
Celest Mech Dyn Astr (2012) 113:113–123
DOI 10.1007/s10569-012-9414-2

ORIGINAL ARTICLE

The rhomboidal symmetric four-body problem

Jörg Waldvogel

Received: 30 August 2011 / Revised: 14 January 2012 / Accepted: 16 March 2012 /
Published online: 12 April 2012
© Springer Science+Business Media B.V. 2012

Abstract We consider the planar symmetric four-body problem with two equal masses
m1 = m3 > 0 at positions (±x1(t), 0) and two equal masses m2 = m4 > 0 at positions
(0, ±x2(t)) at all times t , referred to as the rhomboidal symmetric four-body problem. Owing
to the simplicity of the equations of motion this problem is well suited to study regularization
of the binary collisions, periodic solutions, chaotic motion, as well as the four-body colli-
sion and escape manifolds. Furthermore, resonance phenomena between the two interacting
rectilinear binaries play an important role.

Keywords Symmetric four-body problem · Levi-Civita regularization · Periodic motion ·
Resonance · Invariant tori · Collision manifold

1 Introduction

Classical Celestial Mechanics began with Isaac Newton’s discovery of the two basic laws
governing the motion of celestial bodies: the law of gravitation as the physical basis and
the law of motion of a point mass under external forces as the mathematical basis. Up to
the present day a large part of Celestial Mechanics is still based on these two fundamental
principles.

A simple, but highly relevant, non-trivial case, the motion of two point masses in R
3

under their mutual gravitational attraction, often referred to as spacial Kepler motion, can be
described completely in closed form in terms of elementary functions. The motion is regular,
predictable over long time intervals; the problem is integrable. The addition of one more point
mass, i.e. the transition to the three-body problem, causes a quantum leap in complexity.

The set of possible solutions of the three-body problem is so large and complex that any
attempt of a complete description is bound to fail. Typically, the distance between corre-
sponding points on neighbouring orbits increases exponentially with time, which prevents
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Fig. 1 The rhomboidal
symmetric four-body problem,
notation x2(t) := y2(t)
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predictions over long time intervals. This type of motion is referred to as chaotic, the problem
is non integrable.

The goal of this paper is to consider systems of point masses beyond the three-body
problem, still showing chaoticity, yet being simpler. Sufficiently simple systems may bear
the chance of permitting theoretical advances. A good candidate is the symmetric four-body
problem introduced by Steves and Roy (1998), where two pairs of equal masses move in a
fixed plane, occupying positions of central symmetry with respect to the origin (the “Caledo-
nian” problem). This system has four degrees of freedom like the planar three-body problem,
and the solutions of both problems have similar complexity.

Two particular cases with only two degrees of freedom are even simpler, but they still
have chaotic solutions: the one-dimensional symmetric four-body problem and the rhomb-
oidal symmetric four-body problem. The former problem has been studied by Sweatman
(2002) and by Ouyang and Yan (2011); it will not be considered here. The latter problem,
also simply referred to as the rhomboidal four-body problem, is similar in many aspects, but
there are differences as well. It has been studied by Lacomba and Perez-Chavela (1993), is
also mentioned by Shibayama (2011) in a study of periodic orbits. In Sects. 2 through 7 of
this paper we give brief introductions to the principal aspects of the rhomboidal four-body
problem.

Consider two equal point masses m1 = m3 > 0 at positions (±x1(t), 0) in a fixed plane
(described by Cartesian coordinates x, y), and two equal masses m2 = m4 > 0 at positions
(0, ±y2(t)), see Fig. 1. Since the resulting forces acting on m1 and on m3 have a vanish-
ing y-component and are of equal magnitude, m1 and m3 can move on the x-axis. Equally,
the motion of m2 and m4 is restricted to the y-axis. Therefore, the rhomboidal nature of
the constellation is preserved, provided the initial velocities satisfy the same symmetries.
The two binaries (m1, m3) and (m2, m4) move rectilinearly on the x-axis or on the y-axis,
respectively.

