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Abstract The association of the Sitnikov family with families of multiple three-dimen-
sional periodic orbits is studied. In particular, the families consisting of three-dimensional
periodic orbits bifurcating from self-resonant orbits of the Sitnikov family at double, triple
and quadruple period of the bifurcation orbit are considered. The branch families close upon
themselves and remain 3D up to their terminations having two common members with the
Sitnikov family. By varying the mass parameter we also study the evolution of some of the
computed families and find that they become isolas and disappear gradually in three-dimen-
sions by shrinking to point size.

Keywords Periodic orbits · Sitnikov problem · Three-body problem ·
Three-dimensional isolas · Self-resonant orbits

1 Introduction

The Sitnikov problem is a special case of the three-body problem where the third body of
negligible mass moves along the z-axis perpendicular to the plane of motion of the primaries
and passes through the inner collinear equilibrium point (Pavanini 1907; Mac Millan 1913;
Sitnikov 1960). The case where the primaries perform elliptic motion has been studied by
several authors (Hagel 1992; Alfaro and Chiralt 1993; Dvorak 1993; Lara and Buendía 2001;
Faruque 2003; Hagel and Lhotka 2005; Llibre and Ortega 2008; Kovács and Érdi 2009;
Ruzza and Lhotka 2011) while the case where the primaries perform circular motion has
been studied by Perdios and Markellos (1988), Belbruno et al. (1994) and Perdios (2007).
Also, for the circular problem, Sidorenko (2011) has studied the alternation of stability and
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instability of the Sitnikov family at large values of the oscillation amplitude and has shown
the occurrence of complex saddle instability.

Modifications of the circular Sitnikov problem where the equal primaries are oblate spher-
oids and/or radiation sources have been studied by Kalantonis et al. (2008) and Perdios et al.
(2008). Recently, Douskos et al. (2012) have shown the existence of a new type of straight-
line periodic oscillations, different from the well known Sitnikov motions, in the restricted
three-body problem when the primaries are prolate spheroids. They found new types of fam-
ilies of three-dimensional periodic orbits bifurcating from the Sitnikov family and consisting
of orbits located entirely above or below the orbital plane of the two primaries.

The Sitnikov family of rectilinear orbits may be considered as a generator of families of
three-dimensional periodic orbits. Perdios (2007) found that all families of three-dimensional
periodic orbits bifurcating from one-to-one critical orbits of the Sitnikov family terminate
at planar periodic orbits. Thus the Sitnikov family represents an alternative way to look
for families of three-dimensional periodic orbits instead of generating them from vertical
self-resonant coplanar periodic orbits. He also made a first study on period doubling bifur-
cations from the Sitnikov family and found that the corresponding bifurcating families of
three-dimensional periodic orbits do not end on vertical critical coplanar periodic orbits.
This result shows the importance of this motion of straight line oscillations since families
bifurcating from it can not have be generated from coplanar periodic orbits.

Our aim here is to complement the work of that paper by considering the self-resonance
bifurcations of the Sitnikov family and the behaviour of the branch families not only in the
Copenhagen case, i.e. for μ = 0.5, but also for varying mass parameter of the restricted three-
body problem. The classical way to determine three-dimensional periodic orbits, except these
emanating from the equilibrium points, is to generate them from vertical critical or vertical
self-resonant orbits of the plane (see Robin and Markellos 1980, 1983). In this work we look
for three-dimensional orbits bifurcating from self-resonant orbits of the rectilinear Sitnikov
motion, i.e. three-dimensional orbits which branch out of an one-dimensional orbit. In par-
ticular, we look for bifurcating families consisting of orbits of double, triple and quadruple
the period of the basic family and try to establish the general pattern of their behaviour in the
full range of the mass parameter for which they exist. Our results show that all the computed
branch families for μ = 0.5 do not terminate at coplanar vertical self-resonant periodic orbits
since they form closed curves in three-dimensions. This means that the only direct method
to determine them is their computation as bifurcations of the Sitnikov family. The evolution
of these families with respect to the mass parameter shows that they become “isolas” and
disappear gradually in three-dimensions by shrinking to point size (for isolas see Dellwo et
al. 1981). This remarkable result of three-dimensional isolas shows the high importance of
a so simple motion, i.e. the Sitnikov motion, since these three-dimensional isolas could not
have been discovered otherwise.

