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Abstract The long-term effects of a distant third-body on a massless satellite that is orbit-
ing an oblate body are studied for a high order expansion of the third-body disturbing function.
This high order may be required, for instance, for Earth artificial satellites in the so-called
MEO region. After filtering analytically the short-period angles via averaging, the evolution
of the orbital elements is efficiently integrated numerically with very long step-sizes. The
necessity of retaining higher orders in the expansion of the third-body disturbing function
becomes apparent when recovering the short-periodic effects required in the computation of
reliable osculating elements.

Keywords Third-body perturbation · Lie transforms · Averaging · High-altitude orbits

1 Introduction

Semi-analytical integration is the common approach used by aerospace engineers in the math-
ematical problem of investigating the long-term dynamics of uncontrolled man-made Earth
satellites, like non-operational orbits and debris. Short-periodic angles are filtered analytically
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436 M. Lara et al.

via averaging procedures and then, the averaged system is integrated numerically with very
long step-sizes (Green 1979; Slutsky 1983; McClain 1977; Valk et al. 2009).

The secular contribution of zonal terms of the gravitational potential, as well as their
influence in the pericenter dynamics, is essential in the description of the orbit evolution in
the long-term (Brouwer 1959; Kozai 1962). Also the influence of some tesseral harmonics
can be crucial when dealing with resonant motion, a case in which tesseral resonant terms
must be left unaveraged (Gedeon 1969; Proulx et al. 1981; Collins 1981; Ely and Howell
1996). Besides, in the case of Earth-like bodies the second order zonal coefficient, J2, clearly
dominates over other coefficients in the expansion of the gravitational potential, and hence
the averaging must be extended to consider terms of the order of J 2

2 even for a qualitative
description of the dynamics (Coffey et al. 1986). Third-body perturbations may also show
important effects in the long-term dynamics—as well as drag for those celestial bodies with a
dense enough atmosphere—depending on the orbital characteristics (Kozai 1959; Giacaglia
1974). Besides, the effect of solar radiation pressure may become an important issue for
satellites with high area-to-mass ratio (Anselmo and Pardini 2010).

When dealing with the long-term dynamics induced by gravitational perturbations of a
distant body, the third-body disturbing function is expanded in the ratio of the distances from
the central body as an infinite series in Legendre polynomials, that, commonly, is truncated
up to the second degree. Useful as it can be in the description of the qualitative dynamics
(Broucke 2003) this early truncation is not acceptable, in general, in the time history descrip-
tion of real orbits, where the third-body disturbing function must be truncated to a higher
degree (Collins and Cefola 1979; Métris and Exertier 1995; Steichen 1998; Prado 2003;
Cefola et al. 2003; Vashkov’yak 2005; Laskar and Boué 2010).

In many cases third-body perturbations are of second order when compared with the (first
order) J2 effect; that is the case, for instance, of satellites in low Earth orbits where the effect
of lunisolar perturbations is small. Then, it is enough to retain the contribution of the second
degree term of the expansion of the third-body disturbing function. However, third-body
perturbations are much more important for orbits at higher altitudes, the so-called MEO
region (medium Earth orbits) as well as high Earth orbits. In fact, lunisolar perturbations
are comparable in strength to the J2 disturbing effect at the altitudes of geostationary orbits.
For this and other cases, the inclusion of higher order terms of the third-body perturbation is
essential in the construction of semi-analytical theories. Truncations up to the fifth degree in
the parallactic ratio are considered quite accurate (Métris and Exertier 1995; Steichen 1998);
however, available recurrence relations allow the extension of the series expansion to any
degree (Cefola and Broucke 1975; Collins and Cefola 1979; Laskar and Boué 2010).

We investigate the long-term dynamics of orbits about an axisymmetric body for such
orbital configurations that the third-body perturbation cannot be considered to be second
order when compared to J2. More specifically, we focus on orbital configurations for which
second order effects of J2 can be of the same order of magnitude as perturbations due to
the P2 thru P5 terms in the Legendre polynomials expansion of the third-body’s disturbing
function. Because this is the case for traditional Global Navigation Satellite Systems (GNSS)
constellations we call this problem a GNSS-type problem. Notice that we do not study the
real case of an Earth’s GNSS satellite, where different perturbations may have important
effects, as illustrated in Fig. 1 (see also Valk et al. 2009; Rossi 2008); specifically, we do not
deal with perturbations of the Sun, which have a similar effect to those of the Moon, or with
the case of tesseral resonances that is so common in this kind of orbit. We further simplify the
model by assuming that the third-body is in circular orbit, thus neglecting periodic effects in
the orbital parameters due to the eccentricity of the third-body’s orbit. However, at least for
Earth’s orbits, it is known that the circular orbit approximation does not cause any noticeable
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On the third-body perturbations of high-altitude orbits 437

Fig. 1 Order of magnitude of the
main perturbations acting on
objects in the MEO region,
relative to the Keplerian
attraction (after Montenbruck and
Gill 2001). The area-to-mass
ratio used in the computation of
the solar radiation pressure is
0.01 m2/kg

degradation in the long-term GNSS orbit propagation (Chao and Gick 2004). Note, however,
that in the very long-term, say in the order of hundreds of years, third body effects begin to
present a diffusion process that cause the eccentricity to grow along lines of resonances with
the third body, that can, in time, yield a hyperbolic orbit (Ely 2002). We limit our study here
to scales of tens of years, rather than hundreds, in which the diffusion effects are still not
apparent.

