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Abstract We study the periodic orbits and the escapes in two different dynamical systems,
namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric
which is a perturbation of the Kerr metric (a general relativistic system). We find their simple
periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic
domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first
case we consider escapes to infinity, while in the second case we emphasize escapes to the
central “bumpy” black hole. When the energy reaches its escape value, a particular family of
periodic orbits reaches an infinite period and then the family disappears (the orbit escapes).
As this family approaches termination it undergoes an infinity of equal period and double
period bifurcations at transitions from stability to instability and vice versa. The bifurcating
families continue to exist beyond the escape energy. We study the forms of the phase space
for various energies, and the statistics of the chaotic and escaping orbits. The proportion of
these orbits increases abruptly as the energy goes beyond the escape energy.

Keywords Hamiltonian systems · Periodic orbits · Manko-Novikov metric

1 Introduction

The escapes from a dynamical system refer to a problem of basic interest for dynamics: the
problem of chaotic scattering. This problem has attracted the attention of many authors in the
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256 G. Contopoulos et al.

previous decades [some typical references are Churchill et al. (1975), Petit and Hénon (1986),
Bleher et al. (1988), Eckhardt (1988), Jung and Scholz (1988), Hénon (1989),Contopoulos
(1990), Contopoulos and Kaufmann (1992), Ott and Tél (1993), Benet et al. (1996), Benet
et al. (1998)].

In particular we found (Contopoulos and Efstathiou 2004) the forms of the escape regions
and the escape rates in the simple dynamical system

H = 1

2
(ẋ2 + ẏ2 + x2 + y2)− xy2 = h (1)

for various values of the energy h above the escape energy hesc = 0.125. We found also
regions of orbits that never escape, or escape after a very long time. In particular the sta-
ble periodic orbits are surrounded by islands of stability that never escape. This problem
is typical of “escapes to infinity”. In fact, similar results were found in general polynomial
Hamiltonians representing two perturbed harmonic oscillators.

In the present paper we explore the escapes in the classical system (1) and a very different
problem of escapes, using a system from the domain of General Relativity. In particular the
system we use belongs to the so-called Manko–Novikov (MN) metric family. Manko and
Novikov (1992) found an exact vacuum solution of Einstein’s equations which describes
a stationary, axisymmetric, and asymptotically flat spacetime with arbitrary mass-multipole
moments. The MN metric subclass that we use can be considered as a perturbation of the Kerr
metric (Kerr 1963) and it was introduced by Gair et al. (2008). The Kerr metric represents a
rotating black hole of mass M and spin S. The MN perturbation is expressed by a parameter q ,
which measures how much the MN quadrupole moment Q departs from the Kerr quadrupole
moment QK err = −S2/M (i.e. q = (QK err − Q)/M3). While the Kerr metric describes
an integrable system, the MN metric describes a non-integrable system that allows chaos.
The line element of the MN metric expressed in the Weyl-Papapetrou cylindrical coordinates
(ρ, ϕ, z) is of the form

ds2 = − f (dt − ωdϕ)2 + f −1[e2γ (dρ2 + dz2)+ ρ2dϕ2], (2)

where f, ω, γ are considered as functions of the prolate spheroidal coordinates v,w, while
the coordinates ρ, z can be expressed as functions of v,w as well. Thus

ρ = k
√
(v2 − 1)(1 − w2), z = kvw (3)

and

f = e2ψ A

B
, (4a)

ω = 2ke−2ψ C

A
− 4k

α

1 − α2 , (4b)

e2γ = e2γ ′ A

(v2 − 1)(1 − α2)2
, (4c)

A = (v2 − 1)(1 + a b)2 − (1 − w2)(b − a)2, (4d)

B = [(v + 1)+ (v − 1)a b]2 + [(1 + w)a + (1 − w)b]2, (4e)

C = (v2 − 1)(1 + a b)[(b − a)− w(a + b)]
+1 − w2)(b − a)[(1 + a b)+ v(1 − a b)], (4f)

ψ = β
P2

R3 , (4g)
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γ ′ = ln

√
v2 − 1

v2 − w2 + 3β2

2R6

(
P2

3 − P2
2

)

+β
(

−2 +
2∑

	=0

v − w + (−1)2−	(v + w)

R	+1 P	

)

, (4h)

a = −α exp

[

−2β

(

−1 +
2∑

	=0

(v − w)P	
R	+1

)]

, (4i)

b = α exp

[

2β

(

1 +
2∑

	=0

(−1)3−	(v + w)P	
R	+1

)]

, (4j)

R =
√
v2 + w2 − 1, (4k)

P	 = P	
(v w

R

)
. (4l)

Here P	(ζ ) is the Legendre polynomial of order l

P	(ζ ) = 1

2		!
(

d

dζ

)	
(ζ 2 − 1)	, (5)

while the parameters k, α, β are related to the mass M , the spin S, and the quadrupole
deviation q through the expressions

α = −1+
√

1−χ2

χ
, k = M 1−α2

1+α2 , β = q
(

1+α2

1−α2

)3
. (6)

while χ is the dimensionless spin parameter χ = S/M2. These formulae give the Kerr metric
when q = 0.

Contrary to the system (1), the escapes in the MN system refer not only to infinity, but
also to orbits that fall into the central compact object called “bumpy black hole” by Gair
et al. (2008). The MN central compact object is not really a black hole, because its horizon is
broken along the equator and regions of closed timelike curves exist outside the horizon (Gair
et al. 2008). The MN problem is very different from the simple Hamiltonian (1); however,
the two problems have several common properties concerning the role of the periodic orbits
and their relations to escapes.

In the present paper we study in detail the periodic orbits in the systems (1) and (2) and
their connection with the escape phenomena. We found that the periodic orbits in general
do not lead to escapes, except in very special cases. Most of the families of periodic orbits
generate an infinity of unstable, but non-escaping, periodic orbits. On the other hand, the
asymptotic curves of the various unstable periodic orbits play an important role in generating
chaos and most chaotic domains lead to escapes when the energy goes beyond the escape
energy.

The paper is organized as follows. In Sect. 2 we calculate the periodic orbits of the system
(1). Then we find the asymptotic curves of the unstable periodic orbits and the corresponding
chaos. In Sect. 3 we find the escapes from the system (1) and their statistics. In Sect. 4 we
find the periodic orbits in the system (2) and the chaotic domains. In Sect. 5 we find the
corresponding escapes and their statistics. Finally, in Sect. 6 we compare the two systems
and draw our main conclusions.
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258 G. Contopoulos et al.