The paper is organized as follows: In Sect. 2, we recall the equations of motion of the
circular Sitnikov problem and consider the transversal stability of the Sitnikov family and
the occurring self-resonant Sitnikov orbits. In Sects. 3, 4 and 5, we study the bifurcating one-
to-two, one-to-three and one-to-four families, respectively, as well as their variation with
respect to the mass parameter. Finally, in Sect. 6, we present some concluding remarks.

2 Equations of motion and stability

We consider a barycentric, rotating and dimensionless coordinate system Oxyz, where the
Ox axis always contains the two primaries m1 and m2 of masses 1 − μ and μ, respectively
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(μ � 1/2). The equations of motion of the third body of infinitesimal mass moving under
the gravitational attraction of the two primaries are (Szebehely 1967):

ẍ − 2 ẏ = x − 1 − μ
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where Ω is the potential function, μ = m2/(m1 + m2) is the mass parameter and:

r1 =
√

(x + μ)2 + y2 + z2, r2 =
√

(x + μ − 1)2 + y2 + z2, (2)

are the distances of the third body of negligible mass from the two primaries. System (1)
admits the well-known integral:

C = (x2 + y2) + 2(1 − μ)

r1
+ 2μ

r2
− (ẋ2 + ẏ2 + ż2), (3)

where C is the Jacobi constant. The Sitnikov motion z(t) of the restricted three-body problem
can be obtained from System (1) by putting μ = 0.5 and x(t) = y(t) = 0 and is described
by:

z̈ = − z

(z2 + 1
4 )3/2

, (4)

while the equation of the Jacobi integral (3) becomes:

C = 2

(z2 + 1
4 )1/2

− ż2. (5)

In order to study the stability of the Sitnikov family we consider small perturbations
x = ξ and y = η of the zero horizontal components of the rectilinear motion obtaining the
variational equations:

ξ̈ − 2η̇ = Ωxx0(z)ξ, η̈ + 2ξ̇ = Ωyy0(z)η, (6)

where Ωxx0(z) and Ωyy0(z) are the second partial derivatives of the potential function with
respect to the variables x and y, respectively, computed at μ = 1/2, while the corresponding
mixed derivative is eliminated since Ωxy0(z) = 0. These can be written in matrix form:

�̇ = A[z(t)]�, with � = (ξ, η, ξ̇ , η̇)T, (7)

where the periodic coefficients of matrix A[z(t)] as well as details for the determination of
the stability of the rectilinear motion can be found in Perdios and Markellos (1988). The
stability conditions are:

|a1| � 2, |a2| � 2, (8)

where a1, a2 are the stability parameters (for the corresponding diagrams of the stability of
the Sitnikov family the reader may also address the papers by Perdios and Markellos (1988)
and Belbruno et al. (1994)). The cases ai = −2 and ai = 2, i = 1, 2, represent the critical
orbits of the Sitnikov family at which families of three-dimensional periodic orbits of the
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same and double period (respectively) bifurcate. The first case has been extensively studied
in Perdios (2007) whereas a first study of the second case has been done in the same paper
(these were named in that paper as one-to-one and one-to-two critical orbits, respectively).

However, the stability diagram of the Sitnikov family indicates the existence of higher
order resonances, i.e. orbits of the rectilinear motion exist at which families of three-dimen-
sional periodic orbits of multiple the period of the corresponding Sitnikov orbit bifurcate.
These are called Self-Resonant (SR) orbits and correspond to a stability parameter ai , i =
1, 2, taking a value:

ai = −2 cos
(

2π
n

m

)
, (9)

where m is the multiplicity of the bifurcating family (one-to-m bifurcation). Our aim here is
to complement the work of Perdios (2007), in the sense that we shall also consider the cases of
one-to-three and one-to-four SR orbits of the Sitnikov family, i.e. the orbits at which families
of three-dimensional periodic orbits of triple and quadruple the period of the corresponding
orbit bifurcate, and study the behaviour of these bifurcating families in the Copenhagen case
as well as in the case for which μ �= 0.5. The first eight one-to-three and one-to-four SR
Sitnikov orbits are given in Tables 1 and 2.