The rhomboidal symmetric four-body problem is well suited for studying regularization
of the binary collisions, periodic solutions, homothetic solutions and central configurations,
as well as the four-body collision and escape manifolds. We will also study the role of
resonance phenomena between the two interacting rectilinear binaries for generating
periodic orbits.
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The rhomboidal symmetric four-body problem 115

2 Equations of motion and regularization

In the following we will use the notation x2(t) := y2(t) for simplicity. Direct application of
the Newtonian laws yields the equations of motion

ẍ j + m j

4 x2
j

+ 2 m3− j x j

r3 = 0 , j = 1, 2 , (1)

where r :=
√

x2
1 + x2

2 is the distance between m1 and m2, and dots denote differentiation
with respect to time t . For conveniently regularizing the frequent collisions in the two bina-
ries we will use the Hamiltonian formalism in the following. With the kinetic and potential
energies

T = m1 ẋ1
2 + m2 ẋ2

2, U = − m2
1

2 x1
− m2

2

2 x2
− 4 m1 m2

r
(2)

and the momenta p j := m j ẋ j , j = 1, 2, the Hamiltonian H := 1
2 (T + U ) corresponding

to Eq. (1) becomes

H = p2
1

2 m1
+ p2

2

2 m2
− m2

1

4 x1
− m2

2

4 x2
− 2 m1 m2√

x2
1 + x2

2

, (3)

and the Hamiltonian (canonical) equations of motion and the energy integral read

ẋ j = ∂ H

∂p j
, ṗ j = − ∂ H

∂x j
, j = 1, 2 , H(t) = H0 = const. (4)

Now, regularization of the binary collisions by the classical technique of Levi-Civita
(1920) will be discussed. It is not necessary to consider the more general regularization
concept of Easton (1971). A technique for regularizing the n-body problem by doubling the
dimension of the phase space was suggested by Heggie (1974). This technique was applied
by Sivasankaran et al. (2010) to regularize the symmetric four-body problem. A potential
difficulty are simultaneous binary collisions possible in this system. ElBialy (1996) proved
that simultaneous binary collisions in n-body systems are always regularizable.

Owing to its simplicity the rhomboidal symmetric four-body problem allows for a much
simpler regularization procedure, without doubling the dimension of the phase space and
without the necessity to consider simultaneous binary collisions. For this purpose simulta-
neous collisions of all four bodies will be excluded, i.e. r > 0 is assumed. Then the system
behaves as two weakly coupled rectilinear binaries. Following the ideas of Sundman (1907)
and of Birkhoff (1915), we first introduce the new independent variable τ (the fictitious
time), according to the differential relation given in Eq. (5) below. The canonical form of the
equations of motion is preserved if K is adopted as the new Hamiltonian, where H0 is the
(constant) total energy on the orbit considered:

dt = x1 x2 dτ, K = x1 x2 (H − H0). (5)

Next, new coordinates ξ j and new momenta π j , j = 1, 2 are introduced by

x j = ξ2
j , p j = π j

2 ξ j
, j = 1, 2. (6)
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The transformation of the momenta must be such that the π j are canonical conjugates of the
ξ j . This may be done via the generating function W (p, ξ), see e.g., Siegel and Moser (1971):

π j = ∂W

∂ξ j
, j = 1, 2 , with W (p, ξ) = p1 x1 + p2 x2. (7)

With the transformation (6) being canonical, it suffices to express the Hamiltonian K of
Eq. (5) in terms of ξ j and π j in order to obtain the regularized Hamiltonian

