of coupled equations is reproduced in Eq. (13).

u̇(t) = T f(u(t), σ ),

u(1) = u(0),

1∫

0

〈u(t), u̇0(t)〉dt = 0,

v̇(t) = T fu(u(t), 0)v(t) + λv(t),

v(1) = v(0),

〈v(0), v(0)〉 = ρ,

ṙ(t) = Tr f(r(t), 0), (13)

r(0) = u(0) + εv(0),

r(1)x = xΣ,

1∫

0

〈w(t) − w0(t), w′
0(t)〉dt + 〈p − p0, p′

0〉 = �s,

w(t) = (u(t), v(t), r(t)), p = (T, σ, λ, ε)
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The last constraint shown in Eq. (13) is the suitably expanded version of the pseudo-arc-
length constraint (Eq. (6)) that defines the continuation step size.

Recall that each of the vectors u, v, and r, is six-dimensional. A simple count shows that
Eq. (13) represents a system of 18 ODEs, subject to a total of 21 boundary and integral
constraints, not counting the pseudo-arclength constraint. Generically, the continuation of a
solution to Eq. (13) then requires four free scalar variables. The appropriate choice of these
parameters is T, σ, λ, and ε, where T is the period of u(t), σ is the unfolding parameter, eλ

is the Floquet multiplier, and ε corresponds to the step size in the direction of the unstable
manifold.

The BVP in Eq. (13) does not directly define a connection from a periodic orbit to a torus,
but a connection from a periodic orbit to a section Σ for a sufficiently large, fixed, value of
the integration time Tr of r(t). The torus is then indirectly continued. This indirect approach
is very useful as the direct approach is known to be of considerable algorithmic complexity,
as addressed for example in Dieci et al. (1991), Dieci and Lorenz (1995), Edoh et al. (1995),
Henderson (2002), Schilder et al. (2005), Olikara (2010).

The strategy of indirect continuation is somewhat analogous to the computation of a simple
homoclinic orbit, i.e., an orbit in phase space that approaches a given saddle equilibrium in
both positive and negative time. The continuation of such a homoclinic orbit in two param-
eters can be directly formulated as a boundary value problem with asymptotic boundary
conditions that compute the saddle point and its relevant eigenspaces. In fact, this approach
has been used very effectively for the continuation of homoclinic and heteroclinic orbits,
including higher co-dimension orbits, both for orbits homoclinic or heteroclinic to equilibria
or to periodic orbits (Champneys et al. 1996). However, a generic homoclinic orbit can also be
very effectively approximated indirectly by a periodic orbit of high period, which renders the
2-parameter continuation of a homoclinic orbit as simple as the continuation of a periodic orbit
(using the techniques given in Sect. 3) where the period T is fixed at a sufficiently large value.

In the next section we demonstrate the use of the indirect periodic-orbit-to-torus approach
described above, by applying it to the connecting orbits from a halo orbit in the H1 family
to a torus, as initially computed in Sect. 5. We will see that these continuation calculations
can lead to approximate connecting orbits from the base periodic orbit to resonant periodic
orbits and to other periodic orbits. The detection of such approximate connections can be
refined, which we do not do in this paper, to provide more accurate approximations to such
connecting orbits. These, in turn, can then be continued directly, using known algorithms
for this purpose, as described, for example, in Champneys et al. (1996), Doedel et al. (2008,
2009), and as implemented in AUTO.

7 Showcasing three families of connecting orbits

In this section we describe the results of the further continuation of orbits that connect a
periodic orbit to a torus, as initially found in Sect. 5. This is done using the 18-dimensional
system in Eq. (13), which was discussed in the preceding section.