2 Periodic orbits in the system (1)

For small values of the energy the system (1) has 4 periodic orbits of period 1. There are two
straight line periodic orbits

y = ±√
2 x (7)

that are stable (orbits (a) and (a′) in Fig. 1a). There is also a stable orbit (b), like an ellipse,
described clockwise or counterclockwise, a simple unstable orbit crossing the x-axis per-
pendicularly (orbit (c)), and the orbit y = 0 (orbit (d)). In Fig. 1b we see also 2 stable triple
orbits 3 : 1 and 2 stable double orbits 2 : 1 that have bifurcated from the orbits (a) and (a′).

The orbits y = ±√
2x undergo an infinity of transitions to instability and stability as

h tends to hesc while the period of these orbits tends to infinity (Contopoulos and Zikides
1980). The periodic orbits a and a′ terminate at h = hesc when their period is infinite, in
accordance with the Strömgren termination principle (Szebehely 1967). For h > hesc the
Curve of Zero Velocity (CZV) (x2 + y2 − 2 x y2 = 2h) opens and the orbits a and a′ escape
to infinity.

The families (a) and (a′) at every transition to stability or instability generate by bifur-
cation new families of equal or double period. Families of higher order are also bifurcated
from the families (a) and (a′).

On a surface of section (x, ẋ) with (y = 0 and ẏ > 0) the stable orbits are surrounded by
islands of stability, while the unstable orbit is surrounded by a set of chaotic orbits (Fig. 1b).
In particular the orbits (a) and (a′) appear on the axis x = 0 of Fig. 1b. Near the unstable
orbit (c) there is a chaotic region (Fig. 1b).

As h increases the chaotic region around the unstable orbit (c) increases, while various
sets of higher order periodic orbits bifurcate from the straight line orbits ((a), (a′)) (Fig. 1b).

The characteristics of the various families of periodic orbits are shown in Fig. 2. These
characteristics give the value of x when y = 0 and ẏ > 0. We mark in particular the orbits
3 : 1, 2 : 1 and 1 : 1 bifurcating from the orbits (a) and (a′) as the energy h increases. The

Fig. 1 a Simple periodic orbits (of period 1) for energy h = 0.12. b A surface of section (x, ẋ) for h = 0.12
containing ordered and chaotic orbits. On the ẋ = 0 axis there are two stable periodic orbits (b) and an unstable
orbit (c) (at the intersection of the red and black curves), together with one stable (red) and one unstable (thick
black) asymptotic manifolds. There are also two stable orbits (a) on the x = 0 axis and triple and double
period stable orbits that have bifurcated from the orbits (a) and (a′) on the x = 0 axis
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Periodic orbits and escapes 259

Fig. 2 Characteristics of some of
the most simple families of
periodic orbits. The family (a)
and its bifurcations have ẋ �= 0

stability of these families is given in Fig. 3. The orbits are stable if their Hénon parameter a
is between −1 and +1.

The family y = √
2 x (a) is stable for 0 < h < 0.111, then unstable in the interval

0.111 < h < 0.116, stable again for 0.116 < h < 0.1236, and has infinite more transi-
tions to instability and stability until h = hesc = 0.125. At the first transition to instability
(h = 0.111) the value of a goes below a = −1 and one stable family of double period
bifurcates there. Its stability is represented by the red curve in Fig. 3, starting at a = 1.

At the first transition from instability to stability along the family (a)(h = 0.116) a goes
above a = −1 and there is a bifurcation of an unstable family 2 : 1 (blue curve above a = 1).

At the second transition to instability the value of a goes above a = 1 (h = 0.1236) and
two different stable families of equal period bifurcate there (black 1:1). The orbits of these
families deviate from the straight line y = √

2 x . At the second transition to stability there
are bifurcations of two unstable families (magenta 1:1), and so on.

Symmetric bifurcations are formed also around the family (a′). There are also higher order
bifurcations from the families (a) and (a′), e.g. the family 3 : 1 (Figs. 2 and 3a).

The families bifurcating from the orbit (a) consist of orbits that reach the CZV at two
points. These families do not terminate for h larger than h = 0.125, but extend all the way

Fig. 3 a The Hénon stability parameter a of the families of Fig. 2 as a function of the energy h. b Details of a

123



260 G. Contopoulos et al.

to h = ∞. An example of an orbit of such a family (2 : 1) is shown in Fig. 4a for h = 0.2.
This family is bifurcated from the family (a) for h = 0.111 and it is stable in the interval
0.111 < h < 0.1252. At h = 0.1252 the family 2 : 1 becomes unstable and generates a
family with double period (i.e. 4 times the original period). For h = 0.137 the family 2 : 1
crosses again the a = −1 axis (Fig. 3a) and becomes again stable generating an unstable
double period family (i.e. 4 times the original period). Finally, at h = 0.142 the family 2 : 1
crosses the a = 1 axis and becomes unstable for larger h. At this crossing point it generates
an equal period stable family (2 times the original period). This also becomes unstable for
a slightly larger h, followed by a cascade of period doubling bifurcations, that generate an
infinity of unstable families, that exist for arbitrarily large h.

When h > hesc = 0.125 the CZVs open above and below the axis (y = 0) (Fig. 4a, b)
and several orbits escape to infinity. However, the periodic orbits of Figs. 4a, b do not escape.
E.g. the orbit 2 : 1 in Fig. 4a that bifurcated from the orbit (a) at h = 0.111 does not escape,
although the orbit (a) has escaped. In Fig. 4b we show a non-escaping orbit (b) for h = 5.0
when the openings are very large.

