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Abstract Our idea is to imitate Smale’s list of problems, in a restricted domain of mathe-
matical aspects of Celestial Mechanics. All the problems are on the n-body problem, some
with different homogeneity of the potential, addressing many aspects such as central con-
figurations, stability of relative equilibrium, singularities, integral manifolds, etc. Following
Steve Smale in his list, the criteria for our selection are: (1) Simple statement. Also preferably
mathematically precise, and best even with a yes or no answer. (2) Personal acquaintance
with the problem, having found it not easy. (3) A belief that the question, its solution, partial
results or even attempts at its solution are likely to have great importance for the development
of the mathematical aspects of Celestial Mechanics.

Keywords n body problem · Problems · Central configurations · Singularity

Mathematics Subject Classification 70F10 · 70F15

1 Introduction

In February 2005, some participants of the meeting Matemairacorana, organized in
Recife, Brazil, by Hildeberto Cabral, met and discussed open questions. In December 2010,
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370 A. Albouy et al.

an international meeting on Hamiltonian systems and Celestial Mechanics, called Sidimec,
took place in Aracaju, Brazil, in honor of Hildeberto Cabral on his 70th birthday. All partic-
ipants were invited to make contributions to a list of open questions.

The problems deal with the dynamics of equations (1), invariant manifolds, existence of
particular solutions, singularities, relative equilibria and central configurations.

1.1 A few words on the n-body problem

The n-body problem is defined by the second order system of ordinary differential equations

q̈i =
n∑

j �=i

m jr
2a
i j (q j − qi ) (1)

where the positions qi are in R3, the body located at qi has mass mi , ri j = ‖qi − q j‖ and
a = −3/2. In some questions we consider the same equations with different values of a.
When nothing about a is specified, or when we write “the Newtonian n-body problem”, we
mean a = −3/2. The quantities

I = 1

M

∑

i< j

mi m jr
2
i j , U = − 1

2(a + 1)

∑

i< j

mi m jr
2(a+1)
i j , (2)

where M is the total mass, a �= −1, are, respectively called the moment of inertia and the
potential.

1.2 A few words on central configurations

In the n-body problem, a configuration is central if there exists a real number λ such that

λ(qi − qG) =
∑

j �=i

m j‖qi − q j‖2a(qi − q j ). (3)

By qG we mean the position of the center of mass of the system. Here the exponent a is often
taken less than −1. If a = −3/2, we are considering the Newtonian force law of Celestial
Mechanics.

Due to the invariance of Newton’s equation by rotations, one can define a reduced prob-
lem. A fixed point of the reduced problem is called a relative equilibrium. One can prove
that the configuration of a relative equilibrium is a planar central configuration. One counts
central configurations or relative equilibria up to rotation and rescaling.

2 The problems

Problem 1 (Paul Painlevé) Can a non-collision singularity occur in the 4-body problem?

Comments. This would be a singularity at a time t1 which is not a collision and such that
there is no collision in a neighborhood of t1. The question is implicit in Painlevé’s Leçons
de Stockholm, §20 (1895, see Painlevé 1897, 1972) “Si, t tendant vers t1, certains des n
corps ne tendent vers aucune position limite à distance finie, il existe au moins quatre corps
M1, . . . , Mν (ν ≥ 4), qui ne tendent vers aucune position limite, et tels que le minimum ρ(t)
des distances mutuelles ri j de ces points M1, . . . , Mν tende vers zéro avec t − t1, sans qu’au-
cune des quantités ri j tende constamment vers zéro. La singularité en question ne saurait
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donc se produire que par suite de croisements de ν astres entre eux (ν ≥ 4), croisements de
plus en plus fréquents quand t tend vers t1 et de plus en plus semblables à des chocs. Ces
pseudo-chocs ont déjà été signalés par M. Poincaré comme pouvant donner naissance (pour
n > 3) à des solutions périodiques d’une nature particulière.”

Gerver (2003) recalls what is known of the subject of non-collision singularities, in par-
ticular the famous results by Mather and McGehee, by Xia and by him. He then suggests a
possible solution of the 4-body case. A related question is proposed in Xia (2002).

Problem 2 (Aurel Wintner) Is symmetry on the masses and the configuration a necessary
condition for any flat but non-planar solution of the n-body problem, if n > 3?

Comments. This problem is proposed in §389bis of Wintner’s book. A flat solution is such
that the configuration is always in a plane. Such solution is called planar if this plane is fixed.
Wintner gives examples of flat solutions which generalize isosceles solutions, where there is
a symmetry. The study of flat solutions is suggested by the following result: If the configu-
ration is always on a line, then the solution is planar, this line is fixed or the configuration is
central (Wintner 1941, §331).