As a first example we start from the orbit shown in Fig. 13 which connects the H1 halo
orbit with period T = 2.5152 and energy E = −1.5164 to a quasi-halo toroidal orbit near
the originating halo orbit, after making one loop around the Earth. The continuation proce-
dure using the 18-dimensional ODE in Eq. (13) allows the energy to change, and with it the
H1 orbit itself, the connecting orbit, and the torus it approaches. Interesting transitions are
encountered along the continuation path, namely, in the way the changing connecting orbit
winds around the changing torus.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15 A family of connecting orbits from H1 halo orbits to tori, making one loop around the Earth. The
terminating plane Σ is located at xΣ = 0.6. a–d Connecting orbits from H1 halo orbits to a a 5:1 resonant
orbit near the corresponding southern halo orbit, b approximately the originating H1 halo orbit, c an L1 planar
orbit, and d a southern H1 orbit. e Energy of the halo orbit versus log(−ε) along the continuation path. The
continuation terminates in the top right corner when the Floquet multipliers of the H1 orbit become complex,
and at label 16 in the heteroclinic connection shown in Fig. 16. Labels a–d, 13, 16, and 19a, b correspond to
the values in the panels above and in Figs. 13, 16, and 19. f The logarithm of the unstable Floquet multiplier
of the halo orbit versus log(−ε) along the continuation path

Examples are shown in Fig. 15. Panel (a) shows the connecting orbit evidently approach-
ing a 5:1 resonant orbit. In panel (b) the quasi-halo orbit has shrunk so it can not be visually
distinguished from the periodic halo orbit in whose unstable manifold it lies, that is, the orbit
appears to be homoclinic to the H1 orbit. Such an orbit could be interesting in space mission
design, allowing for occasional large spatial excursions from an H1 orbit for negligible energy
cost. Panel (c) shows a heteroclinic connection between an H1 orbit and the planar L1 orbit
with the same energy E = −1.5754. Recall that the L1 family is the Lyapunov family that
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bifurcates from the libration point L1, as seen in Fig. 2. This heteroclinic connection could
be used for a low cost transfer orbit between the H1 and L1 orbits with energy E = −1.5754,
even though these orbits are different in their dynamical properties (see Figs. 3, 4) and far
apart in the bifurcation diagram of the orbits (see Fig. 2). Panel (d) is similar to panel (b), but
now the northern halo orbit is connected to its corresponding southern halo orbit, which is
the mirror image with respect to the Z = 0 plane of the northern halo orbit. That is, the con-
nection appears heteroclinic instead of homoclinic. The energies of these connecting orbits
and the periods of the periodic orbits that they connect to, for these and other connecting
orbits in this paper, are given in Table 1.

During the same continuation one encounters the connecting orbit seen in Fig. 16. There
is still ample evidence of an underlying torus as this figure shows. However, on this torus
the connecting orbit oscillates between a northern axial A1 orbit and its symmetric southern
counterpart, each time spending a significant number of rotations very close to each of these
two periodic orbits. This suggests a low cost transfer orbit between an H1 halo orbit and the
northern or southern A1 axial orbit with the same energy E = −1.5085. The connecting orbit