At every opening of the CZV there is an unstable orbit (called Lyapunov orbit) crossing it
(Fig. 4a). Any orbit, crossing a Lyapunov orbit outwards, escapes to infinity (Churchill et al.
1975; Contopoulos and Efstathiou 2004). The regions of direct escape are shown in red in
Fig. 5 for h = 0.132. Orbits starting in these regions escape directly, without any intersections
with the axis y = 0. The boundaries of the direct escape regions are defined by the asymp-
totic curves of the Lyapunov orbits. These asymptotic curves make infinite rotations around
the escape regions (Contopoulos 1990). In that paper we described in detail the asymptotic
curves from the Lyapunov orbits. We found that these asymptotic curves include an infinity
of branches that start and end with infinite rotations around the escape regions. The stable
asymptotic curves of any other unstable periodic orbit leading to escapes approach the same
limiting asymptotic curves, i.e. the boundaries of the red regions as in Fig. 5. For relatively
small values of the energy h, however, most of the chaotic orbits escape after one or more
intersections with the axis y = 0 (Fig. 5).

Fig. 4 a Some periodic orbits for h = 0.2. Four periodic orbits of period 1, (b), (c), and the Lyapunov
orbits O1, O2, and a periodic orbit of period 2, belonging to the family bifurcating from the family (a). b An
(unstable) periodic orbit (b) for h = 5.0
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Periodic orbits and escapes 261

The asymptotic curves of the unstable orbit (c) surround the red escape regions. Examples
of such asymptotic curves are shown in Figs. 1b and 5. The unstable asymptotic curves start
in opposite directions and the stable asymptotic curves start also in opposite directions. In
Figs. 1b and 5 we give in black the unstable asymptotic curve that starts towards the right
downwards and surrounds clockwise the lower red region. As it comes again close to the
point (c) it makes several oscillations, up and down close to the point (c).

The stable asymptotic curve (red) starts to the left and downwards, surrounding coun-
terclockwise the red escape region and intersects the unstable asymptotic curve at sev-
eral homoclinic points. The oscillations of the stable and unstable asymptotic curves are
much larger in Fig. 5 (h = 0.132) than in Fig. 1b (h = 0.12). But the main difference
between Figs. 1b and 5 is that in the first case there are no escapes, while in the sec-
ond case most of the chaotic orbits escape to infinity. The orbits that escape directly
without any intersection with the axis y = 0 are marked in red. The stable asymptotic
curve (red curve) of the unstable periodic orbit (c) (blue dot in Fig. 5) makes an infinity
of rotations around the lower red region. This asymptotic curve never intersects the red
regions. This happens because orbits starting on the stable asymptotic curve have further
intersections along the same asymptotic curve, until they reach asymptotically the periodic
orbit. Therefore they cannot escape immediately, hence they cannot be found inside a red
region.

On the other hand, the unstable asymptotic curve (black curve) intersects the red region
after a number of oscillations below and above the stable asymptotic curve (Fig. 5). The stable
and unstable asymptotic curves intersect at an infinity of homoclinic points. A few points
(1–5) are marked in Fig. 5. The corresponding homoclinic orbits approach asymptotically
the periodic orbit (c) as t → ∞ and t → −∞. The unstable asymptotic curve (black) makes
outer and inner loops above and below the stable asymptotic curve. The areas of these lobes
are equal. The homoclinic intersections approach closer and closer the periodic orbit (c),
their distances decreasing proportionally to 1/λ, where λ is the larger (positive) eigenvalue
of the orbit (c). Thus the lengths of the lobes become longer proportionally to λ. The value
of λ increases as the energy increases.

The inner lower lobes make some rotations, back and forth, around the lower red escape
region. The inner loop starting downwards from the homoclinic point 5 makes 1/2 rotation
around the red region and returns closer than the point 5 to the periodic orbit (c). The next

Fig. 5 Surface of section for
h = 0.132. The orbits in the red
regions escape directly to infinity
without any intersection with the
axis y = 0. Blue dot corresponds
to the orbit (c)
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Fig. 6 The periodic orbit (b) on
the surface of section for
h = 0.305, when the periodic
orbit has just become unstable,
and two stable orbits that
bifurcated from it. The
asymptotic curves from the orbit
(b) surround both islands of
stability, but they do not extend to
larger distances

inner loop makes about 1.5 rotations around the red region and the subsequent loop intersects
the red region (Fig. 5).

Then the orbits passing through points of the black curve inside the red region, escape to
infinity without any further intersections with the surface of section. As a point along the black
curve approaches the red region its next image on the surface of section makes an infinity
of rotations around the upper red region of Fig. 5 approaching asymptotically the boundary
of the red region. This phenomenon is described in detail in the paper of Contopoulos and
Efstathiou (2004).

For values of h up to about 0.32 there are some stable families, generated from the stable
family (b), of orbits starting on the y = 0 axis. This family consists of almost elliptical
orbits that are described either clockwise or counterclockwise (Fig. 1a, b). The family (b)
is stable up to about h = 0.304 and then it becomes unstable at a period doubling bifur-
cation (a = −1). The double period families bifurcating from (b) start at a = +1 and
become unstable at another period doubling bifurcation (4 times the original period) for
about h = 0.32. Thus the interval between the first and the second period doubling bifur-
cations is Δh = 0.016. This is followed by a cascade of period doubling bifurcations that
produce an infinity of unstable families, existing for arbitrarily large h. It is known that the
intervals between successive period doubling bifurcations in conservative systems decrease
by a universal (asymptotic) factor δ = 1

8.2 ) (Eckmann 1981). Therefore, the total intervalΔh
that contains higher order bifurcation of the family (b) is approximatelyΔ = 0.016

1− 1
8.2

= 0.018,

and beyond h = 0.304 + 0.018 = 0.322 there is no stable periodic orbit generated by bifur-
cations from the family (b).

When the orbit (b) has just become unstable there are two islands of stability around it.
For h = 0.305 (Fig. 6) the asymptotic curves of the orbit (b) surround the two islands, but
they do not extend to large distances. In fact, for this value of h there are invariant curves
surrounding the orbit (b) and the islands around it. However, for still larger h the asymptotic
curves of (b) extend very far (Fig. 7a) surrounding the whole available area on the surface
of section (Fig. 7b). The invariant curves surrounding the point (b) for h = 0.305, have
been destroyed for h = 0.31 and the asymptotic curves come close to the limiting curve
ẋ2 + x2 = 2h.