Problem 3 In the three-body problem with given masses, is there an algebraic invariant
subvariety in the phase space besides the known ones?

Comments. The known ones are obtained by fixing the energy and/or the angular momen-
tum and/or by restricting to an isosceles problem and/or by restricting to the set of homo-
graphic solutions with a given central configuration and/or by restricting to some lower
dimensional 3-body problem. If answered negatively then Bruns’ theorem (see Julliard-Tosel
2000) is reproved, as well as several problems similar to Problem 2. In this kind of problems
one assumes an algebraic constraint along a solution and tries to prove that it implies a much
stronger algebraic constraint. Taking successive time derivatives of this constraint, one finds
a family of constraints that defines an invariant algebraic manifold. A classification of such
manifolds would give another proof of the following results.

1. if the bodies form an isosceles triangle for all time, then either it is equilateral, or two
masses are equal and the problem is isosceles (Wintner 1941, §389).

2. if a 3-body solution has a constant moment of inertia, then it is a relative equilibrium
(Saari’s conjecture, see Moeckel 2008).

3. a solution whose plane containing the three bodies makes a constant angle with the plane
orthogonal to the angular momentum vector is either planar or isosceles (Salehani 2011).

Problem 4 (Richard Montgomery) In the 3-body problem with zero angular momentum and
negative energy, are all bi-infinite syzygy sequences realized by collision-free solutions? Are
all periodic sequences realized by periodic solutions? Are all finite syzygy sequences realized
by solutions asymptotic to an equilateral triple collision when time increases and when time
decreases?

Comments. In the zero angular momentum, negative energy three-body problem, all solu-
tions but Lagrange’s total collapse solution have “syzygies”: instants where the three masses
are collinear but not coincident (Montgomery 2007). The non-collision syzygies come in
three flavors, 1, 2, 3, depending on which mass is between the other two at the syzygy. Thus,
any collision-free solution to the problem yields a bi-infinite sequence, such as ..123231122..
in the symbols 1, 2, 3. Simply write the flavors of syzygy in their temporal order of occurrence.
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If we change the potential from a 1/r to a 1/r2 potential (Montgomery 2005), syzygy
sequences may provide full information on the solutions. If we take the three masses to be
equal, the bounded non-collision orbits are in 1:1 correspondence, modulo symmetries, with
the bi-infinite sequences where the same syzygy does not appear twice in a row, and where
the same pair of syzygies does not appear infinitely many times in a row.

Problem 5 (Alain Chenciner, Andrea Venturelli) Problem of the infinite spin in the total
collision of the n-body problem: in the planar n-body problem, may a configuration make
an infinite number of revolutions before arriving at a total collapse?

Comments. Several claims of even stronger results were published, but even in this basic
case, we cannot find a proof in the corresponding papers. Chazy answered negatively if the
limiting central configuration is non-degenerate. Chazy (1918) indeed “postulates” the non-
degeneracy of any central configuration, and uses the postulate in the proof of this result
(op. cit. p. 361, footnote 1). This postulate is wrong (see e.g. Albouy and Kaloshin 2012).
Probably for this reason, Wintner (1941, p. 431) rightly considered that Chazy did not discard
the infinite spin in the 4-body problem.

Problem 6 (Jean-Pierre Marco) Is the topological entropy positive, in the dynamics of the
isosceles collisionless 3-body problem, for values of the angular momentum and of the energy
such that the integral manifold is a smooth compact manifold?

Problem 7 (George David Birkhoff, Michel Herman) Let M be an integral manifold of the
3-body problem. Do solutions for which I → +∞ as t → +∞ fill up M densely?

Comments. As usual the center of mass is fixed at the origin. An integral manifold is the
intersection of a level of the energy and a level of the angular momentum. Birkhoff (1927)
asks this question in the difficult and natural case where the angular momentum is non-zero,
the energy is negative and the dimension is 3. But even the case with a zero angular momen-
tum and thus a planar solution is unsolved. Note that if the energy is non-negative the answer
is yes. Herman (1998) insisted on this question and reformulated it.

Problem 8 (Giovanni F. Gronchi) Consider the distance d between two points on two dis-
tinct confocal ellipses in R3. If both eccentricities are > 0, is 12 the maximum number of
stationary points of the function d2? If only one of the eccentricities is 0, can this upper
bound be reduced to 10?

Comments. Kholshevnikov and Vassiliev (1999) conjecture that the answer to the first
question is positive. Examples with 12 stationary points, and with 10 points in the cir-
cle-ellipse case, were found (Gronchi 2002). Moreover, the cases with infinitely many points
were completely classified (either two coinciding conics or two concentric coplanar circles)
and are excluded here.