Table 1 Numerically computed values for all figures

Figure Energy Type Period Non-trivial Floquet exponents

7, 9, 10, 11 −1.5164 V1 3.7700 ±6.4948, ±0.077175 · 2π i

12 −1.5532 H1 2.7873 ±6.1730, ±0.21859 · 2π i

Quasi-H2 3.2753 ±5.9348, ±0.17737 · 2π i

13 −1.5631 H1 2.7821 ±6.6179, ±0.16367 · 2π i

14 −1.5733 H1 2.7716 ±7.0356, ±0.11217 · 2π i

Quasi-H2 3.3805 ±6.7839, ±0.068079 · 2π i

15a −1.5552 Quasi-H1 (5:1 res) 2.7868 ±6.2673, ±0.20690 · 2π i

15b −1.5716 H1 2.7736 ±6.9682, ±0.12050 · 2π i

15c −1.5754 H1 2.7690 ±7.1183,±0.10189 · 2π i

L1 2.8982 ±0.29251, ±7.4268

15d −1.5617 H1 2.7832 ±6.5556, ±0.17135 · 2π i

8, 16 −1.5085 H1 2.5152 ±2.8541,±0.38928 · 2π i

A1 4.0117 ±0.43035, ±6.1278

17a −1.5276 H1 2.7472 ±4.7666,±0.39460 · 2π i

L2 3.9550 ±5.9229, ±0.52353

17b −1.5679 H1 2.7776 ±6.8207, ±0.13870 · 2π i

H2 3.3567 ±6.5802, ±0.095719 · 2π i

17c −1.5349 H1 2.7715 ±5.2225,±0.33730 · 2π i

Quasi-H2 (5:1 res) 3.1170 ±4.9006, ±0.30348 · 2π i

17d −1.5303 H1 2.7581 ±4.9440,±0.23394 · 2π i

Quasi-H2 (6:1 res) 3.0568 ±4.5639, ±0.34345 · 2π i

18a −1.5728 H1 2.7722 ±7.0158, ±0.11462 · 2π i

Quasi-H2 3.3784 ±6.7651, ±0.070727 · 2π i

19 −1.5130 H1 2.6176 ±3.5327, ±0.45736 · 2π i

Each line with Figure and Energy values contains the data for the starting periodic orbit u(t). If the orbit r(t)
connects the periodic orbit to a different periodic orbit, or to a torus that surrounds a different periodic orbit (a
quasi-periodic orbit), then the following line row contains data for this second periodic orbit. There are always
two trivial Floquet exponents equal to zero
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between the northern and southern axial orbits is generic, as will be shown in the next section.
Evidence of tori close to heteroclinic connections between two symmetric axial families can
also be found in Fig. 1 of Gómez and Mondelo (2001) for an energy value (corresponding to
Fig. 19 discussed later) not far from that of Fig. 16. In Gómez and Mondelo (2001) the axial
orbits are denoted by diamond-shaped fixed points.

Figure 15e depicts the change of ε versus the energy, where the labels correspond to the
values of panels (a)–(d) and Figs. 13, 16, and 19. Note that for most energy values in this
range there exist two connections with different values of ε. The continuation terminates
at two points on the right hand side of this diagram, because the Newton-chord method
that AUTO employs no longer converges there. One of these points corresponds to the spe-
cial connecting orbit in Fig. 16. For the other termination point the unstable real Floquet
multiplier reaches the unit circle, so the two-dimensional unstable manifold ceases to exist.
Figure 15f and the thin-to-thick curve transition for H1 in Fig. 2a show this Floquet multiplier
behavior.

The apparent connections from an H1 halo orbit to an L2 planar orbit, an H2 halo orbit,
and 5:1 and 6:1 resonant orbits shown in Fig. 17a–d result from the continuation of the
connecting orbit in Fig. 12, again using the 18-dimensional system in Eq. (13). In this case
the connecting orbit makes four loops (instead of just one as in Fig. 15) around the Earth.
Here also, the continuation passes through many resonances. Specifically, the connecting
orbits shown in panels (c) and (d) of Fig. 17 approach a period-5 orbit and a period-6 orbit,
respectively.

We reiterate that the originating H1 halo orbit changes during the continuation, and with it
its period and energy. Consequently the energy of the connecting orbit as well as the energy
of the torus that it approaches change with it, as these energies are identical. Similar to panels
(e) and (f) of Fig. 15, Fig. 17 show diagrams for the energy and Floquet exponents. Note
however, that in this case the continuation does not terminate but loops around, and for every
energy value between the two extrema there exist two connecting orbits. Numerically it was
observed that the value of log(−ε) is always close to −2λ, so to visualize the loop these two
quantities were subtracted in panel (f).

Note that the two extrema in panels (e) and (f) are detected as folds by the continuation
software, and that these could in turn be followed, for instance by adding the mass-ratio μ as
a free parameter. The folds themselves do not appear to correspond to particularly interesting
orbits (panels a and b in Fig. 17 are close to but not at the fold locations).

Similarly, Fig. 18a shows an interesting orbit from the continuation of the connecting orbit
in Fig. 14, namely a direct connection, without looping around the Earth, from an H1 orbit
to an L2 Lyapunov orbit. Figure 18b, c show diagrams much like those in Fig. 17, where
the continuation curve is a loop. However, compared to Fig. 17, here the range of the energy
level and the differences between values of log ε are greater. Also note that the sign of ε is
always positive, rather than negative as before, as we are now considering the Moon side of
the unstable manifold of the H1 orbits and so the sign of ε in Eq. (13) is changed.