The same pattern of transition to instability is followed by most stable periodic orbits.
Namely most stable orbits become unstable at a period doubling bifurcation followed by a
cascade of infinite period doublings that lead to an infinity of unstable periodic orbits. An
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Periodic orbits and escapes 263

Fig. 7 The asymptotic curves (blue = unstable and red = stable) of the orbit (b) for h = 0.31 extend well
beyond the areas around the two islands (a) and go all around the available area on the surface of section (b)

exception are the families (a) (a′), which have a non-universal bifurcation ratio δ = 9.22
and lead to escapes (Contopoulos and Zikides 1980). A theoretical explanation of this partic-
ular bifurcation ratio was provided by Heggie (1983). A review of previous theoretical and
numerical work on bifurcations is provided by Contopoulos (2002).

3 Escapes from the system (1)

As the energy h increases the proportion of orbits, that escape directly through the openings
of the the CZV increases. In Fig. 5 (h = 0.132) the upper red region represents orbits that
escape through the upper opening of the CZV, and the lower red region represents orbits
that escape through the lower opening of the CZV, without ever intersecting the axis y = 0.
However, most of the chaotic orbits, represented by scattered dots in Fig. 5, escape from the
system after a small or large number of intersections with the y = 0 axis.

As h increases to h = 0.15 the red regions increase in relative size (proportion of the total
area). In Fig. 8 are shown the direct escape regions for h = 0.15 and the asymptotic curves
(black, unstable and red, stable), from the periodic orbit (c), in the lower part of the figure.
The regions in Fig. 8 are colored according to the number of intersections an orbit has with
the axis y = 0 before the orbit escapes. The stable asymptotic curve (red) again does not
intersect the red region, but the (black) unstable asymptotic curve intersects the red region
on the left after half a rotation around it. Then it intersects it again (after an inner and an
outer loop, below and above the stable asymptotic curve) on the right side of the red region
and so on. The orbits starting at points of the black curve inside the red region escape again
without any further intersections with the axis y = 0.

For larger h (h = 0.20) (Fig. 9a) and h = 0.355 (Fig. 9b) the two regions of direct escapes
increase in proportion to the total available space.

In Fig. 9b we have marked one unstable asymptotic curve of the unstable periodic orbit
(c) (black), and one stable asymptotic curve of the unstable periodic orbit (b) on the left
(red). The two curves are almost tangent at a point. We have checked that for h = 0.354 the
two asymptotic curves do not intersect and for h = 0.356 they clearly intersect close to this
point. Thus, for a value of h a little smaller than h = 0.355 the two curves are tangent. Then
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Fig. 8 Escape regions for
h = 0.15 and the asymptotic
curves (black, unstable and red,
stable), from the periodic orbit (c)

Fig. 9 a Escape regions for h = 0.25 either directly (red), or after a number of intersections of the y = 0 axis
upwards (ẏ > 0), as indicated in the color scale. The white regions represent islands of stability. We mark also
an unstable asymptotic curve (U ) from the periodic orbit (c). b The same, as in a, for h = 0.355, together
with an initial arc of the stable asymptotic curve of the orbit (b) on the left (red)

according to the Newhouse theorem (1977, 1983) close to the tangency point there is a stable
periodic orbit, generated at a tangent bifurcation.

In Fig. 9b we see that the periodic orbits (b) and (c) are in a region where escapes occur
after several intersections of the axis y = 0 by the orbits. In fact, the periodic orbits never
escape, and orbits close to them escape after a time that increases to infinity as the initial con-
ditions approach the periodic orbits. In particular the stable asymptotic curves do not intersect
the red regions of direct escapes. In fact, all the orbits starting on the stable asymptotic curves
never escape.

On the other hand, the unstable asymptotic curve U of (c) in Fig. 9a, b enters the red
region at a rather small distance from the orbit (c), and the orbits starting inside the red
region escape directly. However, this unstable asymptotic curve comes out of the red region
several times, hence the corresponding orbits escape in general after some intersections with
the axis y = 0.
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Periodic orbits and escapes 265

Fig. 10 a The proportion of chaotic (including escaping) orbits Ncha/N0 as a function of the energy h. b
The proportion of the directly escaping orbits d N0/N0 (without any intersection with the axis y = 0) as a
function of the energy h

The fact that there are chaotic orbits that escape after long times is related to the phenom-
enon of stickiness along the unstable asymptotic curves (Contopoulos and Harsoula 2008,
2010).

As h increases further new tangencies between the unstable and the stable asymptotic
curves of the unstable orbits are formed, thus new stable periodic orbits appear. However,
the islands around these periodic orbits are extremely small, since almost 100 % of the orbits
escape for large h.

This situation is similar to the case where no escapes exist at all, but tangencies between
the asymptotic curves generate new stable periodic orbits (Contopoulos et al. 1994).

We proceed now to a statistical analysis of the escapes. This is done in four ways:

(a) First we separate the orbits into ordered and chaotic + escaping. In Fig. 10a we give
the proportion of the chaotic orbits Ncha/No (including the escaping orbits) as a func-
tion of the energy h. Namely we populate the whole circle inside the limiting curve
x2 + ẋ2 = 2h by initial conditions of N0 orbits (where N0 = π(250)2 � 200000) and
we find the total numbers of chaotic + escaping orbits Ncha . Then the number of ordered
orbits is N0 − Ncha . When h is very small the proportion of ordered orbits is almost
100 %. As h increases the proportion of chaotic orbits increases and for h = 0.125
this proportion is about 50 % (Fig. 10a). When h goes beyond the escape perturbation
h = 0.125 the proportion of chaotic orbits increases, but most chaotic orbits escape
to infinity. Only a very small proportion of chaotic orbits near higher order unstable
periodic orbits inside islands of stability do not escape (like the orbits near the unstable
periodic orbit (b) of Fig. 6).
The proportion of chaotic orbits (including the escaping orbits) can be given by the
approximate formula (Fig. 10a)

Ncha/N0 = 0.5[1 + tan h(30.0h − 4.0)]. (8)

For small h this proportion tends to zero, while for large h it tends to 1.
(b) We calculate the proportion of direct escapes (Fig. 10b), d No/No (where d No is the

number of orbits that escape without any intersection with the axis y = 0) as a function
of the energy h. The direct escape regions are red in Figs. 5, 8, 9a, b. This proportion is
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a b

Fig. 11 a The logarithmic proportions log( d Nn
No

) of escapes for h = 0.126, 0.20, 0.25, 0.30, 0.35 and 0.40

as functions of the number of intersections n. b The probability pn = d Nn
Nn

of escapes as a function of n for
various values of the energy h

small for h slightly larger than hesc = 0.125 and increases fast with h, reaching more
than 90 % for h = 0.7.