Problem 9 (Jean Chazy, Aurel Wintner, Steve Smale) Is the number of relative equilib-
ria finite, in the n-body problem of Celestial Mechanics, for an arbitrarily given choice of
positive real numbers m1, . . . , mn as the masses?

Comments. See Smale (1998), Hampton and Moeckel (2006), Hampton and Jensen (2011).
The last result (Albouy and Kaloshin 2012) on this question is: for 5 bodies in the plane, the
number is finite, except perhaps if the masses belong to an explicit codimension 2 subvariety
of the space of positive masses.
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Problem 10 Given four masses m1, m2, m3, m4 and with a = −3/2, is there only one
convex central configuration for each cyclic order?

Comments. MacMillan and Bartky (1932) proved there is at least one. Xia (2004) has a
simpler argument. The uniqueness is known if the two ends of a diagonal carry equal masses
(Albouy et al. 2008). It is not known if, the bodies being numbered 1, 2, 3, 4 in cyclic order,
m1 = m2 and m3 = m4. The last theorem in MacMillan and Bartky (1932, §18) gives a part
of the answer in this case.

Problem 11 For any a in some interval containing the exponent −3/2, is there a unique
central configuration of four equal masses with a given axis of symmetry and no other sym-
metry?

Comments. Albouy and Simó (Albouy 1995) conjecture that the answer is positive.

Problem 12 For any a ≤ −1, except for the regular n-gon with equal masses, are there
central configurations of n bodies lying on a circle and having their center of mass at the
center of the circle?

Comments. In the Newtonian case, where a = −3/2, and for n = 4, this problem was
answered negatively by Hampton (2005). However, we are asking for a general method of
proving the symmetry of the central configurations subjected to constraints on the geometry
and the masses, namely, the configuration is co-circular and the center of mass is at the center
of the circle, regardless the value of the exponent a. We suggest to take a = −1 or n = 4 as
a good starting point.

Problem 13 In the Newtonian five-body problem with equal masses, is every central con-
figuration symmetric?

Comments. For convex spatial central configurations the answer is yes (Albouy et al.
2008). See Santos (2004) for very related results. According to the computations in Lee and
Santoprete (2009), one can be almost sure of a positive answer.

Problem 14 (Jaume Llibre) Consider the planar central configurations of N bodies of mass
ε and a body of unit mass. Consider their non-coalescent limits when ε → 0. If N ≥ 9,
should the infinitesimal bodies form a regular polygon? If N ≤ 8, are the limiting central
configurations necessarily symmetric?

Comments. Non-coalescent means that the infinitesimal bodies all have distinct limiting
positions. Hall (1987) got the first results on this problem, about N = 2, N = 3 and very
large N , while Salo and Yoder (1988) obtained numerically a conjecturally complete list
of configurations. A positive answer to Problem 14 was obtained for all N > exp(73) in
Casasayas et al. (1994), for N = 4 in Albouy and Fu (2009).

Problem 15 (Rick Moeckel) In the planar Newtonian n-body problem, consider a solution
of relative equilibrium which is linearly stable (i.e. a fixed point of the reduced system which
is linearly stable). Is there always a dominant mass, i.e. a body with a mass, let us say, at
least 10 times bigger than the total mass of the other bodies?

Comments. This would imply the instability of any relative equilibrium with equal masses.
Even this is not proved, except if n = 3, 4 or n ≥ 24306 (Roberts 1999).
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Problem 16 (Rick Moeckel) Under the same hypothesis as in Problem 15, is the configura-
tion always a non-degenerate minimum of the function U restricted to the sphere I = 1?

Comments. This question is suggested by Theorem 1 in Moeckel (1994) and Problem 15.
The central configuration should correspond to a critical point with even index (Hu and Sun
2009).

Problem 17 Does there exist a planar 5-body central configuration which has a degeneracy
in the vertical direction?

Comments. We mean a degeneracy of the central configuration seen as a critical point,
as in Problem 16. Moeckel and Simó (1995) proved that such a degeneracy does occur in
the 946-body problem. In the tensorial approach of central configurations due to Albouy and
Chenciner (see Albouy 1997, p. 72), one defines the corank of a relative central configuration
β with multiplier λ as being the rank of the tensor α = dg(β) where g is the real function

g(β) = 2U(β) + λI(β).

One knows that a planar relative central configuration of the five-body problem has corank
≤ 2. Problem 17 asks if there is a central configuration of the planar five-body problem with
corank one.
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