We approach the GNSS-type problem using perturbation theory based on Lie transforms
(Hori 1966; Deprit 1969; Campbell and Jefferys 1970), and perform a higher order averaging
to investigate the long-term evolution of GNSS-type orbits. We use the standard approach
except for we include Kozai-like constants in each term of the generating function in order to
get the mean elements of the theory as close as possible to the average value of the osculating
elements (Kozai 1962; Deprit and Rom 1970; Métris 1991b; Steichen 1998). With our Ham-
iltonian arrangement, the coupling between J2 terms and third-body perturbations occurs at
the ninth order of the theory, what compels us to take up to the sixth degree in the expansion
of the third-body disturbing function. This high order in the perturbation theory is required
if one aims at computing accurate osculating elements when recovering the short-periodic
effects that are excluded from the averaged solution. Differences between a single averaged
model, in which the mean anomaly of the satellite is removed, and a double averaged model,
where the mean anomaly of the third-body is also removed, are shown to be quite relevant
for short-term propagations of the mean elements alone, but both averaging approaches are
equivalent in the computation of osculating elements. Systematic application of the semi-
analytical theory to different examples shows the importance of the initial argument of the
node in the long-term evolution of the orbital eccentricity and inclination. This results from
resonances in the angular motion of the node and periapsis of the satellite with the angular
motion of the third body node (Ely and Howell 1997).

2 Model

We just deal with a simplified model in which a particle of negligible mass (the satellite)
moves in the gravitational field of an oblate body under the gravitational pull of a distant
third-body. Thus, the motion of the satellite is derived from the potential

V = −μ
r

+ μ

r

α2

r2 J2

(
3

2

z2

r2 − 1

2

)
+ V ′ (1)
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where μ is the central body’s gravitational parameter, r is the distance from the origin, α is
the equatorial radius of the oblate body, J2 is the zonal coefficient of second degree, and z is
the satellite’s coordinate in the direction of the symmetry axis of the oblate body. V ′ is the
third-body disturbing potential that, in the mass-point approximation, is

V ′ = −μ
′

r ′

(
r ′

||r − r′|| − r · r′

r ′2

)
(2)

where μ′ is the third-body’s gravitational parameter, r and r′ are the radius vector of the
satellite and of the third-body, respectively, of corresponding modulus r and r ′. We must
note that the model in Eq. (1) is made of a truncation of the geopotential at the second degree
zonal term, whereas the third-body contribution is not truncated.

For a close satellite to the central body the ratio r/r ′ is small and the third-body potential
in Eq. (2) can be expanded in power series of (r/r ′)

V ′ = −β n′2 a′3

r ′
∑
j≥2

( r

r ′
) j

Pj (cosψ), (3)

where ψ is the angle encompassed by r and r′, β = m′/(m′ +m) is the third-body’s reduced
mass, a′ is the semi-major axis of the third-body’s orbit, n′ is the third-body’s mean motion,
and Pj are Legendre polynomials. Note that a term −μ′/r ′ has been neglected from Eq. (3)
because it has no effect on the equations of motion in the restricted problem approximation.

The state vector of the satellite and of the third-body are conveniently expressed by their
orbital elements, noted (a, e, i,�, ω,M) in the usual notation; when we refer to the third-
body, the orbital elements are written in prime notation.

The potential Eq. (1) is conveniently expressed in orbital elements by recalling that the
Cartesian and orbital frames are related by three angles of the Euler type. Thus,⎛

⎝ x
y
z

⎞
⎠ = R3(−�) R1(−i) R3(−θ)

⎛
⎝ r

0
0

⎞
⎠ (4)

where θ is the argument of latitude and R1 and R3 are the usual rotation matrices about the
x and z axis, respectively.

Besides, we further simplify the model by assuming that the third-body is moving with
circular Keplerian motion, and that the inertial origin is defined by the intersection of the
equatorial plane of the central body and the orbital plane of the third body. Then, r ′ =
a′,M ′ = M ′

0 + n′ t,�′ = 0, and

x ′ = a′ cos(ω′ + M ′)
y′ = a′ c′ sin(ω′ + M ′)
z′ = a′ s′ sin(ω′ + M ′)

(5)

where we use the abbreviations c and s for cos i and sin i , respectively.