(c) Then we study the escape time. The time is represented by the number of intersections
n before escape. Most escapes take a long time for h slightly above hesc and take place
faster as h increases. In Fig. 11a we give the logarithm of the proportion of escaping
orbits d Nn/N0 where d Nn is the number of escapes after the nth intersection (upwards,
ẏ > 0) and before the (n + 1) intersection (i.e. there is no (n + 1) intersection). We
see that the escape rates are decreasing with n. The escape rates d Nn/N0 are large for
small n and decrease considerably for larger n. For h ≥ 0.35 the escapes take place
quite fast.

(d) Finally, we calculate the probability of escape as a function of time represented by the
number of intersections n for various values of the energy. Namely the probability pn

is the ratio d Nn/Nn where Nn is the number of orbits that have not yet escaped before
the nth intersection

pn = d Nn

Nn
. (9)

This probability was calculated for the system (1) and other similar systems in previous
papers (Contopoulos et al. 1993; Siopis et al. 1995a,b, 1996). It was found that pn tends
to a constant value p, independent of the initial conditions of non-ordered orbits. For
large times (large n) the probability of escape tends to zero if the energy is smaller
than a critical value hcr , larger than the escape energy hesc. However, if h is larger than
hcr , the probability pn for large n, tends to a constant value p larger than zero. This
quantity depends only on the energy h. In our present notation the limiting probability
p is proportional to a power of the quantity (h − hcr ), i.e.

p ∝ (h − hcr )
α, (10)

where hcr is the critical value of h, and the exponent α is approximately α = 0.5.
This value of α was found to be the same for different dynamical systems (Siopis et al.
1995a,b).
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In Fig. 11b we give the value of pn as a function of n for various values of
h. When h = 0.15 the probability pn tends to p = 0. On the other hand when
h = 0.18, 0.20, 0.25, 0.30 the probabilities tend to p = 0.006, 0.018, 0.026, 0.034
respectively. These values can be approximated by the formula

p = 0.11(h − hcr )
0.53. (11)

where hcr = 0.175. This formula is consistent with the universal formula found by
Siopis et al. (1995a,b).
The statistics of escapes in various dynamical systems has been a subject of considerable
interest in recent years. The main question is whether the various chaotic phenomena
(like Poincaré recurrences, correlations and escapes) decay exponentially in time or
according to power laws (e.g. Cristadoro and Ketzmerick 2008; Venegeroles 2009).
The power laws are supposed to be connected to the existence of stickiness in mixed
dynamical systems that contain islands of stability. However a detailed study of the
effects of stickiness on the escapes should be the study of a future research.

4 Periodic orbits in the Manko–Novikov metric (2)

The MN spacetime depends on a parameter q that measures the quadrupole moment devia-
tion of this metric from the Kerr metric with the same mass M and spin S. There have been
proposals and attempts to constrain such deviations from observational data (see e.g. Psaltis
and Johannsen (2010), Bambi (2011), Bambi and Barausse (2011a), Bambi and Barausse
(2011b) and references therein). The final stages before the plunge (escape) in a non-Kerr
spacetime like the MN have certain astronomical interest (see Bambi and Barausse 2011b).
From this point of view our work aims to exploit the non-integrability of the MN metric in
order to give a detailed example of such a final stage.

The geodesic orbits of a test particle of mass μ are described as equations of motion of
the following Lagrangian

L = 1

2
μ gμν ẋμ ẋν . (12)

The MN metric has two integrals of motion (Gair et al. 2008; Lukes-Gerakopoulos et al.
2010), namely the energy (per unit mass)

E = −∂L

∂ ṫ
/μ = f (γ̇ − ω ϕ̇), (13)

and the z-component of the angular momentum (per unit mass)

Lz = ∂L

∂ϕ̇
/μ = f ω(ṫ − ω ϕ̇)+ f −1ρ2ϕ̇, (14)

where the dots mean derivatives with respect to the proper time. The Kerr metric has one
more integral of motion, the so-called Carter constant (Carter 1968), thus it is an integrable
system. However, the MN model is non-integrable and it allows the appearance of chaos.

The motion on a meridian axis (ϕ = cont) in the MN system satisfies the relation

1

2
(ρ̇2 + ż2)+ Vef f (ρ, z) = 0, (15)
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Fig. 12 Three stable periodic
orbits inside the outer CZV: u0,
2/3 and z = 0 and two periodic
orbits inside the inner CZV u′

0
(stable) and z = 0 (unstable).
There are also 5 CZVs that reach
the axis ρ = 0. The line segment
−0.43589 ≤ z ≤ 0.43589 on the
axis ρ = 0 represents the horizon
of the bumpy black hole. The
horizon is broken at the point
ρ = z = 0

where the effective potential Vef f (ρ, z) depends on q , E and Lz . Thus the motion takes place
inside the CZV

Vef f ≡ 1

2
e−2γ

[

f − E2 +
(

f

ρ
(Lz − ωE)

)2
]

= 0. (16)

Studies of the orbits in the MN metric were made by Gair et al. (2008), Apostolatos et al.
(2009), Lukes-Gerakopoulos et al. (2010), Contopoulos et al. (2011). In the present paper
we study in detail the periodic orbits, chaos and escapes in this system.

In the following we use the values q = 0.95, M = 1 and χ = S/M2 = 0.9 for the spin.
We find the orbits for a fixed value of the z-angular momentum Lz = 3, and various values
of E .

The form of the CZV in the case E = 0.95 is given in Fig. 12. It consists of two main
closed curves and 5 more curves of small extent reaching the axis ρ = 0. The line segment
−k ≤ z ≤ k (k = 0.43589 for M = 1, χ = 0.9), along the axis ρ = 0, represents the
horizon and any orbit reaching this axis escapes into the bumpy black hole. All orbits inside
the 5 curves that are close to the horizon escape into the bumpy black hole.