K = 1

8

(
π2

1 ξ2
2

m1
+ π2

2 ξ2
1

m2

)
− 1

4

(
m2

1 ξ2
2 + m2

2 ξ2
1

)
− 2 m1 m2 ξ2

1 ξ2
2√

ξ4
1 + ξ4

2

− H0 ξ2
1 ξ2

2 (8)

with K (τ ) = 0 on the orbit. The regularized equations of motion become

ξ j
′ = ∂K

∂π j
, π j

′ = − ∂K

∂ξ j
, j = 1, 2, ( )′ = d

dτ
( ) (9)

or, explicitly for j = 1, 2 with k := 3 − j ,

ξ j
′ = π j ξ2

k

4 m j

π j
′ = ξ j

⎛
⎝− π2

k

4 mk
+ m2

k

2
+ 4 m1 m2

(
ξ4

k

ξ4
1 + ξ4

2

)3/2

+ 2 H0 ξ2
k

⎞
⎠ (10)

t ′ = ξ2
1 ξ2

2 .

This system of differential equations is well suited for theoretical considerations and for
numerical experiments. In each of the following sections we present a few results on separate
topics related to the rhomboidal problem. Each topic may lead to further investigations.

3 Escape

In this section we present a typical orbit in terms of physical coordinates and in terms of
regularized variables. As it happens often, after a couple of collisions in each binary a close
quadruple encounter will redistribute the energy, leaving behind a tight binary and an escaping
hyperbolic binary.

A convenient way of defining initial conditions for numerical experiments is to begin
in a binary collision (only possible in regularized variables). To this end, it is necessary to
establish the initial terms of the Taylor series of a generic solution of Eqs. (10) in a collision.
With no loss of generality consider collisions at τ = 0 with ξ1(0) = 0. For ξ2(0) �= 0, the
condition K = 0 yields

π1(0) = ±
√

2 m3
1. (11)
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The rhomboidal symmetric four-body problem 117

The three parameters of the motion are A := ξ2(0) �= 0, B := π2(0) and the total energy
H0. Then the initial terms of the Taylor series are found to be

ξ1(τ ) = π1(0)
A2

4m1
τ + O(τ 3)

ξ2(τ ) = A + O(τ 3) (12)

π1(τ ) = π1(0) + O(τ 2)

π2(τ ) = B + O(τ 3).

Up to the signs of ξ1(τ ) and π1(τ ) the series are uniquely determined by m1, m2, A, B, H0.
For generating Fig. 2a, b we arbitrarily chose m1 = 2, m2 = 1, x1(0) = 3, x2(0) =

2, ẋ1(0) = ẋ2(0) = 0; in Fig. 2a we plotted x1 and x2 (bold face) versus physical time t .
The repeated collisions appear as cusps. Near t = 4 all 4 masses are near the origin, which
causes a change in the amplitudes of the oscillations. The fifth collision in the m1-binary,
near t = 19.5, is a near-quadruple encounter which dramatically tightens the m1-binary and
sends the m2-binary into an escape.

In Fig. 2b the regularized coordinates ξ j (solid) and the regularized momenta π j (dashed)
are plotted versus fictitious time τ for the same orbit (bold face for j = 2). It is seen that regu-
larization stretches the independent variable at every collision and flips every other oscillation
of Fig. 2a at the τ -axis, such that all functions become smooth. The instantaneous near-qua-
druple encounter near t = 19.5 is stretched to an interval approximately 17.5 < τ < 35,
an extremely useful property of our regularization, allowing to closely observe the history of
near-quadruple encounters.

The graphics of Fig. 2b nicely corroborate the Taylor series of Eq. (12). Consider, e.g.,
the collision of the m1-binary near τ = 36. Since ξ1 is increasing, π1 has a positive extreme,
and the graphs of ξ2 and π2 have terrasse points.

4 Periodic solutions and resonance

For finding periodic solutions we use initial conditions in a collision, see Eq. (12), e.g.

ξ1(0) = 0 , π1(0) = −
√

2 m3
1 , π2(0) = 0 (13)

and treat the fourth initial value, u := ξ2(0), as an unknown quantity. Equation (8) automati-
cally implies K = 0; it does not allow to determine the total energy H0, however. Therefore,
H0 may be chosen as a quantity characteristic of the periodic orbit.