3 Perturbation theory

In order to filter the short-period effects in the potential Eq. (1) we proceed by canonical
perturbation theory using Lie transforms (Hori 1966; Deprit 1969; Campbell and Jefferys
1970), which these days is customarily used as a standard procedure in artificial satellite
theory (see, for instance, Palacián 2007; Lara et al. 2010). Thus, we set the Hamiltonian
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H =
∑
m≥0

1

m! Hm (6)

where H0 = − 1
2 n2a2 is the Keplerian term, and the first order term H1 = � n′ is introduced

for convenience to avoid the explicit appearance of time in the Hamiltonian by moving to
an “extended” phase space (see, for instance, Brouwer and Clemence 1961). Because we
work in the restricted problem approximation, in which the motion of the third-body is not
affected by the motion of the satellite, the real value and time evolution of �, the conjugate
momentum to the third-body’s mean anomaly, is irrelevant in our study.

Although we are not tackling the problem of lunisolar perturbations in this paper, we
arrange our Hamiltonian model based on the physical parameters of artificial satellites in the
high-MEO region, where traditional GNSS constellations reside. That is why we call this
model a GNSS-type problem. For the GNSS-type problem, the (formal) small parameter in
the perturbation approach is taken to be of the order of one tenth. In consequence, we set
H2 = H3 = 0 and put the J2 perturbation at the fourth order

H4 = μ

r

α2

r2 J2

(
3

2

z2

r2 − 1

2

)
.

The first term in the expansion of the third-body perturbation appears, then, at the fifth order

H5 = −β n′2 r2 P2(cosψ),

and the terms H6,H7, . . ., are given by the consecutive next degrees in the expansion of
Eq. (3), respectively. We truncate the Hamiltonian at the ninth order in the small parameter,
corresponding to the sixth degree in the expansion of the third-body disturbing function, for
reasons that will be apparent below.

To express the Legendre polynomials in orbital elements we must compute

cosψ = x x ′ + y y′ + z z′

r a′

using Eqs. (4) and (5). Besides,

r = a η2

1 + e cos f
,

where f is the true anomaly of the satellite. It deserves to mention that the orbital elements
used are not canonical variables. Therefore, hereafter we assume that they are expressed as
functions of Delaunay variables 
 = M, g = ω, h = �, L = n a2,G = L η, and H =
G cos i , where η = √

1 − e2 is the usual eccentricity function. One additional remark is that
Delaunay variables are singular for zero eccentricity and/or zero inclination, hence nonsingu-
lar variables like for instance Poincaré variables or semi-equinoctial elements are commonly
used in semi-analytic integration. Nevertheless, as the generating function of the Lie trans-
form can be applied to any function of Delaunay variables, the theory is naturally computed
in Delaunay variables and conveniently reformulated in non-singular variables if required.

Once the Hamiltonian (6) is expressed in Delaunay variables, we apply perturbation
theory by Lie transforms to compute the transformation from osculating to mean elements.
More specifically, we base on Deprit’s approach that is specifically devised for automatic
computation by machine (Deprit 1969). The Lie transforms algorithm is used as a standard
perturbation method these days; in addition to the mentioned research papers, an introduction
to the topic can also be found in textbooks such as Meyer and Hall (1992), Boccaletti and
Pucacco (1998). Because we put the term� n′ at the first order we are ignoring the problem of
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small divisors, and hence we are implicitly assuming that we are not dealing with resonances
of the mean motion of the satellite with the mean motion of the third-body. Moreover, this
means that we are also assuming that the third-body mean anomaly varies sufficiently slowly
such that its variation may be ignored for the purpose of averaging over the mean anomaly
of the satellite. Therefore, to get the double averaged Hamiltonian we can proceed in two
steps, using two different canonical transformations. The first one will eliminate the mean
anomaly of the satellite from the Hamiltonian, while a second canonical transformation will
remove also remaining periodic terms that depend on the mean anomaly of the third-body.
This splitting of the canonical transformation has the advantage that the generating function
of the transformation at each step only requires solving quadratures—contrary to partial dif-
ferential equations. Recall that the perturbation algorithm provides also the transformation
equations of each canonical transformation in explicit form.

3.1 Averaging the mean anomaly

We first perform a Delaunay normalization (Deprit 1982)

T � : (
, g, h, L ,G, H) −→ (
�, g�, h�, L�,G�, H �)

from original to star variables that averages the Hamiltonian over the mean anomaly. With
our Hamiltonian arrangement, second order terms in J2 appear at the eighth order of the
Hamiltonian, and the coupling of the J2 perturbation with the third body makes apparent at
the ninth order, at which we stop the perturbation algorithm. Note that reaching the ninth
order in the Lie transforms theory implies that the original Hamiltonian (6) must include up
to the sixth degree in the expansion in Legendre polynomials of the third-body disturbing
function:

H9 = −9!β n′2r2
( r

a′
)4

P6(cosψ).