8 Existence of connecting orbits

As seen in the preceding sections, boundary value formulations provide a powerful tool to
compute unstable manifolds and connecting orbits in the CR3BP. Our exploration shows
only the tip of the iceberg of a wealth of interesting orbits. This section discusses how the
connecting orbits that were found relate to the existing literature. As mentioned in Sect. 1, the
periodic orbits and tori themselves, as well as homoclinic and heteroclinic orbits connecting
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Fig. 16 a The unstable manifold of the H1 periodic orbit from Fig. 8, together with a superimposed longer
orbit that was found by continuation using the 18-dimensional system in Eq. (13). b A separate view of the
orbit in the unstable manifold. This orbit returns near the originating H1 periodic orbit, where it winds around
a quasi-halo orbit, while spending significant time near a northern axial A1 orbit and its symmetric southern
counterpart. As is clearly visible, and as required by the computational formulation, the orbit ultimately returns
to the plane Σ , located at xΣ = 0.6

L1 and L2 periodic orbits have been studied extensively. However, for the spatial case, to
the best of our knowledge, connecting orbits from H1 halo to quasi-H1 or quasi-H2 have not
been explicitly found before. We must mention that connections from quasi-H1 to quasi-H2

orbits can be found in Gómez et al. (2004).
In all three continuations in Sect. 7 a collection of interesting objects was seen, includ-

ing apparent heteroclinic connections between halo orbits and resonant orbits, i.e., seem-
ingly heteroclinic connections between halo orbits and n-periodic orbits, where the complex
Floquet multipliers of the halo orbit near the n-periodic orbit are close to e2π i/n . Numerical
data corresponding to figures in this paper are given to 5 significant digits in Table 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 17 A family of connecting orbits from H1 halo orbits to tori, making four loops around the Earth. The
terminating plane Σ is located at xΣ = 1.02. a–d Connecting orbits from H1 halo orbits to a a planar L2
Lyapunov orbit, b approximately an H2 halo orbit, c a 5:1 resonant orbit near the libration point L2, and d
a 6:1 resonant orbit. e Energy versus log(−ε) along the continuation path. The continuation curve is a loop.
Labels a–d and 12 correspond to the values in the panels above and in Fig. 12. f The logarithm λ of the unstable
Floquet multiplier of the halo orbit versus log(−ε) + 2λ along the continuation path. Here log(−ε) + 2λ is
plotted instead of log(−ε) to make the loop visible

The existence of certain connecting orbits can be explained by counting dimensions. For
Fig. 16, the multipliers of the symmetric axial orbits give rise to three-dimensional stable
and unstable manifolds, so the connection between the two northern and southern A1 axial
orbits seen in Fig. 16 is generic for the CR3BP posed in R

6. The connection from the H1

halo orbit to the A1 axial orbit is codimension-one, since the H1 halo orbit has a two-dimen-
sional unstable manifold, and the stable manifold of the A1 axial orbit is three-dimensional.
Similarly the planar L1 and L2 Lyapunov orbits for the energy values that we observe in
Figs. 15c, 17a and 18a have three-dimensional stable and unstable manifolds, so connections
from H1 halo Orbits to those orbits are also codimension-one. By standard bifurcation theory,
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(a)

(b) (c)

Fig. 18 a An orbit directly connecting the Moon side of the unstable manifold of the H1 orbit with E =
−1.5728 to an L2 Lyapunov orbit, obtained by continuation of the orbit shown in Fig. 14. b Energy versus
log(ε) along the continuation path. The continuation curve is a loop. Labels a and 14 correspond to the values
in the panels above and in Fig. 14. c The logarithm of the unstable Floquet multiplier of the halo orbit versus
log(ε) along the continuation path

codimension-one connecting orbits can be expected to arise as one parameter is varied, for
specific values of that parameter. This is indeed what we observed in these cases, where we
found such connecting orbits for specific values of the energy E .