In order to find a periodic orbit corresponding to given values m1, m2, H0, choose an
approximate value of u and find q such that ξ2(q) = 0. The quantity q is a tentative value
of the quarter period; computationally it can be generated directly by numerical integrators
with event capability. Then the condition for periodicity is

π1(q) = 0 . (14)

Since q depends on u, this is a nonlinear equation for the unknown u, to be solved numeri-
cally by an iterative algorithm. The secant method is very well suited since it doesn’t need
derivatives with respect to u.

In Fig. 3a, b we show the results of the example m1 = m2 = 1, H0 = −0.9. The
algorithm described above yields ξ2(0) = −1.34776 71645, q = 3.25359 53267.
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Fig. 2 a Escape solution in
physical coordinates x j versus
time t; m1 = 2 (thin, blue),
m2 = 1 (bold, red),

x1(0) = 3, x2(0) = 2,

ẋ1(0) = ẋ2(0) = 0. b Solution
of Fig. 2a in regularized variables
ξ j , π j versus fictitious time τ ;
thin lines m1 = 2, bold face
m2 = 1, dashed momenta
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Owing to the equality of the masses, m1 = m2, this periodic solution displays remarkable
symmetries: ξ1(τ ) and ξ2(τ ) behave like the symmetrically distorted graphs of the trigono-
metric functions − sin(π/2 · τ/q) and − cos(π/2 · τ/q). The stability of similar orbits with
simultaneous binary collisions has been investigated by Bakker et al. (2010, 2011).

Even more surprising is the robustness of this periodic solution against varying the initial
conditions (“stickiness”). This periodic solution has neighbouring solutions that do not run
into a quadruple close encounter with subsequent escape for hundreds of periods. A crude
explanation of this phenomenon is the fact that the two coupled binaries of the periodic
solution are in a 1:1 resonance. In this way they are locked away from a close quadruple
encounter, which would eventually result in an escape (see the example of Sect. 3). A more
rigorous explanation by means of Poincaré sections will be given in the next section.

5 Poincaré sections and quasiperiodic solutions

Instead of the entire orbit
(
ξ j (τ ), π j (τ )

)
we now only consider its intersection points with

the surface of section

ξ1 = 0 with ξ1
′ > 0 , π1 = −

√
2 m3

1. (15)

We consider a fixed value H0 of the energy, and we plot the sequence of intersection points
in the (ξ2, π2)-plane for various initial points.
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The rhomboidal symmetric four-body problem 119

Fig. 3 a Periodic solution in
physical coordinates x j versus
time t; (thin, blue) m1 = 1,
(bold, red) m2 = 1, H0 = −0.9.
b Periodic solution of Fig. 3a in
regularized variables ξ j , π j
versus τ ; thin lines m1 = 1, bold
face m2 = 1, dashed momenta,
H0 = −0.9
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In Fig. 4a the point at the center (marked by an asterisk) corresponds to the periodic
solution of Sect. 4 with energy H0 = −0.9. The ovals around it visualize quasiperiodic solu-
tions (see below). The 6 asterisks between the 5th and the 6th oval mark a periodic solution
of longer period (near ξ2 = −1.49906, π2 = 0), closing only after all 6 points have been
visited. Around every asterisk there are “islands” of quasiperiodic orbits similar to the islands
around the center of Fig. 4a. In the outermost set of intersection points (corresponding to
ξ2 = −1.57, π2 = 0) the onset of chaos is documented by the irregular arrangement of
some of the points.

Figure 4b concentrates on the remaining 10 asterisks of Fig. 4a. They correspond to
two periodic orbits generated by the initial points ξ2 = −1.55325, π2 = 0 and ξ2 =
−0.96016, π2 = 0, respectively, each closing after visiting 5 of the 10 marked points. Some
of the islands around these points are visible, provided that a sufficient number of contribut-
ing points has been generated. Between the islands there exist hyperbolic equilibrium points
whose stable and unstable manifolds generate chaotic zones.