We note that the Hamiltonian term H4 is naturally expressed as a Poisson series in the
true anomaly of the satellite

∑
j,k

Q j,k cos( j f + kg)

whose coefficients Q j,k depend only on momenta, and that consists of 11 terms. On the con-
trary, terms related to the third-body disturbing function are naturally expressed as Poisson
series in the eccentric anomaly u of the satellite

∑
j,k,l,m

Q j,k,l,m cos( ju + kg + lh + mλ)

that are made of 113, 392, 1013, 2178 and 4141 summands, for terms H5 to H9 respectively.
This duality in the anomalies will not cause problems in the perturbation approach where
the necessary integrals are solved by using the known differential relations r du = a dM ,
between the eccentric and mean anomaly, and r2 d f = a2η dM , between the true and mean
anomalies.

The simultaneous appearance of the true and eccentric anomalies first takes place, with
our Hamiltonian arrangement, at the eighth order of the perturbation approach. At this order,
second order terms in J2 depending on sine and cosine functions of f , as well as the equation
of the center, must be handled jointly with terms of the fifth degree in the expansion of the
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Table 1 Integrals Ik = 〈( f − 
) sin k f 〉, k = 1, . . . , 5, cf. recurrences in Métris (1991a)

I1 = η
e

(
3
2 − η − 1

2η
2
)

I2 = − η

e2

(
3 − 2η − 3η2 + 2η3 + 4η2 log 2η

1+η
)

I3 = η

e3

(
9
2 − 3η − 4η2 + 7η3 − 9

2η
4 + 16η2 log 2η

1+η
)

I4 = − η

e4

[
6 − 4η + 2η2 + 16η3 − 28η4 + 8η5 + 8η2(5 + η2) log 2η

1+η
]

I5 = η

e5

[
15
2 − 5η + 131

6 η2 + 30η3 − 183
2 η4 + 149

3 η5 − 25
2 η

6 + 16η2(5 + 3η2) log 2η
1+η

]

third-body disturbing function, which depend of periodic functions of u. Nevertheless, at
this stage there are not coupled terms still, and the computation of the eighth order averaged
Hamiltonian and disturbing function can be carried out in closed form—the closed form
integration of terms related to the center equation is achieved with relations provided by
Kelly (1989), Métris (1991a). Thus, cf. Métris (1991a), 〈( f − 
) cos k f 〉 = 0 for k integer,
and the other nontrivial integrals that appear in the computation of the eighth order averaged
Hamiltonian are given in Table 1.

The singularities of the closed form expressions in Table 1 for the zero-eccentricity case
are just virtual, and these integrals are efficiently evaluated for the case of small eccentrici-
ties by a simple series expansion in powers of e (Métris 1991a). Notwithstanding, the series
expansion is never required in our case because the combination of terms affected of nega-
tive powers of the eccentricity as derived form the Lie triangle construction (Deprit 1969)
simplifies after a simple rearrangement. Specifically, we find out that

2e (6 + e2) I1 + 4(2 + 3e2) I2 + 3e (4 + e2) I3 + 6e2 I4 + e3 I5 = 4

3

1 − η

1 + η
(1 + 2η) η3.

(7)

On the other side, the closed form expression of the eighth order generating function, as
well as the transformation equations derived from it, depends on special functions related to
the integration of the equation of the center (Osácar and Palacián 1994). At this stage, we
decided to expand the eighth order generating function in power series of the eccentricity. For
consistency with terms in the averaged Hamiltonian that result from the closed form averag-
ing of H9, we truncate the series up to the eighth order. Then, differentiations in the Poisson
brackets operator needed in the computation of the ninth order averaged Hamiltonian, reduce
this order by two to e6, cf. Deprit and Rom (1970), which is precisely the maximum power
of the eccentricity that appears in the closed form expression of 〈H9〉
. This truncation, of
course, limits the application of the theory to periods of time where there is no significant
eccentricity growth in the orbits being evaluated. This is exactly the case of the GNSS-type
problem, at least in the case of time scales of decades as studied in this paper.

After averaging, the new Hamiltonian is notably simplified

T �H ≡ K =
∑
m≥0

1

m! Km, (8)

where Ki = Hi , i = 0, . . . 3, and with our Hamiltonian arrangement we check that

K j = 〈H j 〉
, j = 4, . . . , 7,

K8 = 〈H8〉
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+8!
(

−n2a2

2

)
α4

a4 J 2
2

3

64η7

{
− 5(1−2c2 − 7c4)+4(1−3c2)2η+(5−18c2+5c4) η2

+2
1 − η

1 + η
s2 [

5(1 − 7c2) (1 + 2η)+ (1 − 15c2) η2] cos 2g

}

where both Delaunay variables and functions of them are now assumed to be expressed in
the star notation, although we alleviate the notation suppressing the stars whenever there is
no risk of confusion. Terms in addition to 〈H8〉
 that appear in K8 are due to second order
effects of J2. The coupling of J2 (term H4) with the third-body terms H5 occurs at the ninth
order. Thus, K9 is made of corresponding terms in addition to 〈H9〉
. The expression is quite
involved and is not presented.1 Terms K5 to K8 are made of 23, 56, 113 and 200 summands,
respectively. The term K9 has been computed up to the sixth order in the eccentricity and is
made of 319 terms.