8.1 Connecting orbits from a halo orbit to a quasi-halo orbit

In contrast to the connecting orbits considered above, the connections from the H1 halo orbit
to the same or other halo orbits cannot simply be explained by counting dimensions. The H1

halo orbit has a two-dimensional unstable manifold and a two-dimensional stable manifold,
so such connections would be codimension-two and would not be expected along a family (in
the sense of this paper) of halo orbits. The apparent halo orbits in the halo to halo connecting
orbits may in fact be very thin quasi-halo orbits (tori). However, even if this distinction were
mathematically important, it would presumably be of little practical importance in space
mission design.

We justify the presence of the connecting orbits from H1 halo orbits to quasi-halo orbits by
recalling the detailed analysis of center manifolds around collinear libration points in Jorba
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(a) (b)

(c) (d)

Fig. 19 a and b Two orbits for the family displayed in Fig. 15 where E = −1.5130. c and d Their intersec-
tions with the plane z = 0. The energy value corresponds to Fig. 1 in Gómez and Mondelo (2001) and Fig. 3
in Alessi et al. (2009), where the energy is denoted as h = E + μ(1 − μ)/2 = −1.507. The two diamonds
correspond to intersections of the A1 axial orbits, as in Gómez and Mondelo (2001)

and Masdemont (1999), Gómez et al. (2004), and Koon et al. (2008). For a prescribed energy
level, the thin solid curves in Fig. 2 show that there exists a halo orbit near Li , for i = 1, 2,
that has two complex Floquet multipliers on the unit circle and different from one. There are
two more real Floquet multipliers, one of them greater than one and the other less than one.
The Floquet multipliers and corresponding energy levels for the halo orbits in Figs. 8 and 12
to 19 are shown in Table 1.

The unstable manifold of such a halo orbit is a two-dimensional surface, see Fig. 8. On
the other hand, close to either of the two libration points L j , for j = 1, 2, there is a four-
dimensional center manifold, which exists due to the fact that L j has four eigenvalues on
the unit circle and two more on the real line excluding one.

On the energy surface the center manifold of the co-linear libration points is a little
different. In Koon et al. (2008) the authors verify that for fixed energy, the center manifold
of L j , for j = 1, 2, is a normally hyperbolic invariant manifold (NHIM) corresponding to a
normally hyperbolic three-sphere that is invariant for the linearized system. Thus, in a small
neighborhood of L j the center manifold becomes a deformed three-sphere for the nonlinear
system. Moreover, it is a three-dimensional hyperbolic invariant manifold in a five-dimen-
sional energy surface with one stable direction. Therefore the stable manifold of the center
manifold is four-dimensional.
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In this setting, dimension counting gives a heuristic argument that motivates why connect-
ing orbits from halo orbits to torus-like objects appear quite naturally in our problem, as seen
in Figs. 12, 13, 14 and 19. We have mentioned that the center manifold of a libration point
Li restricted to the energy surface is a three-dimensional NHIM, so we can do dimension
counting analyses similar to those above. The main observation is that for a fixed value of
the energy, these quasi-halo orbits are lower dimensional whiskered quasi-periodic solutions
(see Fontich et al. 2009) that lie inside the three-dimensional center manifolds of the collinear
libration points.

Now, the halo orbit is a one-dimensional normally hyperbolic object with one unstable
direction. The halo orbit itself also belongs to the center manifold of Li and its unstable
manifold is a two-dimensional object in the energy surface. Finally, by dimension counting,
we notice that a transversal intersection between the unstable manifold of the halo orbit of
L j and the stable manifold of the center manifold of L j is a one-dimensional object.

Several authors (Jorba and Masdemont 1999; Masdemont 2005; Alessi et al. 2009) have
explored the center manifolds of collinear libration points by means of Lindstedt-Poin-
caré expansions of the Hamiltonian restricted to each center manifold. These computations
suggest that for the energy levels under consideration in this paper there exist large regions
in the center manifold that exhibit quasi-periodic motions. The z = 0 sections of the center
manifolds reveal that most of these quasi-periodic obits are two-dimensional invariant tori in
the center manifold (see for instance Fig. 3 in Alessi et al. (2009)). These invariant tori are also
normally hyperbolic and their corresponding stable manifolds are two-dimensional objects
inside the four-dimensional stable manifold of the center manifold. These codimension-one
stable manifolds separate the four-dimensional stable manifold into regions.