On the other hand, the orbits starting inside the main closed CZVs remain inside these
curves for ever. In particular there are two simple periodic orbits inside the outer CZV, and
two more simple periodic orbits inside the inner CZV. The periodic orbits u0 (outer) and u′

0
(inner) intersect perpendicularly the ρ-axis while the other two periodic orbits are straight
lines along the z = 0 axis. Furthermore, we mark a stable resonant orbit 2/3. The orbits
u0, u′

0 and the outer z = 0 orbit are stable, while the inner z = 0 is unstable.
If we take a surface of section (ρ, ρ̇) the intersections (z = 0, ż > 0) of most orbits

inside the outer CZV are along closed invariant curves around the point u0 that represents
the periodic orbit u0 (Fig. 13b). However, there are also islands of stability around the sta-
ble (resonant) periodic orbits, and some chaos between these islands, around the unstable
periodic orbits (Fig. 13b).

On the other hand, most orbits in the inner region (inside the inner CZV) are chaotic
(Fig. 13a) although there is a large island of stability and three small islands of type 2/3.
The chaotic character of these orbits is related to the instability of the orbit z = 0, which
is represented by the boundary of the inner region on the surface of section. However, for a
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Fig. 13 Invariant curves and islands on a surface of section (ρ, ρ̇) (z = 0) for E = 0.95. a Islands and chaos
in the inner region. b Invariant curves and islands in the outer region. The unstable periodic orbits are marked
with big dots

Fig. 14 Invariant curves around
the periodic orbit u′

0 for
E = 0.50. The boundary
represents the orbit z = 0, which
is stable in this case

large range of values of E smaller than E = 0.67 the orbit z = 0 is stable and most orbits
around u′

0 are ordered (e.g. for E = 0.5, Fig. 14).
If E increases beyond E = 0.9504 the inner and outer CZVs are joined into a common

CZV (Fig. 15a for E = 0.96). When the two curves join, an unstable periodic orbit is formed,
which intersects perpendicularly the z = 0 axis (point x in Fig. 15a) and exists for larger
values of E. At the same time the two periodic orbits z = 0 join into one unstable orbit.
The inner and outer regions are also joined on the surface of section (ρ, ρ̇) (Fig. 15b). The
periodic orbit z = 0 is represented now by the common boundary of the two regions and close
to it there is some chaos extending all the way around the orbit u0. Chaos is also dominant
inside (i.e. on the left of) the orbit x (Fig. 15b).

Figure 16 gives the characteristics of the periodic orbits u0 and x and the boundaries of
the permitted motions for z = ρ̇ = 0. The inner boundary is at an almost constant ρ � 0.72.
The outer boundary increases considerably with increasing E and tends to infinity as E → 1.
When E > 1 the orbits escape to infinity. When E < 0.9504 the permissible region splits
into two and we have a middle outer boundary (MOB) (Fig. 16) which is the inner boundary
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Fig. 15 a The two main CZV are joined into one for E = 0.96. The point x represents an unstable orbit that
is generated at the saddle point when the two curves join. b The corresponding surface of section (ρ, ρ̇). In
this case the boundary, which represents the orbit z = 0, is unstable. Chaos is dominant in the inner region
and close to the boundary

Fig. 16 Characteristics of the
periodic orbits (u0, x) and the
boundaries of the main
permissible regions (ρ is given as
a function of the energy E)
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of the outer region, and a middle inner boundary (MIB) which is the outer boundary of the
inner region.

As E decreases the outer region shrinks, and disappears for E � 0.9321. Then the orbit
u0 also disappears after becoming just one point. Then the orbit in 3 dimensions is a circle
on the equatorial axis around the center ρ = 0. For smaller E only the inner closed CZV
persists.

The position of the orbit u′
0 is close to the inner boundary, and cannot be distinguished

from the inner boundary in the scale of Fig. 16. In fact, the distance of this orbit from the
inner boundary decreases, as E decreases, and goes to zero at about E = 0.28 (Fig. 17b). For
the same value of E the outer boundary of the inner region (MIB) reaches the inner boundary.
Then the orbit u′

0 in 3 dimensions is circular on the equatorial plane.
As we have mentioned above the orbit z = 0 of the inner region becomes stable when E

decreases below E � 0.67. As E increases above this critical value, a stable family x̄ that
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crosses perpendicularly the z = 0 axis bifurcates from z = 0 (Fig. 17a, b). As E increases
further this family becomes unstable, generating by bifurcation higher order periodic orbits.
E.g. for E = 0.95 one can see 3 small islands around this unstable family (on the right hand
side of Fig. 13a).

When E decreases below E = 0.28 the inner CZV increases again (left side of Fig. 17b),
and the orbit u′

0 deviates from the inner boundary. But, for E < 0.198 the distance of u′
0

from the inner boundary decreases again (Fig. 18), although it does not tend to zero.
The most strange evolution occurs when E becomes smaller than E = 0.19236. Then

a couple of simple periodic orbits crossing perpendicularly the z = 0 axis is formed out
of nothing. One orbit (u′′

0) is stable, and the other (u′′′
0 ) unstable (Fig. 18). This is called a

“tangent bifurcation” (Contopoulos 2002).
From the unstable point u′′′

0 start two stable and two unstable asymptotic manifolds
(Fig. 19a). The inner stable and unstable asymptotic manifolds surround the orbit u′′

0 and
intersect at an infinite number of homoclinic points. The first homoclinic point is on the axis

Fig. 17 a Periodic orbits u′
0 and x̄ for E = 0.7. The family x̄ was generated at the transition of the orbit z = 0

from stability to instability as E increases. b The characteristics of the families u′
0, x̄ and the boundaries of

the (inner) permissible region

Fig. 18 Characteristics of the
families u′

0, u′′
0, u′′′

0 and of some
resonant bifurcations from the
family u′′

0 for relatively small
values of the energy E . The
dotted region indicates chaos.
The dashed line gives the
position of the first homoclinic
point of the orbit u′′′

0 , and the
gray region indicates escaping
orbits, while the red region gives
the initial conditions (for z = 0)
of orbits that escape directly
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Fig. 19 a A surface of section (ρ, ρ̇) for E = 0.192 (just below the value of E = 0.19236 when the orbits
u′′

0, u′′′
0 are formed at a tangent bifurcation). Invariant curves surround the orbits u′

0, u′′
0 and are also near the

boundary. A little chaos appear near the unstable orbit u′′′
0 and its asymptotic curves. b A surface of section for

E = 0.19045. It contains several islands around periodic orbits that have bifurcated from u′′
0, like 1/2, 2/3 and

1/1. Several chaotic regions appear between the islands, but they are separated from each other by invariant
curves around u′′

0. For this value of E the orbit u′′
0 is unstable, while the boundary (representing the orbit

z = 0) is stable

ρ̇ = 0, on the left of the orbit u′′
0. The other couple of stable and unstable asymptotic curves

approach the boundary and surround the orbit u′
0 on the left of the figure.