The equations of motion are obtained from Hamilton equations

d(
, g, h)

dt
= ∂K

∂(L ,G, H)
,

d(L ,G, H)

dt
= − ∂K

∂(
, g, h)
. (9)

After averaging the mean anomaly dL/dt = 0 and, therefore, L and a = L2/μ are constant.
Then, the time evolution of the mean anomaly decouples from the two degrees of freedom,
time-dependent system

d(g, h)

dt
= ∂K

∂(G, H)
,

d(G, H)

dt
= − ∂K

∂(g, h)
.

The numerical integration of this system can be done with longer stepsizes than the original
one because of the filtering of short periodic effects via averaging. At each step of the numeri-
cal integration the osculating elements can be recovered analytically using the transformation
equations computed also by the Lie transforms method.

We note that, in order to keep the star variables as close as possible to the average value
of corresponding osculating ones ξ� ≈ 〈ξ 〉
, ξ ∈ (
, g, h, L ,G, H), we introduced Kozai’s
term

k = −3n J2 α
2 1 + 2η

η3

1 − η

1 + η
s2 sin 2g

in the solution of the fourth order generating function as an arbitrary constant (Kozai 1962,
last equation of section II) so to ensure that the corresponding transformation equations are
free from hidden long-period terms. Analogously, because of the closed form averaging of
terms related to the third-body disturbing function, adequate arbitrary constants have been
introduced in the fifth and higher orders of the generating function in order to guarantee their
average to zero. In spite of that, the equivalence between mean elements and the average of
corresponding osculating elements is no longer possible for higher orders than the seventh,
within our Hamiltonian arrangement, due to non-trivial terms derived from the Lie triangle.
“Centered elements” could be obtained if desired by means of a new non-canonical trans-
formation (Métris 1991b; Métris and Exertier 1995), but we do not follow this interesting
approach because we are better interested in carrying out a new Lie transform that removes
the time from the system.

1 Readers interested in having the literal expressions of this section should contact the first author of this
paper.
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3.2 Time removal

The third-body’s mean anomaly is straightforwardly removed performing a new Lie trans-
form

T ∗ : (
�, g�, h�, L�,G�, H �) −→ (
∗, g∗, h∗, L∗,G∗, H∗),

from star to asterisk variables. After the double averaging we get

T ∗K ≡ S =
∑
m≥0

1

m! Sm (10)

where, doing without the asterisk notation without risk of confusion, Si = Hi , i = 0, . . . , 3,

S4

S0
= −4! α

2

a2 J2
1 − 3c2

2η3 (11)

S5

S0
= 5! n′2

n2

β

16

{
(1 − 3c′2)

[
(1 − 3c2) (2 + 3e2)− 15e2s2 cos 2g

]
(12)

+3(2 + 3e2) (4c′ s′ c s cos h + s′2s2 cos 2h)
15

2
e2 [

s′2(1 − c)2 cos(2g − 2h)+ s′2(1 + c)2 cos(2g + 2h)

+4c′ s′ (1 − c) s cos(2g − h)− c′ s′ (1 + c) s cos(2g + h)
]}

S6 = 0, (13)

S7

S0
= 7! n′2

n2 β
a2

a′2
4∑

k=0

Dk

2∑
j=−2

X j Y2 j,k cos(2 jg + kh) (14)

S8

S0
= 8! α

4

a4 J 2
2

3

64η7

{
−5(1 − 2c2 − 7c4) (15)

+4(1 − 3c2)2η + (5 − 18c2 + 5c4) η2

+2
1 − η

1 + η
s2 [

5(1 − 7c2) (1 + 2η)+ (1 − 15c2) η2] cos 2g

}

S9

S0
= 9!n′2

n2 β

⎡
⎣ a4

a′4
6∑

k=0

Qk

3∑
j=−3

Z j q2 j,k cos(2 jg + kh) (16)

−α
2

a2 J2

2∑
k=0

Tk

2∑
j=−2

⎛
⎝ 3∑

m=| j |
p2 j,k,me2m

⎞
⎠ cos(2 jg + kh)

⎤
⎦

where we split S9 into two parts to separate effects coming from the simple averaging of
higher order terms of the third-body disturbing function, from other terms produced by the
coupling of lower orders of the Hamiltonian. Constant coefficients Dk, Qk and Tk , as well
as inclination polynomials Y2 j,k, q2 j,k and p2 j,k,m , and eccentricity polynomials X j and Tj ,
corresponding to S7 and S9 are given in the appendix.

Recall that, up to the eighth order, the contribution of the third-body to the double aver-
aged Hamiltonian is just the double average of the original term. Hence, S5 ≡ 〈H5〉
,λ,
S6 ≡ 〈H6〉
,λ, S7 ≡ 〈H7〉
,λ, and S8 just adds second order terms on J2 to 〈H8〉
,λ. Besides,
〈H6〉
,λ = 〈H8〉
,λ = 0 because they only involve odd degrees (3 and 5, respectively) of
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the third-body disturbing function, which are known to double average to zero (Collins and
Cefola 1979). Finally, as mentioned before, terms Qk Z j qk,2 j cos(2 jg + kh) in Eq. (16) are
the result of the double averaging in closed form 〈H9〉
,λ, while those factored by J2 show
the coupling between oblateness and third-body perturbations up to the sixth power in the
eccentricity.