The ovals of Fig. 4a have been selected by prescribing initial points by means of rounded
values of its coordinates. As a consequence, the points of an oval generally form a con-
tinuous curve that separates its outer region from its inner region. The corresponding orbit
is quasiperiodic, referred to as a torus. The set of tori is dense in the set of real numbers
(a Cantor set); between the tori there are periodic orbits with islands and chaotic regions, at
a microscopic scale. This structure explains the robustness of the periodic orbit of Sect. 4: an
orbit beginning between two tori stays there for ever. In summary: The neighbourhood of the
periodic orbit of Sect. 4 resembles the well known picture of chaotic dynamics extensively
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Fig. 4 a Sections ξ1 = 0,
increasing, plotted in the
ξ2, π2-plane. Case
m1 = m2 = 1, H0 = −0.9.
b Details of the outermost
region of Fig. 4a.
Case m1 = m2 = 1, H0 = −0.9
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discussed by many authors (see, e.g. Froeschlé and Lega 2006, for an overview and many
more references).

6 Homothetic solutions and central configurations

A homothetic solution of an n-body problem is defined as a solution with the property that
every mass point moves on a rectilinear Keplerian orbit. The constellation of the mass points
remains similar to itself; such constellations are referred to as central configurations. In the
case of the rhomboidal four-body problem the equations of motion (1) need to be solved by

x j (t) = c j f (t) , j = 1, 2, c1 = c cos(ϕ), c2 = c sin(ϕ) (16)

with an appropriate constant c > 0 and the angle ϕ ∈ (0, π/2) being defined in Fig. 1. The
function f (t) describes a rectilinear Kepler motion,

f̈ (t) + m

f (t)2 = 0 , m > 0.

This yields the two conditions

m1

cos3(ϕ)
+ 8 m2 = m2

sin3(ϕ)
+ 8 m1 = 4 c3m, (17)
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Fig. 5 Rhomboidal central
configurations, plotted as ϕ

(defined in Fig. 1) vs. μ from
Eq. (19)
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resulting in the following condition for the geometry of the symmetric rhomboidal central
configurations of four pairwise equal masses:

m1

cos3(ϕ)
− m2

sin3(ϕ)
= 8 (m1 − m2) , 0 < ϕ < π/2. (18)

For discussing computational aspects and results we introduce the mass parameter

μ := m1 − m2

m1 + m2
∈ (−1, 1). (19)

For arbitrary (real) μ Eq. (17) has a unique real solution ϕ with
∣∣ϕ − π

4

∣∣ < 0.36474 52742 36650.

Equation (17) reduces to a polynomial equation of degree 12 for tan(
ϕ
2 ) (see Waldvogel

2001).
Alternatively, Eq. (17) may be solved numerically by the Newton-Raphson iteration, e.g.

by using the initial approximation (dashed curve in Fig. 5)

ϕ0 = π

4
+ 1

f
arctan

(
f b μ

)
with f = 1.528545 π, b = 2

√
2 − 1

3
.

In the interval −1 < μ < 1 the absolute error of ϕ0 is less than 0.003255, and 3 iter-
ations yield an accuracy of 15 digits. The graph of ϕ versus μ, together with its asymp-
totes as μ → ±∞, and the graph of ϕ0 (dashed lines) are shown in Fig. 5. In general we
have ϕ(μ) + ϕ(−μ) = π/2; particular values are ϕ(−1) = π/6, ϕ(0) = π/4, ϕ(1) =
π/3, ϕ(±∞) = π/4 ± 0.364745, ϕ′(0) = (2

√
2 − 1)/3.

7 The quadruple-collision manifold

In this final section we will apply the technique introduced by McGehee (1974) for ade-
quately describing the events during a close encounter of all four bodies. The general idea is
to introduce normalized coordinates, momenta, and fictitious time ξ̃ j , π̃ j , τ̃ , adapted to the
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122 J. Waldvogel

current size and rate of change of a four-body system in a close quadruple encounter or in a
quadruple collision.