Table 1 SR orbits of the Sitnikov family from which families of 3D periodic orbits of triple period bifurcate
(case a1 = 1)

ż0 T/4 C a2

D1 1.81998986 5.71407748 0.68763692 −37.58465695

D2 1.83040542 6.20547653 0.64961598 −14.18456858

D3 1.84720586 7.17706330 0.58783052 −32.70297297

D4 1.85714933 7.88829391 0.55099635 −9.12902560

D5 1.86655065 8.68377563 0.51598869 −27.54518412

D6 1.87498420 9.52587162 0.48443424 −6.72688763

D7 1.88092907 10.20971121 0.46210583 −23.32295086

D8 1.88800746 11.14327674 0.43542784 −5.26964054

Table 2 SR orbits of the Sitnikov family from which families of 3D periodic orbits of quadruple period
bifurcate (case a1 = 0)

ż0 T/4 C a2

E1 1.76799488 4.04487173 0.87419411 −49.58721419

E2 1.78929529 4.60612902 0.79842235 −16.49498743

E3 1.81422117 5.47100867 0.70860155 −36.23594758

E4 1.83280731 6.32963882 0.64081737 −9.09029928

E5 1.84386800 6.96329152 0.60015081 −25.98242544

E6 1.85836905 7.98412837 0.54646448 −6.22634827

E7 1.86431287 8.48198367 0.52433754 −19.16456732

E8 1.87576172 9.61070155 0.48151797 −4.63672333
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Fig. 1 The manifold of families
of 3D periodic orbits, in the
Copenhagen case (μ = 0.5),
bifurcating from the one-to-two
critical orbits of the Sitnikov
family

3 One-to-two families

We start our computations by giving the manifold of the families bifurcating from the one-
to-two critical orbits for which z(T/4) � 10 (26 such orbits). Note that, the solution z(t) has
been chosen such that z(0) = 0 and ż(0) = ż0 > 0, so that z(t) reaches its maximum at T/4.
These critical orbits can be found in Perdios (2007), named C1, C2, . . . , C26 in that paper
where the first six bifurcating families were computed. The corresponding manifold is shown
in Fig. 1 here. As it can be seen from this figure, the statement of Perdios (2007) that all these
families emanate from the rectilinear motion in pairs, namely the family emanating from the
first one-to-two critical orbit returns to the second one-to-two critical orbit and so on, is valid
(at least for the first 26 bifurcations) creating thus a “tree” of closed families. The stability
of all the computed branch families was determined and it was found that many of them
contain stable parts. Note that, all the 3D periodic orbits of the computed families have been
determined using the symmetry of the Ox-axis, i.e. the initial state vector of a 3D periodic
orbit is of the form (x0, 0, 0, 0, ẏ0, ż0). For simplicity, however, in all figures of the present
paper we present the projections of the initial state vector in the (x0, ż0) plane. Note also that,
in Fig. 1 and all figures presenting such projections of the initial state in the case of μ = 0.5,
the family of rectilinear Sitnikov motions is represented by the vertical ż0-axis at x0 = 0.

We now consider what happens to these families when we vary the value of the mass
parameter. Let us begin with the first family bifurcating from the first one-to-two critical
orbit which returns on the second one-to-two critical orbit. For a slightly different value of
the mass parameter (μ = 0.4995) we can see in the left frame of Fig. 2 that the characteristic
curve of this family remains a closed curve, but has now become an isola since it does not
bifurcate from the family of rectilinear Sitnikov motions as the Sitnikov family does not exist
for μ �= 0.5. Note that, the Sitnikov family as the family of rectilinear orbits existing only
for μ = 0.5 can be thought of as a particular case of the family L3

1 of 3D periodic orbits
emanating from the inner collinear equilibrium point L1 which exists for all values of the
mass parameter. For μ = 0.4995 the family L3

1 coexists with the families plotted in Fig. 2
(left frame) and is shown in a separate frame (right frame) due to difference in scale in both
x0 and ż0. By continuing to vary the mass parameter to lower values we see, in the same
figure, that the family remains an isola for all values of the mass parameter for which it exists
and disappears in three-dimensions by shrinking into point size.