After the double averaging the system is still of two degrees of freedom, but now it is time
independent. The numerical integration is now much more efficient, and the osculating ele-
ments are recovered analytically using the transformation equations from asterisk variables
to star variables, first, and to star variables to original, osculating ones, then.

4 Numerical tests

Because the theory includes the transformation equations from double-averaged (asterisk)
to single-averaged elements (star) and from single-averaged (star) to osculating elements, at
any step of the numerical integration we can recover analytically the short-periodic effects
removed in the averaging. Therefore, the theory can be used either to compute ephemerides
semi-analytically within a good precision, or to investigate the long-term evolution of the
orbital elements by means of very fast numerical integrations. Below we provide a sample
test in which we compare the numerical integration of the original model, without truncation
of the third-body potential Eq. (2), with results obtained with the single- and double-averaged
models.

For our tests, we base on the physical parameters of the Earth-Moon system, although we
are aware that the Keplerian approximation does not fit to the motion of the Moon. Thus,
we take μ = 398600.4415 km3/s2, α = 6378.1363 km, J2 = 0.0010826, a′ = 384 400 km,
i ′ = 23.5 deg, β = 1/28.8245, and n′ = 2π/27.32 rad/day.

4.1 Short-term propagation

For the first test case we choose a GNSS-type orbit with initial orbital elements a =
28 560 km, e = 0.02, i = 56 deg, and ω = � = M = λ = 0 and perform a short-term
propagation of two months. Note that these initial conditions must be acted by the corre-
sponding Lie transforms before propagated either in the single or double-averaged models.
Thus, for the single-averaged model we need to apply the corrections �a = −1.9 km,
�e = −5.7 × 10−5, �i = −3.96 arc seconds, and �ω = �� = �M = 0, to the orig-
inal orbital elements at epoch. For the double-averaged case we find the same correction
to the semimajor axis because it became constant after removing the mean anomaly, and
�e = −6.42 × 10−5, �i = −14.04 arc seconds, and, again, �ω = �� = �M = 0.

Figure 2 illustrates a short-term propagation comparing results of the direct numerical
integration of the original problem with the numerical integration of the Hamilton equa-
tions of the single and double-averaged Hamiltonians. As noticed in the top plot of Fig. 2, the
semimajor axis suffers periodic short and medium period oscillations induced by the frequen-
cies of both the third-body and the satellite; besides, the single and double-averaged models
both provide the constant value to which the osculating semimajor axes averages. Similar
behavior is found for the other orbital elements, the main difference between the single- and
double-averaged models being that the single-averaged model reveals the two weeks-period
oscillations induced by the third-body, which are flattened by the double averaged-model.
The most conspicuous case are those of the inclination and argument of the node, third from
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Fig. 2 Sample short-term
propagation: numerical
integration of the original
problem (blue lines) versus the
single averaged problem (white
dashed) and the double averaged
one (red dots)

the top and second to bottom plots, respectively in Fig. 2, because the amplitude of the
oscillations induced by the third-body clearly surpasses the amplitude of those oscillations
related to the mean motion of the satellite. Note in the second to bottom plot of Fig. 2
(respectively bottom) that a linear drift with mean rate of 0.0307 deg/day (respectively
646.7 deg/day) has been added (respectively subtracted) to the argument of the node curves
(respectively mean anomaly). These rates correspond to the main part of the mean motion
of the node and of the mean anomaly, respectively, and have been added simply to highlight
the differences between averaged and non-averaged results.

Differences between the real evolution of the orbital elements and that provided by any of
the averaged models are checked to remain below 2 km for the semimajor axes, 0.65 × 10−4

for the eccentricity, and 0.22◦. for both the argument of the pericenter and mean anomaly. For
the argument of the node and inclination, the differences are only ∼15 arc seconds for both
models, but notably smaller in the case of the single-averaged model. These differences are,
of course, unacceptably large in an ephemeris computation. However this situation changes
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Fig. 3 Errors of the
semi-analytical theory after two
months propagation. Abscissas
are days

considerably, as expected, when recovering the short-periodic effects. As presented in Fig. 3,
the errors of the numerical integration of the singly averaged Hamiltonian, followed by the
restoration of the short-periodic terms, are only a few centimeters in the semimajor axis,
almost negligible for the eccentricity, and fall below the arc second (as) for all angles. These
errors would roughly reflect in an error of about 100 m in the position of the satellite after
two months.