Near the unstable orbit u′′′
0 and its homoclinic points there is some chaos (Figs. 18 and

19a). As E decreases several periodic orbits bifurcate from u′′
0 and near all the unstable orbits

there are chaotic regions. These chaotic regions increase as E decreases. Two examples of
bifurcating families, namely 2/3 and 1/3 are shown in Fig. 18. The orbit u′′

0 remains stable
from its generation at E = 0.19236 down to E = 0.1912. At E = 0.1912 the orbit u′′

0
becomes unstable and a double period 1/2 stable orbit bifurcates there towards smaller val-
ues of E . In Fig. 19b this orbit has receded from u′′

0 and two islands of stability are formed,
one around each point. The orbits of the islands go alternatively from one island to the other.

The orbit u′′
0 remains unstable for a small interval ΔE and then it becomes again stable,

generating an unstable periodic orbit 1/2.
As E comes close to E = 0.194045 the family u′′

0 becomes again unstable for a small
interval ΔE . At the transition to instability it generates two different stable periodic orbits
of equal period 1/1. In Fig. 19b the orbit u′′

0 is unstable and the two islands around it refer
to different orbits. For a little smaller E the orbit u′′

0 becomes again stable and generates two
unstable periodic orbits 1/1.

As E decreases further there is an infinity of transitions to instability and stability of
orbits of double period 1/2 and of equal period 1/1. At the limit of this infinite sequence
of transitions the orbit u′′

0 reaches the escape region (Fig. 18) and does not exist for smaller
values of E .

This phenomenon of infinite transitions to instability and stability along the same family
was found also in other dynamical systems, e.g. the system given by Eq. (1) of the present
paper (Contopoulos and Zikides 1980).

The chaotic regions of Fig. 19b are separated from each other by invariant curves closing
around u′′

0. For a little smaller E most of these invariant curves are destroyed, as E decreases,
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Fig. 20 a A surface of section (ρ, ρ̇) for E = 0.19015. In this case most of the chaotic regions have joined.
However, there are also islands, like 1/2, 2/3, 1/1. b A surface of section for E = 0.1901 below the escape
value of E = Eesc where escapes start to appear. The chaotic region of a is now a region of escapes, but we
see also the same islands

and a large chaotic region is formed (Figs. 18 and 20a) for E = 0.19015. This large chaotic
region contains several islands of stability, like 1/1, 1/2, 2/3 etc. (Fig. 20a), that recede from
u′′

0 as E decreases (see the characteristics of the corresponding periodic orbits in Fig. 18).

5 Escapes from the Manko–Novikov system (2)

In the MN system (including the Kerr system) there are two types of escapes of orbits: (a)
Escapes to infinity when E � 1, and (b) escapes to the central bumpy black hole for small
values of E.

The first type of escapes (escapes to infinity) is similar to the escapes in the Keplerian
two-body problem (escapes along hyperbolic orbits). The permissible region increases in
size as the energy increases. This size tends to infinity as the energy approaches the energy
of the parabolic motions.

On the other hand, the escapes to the bumpy black hole occur when the CZVs open inwards
as the energy decreases and allow motions towards the bumpy black hole.

In the MN case, that we study here, when E = 0.1901 the CZV of the inner region (the
outer region does not exist) joins two CZVs, above and below it and orbits from the inner
region are allowed to escape to the bumpy black hole (ρ = 0). The aforementioned CZVs
above and below the central region are the second and fourth leaf-like CZVs respectively
(counting clockwise) in Fig. 12 from the set of five CZVs touching the broken horizon of
the bumpy black hole (ρ = 0). These two CZVs expand outwards on both sides of the axis
ρ̇ = 0, while E decreases, until (for E ≈ 0.1901) they reach the expanding central inner
region (Fig. 18), which till then contains only bounded orbits. After the connection, orbits
of the inner region may escape downwards (Fig. 21a) or upwards (Fig. 21b) to the central
bumpy black hole.

In the MN case the escaping orbits are chaotic orbits that undergo chaotic scattering. In
fact, if we compare Fig. 20a (E = 0.19015) where no escapes are permitted, and Fig. 20b
where we have many escapes we see a great similarity. That is the large chaotic domain
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Fig. 21 Escapes in the MN metric a downwards (E = 0.1901), and b upwards (E = 0.1899)

Fig. 22 The period of the orbit
u′

0 as a function of the energy E
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around u′′
0 of Fig. 20a is transformed into an escape domain in Fig. 20b. We see several

islands in Fig. 20b that are slightly changed from the islands of Fig. 20a (the main change is
that the islands 1/1 in Fig. 20a are surrounded by 3 secondary islands in Fig. 20b).

This similarity explains why the chaotic domain of Fig. 18 (around u′′
0) is transformed

into an escape domain for E ≤ 0.1901. In particular the periodic orbit u′′
0 of Fig. 20a reaches

the point where the main CZV of the inner region joins the upper and lower CZVs and for
smaller E this orbit escapes to the bumpy black hole, i.e. the periodic orbit does not exist
any more.

This case is very similar to the cases y = ± √
2x (orbits (a) and (a′)) of the system

(1). There are two more similarities between the two cases. First is the sequence of infinite
transitions to instability and stability of the orbits u′

0 and the orbits (a) and (a′). The second
similarity is in the periods of the orbit u′′

0 and of the orbits (a) and (a′), which both tend to
infinity as the orbits approach the termination point. The period of the orbits u′′

0 is given in
Fig. 22, which increases considerably as E tends to E = 0.1901 and presumably it tends to
infinity. The period of the orbits y = ±√

2x was also found to tend to infinity (Contopoulos
and Zikides 1980).
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Fig. 23 a The proportion of the chaotic orbits (including the escape orbits), with initial conditions along the
axis x , as a function of the energy E . b The proportion d N0/N0 of direct escapes as a function of E

This behavior is consistent with the Strömgren termination principle of the families of
periodic orbits (Szebehely 1967). According to this principle the families either join other
families, or terminate when their size, or their energy, or their period becomes infinite.