A convenient length is the radius of inertia ρ, defined by means of the moment of inertia
I , (see McGehee 1974, and Waldvogel 1982):

ρ2 = I = 2
(
m1 x2

1 + m2 x2
2

)
. (20)

Note that Eqs. (1) through (6) imply

İ = 2
(
π1 ξ1 + π2 ξ2

)
, Ï = 4 T + 2 U = 8 H0 − 2 U = 4 H0 + 2 T . (21)

Therefore we use the scaling transformations

x j = ρ x̃ j , p j = ρ−1/2 p̃ j , ξ j = ρ1/2 ξ̃ j , π j = π̃ j , dτ = ρ−1/2 d τ̃ (22)

in order to normalize the equations of motion.
From Eqs. (20), (211) and the transformations (51), (22) we obtain

dρ

d τ̃
= ρ ξ̃2

1 ξ̃2
2

(
π1 ξ̃1 + π2 ξ̃2

)
, (23)

a differential equation for ρ allowing ρ(τ̃ ) ≡ 0 as a solution. The remaining four equations
for equivalently describing the motion follow from Eq. (10):

d ξ̃ j

d τ̃
= ξ̃2

k

(
π j

4 m j
− ξ̃3

j

2

(
π1 ξ̃1 + π2 ξ̃2

)
)

, k := 3 − j, j = 1, 2

dπ j

d τ̃
= ξ̃ j

(
− π2

k

4 mk
+ m2

k

2
+ 4 m1 m2

(
ξ̃4

k

ξ̃4
1 + ξ̃4

2

)3/2

+ 2 ρ H0 ξ̃2
k

)
(24)

dt

d τ̃
= ρ3/2 ξ̃2

1 ξ̃2
2 .

Now the collision manifold M is defined as the limiting solution of the system (23), (24)
characterized by ρ(τ̃ ) ≡ 0. Equation (23) is satisfied, and (243) implies that time t does
not advance. Therefore M, i.e. the solution of (241), (242) with ρ = 0, describes the very
instant of collision as seen in an infinitely slowed down and infinitely blown-up slow-motion
picture.

As a consequence of (20) and (8), the collision manifold has the two integrals of motion

m1 ξ̃1
4 + m2 ξ̃2

4 = 1

2

1

8

(
π2

1 ξ̃2
2

m1
+ π2

2 ξ̃1
2

m2

)
− 1

4

(
m2

1 ξ̃2
2 + m2

2 ξ̃1
2
)

− 2 m1 m2 ξ̃1
2
ξ̃2

2

√
ξ̃1

4 + ξ̃2
4

= 0.

(25)

The global flow on the total-collision manifold has been studied by Delgado Fernandez and
Perez-Chavela (1991).

8 Conclusions

A particular case of the “Caledonian” symmetric four-body problem has been investigated:
two pairs of equal masses are moving symmetrically in the plane on two fixed perpendicular
axes. This dynamical system, referred to as the rhomboidal symmetric four-body problem,
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The rhomboidal symmetric four-body problem 123

is governed by a simple Hamiltonian of two degrees of freedom. It is a good practising
ground for studying phenomena such as binary collisions, escape, resonance, periodic orbits,
Poincaré sections, chaos, central configurations, quadruple collision. Of particular interest
are nearly periodic orbits in the vicinity of a 1:1 resonance between the two binaries; they
can be stable for very long time (“stickiness”). An introduction to each of these topics has
been presented in the paper.

Acknowledgements The author is indebted to the referees for pointing out important references.