4.2 Long-term propagation

For longer propagations the errors of the semi-analytical theory degrade, but still remain with
very good values. Thus, as appreciated in Fig. 4, short-periodic errors reduce to small values,
disclosing long-period errors that are consequence of the Hamiltonian truncation. Neverthe-
less, these errors still remain small after 5 years, a time interval in which the position of the
satellite can be determined within 2 km.

The direct propagation of the mean elements of the double-averaged model is very fast,
generally hundreds of times faster that the propagation of the single-averaged model. Hence,
the double-averaged is useful in the exploration of the long-term behavior for different ini-
tial conditions. As presented in Fig. 5, these long term propagations show the important
influence in the eccentricity and inclination evolution of the initial argument of the node of
the satellite—or, more precisely, the difference between the arguments of the node of the
third-body and the satellite’s orbit. The initial argument of the periapsis has also an important
effect in the long-term evolution of the eccentricity, as shown in Fig. 6, but a negligible effect
in the inclination.

In order to check that simulations using the mean elements propagation present the true
qualitative and quantitative nature of the propagated orbit, all the cases presented here have
been compared with a propagation of the original osculating equations of motion derived
from Eqs. (1) and (2). We found a perfect qualitative agreement between the propagation
of secular terms and the non-averaged motion, with errors that generally remain below one
thousandth for the eccentricity, and below one arc minute for the inclination. An example is
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Fig. 4 Sample long-term
propagation: errors between the
semi-analytical integration of the
double averaged model and the
numerical integration of the
original problem. Abscissas are
years

Fig. 5 Sample long-term
propagations for ω = 0 and:
� = 0, full line, 90, dashed, 180,
dotted, and 270◦, dash-dotted.
Top plot: eccentricity variation.
Bottom plot: inclination
variations
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Fig. 6 Sample long-term
propagations for � = 0 and:
ω = 0, full line, 30, dashed, 60,
dotted, and 90◦, dash-dotted.
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Fig. 7 Errors in the long-term
propagations of the secular
elements for ω = 0 and
� = 270◦. Top: eccentricity
errors; bottom: inclination errors

provided in Fig. 7 for the orbit in Fig. 5 with the initial node at 270◦, which is the case with
the highest increase in the eccentricity value.

Besides, for the mean elements propagation we checked that the errors obtained with the
eighth order theory are roughly the same as those obtained when using lower order trunca-
tions. Hence, truncating the double averaged Hamiltonian up to the fifth order will be enough
in the investigation of the long-term behavior of GNSS-type orbits, thus obtaining a further
increase in the speed of the numerical integration.

5 Conclusions

The case of an artificial satellite problem in which the third-body perturbation is comparable,
but smaller, than the J2 perturbation is efficiently integrated in a semi-analytical way. This is
the case for traditional GNSS constellations (GPS, GLONASS, and Galileo). But, in addition
to the perturbations studied here, the problem of GNSS orbits must also to take into account
the non-Keplerian motion of the Moon, possible resonances with tesseral harmonics and the
contribution of higher order zonal harmonics.

Despite we have not dealt with the long-term evolution of GNSS orbits, some of the
conclusions may apply. Specifically, for both the satellite’s inclination and argument of the
node the amplitude of periodic terms related to the mean anomaly of the third-body clearly
exceeds that of terms related to the mean anomaly of the satellite. This fact makes that the
mean inclination and argument of the node derived from the double averaged model may
notably depart from the average value of corresponding osculating elements during short-
term propagations. This difference is of course recovered by applying the terms resulting
from the long period generator. Also, the initial difference between the arguments of the
node of the third-body and that of the satellite has a radical effect in the long-term behavior
of the orbital eccentricity. This initial node has also important repercussions in the orbital
inclination, whose mean value can vary by several degrees. The initial argument of the pe-
riapsis is also crucial in the orbit evolution in the long-term, but in this case the effect is only
relevant for the secular evolution of the eccentricity.

This orbital behavior is efficiently investigated by the numerical integration of secular
Hamilton equations that are obtained after a Lie transforms averaging procedure that removes
both the satellite’s and the third-body’s mean anomalies. We also checked that all the relevant
features, are apparent from a simplified Hamiltonian that only considers the main term in the
Legendre polynomials expansion of the third-body disturbing function. Nevertheless, results
provided by this early truncation are not accurate enough for the computation of precise
ephemeris, where a higher order truncation of the third-body disturbing function is required,
at least up to the sixth degree, because corresponding terms are of the same order of coupling
terms with the J2 perturbation.
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Appendix: Tables with coefficients of the double averaged Hamiltonian

For brevity, the notation γ ≡ 1 ± c is used in following tables (Tables 2, 3, 4, 5, 6).