The proportion of chaotic + escaping orbits Ncha/N0 increases as the energy decreases
(Fig. 23a). We calculate the proportion Ncha/N0 by taking initial conditions of orbits along
the x-axis. This proportion tends to zero for relatively large E but it increases abruptly as E
goes beyond Eesc (to smaller E). An approximate formula for this proportion is

Ncha/No = 0.379[1 + tan h(304 − 1597E)] (17)

and can be applied in the interval 0.188 < E < 0.192 (Fig. 23a). The curve (17) is very simi-
lar to the corresponding curve of the Hamiltonian (1) (Fig. 10a). However, for E ≤ 0.186 the
proportion of escaping orbits increases further and tends to 100 %. In Fig. 23a two more abrupt
increases can be seen. The first of these two increases takes place near E ≈ 0.186, and around
it one can use an approximate formula Ncha/No = 0.823 + 0.038 tan h(1399 − 7253E).
The second increase takes place near E ≈ 0.183 and the corresponding approximate for-
mula is Ncha/No = 0.921 + 0.065 tan h(163 − 892E). This formula gives values near
Ncha/No = 0.99 for E < 0.180.

When E < Eesc most chaotic orbits escape to the bumpy black hole. However, only a
proportion d N0/N0 escape directly from the system without any further intersection with
the axis z = 0. This proportion increases as the energy E decreases (Fig. 23b). The curve
d N0/N0 of Fig. 23b is very similar to the corresponding curve of Fig. 10b. In Fig. 18 we
mark in red the initial conditions of the directly escaping orbits. Most of the other chaotic
orbits escape after one or more intersections beyond the original point, with the z = 0 axis.
But, as we see in Fig. 18, for E < Eesc there are also orbits that do not escape. In particular
the periodic orbit u′

0 and orbits close to it do not escape for much smaller values of E . Sim-
ilarly the orbits that bifurcated from u′′

0, like the orbits 1/3, 1/2, 2/3, 1/1 (Fig. 18) exist
also for E < Eesc. However, all these families become unstable for small E . In any case the
existence of an infinity of families of unstable periodic orbits is a similar phenomenon as the
one observed in the system (1).
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6 Conclusions

We considered the periodic orbits and escapes in two quite different dynamical sys-
tems in order to find their common features. The first system is a system of two cou-
pled oscillators, while the second system is a perturbation of the Kerr metric in General
Relativity.

In the system (1) escapes occur when the Curves of Zero Velocity open and many orbits
escape to infinity. In the second case we have escapes to infinity, but we emphasized the
escapes to the central bumpy black hole. In both cases when the energy changes and reaches
the escape value, there is a periodic orbit that approaches the point where the CZV opens and
its period tends to infinity. Thus, the family of periodic orbits terminates at the escape energy.
Before the escape energy this family undergoes an infinity of transitions from stability to
instability and vice-versa, and at every transition there is a bifurcation of an equal or double
period family of periodic orbits, that does not escape as the energy varies.

It seems that, in general, in systems with escapes there is a family of periodic orbits that
terminates at infinite period when the CZVs open.

Another common feature is that most chaotic orbits become escape orbits beyond the
escape energy (beyond means larger energy in the first system, but smaller energy in the
second system). However, for energies slightly beyond the escape energy most orbits take a
rather long time to escape. As the energy increases (decreases) the proportion of fast escapes
increases considerably. The proportion of chaotic (+ escaping) orbits increases abruptly as
the energy goes beyond the escape energy.

We studied the structure of the phase space and we distinguished the ordered and chaotic
domains. The ordered domains surround the positions of the stable periodic orbits. Thus we
found these periodic orbits and their bifurcations as the energy varies. On the other hand, the
chaotic domains surround the asymptotic curves from the unstable periodic orbits.

As the two systems under study are quite different we studied them in detail separately.
In the first case (of two coupled oscillations) we found the characteristics of the periodic

orbits and their stability. Then we found the structure of the phase space on a surface of sec-
tion for various values of the energy. As the energy increases the chaotic domains increase,
while all stable periodic orbits become unstable. (However, new stable periodic orbits appear
for larger energies at tangent bifurcations.)

The chaotic domains are covered by the asymptotic curves of a main unstable periodic
orbit. As the energy goes beyond the escape energy most chaotic orbits escape, either directly,
or after a small or a large number of intersections with the y = 0 axis. Some asymptotic
curves are split into successive pieces, each piece making infinite rotations around an escape
domain.

The statistics of chaos and escape are given by different graphs: (a) (b) the proportion of
chaotic and escaping orbits and the proportion of the directly escaping orbits as functions of
the energy, (c) (d) the proportion of the escaping orbits at the nth intersection with respect
to the initial total number of orbits and with respect to the remaining orbits, as functions of
the number of iterations (which represents time).

In the system (2) (Manko–Novikov metric) we found various forms of the CZVs for
various values of the energy, and the corresponding simple periodic orbits. We found also
surfaces of section with mostly ordered orbits, for relatively large energies E (but E < 1),
or a mixture of ordered and chaotic orbits for smaller energies. We found the characteristics
of the main families of periodic orbits and their bifurcations.

We emphasized the appearance of a couple of periodic orbits (one stable, and one unstable)
at a tangent bifurcation, and their evolution. As the energy decreases the stable family under-
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goes an infinity of bifurcations (at transitions from stability to instability and vice versa). As
the energy goes below a critical value the period of this orbit goes to infinity and then this
orbit escapes to the bumpy black hole and this family of periodic orbits terminates.

On the other hand, the bifurcating families exist and do not escape, but become unstable.
We found the proportion of the chaotic regions as the energy decreases. Beyond the critical
energy most of the chaotic region contains escape orbits. The proportion of the chaotic +
escaping orbits increases abruptly below the escape energy and tends to 100 % for smaller
energies.

It is remarkable that these quite different systems have very similar forms of the propor-
tion of chaotic orbits (Figs. 10a and 23a) and of the proportion of directly escaping orbits
(Figs. 10b and 23b). The relations of the periodic orbits with the chaotic and escaping orbits
are also quite similar. These similarities indicate that the properties of periodic, ordered,
chaotic and escaping orbits that we studied in the present paper are very similar in generic
dynamical systems.
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