The evolution w.r.t. the mass parameter of the second family of three-dimensional peri-
odic orbits bifurcating from the third one-to-two critical orbit and returning on the fourth
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Fig. 2 Left frame Evolution w.r.t. the mass parameter of the family of 3D periodic orbits bifurcating from
the first and second one-to-two critical orbits of the Sitnikov family. Right frame The Lyapunov family L3

1 for
μ = 0.4995

Fig. 3 Evolution w.r.t. the mass parameter of the family of 3D periodic orbits bifurcating from the third and
fourth one-to-two critical orbits of the Sitnikov family

one-to-two critical orbit is shown in Fig. 3. As we see in this figure the behaviour of its char-
acteristic curve is the same as previously but this family exists for a wider range of the mass
parameter. Following the third family emanating from the fifth one-to-two critical orbit (it
returns on the sixth one-to-two critical orbit) as we vary the mass parameter we see, in Fig. 4,
that its characteristic curve remains an isola down to a certain value of the mass parameter
and then splits into two separate isolas which shrink into point size separately.

4 One-to-three families

In Fig. 5 we present the manifold of families of three-dimensional periodic orbits bifurcating
from the first eight one-to-three SR orbits of the rectilinear motion for μ = 0.5. As we see

Fig. 4 Evolution w.r.t. the mass parameter of the family of 3D periodic orbits bifurcating from the fifth and
sixth one-to-two critical orbits of the Sitnikov family
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Fig. 5 The manifold of families
of 3D periodic orbits, in the
Copenhagen case (μ = 0.5),
bifurcating from the one-to-three
SR orbits of the Sitnikov family

Fig. 6 Evolution w.r.t. the mass parameter of the family of 3D periodic orbits bifurcating from the first and
second one-to-three SR orbits of the Sitnikov family. For μ = 0.5 the stable parts of this family are shown
bold in the top left frame (inset)

in this figure, the mechanism of the bifurcating families is the same as in the case of the
families bifurcating from the one-to-two critical orbits, i.e. they emanate from the rectilinear
motion in pairs (the family emanating from the first one-to-three SR orbit returns to the sec-
ond one-to-three SR orbit and so on) forming thus closed curves in three dimensions. This
can be seen from the family plots presented in Fig. 5.

For μ = 0.5 the stability of the families bifurcating from the one-to-three SR orbits was
computed and it was found that only the first branch family contains stable parts. Specifically,
it contains four stable parts, two of which are illustrated in the top left frame of Fig. 6 (inset).

The evolution w.r.t. the mass parameter of the first family which bifurcates at the first
one-to-three SR orbit of the Sitnikov family and returns at the second one is shown in Fig. 6.
In the first frame of this figure we see that for μ = 0.5 there exist two additional families of
three-dimensional periodic orbits bifurcating from the first family (shown with blue and red
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Fig. 7 The manifold of families of 3D periodic orbits, in the Copenhagen case (μ = 0.5), bifurcating from
the one-to-four SR orbits of the Sitnikov family

colors). For a slightly lower value of the mass parameter (μ = 0.49999) we see in the second
frame, that the first family which bifurcate from the rectilinear motion and the other two
families still exist but now some segments of their characteristic curves have come together
creating different formations. For lower values of the mass parameter these formations con-
stituting three isolas can be seen more clearly (frames 3, 4 and 5 of this figure). In the last
frame of this figure we follow the evolution of the first family w.r.t. the mass parameter and
observe that this constantly shrinks and ends at a point, representing the birth of this isola,
for μ ∼= 0.481.