Table 2 Constant coefficients
D j , Q j , and Tj

j D Q T

0 3 − 30c′2 + 35c′4 5 − 105c′2 + 315c′4 − 231c′6 1 − 3c′2

1 s′ c′ (3 − 7c′2) s′ c′ (5 − 30c′2 + 33c′4) s′ c′

2 1 − 8c′2 + 7c′4 s′2 (1 − 18c′2 + 33c′4) s′2

3 s′3 c′ s′3 c′ (3 − 11c′2)
4 s′4 s′4(1 − 11c′2)
5 s′5 c′

6 s′6

Table 3 Eccentricity
polynomials X j and Z j

j X Z

0 8 + 40e2 + 15 e4 1 + 21
2 e2 + 105

8 e4 + 35
16 e6

±1 e2 (2 + e2) e2 + 5
3 e4 + 5

16 e6

±2 e4 e4 (10 + 3e2)

±3 e6

Table 4 Inclination polynomials
Y2 j,k in Eq. (14)

k j = 0 j = ±1 j = ±2

0 9
16384 (3 − 30c2 + 35c4) − 315

8292 (1 − 8c2 + 7c4) + 6615
32768 s4

1 45
2048 s c (3 − 7c2) ∓ 315

2048 s γ (1 ± 7c − 14c2) ± 6615
4096 s3 γ

2 45
4096 (1 − 8c2 + 7c4) − 315

2048 γ
2(1 ∓ 7c + 7c2) − 6615

8192 s2 γ 2

3 315
2048 s3 c ∓ 2205

2048 s γ 2(1 ∓ 2c) ∓ 6615
4096 s γ 3

4 315
16384 s4 + 2205

8192 s2 γ 2 + 6615
32768 γ

4

Table 5 Inclination polynomials q2 j,k in Eq. (16)

j k = 0 k = 1

0 + 25
32768 (5 − 105c2 + 315c4 − 231c6) + 525

8192 s c (5 − 30c2 + 33c4)

±1 − 4725
131072 s2 (1 − 18c2 + 33c4) ∓ 4725

32768 s γ (1 ± 18c − 36c2 ∓ 66c3 + 99c4)

±2 + 10395
1048576 s4 (1 − 11c2) ± 10395

262144 s3 γ (2 ± 11c − 33c2)

±3 − 495495
2097152 s6 ∓ 1486485

524288 s5 γ
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Table 5 continued

j k = 2 k = 3

0 + 2625
65536 s2 (1 − 18c2 + 33c4) + 2625

16384 s3 c (3 − 11c2)

±1 − 4725
262144 γ

2(17 ∓ 108c − 90c2 ± 660c3 − 495c4) ∓ 14175
65536 s γ 2(3 ± 5c − 55c2 ± 55c3)

±2 + 51975
2097152 s2 γ 2 (1 ∓ 22c + 33c2) ± 51975

524288 s γ 3 (2 ∓ 11c + 11c2)

±3 + 7432425
4194304 s4 γ 2 ± 2477475

1048576 s3 γ 3

j k = 4 k = 5 k = 6

0 + 1575
32768 s4 (1 − 11c2) + 17325

16384 s5 c 5775
65536 s6

±1 − 14175
131072 s2 γ 2 (1 ∓ 22c + 33c2) ∓ 155925

65536 s3 γ 2 (1 ∓ 3c) 155925
262144 s4 γ 2

±2 − 10395
1048576 γ

4 (13 ∓ 44c + 33c2) ∓ 114345
524288 s γ 4 (2 ∓ 3c) 114345

2097152 s2 γ 4

±3 − 1486485
2097152 s2 γ 4 ∓ 1486485

1048576 s γ 5 495495
4194304 γ

6

Table 6 Inclination polynomials p2 j,k,m in Eq. (16)

j m k = 0 k = 1 k = 2

0 0 9
64 − 51

32 c2 + 141
64 c4 s c

(
51
16 − 141

16 c2
)

s2
(

39
64 − 141

64 c2
)

1 27
64 − 3c2 + 273

64 c4 s c
(

6 − 273
16 c2

)
s2

(
81
64 − 273

64 c2
)

2 141
256 − 117

32 c2 + 1359
256 c4 s c

(
117
16 − 1359

64 c2
)

s2
(

423
256 − 1359

256 c2
)

3 − 8795
6144 + 4721

1024 c2 − 10689
2048 c4 s c

(
− 4721

512 + 10689
512 c2

)
s2

(
− 1247

2048 + 10689
2048 c2

)

±1 1 s2
(

3
8 − 45

16 c2
)

±sγ
(

93
64 ± 225

64 c − 45
4 c2

)
−γ 2

(
21
64 ± 225

128 c − 45
16 c2

)

2 s2
(

69
128 − 525

128 c2
)

±sγ
(

273
128 ± 645

128 c − 525
32 c2

)
−γ 2

(
33
64 ± 645

256 c − 525
128 c2

)

3 s2
(
− 6743

4096 + 7569
4096

)
∓sγ

(
1701
256 ∓ 6513

1024 c2 − 7569
1024 c2

)
γ 2

(
6987
4096 ∓ 6513

2048 c − 7569
4096 c2

)

±2 2 − 15
2048 s4 ∓ 15

512 s3γ 15
2048 s2γ 2

3 − 177
40960 s4 ∓ 177

10240 s3γ 177
40960 s2γ 2
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