References

Bakker, L.F., Ouyang, T., Yan, D., Simmons, S., Roberts, G.E.: Linear stability for some symmetric peri-
odic simultaneous binary collision orbits in the four-body problem. Celest. Mech. Dyn. Astron. 108,
147–164 (2010)

Bakker, L.F., Ouyang, T., Yan, D., Simmons, S.: Existence and stability of symmetric periodic simulta-
neous binary collision orbits in the planar pairwise symmetric four-body problem. Celest. Mech. Dyn.
Astron. 110, 271–290 (2011)

Birkhoff, G.D.: The restricted problem of three bodies. Rendiconti del Circolo Matematico di Palermo, vol. 39,
p. 1. Reprinted in: Collected Mathematical Papers, vol. 1. Dover Publications, New York, 1968 (1915)

Delgado Fernandez, J., Perez-Chavela, E.: The rhomboidal four-body problem: global flow on the total-collision
manifold. In: Ratiu, T. (ed.) The Geometry of Hamiltonian Systems. MSRI Series, vol. 22, pp. 97–110.
Springer, New York (1991)

Easton, R.: Regularization of vector fields by surgery. J. Differ. Equ. 10, 92–99. MSRI Series, vol. 22, Springer,
New York, pp. 97–110 (1971)

ElBialy, M.S.: The flow of the N-body problem near a simultaneous binary collision singularity and integrals
of motion on the collision manifold. Arch. Ration. Mech. Anal. 134, 303–340 (1996)

Froeschlé, C., Lega, E.: The fine structure of Hamiltonian systems revealed, using the fast Liapunov
indicator. In: Steves, B.A., Maciejewski, A.J., Hendry, M. (eds.) Chaotic Worlds: From Order to Disorder
in Gravitational N-Body Dynamical Systems, vol. 227, Springer NATO Science Series II. pp. 131–165
(2006)

Heggie, D.C.: A global regularization of the gravitational N-body problem. Celest. Mechan. 10, 217–242 (1974)
Lacomba, E.A., Perez-Chavela, E.: Motions close to escape in the rhomboidal four-body problem. Celest.

Mech. Dyn. Astron. 57, 411–437 (1993)
Levi-Civita, T.: Sur la régularisation du problème des trois corps. Acta Math. 42, 99–144 (1920)
McGehee, R.: Triple collision in the collinear three-body problem. Inventiones Math. 10, 217–241 (1974)
Ouyang, T., Yan, D.: Periodic solutions with alternating singularities in the collinear four-body problem. Celest.

Mech. Dyn. Astron. 109, 229–239 (2011)
Shibayama, M.: Minimizing periodic orbits with regularizable collisions in the n-body problem. Arch. Ration.

Mech. Anal. 199, 821–841 (2011)
Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. pp. 290 Springer, Berlin (1971)
Sivasankaran, A., Steves, B., Sweatman, W.L.: A global regularisation for integrating the Caledonian sym-

metric four-body problem. Celest. Mech. Dyn. Astron. 107, 157–168 (2010)
Steves, B.A., Roy, A.E.: Some special restricted four-body problems I: modelling the Caledonian prob-

lem. Planet Space Sci. 46, 1465–1474 (1998)
Sundman, K.F.: Recherches sur le problème des trois corps. Acta Societatis Scientificae Fennicae 34, 6 (1907)
Sweatman, W.L.: The symmetrical one-dimensional Newtonian four-body problem: a numerical investiga-

tion. Celest. Mech. Dyn. Astron. 82, 179–201 (2002)
Waldvogel, J.: Symmetric and regular coordinates on the plane triple collision manifold. Celest. Mech. 28, 69–

82 (1982)
Waldvogel, J.: Central configurations revisited. In: Steves, B.A., Maciejewski, A.J. (eds.) The Restless Uni-

verse. Scottish Univ. Summer School Phys., pp. 285–299 (2001)

123


	The rhomboidal symmetric four-body problem
	Abstract
	1 Introduction
	2 Equations of motion and regularization
	3 Escape
	4 Periodic solutions and resonance
	5 Poincaré sections and quasiperiodic solutions
	6 Homothetic solutions and central configurations
	7 The quadruple-collision manifold
	8 Conclusions
	Acknowledgements
	References