5 One-to-four families

In Fig. 7 we show the characteristic curves of the families of three-dimensional periodic
orbits bifurcating from the first eight one-to-four SR orbits of the Sitnikov family. All these
families which emanate from the Sitnikov family for μ = 0.5 follow the same pattern as in
the previous cases. Their characteristic curves remain closed, but they are more complicated
since they create many loops before they close upon themselves. For μ = 0.5 the stability of
these branch families was computed and it was found that none of them contains stable parts.

In Fig. 8 we show the evolution w.r.t. the mass parameter of the first family emanating
from the first one-to-four SR orbit and terminating on the second one-to-four SR orbit. In the
first frame of this figure we observe that for μ = 0.5 there are four more families of three-
dimensional periodic orbits bifurcating from the first family (shown with blue, magenta, red
and green colors). For a slightly different value of the mass parameter (μ = 0.4999) we
see, in the second frame, a remarkable change in the formation of the characteristic curves
of these families. Branches of all these families have joined with each other in such a way
that now there are two less families of three-dimensional periodic orbits. Their characteristic
curves remain closed forming isolas and by varying the mass parameter further we observe
the same situation (frames 3 and 4). In the last frame we see that for μ = 0.425 the additional
families shrink faster than the first family and for μ = 0.374 they cease to exist while the
first family continues to shrink in size.

6 Concluding remarks

Self-resonant bifurcations of the Sitnikov family were considered. All the computed bifurcat-
ing families of three-dimensional periodic orbits close upon themselves having two common
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Fig. 8 Evolution w.r.t. the mass parameter of the family of 3D periodic orbits bifurcating from the first and
second one-to-four SR orbits of the Sitnikov family

members with the Sitnikov family. The evolution of these branch families with respect to
the mass parameter shows that they become three-dimensional isolas and each one of them
disappears gradually by shrinking to a point representing the birth of the respective isola.
The significance of the Sitnikov family is enhanced by these results since such rectilinear
oscillations may generate infinite branch families of three-dimensional periodic orbits, for
equal and not equal masses, leading to the discovery of 3D isolas and their birth points, which
could not have been found by classical methods.

An interesting result is that the bifurcating families from self-resonant orbits of the Sit-
nikov family bifurcate with other families of three-dimensional periodic orbits and their
characteristic curves combine with each other in their evolution with respect to the mass
parameter creating new formations of family characteristics.

In the case of equal masses, i.e. μ = 0.5, we found several branch families that have
stable parts. More precisely, the one-to-two families bifurcating from the pairs of Sitnikov
orbits C3–C4, C5–C6, C7–C8, C9–C10, C11–C12, C13–C14 and C15–C16, contain stable
parts. For the one-to-three families only the bifurcating family from the pair of Sitnikov orbits
D1–D2 has stable parts while for the one-to-four bifurcating families none of the computed
families were found to have stable parts. Note that, the stable parts of these families are far
from the corresponding self-resonant rectilinear orbits.

Regarding the symmetries of three-dimensional periodic orbits which are members of the
bifurcating families from self-resonant orbits of the Sitnikov family we point out that they fall
into two types: (I) double symmetry w.r.t. both the Ox-axis and the Oy-axis for families that
consist of 3D periodic orbits where their period is even multiple of the self-resonant orbit’s
period and (II) double symmetry w.r.t. both the Ox-axis and the Oyz-plane for families that
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consist of 3D periodic orbits where their period is odd multiple of the self-resonant orbit’s
period. To the authors’ knowledge doubly symmetric periodic orbits of the type (I) have not
been found before in the three-dimensional restricted three-body-problem.

A remarkable result, which remains unexplained, is that the families which bifurcate from
self-resonant orbits of the Sitnikov family with ai = −2 cos(2π n/m), i = 1, 2, and m � 2,
consist entirely of three-dimensional periodic orbits, in contrast to the families bifurcating
from the one-to-one critical orbits of the Sitnikov family (m = 1) which have been found to
terminate with planar periodic orbits in previous works.
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