A trajectory in the intersection of the unstable manifold of the halo orbit and the stable
manifold of the center manifold has a positive probability of being either on the stable man-
ifold of an invariant torus or in a region bounded by stable manifolds of invariant tori. It is
even possible that the trajectory belongs to the stable manifold of a periodic orbit (e.g., a halo
orbit) in the center manifold of L j . However, this is unlikely since the stable manifold of a
periodic orbit is a two-dimensional object inside a four-dimensional stable manifold. Thus,
it is more likely that a trajectory in the intersection of the unstable manifold of a halo orbit
with the stable manifold of the three-dimensional center manifold of a libration point passes
close to a two-dimensional hyperbolic quasi-periodic orbit in the center manifold.

Figure 19a, b show two connections from a halo orbit to a quasi-halo orbit nearby, from the
continuation displayed in Fig. 15, where the energy value E = −1.5130 matches the value
h = −1.507 used for Fig. 1 in Gómez and Mondelo (2001) and Fig. 3 in Alessi et al. (2009),
where h = E +μ(1+μ)/2. In Fig. 19c, d we show the intersections of these trajectories with
the plane z = 0. If we compare these intersections to the corresponding ones in Gómez and
Mondelo (2001) and Alessi et al. (2009), we discover that the trajectory seems to approach
one of these quasi-halo orbits and then drift away from it. We conclude that the trajectory
computed by our methods is shadowing a connecting orbit in the intersection of the unstable
manifold of the halo orbit and the stable manifold of the corresponding normally hyperbolic
lower dimensional torus.

9 Numerical aspects

In our computations we used the continuation and bifurcation software AUTO (Doedel 1981;
Doedel et al. 2010) for computing families of periodic orbits, associated Floquet eigenfunc-
tions, unstable manifolds, and connecting orbits. Orbits are continued in AUTO as solutions to
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a suitable boundary value problem (BVP), as described in this paper. To compute approximate
solutions of BVPs, AUTO uses the method of Gauss–Legendre collocation with piecewise
polynomials on adaptive meshes (de Boor and Swartz 1973; Ascher et al. 1981). These cal-
culations can be fast; for example the entire vertical family of periodic orbits V1 can be
computed in 0.12 s on a dual core laptop, using as few as 20 mesh intervals with 4 Gauss
collocation points each, and using 48 continuation steps. In our actual computations we use
more mesh intervals to ensure high accuracy, e.g., with 100 mesh intervals the family V1

can be computed in 0.25 s. We also often use more continuation steps, for example for the
purpose of generating data for computer animations.

Two-dimensional unstable manifolds computed as a solution family by continuation, as
done in Sect. 4, require more mesh intervals and continuation steps when the orbits in the
family wind many times around a torus. For example, a connection from the halo orbit H1 to
a torus near H2, winding around the torus 12 times, can be reached easily in 15 s, using 200
mesh intervals and 1,000 continuation steps. However, we also computed such connections
with a much higher number of windings, which requires a correspondingly higher number
of mesh intervals and continuation steps. In fact, we have used up to 1,500 mesh intervals in
such cases. Furthermore, to ascertain the correctness of our results, we have computed these
manifolds with various choices of the number of mesh intervals.

Similarly, the continuation of solutions to the 18-dimensional system to follow periodic-
orbit-to-torus connections, as given in Sect. 6 and used in Sect. 7, requires a correspondingly
high number of mesh intervals. Since the dimension of the system is then 18, i.e., three times
the dimension of the systems used for continuing periodic orbits and unstable manifolds, the
computation time would increase by a factor 33, that is 27. However, this is reduced since
AUTO takes into account the zero structure of the submatrices of the full Jacobian matrix
that correspond to individual mesh intervals. On the other hand, the connecting orbit requires
significantly more mesh intervals than the base periodic orbit and its Floquet eigenfunction,
and AUTO does not take advantage of this. Thus the continuation of the coupled system
(periodic orbit, Floquet eigenfunction, connecting orbit) in Sect. 6 can take significant com-
puter time, also because such continuation with varying energy requires many continuation
steps. In extreme cases the calculations have taken up to 6 h computer time.
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